SlideShare una empresa de Scribd logo

Dinamica rotacional samuel

S
S

fisica

Dinamica rotacional samuel

1 de 17
Descargar para leer sin conexión
DINAMICA ROTACIONAL, ELASTICIDAD, MOVIMIENTO OSCILATORIO,
M.A.S
TRABAJO Y ENERGÍA EN EL MOVIMIENTO ARMÓNICO SIMPLE;
ROTACION
Consideremos una partícula sobre la que actúa una fuerza , función de la posición de la
partícula en el espacio, esto es y sea un desplazamiento elemental
(infinitesimal) experimentado por la partícula durante un intervalo de tiempo .
Llamamos trabajo elemental, , de la fuerza durante el desplazamiento
elemental al producto escalar ; esto es,
Si representamos por la longitud de arco (medido sobre la trayectoria de la partícula) en
el desplazamiento elemental, esto es , entonces el vector tangente a la
trayectoria viene dado por y podemos escribir la expresión anterior en la
forma
donde representa el ángulo determinado por los vectores y y es la componente
de la fuerza F en la dirección del desplazamiento elemental .
El trabajo realizado por la fuerza durante un desplazamiento elemental de la partícula
sobre la que está aplicada es una magnitud escalar, que podrá ser positiva, nula o negativa,
según que el ángulo sea agudo, recto u obtuso.
Si la partícula P recorre una cierta trayectoria en el espacio, su desplazamiento total entre
dos posiciones A y B puede considerarse como el resultado de sumar infinitos
desplazamientos elementales y el trabajo total realizado por la fuerza en ese
desplazamiento será la suma de todos esos trabajos elementales; o sea
Esto es, el trabajo viene dado por la integral curvilínea de a lo largo de la curva que
une los dos puntos; en otras palabras, por la circulación de sobre la curva entre los
puntos A y B. Así pues, el trabajo es una magnitud física escalar que dependerá en general
de la trayectoria que una los puntos A y B, a no ser que la fuerza sea conservativa, en
cuyo caso el trabajo resultará ser independiente del camino seguido para ir del punto A al
punto B, siendo nulo en una trayectoria cerrada. Así, podemos afirmar que el trabajo no es
una variable de estado.
Casos particulares
Fuerza constante sobre una partícula
En el caso particular de que la fuerza aplicada a la partícula sea constante (en módulo,
dirección3 y sentido4 ), se tiene que
es decir, el trabajo realizado por una fuerza constante viene expresado por el producto
escalar de la fuerza por el vector desplazamiento total entre la posición inicial y la final.
Cuando el vector fuerza es perpendicular al vector desplazamiento del cuerpo sobre el que
se aplica, dicha fuerza no realiza trabajo alguno. Asimismo, si no hay desplazamiento, el
trabajo también será nulo.
Si sobre una partícula actúan varias fuerzas y queremos calcular el trabajo total realizado
sobre esta ella, entonces representará al vector resultante de todas las fuerzas aplicadas.
Trabajo sobre un sólido rígido
Para el caso de un sólido el trabajo total sobre el mismo se calcula sumando las
contribuciones sobre todas las partículas. Matemáticamente ese trabajo puede expresarse
como integral:
Si se trata de un sólido rígido las fuerzas de volumen puede escribirse en términos de
la fuerza resultante , el momento resultante , la velocidad del centro de
masas y la velocidad angular :
Trabajo y energía cinética
Para el caso de una partícula tanto en mecánica clásica como en mecánica relativista es
válida la siguiente expresión:
Multiplicando esta expresión escalarmente por la velocidad e integrando respecto al tiempo
se obtiene que el trabajo realizado sobre una partícula (clásica o relativista) iguala a la
variación de energía cinética:
Rotación
Es el movimiento de cambio de orientación de un cuerpo o un sistema de
referencia de forma que una línea (llamada eje de rotación) o un punto
permanece fijo.
La rotación de un cuerpo se representa mediante un operador que afecta a un
conjunto de puntos o vectores. El movimiento rotatorio se representa mediante el
vector velocidad angular , que es un vector de carácter deslizante y situado
sobre el eje de rotación. Cuando el eje pasa por el centro de masa o de gravedad
se dice que el cuerpo «gira sobre sí mismo».
La rotación también puede ser oscilatoria, como en el péndulo (izquierda). Los
giros son completos sólo cuando la energía es lo suficientemente alta (derecha).
El gráfico superior muestra la trayectoria en el espacio físico.
En ingeniería mecánica, se llama revolución a una rotación completa de una
pieza sobre su eje (como en la unidad de revoluciones por minuto), mientras que
en astronomía se usa esta misma palabra para referirse al movimiento orbital de
traslación de un cuerpo alrededor de otro (como los planetas alrededor del Sol).
SISTEMA MASA- RESORTE
Un ejemplo de Movimiento Armónico Simple se muestra en la figura. Se supone
movimiento sin rozamiento sobre la superficie horizontal.
El resorte es un elemento muy común en máquinas. Tiene una longitud normal, en
ausencia de fuerzas externas. Cuando se le aplican fuerzas se deforma alargándose o
acortándose en una magnitud “x” llamada “deformación”. Cada resorte se caracteriza
mediante una constante “k” que es igual a la fuerza por unidad de deformación que hay
que aplicarle. La fuerza que ejercerá el resorte es igual y opuesta a la fuerza externa
aplicada (si el resorte deformado está en reposo) y se llama fuerza recuperadora elástica.
Dicha fuerza recuperadora elástica es igual a :
En el primer dibujo tenemos el cuerpo de masa “m” en la posición de equilibrio, con el
resorte teniendo su longitud normal.
Si mediante una fuerza externa lo apartamos de la misma (segundo dibujo), hasta una
deformación “x = + A” y luego lo soltamos, el cuerpo empezará a moverse con M.A.S.
oscilando en torno a la posición de equilibrio. En este dibujo la fuerza es máxima pero
negativa, lo que indica que va hacia la izquierda tratando de hacer regresar al cuerpo a la
posición de equilibrio.
Llegará entonces hasta una deformación “x = -A” (tercer dibujo). En este caso la
deformación negativa indica que el resorte está comprimido. La fuerza será máxima pero
positiva, tratando de volver al cuerpo a su posición de equilibrio.
A través de la Segunda Ley de Newton relacionamos la fuerza actuante (recuperadora)
con la aceleración a(t).
Energía de un M.A.S.
En el MAS la energía se transforma continuamente de potencial en cinética y viceversa.
En los extremos solo hay energía potencial puesto que la velocidad es cero y en el punto de
equilibrio solo hay energía cinética. En cualquier otro punto, la energía correspondiente a la
partícula que realiza el MAS es la suma de su energía potencial más su energía cinética.
Toda partícula sometida a un movimiento armónico simple posee una energía mecánica que
podemos descomponer en: Energía Cinética (debida a que la partícula está en movimiento)
y Energía Potencial (debida a que el movimiento armónico es producido por una fuerza
conservativa). Si tenemos en cuenta el valor de la energía cinética
Ec = 1/2 m v2
y el valor de la velocidad del m.a.s.
v = dx / dt = A w cos (w t + jo)
sustituyendo obtenemos
Ec = 1/2 m v2 = 1/2 m A2 w2cos2 (w t + jo)
Ec = 1/2 k A2 cos 2(w t + jo)

