Se ha denunciado esta presentación.
Utilizamos tu perfil de LinkedIn y tus datos de actividad para personalizar los anuncios y mostrarte publicidad más relevante. Puedes cambiar tus preferencias de publicidad en cualquier momento.
(cos (x+a), sin (x+a))



                                 (cos x, sin x)




                         a
                 ...
(cos (x+a), sin (x+a))



                                  (cos x, sin x)



                                           s...
(cos (x+a), sin (x+a))
Imagine rotating
angle x (with a
staying constant)
                                        (cos x, ...
(cos (x+a), sin (x+a))



                             (cos x, sin x)


   Let’s see it before doing
                     ...
(cos (x+a), sin (x+a))                    (cos x, sin x)



                                                   new slope

...
(cos (x+a), sin (x+a))



                                     (cos x, sin x)



Now let’s prove that the angle between
  ...
(cos (x+a), sin (x+a))

                          180-x-a
      x+a-90
                                    (cos x, sin x)
...
(cos (x+a), sin (x+a))

                          180-x-a

                                                 (cos x, sin x)...
(cos (x+a), sin (x+a))



                                         (cos x, sin x)




                          a
        ...
(cos (x+a), sin (x+a))
The angle between the dashed green lines is:

             (x+a-90)+(90-x-a/2)=a/2         (cos x, ...
Próxima SlideShare
Cargando en…5
×

Trigonometry Pdf

2.589 visualizaciones

Publicado el

Publicado en: Tecnología, Empresariales
  • Sé el primero en comentar

Trigonometry Pdf

  1. 1. (cos (x+a), sin (x+a)) (cos x, sin x) a x
  2. 2. (cos (x+a), sin (x+a)) (cos x, sin x) slope a x of line is g(x) (cos (x+a), -sin (x+a))
  3. 3. (cos (x+a), sin (x+a)) Imagine rotating angle x (with a staying constant) (cos x, sin x) around the circle. We need to show slope that the angle a x of line is between the g(x) dashed green lines is constant. That shows the slope stays the same. (cos (x+a), -sin (x+a))
  4. 4. (cos (x+a), sin (x+a)) (cos x, sin x) Let’s see it before doing slope any calculations… a x of line is g(x) Let’s increase x just a little bit! (cos (x+a), -sin (x+a))
  5. 5. (cos (x+a), sin (x+a)) (cos x, sin x) new slope a old slope x Even with a larger x, (cos (x+a), -sin (x+a)) we see the slope stays the same!
  6. 6. (cos (x+a), sin (x+a)) (cos x, sin x) Now let’s prove that the angle between slope the dashed green lines stays constant!line is a x of g(x) Otherwise known as “hello, isoceles triangles!” (cos (x+a), -sin (x+a))
  7. 7. (cos (x+a), sin (x+a)) 180-x-a x+a-90 (cos x, sin x) 90 a x 90 180-x-a x+a-90 (cos (x+a), -sin (x+a))
  8. 8. (cos (x+a), sin (x+a)) 180-x-a (cos x, sin x) a x 90-x-a/2 180-x-a x+a x+a-90 90-x-a/2 (cos (x+a), -sin (x+a))
  9. 9. (cos (x+a), sin (x+a)) (cos x, sin x) a x x+a-90 90-x-a/2 (cos (x+a), -sin (x+a))
  10. 10. (cos (x+a), sin (x+a)) The angle between the dashed green lines is: (x+a-90)+(90-x-a/2)=a/2 (cos x, sin x) which is not dependent on x at all. a That’s what we wanted to show. x x+a-90 90-x-a/2 (cos (x+a), -sin (x+a))

×