SlideShare una empresa de Scribd logo
1 de 91
Descargar para leer sin conexión
WESPAK‐SE
Wetland Ecosystem Services Protocol for Southeast Alaska



                  Paul Adamus, Ph.D.
                      Graduate Faculty,
            Water Resources Graduate Program and
            Marine Resource Management Program
                   Oregon State University
                            and
             Adamus Resource Assessment, Inc.

                adamus7@comcast.net
                          May 2012
                         Juneau, AK

                    © all rights reserved
Monday
 8:30  Introductions. Course logistics.
       Brief history of wetland assessment
       Definitions: wetland functions, values, and “health” (condition)
       How WESPAK‐SE works
10:15  BREAK
       Delimiting the assessment unit
       Fill out Office Form (OF) for wetland #1 (Blueberry Hill non‐tidal)
       Future: Internet portal for wetlands of Southeast Alaska
11:45  LUNCH
 1:15  Visit wetland #1 and apply WESPAK‐SE
 4:30  end

Tuesday
 8:30   Review scores from wetland #1
        Lecture: Principles of Hydrologic Functioning & Value
        Lecture: Principles of Water Quality Functioning & Value
10:15   BREAK
        Lecture:  Habitat Support – Models for Functions & Values
        Fill out Office Form (OF) for wetland #2 (Fish Creek tidal)
 11:45 LUNCH
  1:15  Visit wetland #2 and apply WESPAK‐SE
  4:30  end
Wednesday
8:30   Visit and assess wetland #3 (Vanderbilt non‐tidal) 
11:45  LUNCH
1:15   Go over Office Form (OF) for wetland #3 (Vanderbilt non‐tidal)
       Review scores from wetlands #2 and #3
2:30   BREAK
       Calculating ratios, debits, & credits – some options
       General discussion and feedback
4:30   end
Wetland Determination

Wetland Delineation

Wetland Classification

Wetland Categorization


Wetland Assessment

Ecosystem Services
WESPAK‐SE  Origins
1983. Federal Highway Wetland Evaluation Method (applied  nationally)

1986.  Juneau Wetlands Study      Criteria    Management Plan

1987. Wetland Evaluation Technique (WET)

2001‐05.  Oregon Hydrogeomorphic (HGM) methods

2009. Oregon Rapid Wetland Assessment Protocol (ORWAP)

2010. Wetland Ecosystem Services Protocol for the U.S. (WESPUS)

2011.  WESPAK‐SE

                                     Ongoing
2012. Wetland Ecosystem Services Protocol for Alberta (WESPAB)

2013. Nearshore Marine WESPUS for Puget Sound  (Adamus, Houghton, Simenstad, et al.)

2013. Stream Functional Assessment & 
      Mitigation Crediting Protocol for Oregon (ESA Inc., Skidmore, Adamus, et al.)
United States

                 Oregon


                          Alaska southeast




                                             Alberta  south


1983, 1987


                  2009




                             2011


                                               2012
Which Wetlands Are The Most Important?

1. What criteria should we use to tell?
   Health ?  
   Threat/ Risk ?  
   Rarity/ Loss Rate?   
   Sensitivity? 
   Ecosystem Services? 

2. How much information should we require?

  Does knowing just a wetland’s type tell us enough?
  Is GIS compilation of existing spatial data enough?
  Are one‐time field observations enough?
  Are advanced methods of imagery interpretation enough?
  Is analysis of water quality, soils, plants, etc. necessary?
Wetland Attributes That Are Important to Assess


• Risk to Wetland:
   • Stressors (Threats)
   • Sensitivity = Resistance & Resilience to stressors

• Functions: what a wetland does naturally

• Values (Benefits):
       Values of Functions (e.g., water storage   flood protection)
                  Opportunity to perform function (upslope)
                  Significance of function when performed (downslope)
       Integrity (a.k.a. Ecological Condition, Health, Quality, Naturalness)
       Recreation, Education, Aesthetics
       Production of Commodities (timber, hay, fish, etc.)




    Ecosystem Services = Functions + their Values
Example of Output from a Function Assessment Method
                                       Function    Value    Function    Value 
                                       Time 1      Time 1   Time 2      Time 2

Water Storage & Delay                       0.2       0.8        0.2       0.9
Sediment Stabilization &                    0.6       0.6        0.7       0.6
Phosphorus Retention
Nitrogen Removal                            0.9       0.5        0.9       0.5
Thermoregulation                            0.1       0.5        0.2       0.5
Primary Production                          0.7       0.7        0.6       0.7
Resident Fish Habitat                       0.3       0.4        0.4       0.4
Anadromous Fish Habitat                      0        0.6        0.5       0.6
Invertebrate Habitat                        0.6       0.1        0.7       0.1
Amphibian & Turtle Habitat                  0.6       0.2        0.5       0.2
Breeding Waterbird Habitat                  0.8       0.4        0.7       0.4
Non‐breeding Waterbird Habitat              0.2       0.1        0.3       0.1
Songbird Habitat                            0.5       0.7        0.6       0.7
Support of Characteristic Vegetation        0.7       0.7        0.8       0.7
Functions and Values should be assessed independently of each other.