Recomendados

Trabajo y energia
Trabajo y energiaTrabajo y energia
Trabajo y energiaAnaFabiola7
 
Practica 5 "Trabajo y Energía" Laboratorio de Cinematica Y Dinamica FI UNAM
Practica 5 "Trabajo y Energía" Laboratorio de Cinematica Y Dinamica FI UNAMPractica 5 "Trabajo y Energía" Laboratorio de Cinematica Y Dinamica FI UNAM
Practica 5 "Trabajo y Energía" Laboratorio de Cinematica Y Dinamica FI UNAMFernando Reyes
 
Movimiento armónico simple. Fisica
Movimiento armónico simple. FisicaMovimiento armónico simple. Fisica
Movimiento armónico simple. FisicaGustavoMendoza600
 
Trabajo y energia
Trabajo y energiaTrabajo y energia
Trabajo y energiaLitmans
 

Más contenido relacionado

La actualidad más candente

La actualidad más candente (18)

Trabajo y energía
Trabajo y energíaTrabajo y energía
Trabajo y energía
 
Practica 6 de fisica
Practica 6 de fisicaPractica 6 de fisica
Practica 6 de fisica
 
Ecuaciones de equilibrio
Ecuaciones de equilibrioEcuaciones de equilibrio
Ecuaciones de equilibrio
 
TRABAJO Y ENERGÍA (FÍSICA)
TRABAJO Y ENERGÍA (FÍSICA)TRABAJO Y ENERGÍA (FÍSICA)
TRABAJO Y ENERGÍA (FÍSICA)
 
Trabajo y energía samuel
Trabajo y energía samuelTrabajo y energía samuel
Trabajo y energía samuel
 
Trabajo y energía
Trabajo y energíaTrabajo y energía
Trabajo y energía
 
Informe 2 Final Energia Potencial Gravitatoria y Elastica
Informe 2 Final Energia Potencial Gravitatoria y ElasticaInforme 2 Final Energia Potencial Gravitatoria y Elastica
Informe 2 Final Energia Potencial Gravitatoria y Elastica
 
Rogelio
RogelioRogelio
Rogelio
 
Trabajo Y Energia
Trabajo Y EnergiaTrabajo Y Energia
Trabajo Y Energia
 
Borja Francisco Diapositivas Proyecto UIII
Borja Francisco Diapositivas Proyecto UIIIBorja Francisco Diapositivas Proyecto UIII
Borja Francisco Diapositivas Proyecto UIII
 
Energia potencial
Energia potencialEnergia potencial
Energia potencial
 
Las fuerzas
Las fuerzasLas fuerzas
Las fuerzas
 
vibraciones y ondas
 vibraciones y ondas vibraciones y ondas
vibraciones y ondas
 
Informe de fisica carro energía mecánica
Informe de fisica carro energía mecánicaInforme de fisica carro energía mecánica
Informe de fisica carro energía mecánica
 
Dinamica rotacional
Dinamica rotacionalDinamica rotacional
Dinamica rotacional
 
PRACTICA #6
PRACTICA #6PRACTICA #6
PRACTICA #6
 
Energía y Trabajo (4º ESO)
Energía y Trabajo (4º ESO)Energía y Trabajo (4º ESO)
Energía y Trabajo (4º ESO)
 
Fisica pract 3 lab
Fisica pract 3 labFisica pract 3 lab
Fisica pract 3 lab
 

Similar a Dinamica rotacional samuel

Trabajo y energia victor 160207211234
Trabajo y energia victor 160207211234Trabajo y energia victor 160207211234
Trabajo y energia victor 160207211234victor calderon
 
Trabajo y energía victor
Trabajo y energía victorTrabajo y energía victor
Trabajo y energía victorvictor calderon
 
Diapositivas de trabajo y nergia
Diapositivas de trabajo y nergiaDiapositivas de trabajo y nergia
Diapositivas de trabajo y nergiavictor calderon
 
Trabajo y Energía en el Movimiento: Armónico Simple; Rotación Sistema Masa-Re...
Trabajo y Energía en el Movimiento: Armónico Simple; Rotación Sistema Masa-Re...Trabajo y Energía en el Movimiento: Armónico Simple; Rotación Sistema Masa-Re...
Trabajo y Energía en el Movimiento: Armónico Simple; Rotación Sistema Masa-Re...Isaac Velayos
 
