Publicidad

Plano Numerico.pptx

28 de Feb de 2023
Publicidad

Más contenido relacionado

Publicidad

Plano Numerico.pptx

  1. REPUBLICA BOLIVARIANA DE VAENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACION UNIVERSITARIA UNIVERSIDAD POLITECNICA TERRITORIAL ANDRES ELOY BLANCO Febrero, 2023 Alumno: Samir Amaro Sección:0163 Prof.: Walter Torres
  2. Se conoce como plano cartesiano, coordenadas cartesianas o sistema cartesiano, a dos rectas numéricas perpendiculares, una horizontal y otra vertical, que se cortan en un punto llamado origen o punto cero. La finalidad del plano cartesiano es describir la posición o ubicación de un punto en el plano, la cual está representada por el sistema de coordenadas. El plano cartesiano también sirve para analizar matemáticamente figuras geométricas como la parábola, la hipérbole, la línea, la circunferencia y la elipse, las cuales forman parte de la geometría analítica.
  3. Para demostrar esta relación se deben ubicar los puntos P 1 (x 1 , y 1 ) y P 2 (x 2 , y 2 ) en el sistema de coordenadas, luego formar un triángulo rectángulo de hipotenusa P 1 P 2 y emplear el Teorema de Pitágoras. A partir de conocer la ubicación de dos puntos en el plano cartesiano, es posible determinar la distancia que hay entre éstos. Cuando algún punto se encuentra en el eje de las x o de las abscisas o en una recta paralela a éste eje, la distancia entre los puntos corresponde al valor absoluto de las diferencia de sus abscisas. (x 2 – x 1 ). Ejemplo: La distancia entre los puntos (–4, 0) y (5, 0). Donde (-4) = x 1 ; 5 = x 2. Aplicando la fórmula es 5 – (–4) = 5 +4 = 9 unidades. Lo mismo sucede con el eje de las ordenadas, cuando los puntos se encuentran ubicados sobre el eje y (de las ordenadas) o en una recta paralela a este eje, la distancia entre los puntos corresponde al valor absoluto de la diferencia de sus ordenadas. (y 2 – y 1 ). Si los puntos se encuentran en cualquier lugar del plano cartesiano, se calcula mediante la relación:
  4. El punto medio es un punto que se ubica exactamente en la mitad de un segmento de línea que une a dos puntos. Por ejemplo, si es que tenemos dos puntos y los unimos con un segmento de línea, el punto medio se ubicará en la mitad de ese segmento y será equidistante a ambos puntos. En el siguiente diagrama tenemos los puntos A y B, los cuales están unidos por un segmento. El punto C es el punto medio, ya que está exactamente en la mitad del segmento. Para calcular la ubicación del punto medio, simplemente tenemos que medir la longitud del segmento y dividir por 2. Un punto medio puede ser calculado solo cuando tenemos a un segmento que une a dos puntos, ya que tiene una ubicación definida. El punto medio no puede ser calculado para una línea o un rayo, ya que una línea tiene dos extremos que se extienden indefinidamente y un rayo tiene un extremo que se extiende indefinidamente. Fórmula del punto
  5. La circunferencia es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro (recordar que estamos hablando del Plano Cartesiano y es respecto a éste que trabajamos). Una circunferencia queda determinada cuando conocemos: a) Tres puntos de la misma, equidistantes del centro. b) El centro y el radio. c) El centro y un punto en ella. d) El centro y una recta tangente a la circunferencia. También podemos decir que la circunferencia es la línea formada por todos los puntos que están a la misma distancia de otro punto, llamado centro . Esta propiedad es la clave para hallar la expresión analítica de una circunferencia (la ecuación de la circunferencia ). Entonces, entrando en el terreno de la Geometría Analítica , (dentro del Plano Cartesiano ) diremos que —para cualquier punto, P (x, y) , de una circunferencia cuyo centro es el punto C (a, b) y con radio r ─, la ecuación ordinaria es: (x ─ a) 2 + (y ─ b) 2 = r 2
  6. En matemáticas, una parábola es la sección cónica de excentricidad igual a 1,​ resultante de cortar un cono recto con un plano cuyo ángulo de inclinación respecto al eje de revolución del cono sea igual al presentado por su generatriz. El plano resultará por lo tanto paralelo a dicha recta. Se define también como el lugar geométrico de los puntos de un plano que equidistan de una recta llamada directriz, y un punto interior a la parábola llamado foco. En geometría proyectiva, la parábola se define como la curva envolvente de las rectas que unen pares de puntos homólogos en una proyectividad semejante o semejanza.
  7. es una curva plana, simple​ y cerrada con dos ejes de simetría que resulta al cortar la superficie de un cono por un plano oblicuo al eje de simetría con ángulo mayor que el de la generatriz respecto del eje de revolución. Una elipse que gira alrededor de su eje menor genera un esferoide achatado, mientras que una elipse que gira alrededor de su eje principal genera un esferoide alargado. La elipse es también la imagen afín de una circunferencia.
  8. es una curva abierta de dos ramas, obtenida cortando un cono recto mediante un plano no necesariamente paralelo al eje de simetría, y con ángulo menor que el de la generatriz respecto del eje de revolución. En geometría analítica, una hipérbola es el lugar geométrico de los puntos de un plano, tales que el valor absoluto de la diferencia de sus distancias a dos puntos fijos, llamados focos, es igual a la distancia entre los vértices, la cual es una constante positiva. Siendo esta constante menor a la distancia entre los focos.
  9. Circunfer encia Elipses
  10. https://www.significados.com/plano-cartesiano/ https://heribertodiazblog.weebly.com/blog/distancia-entre-dos-puntos-en-el-plano-cartesiano https://www.neurochispas.com/matematicas/punto-medio-de-un-segmento-formula-y-ejemplos/ https://www.profesorenlinea.cl/geometria/Ecuacion_Circunferencia.html https://es.wikipedia.org/wiki/Par%C3%A1bola_(matem%C3%A1tica) https://es.wikipedia.org/wiki/Elipse
Publicidad