     Level of FUNCTIONS         Level of VALUES     Action
            HIGH                     HIGH           Avoid/ Preserve
            LOW                      HIGH           Enhance/ Restore ?
            HIGH                     LOW            Maintain ?
            LOW                      LOW            Develop w. mitigation ?
Uses of Outputs
PRIMARY: 

• Compare ecosystem services of different wetlands ad hoc and use as a basis for 
avoidance or compensation.

• Identify wetland designs that may provide greatest levels of particular 
ecosystem services.

• Identify ways to minimise impacts to functions of a wetland.


SUPPORTING:

• Prioritise all wetland sites in a watershed or region.

• Monitor success of individual restoration projects.

• Provide inputs to wetland economic models.
Variables        Indicators            < Models >           Attributes

                     assessment method:
         Data form + Guidance document + Models/criteria


models. Decision rules, criteria, or equations
by which information on variables is summarized
into a score, qualitative rating, rank, index, or other representation of an
attribute.

Example of a Function Assessment Scoring Model

Fish Habitat Suitability = Access x (WaterQuality + Cover + Temperature)
WESPAK Basic Features

Intended to get away from simplistic assumptions, e.g., bogs better than forested 
wetlands.

Provides 0‐10 score for 16 wetland functions and their values.

Recommended by the IRT.  Oregon version required by State of Oregon.  Long history.

The only field method being calibrated specifically to Southeast Alaska. (tested on 40+ 
sites).

Tidal & Non‐tidal Wetlands.  Office & Field components.

Uses ~120 indicators, but many “skip to’s.”  Takes less than 3 hours per site.

Quick to learn.  No specialized expertise required.  

High repeatability is anticipated (in Oregon, only 5% variation in independent scores).

Strongly rooted in scientific literature and peer review.

Can be applied at multiple scales:
  Entire wetland:  prioritization for purchase or enhanced regulatory protection.
  Part of a wetland: road widening residential development
The Finer (but essential!) Points
•   The function scores are relative, not absolute.

•   No qualitative descriptors are associated with particular score intervals.

•   Summing or otherwise combining the function or value scores has no basis 
    in science.

•   Expect no site to rank high for all functions.
Steps for Using WESPAK-SE

1. Go online and download the current version of:
          Excel spreadsheet
          PDF files for data forms OF, FieldF, and FieldS.
Print the PDF files, not the Excel spreadsheet.

2. Read and thoroughly understand the Manual.

3. Fill out the CovPg and Office Form (OF)
• Obtain and view topo map and aerial image
• Draw boundaries of assessment area (AA) and contributing area (CA)
• Obtain specific info from web sites and local sources

4. Visit the wetland. Fill out 2 data forms -- FieldF and FieldS.
   Identify plants, texture the soils, observe hydrology indicators.

5. Enter the data in Excel spreadsheet.

6. Process and interpret the results.
Examples of Indicator Questions
                                             True‐False:

Acidic    Most pools within the AA are depressions in a peat layer of > 4 inch depth, or have                     0
Pools     darkly-stained waters (brownish tannins), and/or a pH < 5.5. Nearby vegetation is mostly
          moss and/or evergreen shrubs.


                                      Choose the most applicable:

 N        The cover of nitrogen-fixing plants (e.g., alder, sweetgale, legumes) in the AA or the percent of the
 Fixers   AA's water edge occupied by those (whichever contains more) is:
          <1% or none                                                                                             0
          1-25%                                                                                                   0
          >25%                                                                                                    0
                                     Choose all applicable:

Woody Diameter      Mark all the types whose stems comprise >5% of the woody stems in the AA:
Classes
                    deciduous 1-4" diameter and >3 ft tall                                                        0
                    evergreen 1-4" diameter and >3 ft tall                                                        0
                    deciduous 4-9" diameter                                                                       0
                    evergreen 4-9" diameter                                                                       0
                    deciduous 9-21" diameter                                                                      0
                    evergreen 9-21" diameter                                                                      0
[spreadsheet]
Delimiting a Wetland’s Contributing Area
Delimiting the Assessment Units:




View wetland maps at:  http://wetlandsfws.er.usgs.gov/wtlnds/launch.html
Delimiting the Assessment Area (AA)
Operating Principles for Delimiting Wetland Assessment Units


Delimit units based on surface flow similarity (consider culverts, natural constrictions, 
above‐grade roads, etc. to be delimitors)

In lakes, rivers, and estuaries, delimit units separated by a wide expanse of deepwater 
(>2m).  Don’t do this in shallow ponds (<20 acres)... assess the whole pond.