DINAMICA ROTACIONA y ELASTICIDAD - MOVIMIENTO OSCILATORIO - M.A.S
DINAMICA ROTACIONA y ELASTICIDAD - MOVIMIENTO OSCILATORIO - M.A.SDINAMICA ROTACIONA y ELASTICIDAD - MOVIMIENTO OSCILATORIO - M.A.S
DINAMICA ROTACIONA y ELASTICIDAD - MOVIMIENTO OSCILATORIO - M.A.SJOSE LEAL OVIEDO
 
Grupo 2-trabajo y energia-teoria
Grupo 2-trabajo y energia-teoriaGrupo 2-trabajo y energia-teoria
Grupo 2-trabajo y energia-teoriaetubay
 
Movimiento armónico
Movimiento armónicoMovimiento armónico
Movimiento armónicoIUTAJS
 
Trabajoenergia y trbajo
Trabajoenergia y trbajoTrabajoenergia y trbajo
Trabajoenergia y trbajobrandoreal4
 
Movimiento armonico simple
Movimiento armonico simpleMovimiento armonico simple
Movimiento armonico simplecesarpinilla91
 
MOVIMIENTO OSCILATORIO - M.A.S
MOVIMIENTO OSCILATORIO - M.A.SMOVIMIENTO OSCILATORIO - M.A.S
MOVIMIENTO OSCILATORIO - M.A.SBrayer Yepez
 
Trabajo y energia
Trabajo y energiaTrabajo y energia
Trabajo y energiaJuan Carlos
 
Dinamica rotacional
Dinamica rotacionalDinamica rotacional
Dinamica rotacional25144890
 
Dinamica rotacional
Dinamica rotacionalDinamica rotacional
Dinamica rotacional25144890
 
Dinamica rotacional
Dinamica rotacionalDinamica rotacional
Dinamica rotacional25144890
 
El trabajo en mecánica
El trabajo en mecánicaEl trabajo en mecánica
El trabajo en mecánicaholivaresz
 

Similar a Dinamica rotacional samuel (20)

Trabajo y energia victor 160207211234
Trabajo y energia victor 160207211234Trabajo y energia victor 160207211234
Trabajo y energia victor 160207211234
 
Trabajo y energía victor
Trabajo y energía victorTrabajo y energía victor
Trabajo y energía victor
 
Diapositivas de trabajo y nergia
Diapositivas de trabajo y nergiaDiapositivas de trabajo y nergia
Diapositivas de trabajo y nergia
 
Trabajo y Energía en el Movimiento: Armónico Simple; Rotación Sistema Masa-Re...
Trabajo y Energía en el Movimiento: Armónico Simple; Rotación Sistema Masa-Re...Trabajo y Energía en el Movimiento: Armónico Simple; Rotación Sistema Masa-Re...
Trabajo y Energía en el Movimiento: Armónico Simple; Rotación Sistema Masa-Re...
 
DINAMICA ROTACIONA y ELASTICIDAD - MOVIMIENTO OSCILATORIO - M.A.S
DINAMICA ROTACIONA y ELASTICIDAD - MOVIMIENTO OSCILATORIO - M.A.SDINAMICA ROTACIONA y ELASTICIDAD - MOVIMIENTO OSCILATORIO - M.A.S
DINAMICA ROTACIONA y ELASTICIDAD - MOVIMIENTO OSCILATORIO - M.A.S
 
Acrchivo de fisica 1
Acrchivo de fisica 1Acrchivo de fisica 1
Acrchivo de fisica 1
 
Blog fisica
Blog fisicaBlog fisica
Blog fisica
 
Grupo 2-trabajo y energia-teoria
Grupo 2-trabajo y energia-teoriaGrupo 2-trabajo y energia-teoria
Grupo 2-trabajo y energia-teoria
 
FISICA
FISICAFISICA
FISICA
 
Movimiento armónico
Movimiento armónicoMovimiento armónico
Movimiento armónico
 
Trabajoenergia y trbajo
Trabajoenergia y trbajoTrabajoenergia y trbajo
Trabajoenergia y trbajo
 
Movimiento armonico simple
Movimiento armonico simpleMovimiento armonico simple
Movimiento armonico simple
 
MOVIMIENTO OSCILATORIO - M.A.S
MOVIMIENTO OSCILATORIO - M.A.SMOVIMIENTO OSCILATORIO - M.A.S
MOVIMIENTO OSCILATORIO - M.A.S
 
Jaime
JaimeJaime
Jaime
 
Jaime
JaimeJaime
Jaime
 
Trabajo y energia
Trabajo y energiaTrabajo y energia
Trabajo y energia
 
Dinamica rotacional
Dinamica rotacionalDinamica rotacional
Dinamica rotacional
 
Dinamica rotacional
Dinamica rotacionalDinamica rotacional
Dinamica rotacional
 
Dinamica rotacional
Dinamica rotacionalDinamica rotacional
Dinamica rotacional
 
El trabajo en mecánica
El trabajo en mecánicaEl trabajo en mecánica
El trabajo en mecánica
 

Último

OPCH TC OPM1.2 - Modelo educativo UABC.pdf
OPCH TC OPM1.2 - Modelo educativo UABC.pdfOPCH TC OPM1.2 - Modelo educativo UABC.pdf
OPCH TC OPM1.2 - Modelo educativo UABC.pdfIvanLechuga
 
Lasso_Alexander_Alumno_1- Garzon_Marco_Alumno_2 (1).pdf
Lasso_Alexander_Alumno_1- Garzon_Marco_Alumno_2 (1).pdfLasso_Alexander_Alumno_1- Garzon_Marco_Alumno_2 (1).pdf
Lasso_Alexander_Alumno_1- Garzon_Marco_Alumno_2 (1).pdfalexlasso65
 
Infopedagogia Uzhca_Marcelo_ tarea_No_1.pdf
Infopedagogia Uzhca_Marcelo_ tarea_No_1.pdfInfopedagogia Uzhca_Marcelo_ tarea_No_1.pdf
Infopedagogia Uzhca_Marcelo_ tarea_No_1.pdfMarceloUzhca
 
IMÁGENES SUBLIMINALES OCULTAS EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁ
IMÁGENES SUBLIMINALES OCULTAS EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁIMÁGENES SUBLIMINALES OCULTAS EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁ
IMÁGENES SUBLIMINALES OCULTAS EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁClaude LaCombe
 
Infografía Instituto Diocesano Jesus Ramírez.pptx
Infografía Instituto Diocesano Jesus Ramírez.pptxInfografía Instituto Diocesano Jesus Ramírez.pptx
Infografía Instituto Diocesano Jesus Ramírez.pptxjesusdrr26
 
Lasso_Alexander_Practica_2.pdf.INFOPEDAGOGIA
Lasso_Alexander_Practica_2.pdf.INFOPEDAGOGIALasso_Alexander_Practica_2.pdf.INFOPEDAGOGIA
Lasso_Alexander_Practica_2.pdf.INFOPEDAGOGIAalexlasso65
 
Guardianes medioambientales CEIP Atalaya Cartegena
Guardianes medioambientales CEIP Atalaya CartegenaGuardianes medioambientales CEIP Atalaya Cartegena
Guardianes medioambientales CEIP Atalaya CartegenaCEINFPRIATALAYACEINF
 
INFOGRAFIA WILL, GOING TO WILMARYS HERNANDEZ
INFOGRAFIA WILL, GOING TO WILMARYS HERNANDEZINFOGRAFIA WILL, GOING TO WILMARYS HERNANDEZ
INFOGRAFIA WILL, GOING TO WILMARYS HERNANDEZpachewilma
 
Casco_Angela_Práctica_Infopedagogía4.pdf
Casco_Angela_Práctica_Infopedagogía4.pdfCasco_Angela_Práctica_Infopedagogía4.pdf
Casco_Angela_Práctica_Infopedagogía4.pdfAngelaCasco1
 
Prueba objetiva - Parcial 1_Grupo 1 Infopedagogía
Prueba objetiva - Parcial 1_Grupo 1 InfopedagogíaPrueba objetiva - Parcial 1_Grupo 1 Infopedagogía
Prueba objetiva - Parcial 1_Grupo 1 Infopedagogíaferpatfut1109
 
Calendario Escolar 2023 - 2024 Venezuela
Calendario Escolar 2023 - 2024 VenezuelaCalendario Escolar 2023 - 2024 Venezuela
Calendario Escolar 2023 - 2024 VenezuelaDiegoVzquez68
 
Infografía de la U.E. Instituto Diocesano Barquisimeto.pdf
Infografía de la U.E. Instituto Diocesano Barquisimeto.pdfInfografía de la U.E. Instituto Diocesano Barquisimeto.pdf
Infografía de la U.E. Instituto Diocesano Barquisimeto.pdfMoisés Rodríguez
 
Recomendaciones cajero automáticooo.pptx
Recomendaciones cajero automáticooo.pptxRecomendaciones cajero automáticooo.pptx
Recomendaciones cajero automáticooo.pptxlauramedinalonso
 
Presentación programa educativo Radio Edu
Presentación programa educativo Radio EduPresentación programa educativo Radio Edu
Presentación programa educativo Radio Edumariajosecasadobueno
 
Lasso_Anthony_Tarea_2.pdf, EVOLUCION DE INTERNETE
Lasso_Anthony_Tarea_2.pdf, EVOLUCION DE INTERNETELasso_Anthony_Tarea_2.pdf, EVOLUCION DE INTERNETE
Lasso_Anthony_Tarea_2.pdf, EVOLUCION DE INTERNETEalexlasso65
 
Auquilla_Paola_y_Casco_Angela_Tarea_2.pdf
Auquilla_Paola_y_Casco_Angela_Tarea_2.pdfAuquilla_Paola_y_Casco_Angela_Tarea_2.pdf
Auquilla_Paola_y_Casco_Angela_Tarea_2.pdfAngelaCasco1
 
IMÁGENES SUBLIMINALES OCULTAS EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁ
IMÁGENES SUBLIMINALES OCULTAS EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁIMÁGENES SUBLIMINALES OCULTAS EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁ
IMÁGENES SUBLIMINALES OCULTAS EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁClaude LaCombe
 

Último (20)

OPCH TC OPM1.2 - Modelo educativo UABC.pdf
OPCH TC OPM1.2 - Modelo educativo UABC.pdfOPCH TC OPM1.2 - Modelo educativo UABC.pdf
OPCH TC OPM1.2 - Modelo educativo UABC.pdf
 
Lasso_Alexander_Alumno_1- Garzon_Marco_Alumno_2 (1).pdf
Lasso_Alexander_Alumno_1- Garzon_Marco_Alumno_2 (1).pdfLasso_Alexander_Alumno_1- Garzon_Marco_Alumno_2 (1).pdf
Lasso_Alexander_Alumno_1- Garzon_Marco_Alumno_2 (1).pdf
 
Infopedagogia Uzhca_Marcelo_ tarea_No_1.pdf
Infopedagogia Uzhca_Marcelo_ tarea_No_1.pdfInfopedagogia Uzhca_Marcelo_ tarea_No_1.pdf
Infopedagogia Uzhca_Marcelo_ tarea_No_1.pdf
 
IMÁGENES SUBLIMINALES OCULTAS EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁ
IMÁGENES SUBLIMINALES OCULTAS EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁIMÁGENES SUBLIMINALES OCULTAS EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁ
IMÁGENES SUBLIMINALES OCULTAS EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁ
 
Infografía Instituto Diocesano Jesus Ramírez.pptx
Infografía Instituto Diocesano Jesus Ramírez.pptxInfografía Instituto Diocesano Jesus Ramírez.pptx
Infografía Instituto Diocesano Jesus Ramírez.pptx
 
Lasso_Alexander_Practica_2.pdf.INFOPEDAGOGIA
Lasso_Alexander_Practica_2.pdf.INFOPEDAGOGIALasso_Alexander_Practica_2.pdf.INFOPEDAGOGIA
Lasso_Alexander_Practica_2.pdf.INFOPEDAGOGIA
 