Delimit separate units based on HGM class only if one of the HGM classes occupies >20%
of the wetland.

Don’t divide a wetland into assessment units based ONLY on:
 Property lines
 Fences
 Land cover or zoning designations
 Vegetation or Cowardin (NWI mapped polygon) types
F10.                 During most of the wettest time of a normal year, the percent of the surface water that is in or connected to
Onsite Surface Water ditches, swales, or flowing channels that exit the AA, compared to surface water that is in isolated pools that do
Isolation
                     not connect annually to channels or swales (if any), is:
(Wet Season)

                   all (100%) located in channels, swales, or in other areas with a wet-season surface connection to channels or to a
                   contiguous lake or estuary

                   75-99% in or connected to channels, swales, or contiguous lake/ estuary, 1-25% in isolated pools

                   50-75% in or connected to channels, swales, or contiguous lake/ estuary, 25-50% in isolated pools

                   25-50% in or connected to channels, swales, or contiguous lake/ estuary, 50-75% in isolated pools

                   1-25% in or connected to channels, swales, or contiguous lake/ estuary, 75-99% in isolated pools

                   all located in isolated pools or a single isolated pond from which no surface water exits
F12.              During most of the time surface water is present, its depth in most of the inundated part of
Predominant Depth the AA is:
Class             >6 ft deep
                    2-6 ft deep
                    1-2 ft deep
                    0.5 - 1 ft deep
                    <0.5 ft deep
F13.                During most of the time when surface water is present (select one):
Depth Class
Distribution        One depth class (use the classes in F12) comprises >90% of the AA’s inundated area
                    One depth class comprises >50% of the AA's inundated area
                    Neither of above
F21.          During peak annual flow, the surface water that flows through the AA's channel or floodplain:
Throughflow
              encounters little or no vegetation, boulders, or other sources of friction.
Complexity
              mostly encounters herbaceous vegetation that offers little resistance, and water follows a fairly
              straight path from entrance to exit (few internal channels, only slight meandering)

              mostly encounters herbaceous vegetation that offers little resistance and follows a fairly indirect
              path from entrance to exit (non-channelized flow or many internal channels, or very braided or
              tightly meandering)

              encounters measurable resistance from fairly-rigid vegetation (e.g., cattail, bulrush, woody plants)
              or channel-clogging debris, and follows a fairly straight path from entrance to exit.

              encounters measurable resistance from fairly-rigid vegetation (e.g., cattail, bulrush, woody species)
              or channel-clogging debris, and follows a fairly indirect path from entrance to exit.
Upland Edge   Most of the edge between the wetland and upland is (select one):
Shape
Complexity    Linear: a significant proportion of the wetland's upland edge is straight, as in wetlands bounded by partly or
              wholly by dikes or roads


              Convoluted: Wetland perimeter is many times longer than maximum width of the wetland, with many alcoves
              and indentations ("fingers")


              Intermediate: Wetland's perimeter either (a) is only mildly convoluted, or (b) mixed -- contains about lengths
              of linear and convoluted segments.
F79.           Along the AA's wetland-upland boundary and extending 100 ft uphill, the average slope of the land is mostly:
Buffer Slope
               <1% (flat -- almost no noticeable slope, or there is no upland boundary)
               2-5%
               5-30%
               >30%
F80            Within 10 ft of ponded surface water (if any) in early summer, the percent of the vegetated area (wetland or upland) that
Edge Slope     has a gentle or moderate slope (less than 5% slope) is:
               >75%
               50-75%
               25-50%
               1-25%
               <1%,
               (ponded surface water in early summer covers <1% of AA, or AA is tidal)
Indicators of HIGH water (= upper limit of Seasonally Inundated zone)
Water marks on trees (moss); water‐stained leaves; algae amid grass stems
Drift lines of debris on ground or suspended in shrubs 
Scoured areas on the soil surface
Fresh deposits of water‐borne sediment
Height of outlet or berm relative to current water level
Aquatic bed plants without water beneath
Airphoto sequence




Indicators of LOW water 
(= lower limit of Seasonally Inundated zone) (= upper limit of Permanently Inundated zone)
Minimal vegetation (all Obligates).  No woody.
Topography
Airphoto sequence
Size of Nearby “Natural Land Cover”
Important Fishery Subsistence Areas of Southeast Alaska
IN PROGRESS:  Southeast Alaska Online Wetlands Data Portal !