Guardianes medioambientales CEIP Atalaya Cartegena
Guardianes medioambientales CEIP Atalaya CartegenaGuardianes medioambientales CEIP Atalaya Cartegena
Guardianes medioambientales CEIP Atalaya Cartegena
 
INFOGRAFIA WILL, GOING TO WILMARYS HERNANDEZ
INFOGRAFIA WILL, GOING TO WILMARYS HERNANDEZINFOGRAFIA WILL, GOING TO WILMARYS HERNANDEZ
INFOGRAFIA WILL, GOING TO WILMARYS HERNANDEZ
 
Casco_Angela_Práctica_Infopedagogía4.pdf
Casco_Angela_Práctica_Infopedagogía4.pdfCasco_Angela_Práctica_Infopedagogía4.pdf
Casco_Angela_Práctica_Infopedagogía4.pdf
 
Prueba objetiva - Parcial 1_Grupo 1 Infopedagogía
Prueba objetiva - Parcial 1_Grupo 1 InfopedagogíaPrueba objetiva - Parcial 1_Grupo 1 Infopedagogía
Prueba objetiva - Parcial 1_Grupo 1 Infopedagogía
 
Calendario Escolar 2023 - 2024 Venezuela
Calendario Escolar 2023 - 2024 VenezuelaCalendario Escolar 2023 - 2024 Venezuela
Calendario Escolar 2023 - 2024 Venezuela
 
GARZON_MARCO_TAREA_1 (1).pdf
GARZON_MARCO_TAREA_1 (1).pdfGARZON_MARCO_TAREA_1 (1).pdf
GARZON_MARCO_TAREA_1 (1).pdf
 
Infografía de la U.E. Instituto Diocesano Barquisimeto.pdf
Infografía de la U.E. Instituto Diocesano Barquisimeto.pdfInfografía de la U.E. Instituto Diocesano Barquisimeto.pdf
Infografía de la U.E. Instituto Diocesano Barquisimeto.pdf
 
SISTEMA LOCOMOTOR.pptx
SISTEMA LOCOMOTOR.pptxSISTEMA LOCOMOTOR.pptx
SISTEMA LOCOMOTOR.pptx
 
Recomendaciones cajero automáticooo.pptx
Recomendaciones cajero automáticooo.pptxRecomendaciones cajero automáticooo.pptx
Recomendaciones cajero automáticooo.pptx
 
Presentación programa educativo Radio Edu
Presentación programa educativo Radio EduPresentación programa educativo Radio Edu
Presentación programa educativo Radio Edu
 
Lasso_Anthony_Tarea_2.pdf, EVOLUCION DE INTERNETE
Lasso_Anthony_Tarea_2.pdf, EVOLUCION DE INTERNETELasso_Anthony_Tarea_2.pdf, EVOLUCION DE INTERNETE
Lasso_Anthony_Tarea_2.pdf, EVOLUCION DE INTERNETE
 
Auquilla_Paola_y_Casco_Angela_Tarea_2.pdf
Auquilla_Paola_y_Casco_Angela_Tarea_2.pdfAuquilla_Paola_y_Casco_Angela_Tarea_2.pdf
Auquilla_Paola_y_Casco_Angela_Tarea_2.pdf
 
TEMA 1 LA NATURALEZA DEL PRECIO (material adicional) SI.pdf
TEMA 1 LA NATURALEZA DEL PRECIO (material adicional) SI.pdfTEMA 1 LA NATURALEZA DEL PRECIO (material adicional) SI.pdf
TEMA 1 LA NATURALEZA DEL PRECIO (material adicional) SI.pdf
 
IMÁGENES SUBLIMINALES OCULTAS EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁ
IMÁGENES SUBLIMINALES OCULTAS EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁIMÁGENES SUBLIMINALES OCULTAS EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁ
IMÁGENES SUBLIMINALES OCULTAS EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁ
 

Dinamica rotacional samuel

  • 1. DINAMICA ROTACIONAL, ELASTICIDAD, MOVIMIENTO OSCILATORIO, M.A.S TRABAJO Y ENERGÍA EN EL MOVIMIENTO ARMÓNICO SIMPLE; ROTACION Consideremos una partícula sobre la que actúa una fuerza , función de la posición de la partícula en el espacio, esto es y sea un desplazamiento elemental (infinitesimal) experimentado por la partícula durante un intervalo de tiempo . Llamamos trabajo elemental, , de la fuerza durante el desplazamiento elemental al producto escalar ; esto es, Si representamos por la longitud de arco (medido sobre la trayectoria de la partícula) en el desplazamiento elemental, esto es , entonces el vector tangente a la trayectoria viene dado por y podemos escribir la expresión anterior en la forma donde representa el ángulo determinado por los vectores y y es la componente de la fuerza F en la dirección del desplazamiento elemental . El trabajo realizado por la fuerza durante un desplazamiento elemental de la partícula sobre la que está aplicada es una magnitud escalar, que podrá ser positiva, nula o negativa, según que el ángulo sea agudo, recto u obtuso.
  • 2. Si la partícula P recorre una cierta trayectoria en el espacio, su desplazamiento total entre dos posiciones A y B puede considerarse como el resultado de sumar infinitos desplazamientos elementales y el trabajo total realizado por la fuerza en ese desplazamiento será la suma de todos esos trabajos elementales; o sea Esto es, el trabajo viene dado por la integral curvilínea de a lo largo de la curva que une los dos puntos; en otras palabras, por la circulación de sobre la curva entre los puntos A y B. Así pues, el trabajo es una magnitud física escalar que dependerá en general de la trayectoria que una los puntos A y B, a no ser que la fuerza sea conservativa, en cuyo caso el trabajo resultará ser independiente del camino seguido para ir del punto A al punto B, siendo nulo en una trayectoria cerrada. Así, podemos afirmar que el trabajo no es una variable de estado. Casos particulares Fuerza constante sobre una partícula En el caso particular de que la fuerza aplicada a la partícula sea constante (en módulo, dirección3 y sentido4 ), se tiene que es decir, el trabajo realizado por una fuerza constante viene expresado por el producto escalar de la fuerza por el vector desplazamiento total entre la posición inicial y la final. Cuando el vector fuerza es perpendicular al vector desplazamiento del cuerpo sobre el que se aplica, dicha fuerza no realiza trabajo alguno. Asimismo, si no hay desplazamiento, el trabajo también será nulo. Si sobre una partícula actúan varias fuerzas y queremos calcular el trabajo total realizado sobre esta ella, entonces representará al vector resultante de todas las fuerzas aplicadas.
  • 3. Trabajo sobre un sólido rígido Para el caso de un sólido el trabajo total sobre el mismo se calcula sumando las contribuciones sobre todas las partículas. Matemáticamente ese trabajo puede expresarse como integral: Si se trata de un sólido rígido las fuerzas de volumen puede escribirse en términos de la fuerza resultante , el momento resultante , la velocidad del centro de masas y la velocidad angular : Trabajo y energía cinética Para el caso de una partícula tanto en mecánica clásica como en mecánica relativista es válida la siguiente expresión: Multiplicando esta expresión escalarmente por la velocidad e integrando respecto al tiempo se obtiene que el trabajo realizado sobre una partícula (clásica o relativista) iguala a la variación de energía cinética: Rotación Es el movimiento de cambio de orientación de un cuerpo o un sistema de referencia de forma que una línea (llamada eje de rotación) o un punto permanece fijo.
  • 4. La rotación de un cuerpo se representa mediante un operador que afecta a un conjunto de puntos o vectores. El movimiento rotatorio se representa mediante el vector velocidad angular , que es un vector de carácter deslizante y situado sobre el eje de rotación. Cuando el eje pasa por el centro de masa o de gravedad se dice que el cuerpo «gira sobre sí mismo». La rotación también puede ser oscilatoria, como en el péndulo (izquierda). Los giros son completos sólo cuando la energía es lo suficientemente alta (derecha). El gráfico superior muestra la trayectoria en el espacio físico. En ingeniería mecánica, se llama revolución a una rotación completa de una pieza sobre su eje (como en la unidad de revoluciones por minuto), mientras que en astronomía se usa esta misma palabra para referirse al movimiento orbital de traslación de un cuerpo alrededor de otro (como los planetas alrededor del Sol). SISTEMA MASA- RESORTE Un ejemplo de Movimiento Armónico Simple se muestra en la figura. Se supone movimiento sin rozamiento sobre la superficie horizontal.
  • 5. El resorte es un elemento muy común en máquinas. Tiene una longitud normal, en ausencia de fuerzas externas. Cuando se le aplican fuerzas se deforma alargándose o acortándose en una magnitud “x” llamada “deformación”. Cada resorte se caracteriza mediante una constante “k” que es igual a la fuerza por unidad de deformación que hay que aplicarle. La fuerza que ejercerá el resorte es igual y opuesta a la fuerza externa aplicada (si el resorte deformado está en reposo) y se llama fuerza recuperadora elástica. Dicha fuerza recuperadora elástica es igual a : En el primer dibujo tenemos el cuerpo de masa “m” en la posición de equilibrio, con el resorte teniendo su longitud normal. Si mediante una fuerza externa lo apartamos de la misma (segundo dibujo), hasta una deformación “x = + A” y luego lo soltamos, el cuerpo empezará a moverse con M.A.S. oscilando en torno a la posición de equilibrio. En este dibujo la fuerza es máxima pero negativa, lo que indica que va hacia la izquierda tratando de hacer regresar al cuerpo a la posición de equilibrio. Llegará entonces hasta una deformación “x = -A” (tercer dibujo). En este caso la deformación negativa indica que el resorte está comprimido. La fuerza será máxima pero positiva, tratando de volver al cuerpo a su posición de equilibrio. A través de la Segunda Ley de Newton relacionamos la fuerza actuante (recuperadora) con la aceleración a(t).
  • 6. Energía de un M.A.S. En el MAS la energía se transforma continuamente de potencial en cinética y viceversa. En los extremos solo hay energía potencial puesto que la velocidad es cero y en el punto de equilibrio solo hay energía cinética. En cualquier otro punto, la energía correspondiente a la partícula que realiza el MAS es la suma de su energía potencial más su energía cinética. Toda partícula sometida a un movimiento armónico simple posee una energía mecánica que podemos descomponer en: Energía Cinética (debida a que la partícula está en movimiento) y Energía Potencial (debida a que el movimiento armónico es producido por una fuerza conservativa). Si tenemos en cuenta el valor de la energía cinética Ec = 1/2 m v2 y el valor de la velocidad del m.a.s. v = dx / dt = A w cos (w t + jo) sustituyendo obtenemos Ec = 1/2 m v2 = 1/2 m A2 w2cos2 (w t + jo) Ec = 1/2 k A2 cos 2(w t + jo)
  • 7. a partir de la ecuación fundamental de la trigonometría: sen2 + cos2 = 1 Ec = 1/2 k A2 [ 1 - sen2(w t + jo)] Ec = 1/2 k[ A2 - A2sen2(w t + jo)] de donde la energía cinética de una partícula sometida a un MAS. queda Ec = 1/2 k [ A2 - x2] Observamos que tiene un valor periódico, obteniéndose su valor máximo cuando la partícula se encuentra en la posición de equilibrio, y obteniéndose su valor mínimo en el extremo de la trayectoria. La energía potencial en una posición y vendrá dada por el trabajo necesario para llevar la partícula desde la posición de equilibrio hasta el punto de elongación y. Por ello el valor de la energía potencial en una posición x vendrá dado por la expresión Ep = 1/2 k x2 Teniendo en cuenta que la energía mecánica es la suma de la energía potencial más la energía cinética, nos encontramos que la energía mecánica de una partícula que describe un MAS. será: Etotal = 1/2 K x2 + 1/2 K (A2-x2) = 1/2 KA2 E = 1/2 k A2 En el MAS. La energía mecánica permanece constante si no hay rozamiento, por ello su amplitud permanece también constante.
  • 8. PÉNDULO SIMPLE Y OSCILACIONES Un péndulo simple se define como una partícula de masa m suspendida del punto O por un hilo inextensible de longitud l y de masa despreciable. Si la partícula se desplaza a una posición q0 (ángulo que hace el hilo con la vertical) y luego se suelta, el péndulo comienza a oscilar. El péndulo describe una trayectoria circular, un arco de una circunferencia de radio l. Estudiaremos su movimiento en la dirección tangencial y en la dirección normal. Las fuerzas que actúan sobre la partícula de masa m son dos  el peso mg  La tensión T del hilo Descomponemos el peso en la acción simultánea de dos componentes, mg·senq en la dirección tangencial y mg·cosq en la dirección radial.  Ecuación del movimiento en la dirección radial La aceleración de la partícula es an=v2/l dirigida radialmente hacia el centro de su trayectoria circular. La segunda ley de Newton se escribe man=T-mg·cosq Conocido el valor de la velocidad v en la posición angular q podemos determinar la tensión T del hilo. La tensión T del hilo es máxima, cuando el péndulo pasa por la posición de equilibrio, T=mg+mv2/l
  • 9. Es mínima, en los extremos de su trayectoria cuando la velocidad es cero, T=mgcosq0  Principio de conservación de la energía En la posición θ=θ0 el péndulo solamente tiene energía potencial, que se transforma en energía cinética cuando el péndulo pasa por la posición de equilibrio. Comparemos dos posiciones del péndulo: En la posición extrema θ=θ0, la energía es solamente potencial. E=mg(l-l·cosθ0) En la posición θ, la energía del péndulo es parte cinética y la otra parte potencial La energía se conserva v2=2gl(cosθ-cosθ0) La tensión de la cuerda es T=mg(3cosθ-2cosθ0) La tensión de la cuerda no es constante, sino que varía con la posición angular θ. Su valor máximo se alcanza cuando θ=0, el péndulo pasa por la posición de equilibrio (la velocidad es máxima). Su valor mínimo, cuando θ=θ0 (la velocidad es nula).  Ecuación del movimiento en la dirección tangencial La aceleración de la partícula es at=dv/dt. La segunda ley de Newton se escribe
  • 10. mat=-mg·senq La relación entre la aceleración tangencial at y la aceleración angular a es at=a ·l. La ecuación del movimiento se escribe en forma de ecuación diferencial. Oscilaciones Se denomina oscilación a una variación, perturbación o fluctuación en el tiempo de un medio o sistema. Si el fenómeno se repite, se habla de oscilación periódica. Oscilación, en física, química e ingeniería es el movimiento repetido de un lado a otro en torno a una posición central, o posición de equilibrio. El recorrido que consiste en ir desde una posición extrema a la otra y volver a la primera, pasando dos veces por la posición central, se denomina ciclo. El número de ciclos por segundo, o hercios (Hz), se conoce como frecuencia de la oscilación empleada en el MAS (Movimiento Armónico Simple). Una oscilación en un medio material es lo que crea el sonido. Una oscilación en una corriente eléctrica crea una onda electromagnética. Tipos de oscilaciones Oscilación libre En el caso en que un sistema reciba una única fuerza y oscile libremente hasta detenerse por causa de la amortiguación, recibe el nombre de oscilación libre. Éste es por ejemplo el caso cuando pulsamos la cuerda de una guitarra. FIGURA 01: Oscilación libre. La envolvente dinámica muestra fases de ataque y caída
  • 11. Oscilación amortiguada Si en el caso de una oscilación libre nada perturbara al sistema en oscilación, éste seguiría vibrando indefinidamente. En la naturaleza existe lo que se conoce como fuerza de fricción (o rozamiento), que es el producto del choque de las partículas (moléculas) y la consecuente transformación de determinadas cantidades de energía en calor. Ello resta cada vez más energía al movimiento (el sistema oscilando), produciendo finalmente que el movimiento se detenga. Esto es lo que se conoce como oscilación amortiguada. FIGURA 02: Oscilación amortiguada En la oscilación amortiguada la amplitud de la misma varía en el tiempo (según una curva exponencial), haciéndose cada vez más pequeña hasta llegar a cero. Es decir, el sistema (la partícula, el péndulo, la cuerda de la guitarra) se detiene finalmente en su posición de reposo. La representación matemática es , donde es el coeficiente de amortiguación. Notemos que la amplitud es también una función del tiempo (es decir, varía con el tiempo), mientras que a y son constantes que dependen de las condiciones de inicio del movimiento. No obstante, la frecuencia de oscilación del sistema (que depende de propiedades
  • 12. intrínsecas del sistema, es decir, es característica del sistema) no varía (se mantiene constante) a lo largo de todo el proceso. (Salvo que se estuviera ante una amortiguación muy grande.) Oscilación autosostenida Si logramos continuar introduciendo energía al sistema, reponiendo la que se pierde debido a la amortiguación, logramos lo que se llama una oscilación autosostenida. Éste es por ejemplo el caso cuando en un violín frotamos la cuerda con el arco, o cuando soplamos sostenidamente una flauta. FIGURA 03: Oscilación autosostenida. La envolvente dinámica presenta una fase casi estacionaria (FCE), además de las fases de ataque y caída La acción del arco sobre la cuerda repone la energía perdida debido a la amortiguación, logrando una fase (o estado) casi estacionaria. Preferimos llamarla fase casi estacionaria -y no estado estacionario, como suele encontrarse en alguna literatura- debido a que, en condiciones prácticas, resulta sumamente difícil que la energía que se introduce al sistema sea exactamente igual a la que se pierde producto de la amortiguación. En consecuencia, la amplitud durante la fase casi estacionaria no es en rigor constante, sino que sufre pequeñas variaciones, cuya magnitud dependerá de nuestra habilidad para compensar la energía perdida. Si la energía que se repone al sistema en oscilación es menor a la que se pierde producto de
  • 13. la fricción obtenemos una oscilación con amortiguación menor, cuyas características dependen de la relación existente entre la energía perdida y la que se continúa introduciendo. También en este caso el sistema termina por detenerse, aunque demore más tiempo. (En música lo llamaríamos decrescendo.) Por el contrario, si la energía que introducimos al sistema es mayor que la que se pierde por la acción de la fricción, la amplitud de la oscilación crece en dependencia de la relación existente entre la energía perdida y la que se continúa introduciendo. (En música lo llamaríamos crescendo.) Oscilación forzada Las oscilaciones forzadas resultan de aplicar una fuerza periódica y de magnitud constante (llamada generador G) sobre un sistema oscilador (llamado resonador R). En esos casos puede hacerse que el sistema oscile en la frecuencia del generador (ƒg), y no en su frecuencia natural (ƒr). Es decir, la frecuencia de oscilación del sistema será igual a la frecuencia de la fuerza que se le aplica. Esto es lo que sucede por ejemplo en la guitarra, cuando encontramos que hay cuerdas que no pulsamos pero que vibran "por simpatía". Debe tenerse en cuenta que no siempre que se aplica una fuerza periódica sobre un sistema se produce una oscilación forzada. La generación de una oscilación forzada dependerá de las características de amortiguación del sistema generador y de las del resonador, en particular su relación. Resonancia Si, en el caso de una oscilación forzada, la frecuencia del generador (ƒg) coincide con la frecuencia natural del resonador (ƒr), se dice que el sistema está en resonancia. La amplitud de oscilación del sistema resonador R depende de la magnitud de la fuerza
  • 14. periódica que le aplique el generador G, pero también de la relación existente entre ƒg y ƒr. Cuanto mayor sea la diferencia ente la frecuencia del generador y la frecuencia del resonador, menor será la amplitud de oscilación del sistema resonador (si se mantiene invariable la magnitud de la fuerza periódica que aplica el generador). O, lo que es lo mismo, cuanto mayor sea la diferencia entre las frecuencias del generador y el resonador, mayor cantidad de energía se requerirá para generar una determinada amplitud en la oscilación forzada (en el resonador). Por el contrario, en el caso en que la frecuencia del generador y la del resonador coincidieran (resonancia), una fuerza de pequeña magnitud aplicada por el generador G puede lograr grandes amplitudes de oscilación del sistema resonador R. La Figura 04 muestra la amplitud de oscilación del sistema resonador, para una magnitud constante de la fuerza periódica aplicada y en función de la relación entre la frecuencia del generador ƒg y la frecuencia del resonador ƒr. FIGURA 04: Curva de resonancia a = f (t) ƒg/ƒr = 1 => Resonancia En un caso extremo el sistema resonador puede llegar a romperse. Esto es lo que ocurre cuando un cantante rompe una copa de cristal emitiendo un sonido con la voz. La ruptura de la copa no ocurre solamente debido a la intensidad del sonido emitido, sino
  • 15. fundamentalmente debido a que el cantante emite un sonido que contiene una frecuencia igual a la frecuencia natural de la copa de cristal, haciéndola entrar en resonancia. Si las frecuencias no coincidieran, el cantante debería generar intensidades mucho mayores, y aún así sería dudoso que lograra romper la copa. El caso de resonancia es importante en el estudio de los instrumentos musicales, dado que muchos de ellos tienen lo que se conoce como resonador, como por ejemplo la caja en la guitarra. Las frecuencias propias del sistema resonador (caja de la guitarra) conforman lo que se denomina la curva de respuesta del resonador. Los parciales cuyas frecuencias caigan dentro de las zonas de resonancia de la caja de la guitarra serán favorecidos frente a los que no, de manera que el resonador altera el timbre de un sonido. HIDROSTÁTICA La hidrostática es la rama de la mecánica de fluidos que estudia los fluidos en estado de reposo; es decir, sin que existan fuerzas que alteren su movimiento o posición. Reciben el nombre de fluidos aquellos cuerpos que tienen la propiedad de adaptarse a la forma del recipiente que los contiene. A esta propiedad se le da el nombre de fluidez. Son fluidos tanto los líquidos como los gases, y su forma puede cambiar fácilmente por escurrimiento debido a la acción de fuerzas pequeñas. Los principales teoremas que respaldan el estudio de la hidrostática son el principio de Pascal y el principio de Arquímedes.
  • 16. Principio de Pascal En física, el principio de Pascal es una ley enunciada por el físico y matemático francés Blaise Pascal (1623-1662). El principio de Pascal afirma que la presión aplicada sobre un fluido no compresible contenido en un recipiente indeformable se transmite con igual intensidad en todas las direcciones y a todas partes del recipiente. Este tipo de fenomeno se puede apreciar, por ejemplo en la prensa hidráulica la cual funciona aplicando este principio. Definimos compresibilidad como la capacidad que tiene un fluido para disminuir el volumen que ocupa al ser sometido a la acción de fuerzas. Principio de Arquímedes El principio de Arquímedes afirma que todo cuerpo sólido sumergido total o parcialmente en un fluido experimenta un empuje vertical y hacia arriba con una fuerza igual al peso del volumen de fluido desalojado. El objeto no necesariamente ha de estar completamente sumergido en dicho fluido, ya que si el empuje que recibe es mayor que el peso aparente del objeto, éste flotará y estará sumergido sólo parcialmente. Propiedades de los fluidos Las propiedades de un fluido son las que definen el comportamiento y características del mismo tanto en reposo como en movimiento.
  • 17. Existen propiedades primarias y propiedades secundarias del fluido. Propiedades primarias o termodinámicas: Densidad Presión Temperatura Energía interna Entalpía Entropía Calores específicos Propiedades secundarias Caracterizan el comportamiento específico de los fluidos. Viscosidad Conductividad térmica Tensión superficial Compresión