1.   User enters the latitude‐longitude, e.g., permit application.
2.   The portal will overlay maps needed to answer form OF questions, plus more!
3.   Will be completed in fall 2012, but already very functional.
4.   Will allow user to specify circle of any radius, and measure distances and area.
5.   No GIS skills needed.
seakgis.alaska.edu//seakmap_WESPAK/

Suggestions encouraged! Let us know about other map data layers
useful to predicting wetland functions and natural resource conditions! We will
try to obtain and include them in the wetlands portal. Send suggestions to Paul
Adamus: adamus7@comcast.net
Other Wetland Assessment Methods in Alaska (a few examples)
1.  Models for Assessing Functions and Values of Juneau Wetlands (1987, 2007, 
2010) 

2.  HGM (hydrogeomorphic) methods:
     • Riverine and Slope River Proximal Wetlands in Coastal Southeast & 
     Southcentral Alaska
     • Flat Wetlands on Precipitation Driven and Discontinuous Permafrost in 
     Interior Alaska
     • Flat/Slope Wetland Complexes in the Cook Inlet Basin Ecoregion

3. ADOT&PF Wetland Assessment Method             Montana          WET

4. NatureServe Method  (Juneau)

5.   Habitat Equivalency Analysis (HEA – Sitka airport project)
WET/ Juneau methods

• categorical output only 
(High, Medium, Low, etc.)
• outdated science 
• not calibrated outside of 
Juneau




HGM (vs. WESPAK‐SE)
HGM is an Approach (no national Method)
   • must classify wetland first.
   • must first develop separate method for each HGM type and region – this 
   requires intensive field measurements.  
   • does not score the relative value of any function .
   • assumption:  least‐altered wetlands are highest‐functioning.
“Highest Functioning” vs. “Least Altered” Standards
Why Should the Assessment of Wetland Functions and Condition be Standardized?

  • Few people are knowledgeable about all wetland functions.

  • Few people can instantly recall all indicators potentially applicable to a given 
  wetland function.

  • Different people implicitly give more weight to some indicators than others.

  • Any reduction in arbitrariness of assessments leads to increased public 
  confidence in the objectivity of the results.

  • “Paper trail” is helpful for legal reasons.


  The Trade‐off:  less flexibility to accomodate the quirks of a particular site
Structural Types of Rapid Assessment Methods

• Simple Checklists
• Contrasting Condition Checklists
• Determinative Procedures.  scoring based on:
    Actual Reference Wetlands
    Virtual Reference Wetlands or Mechanistic Models
Example:  Indicators of  Nitrogen Removal 

Option 1:  Simple list of indicators

           • Duration and pattern of soil saturation
           • Soil organic content
           • Soil temperature
Example:  Indicators of  Nitrogen Removal
Option 2: Minimize guidance, maximize user flexibility




 This is the approach used in the Oregon HGM’s “Judgmental Method” and in 
 its method for assessing Values of the functions. 
Validation.  Test methods and models relative to a pre‐specified 
performance standard or objective.


• repeatability.  The reproducibility or replicability of a method as 
demonstrated by the consistency (precision) of its results among 
independent users and across time. 

• sensitivity.  The ability to discriminate finely among alternative 
conditions or gradations of an attribute across a specified range of 
conditions, i.e., its responsiveness.

• accuracy.  The degree to which something approaches reality.  
“Reality” may be represented simply by independent judgments of 
experts, or by extensive and intensive robust measurements of a 
function or other attribute.
Designing good methods isn’t just science … it’s architecture.
… the art of designing a method that gets you the information you’re really 
seeking.

(1) BPJ approach (open‐ended questions):
• Is the water regime optimal to support frog egg deposition?

(2) A more standardized approach:
• Is most of the wetland 1‐3 m deep?

(3) A qualified standardized approach:
     • spatially‐qualified:  
     Are depths of at least 1m present in >50% of the unshaded portion of the 
     wetland?

    • temporally‐qualified:
    Is the above present during most of the period, May‐July?
Basic Principles of Wetland Functioning
Types of Water Sources that Sustain Wetlands




from: Brinson 1993
Groundwater & Wetlands
Groundwater: Subsuface water below the water table, which is the depth where soil 
becomes water saturated (i.e. all pore spaces are water filled).

Wetland:       Areas of the surface soil layer that receive groundwater (i.e. the water table 
is near or at the surface; or land covered with shallow water) with great enough frequency 
to establish characteristic soils and plant communities.  




                                               courtesy Pennsylvania State University
Focus:  Ground Water




                       from: Smith et al. 1995
New Groundwater Formation
•   Intensity/duration of precipitation.
•   Vegetation cover and evapotranspiration. 
•   Topography and recharge zones. (Infiltration rate is called recharge.)
•   Extent of vadose (unsaturated) zone
•   Sheet flow (runoff) versus infiltration
         ‐ Soil texture & permeability  (coarser  = more infiltration)
         ‐ Soil water content & holding capacity  (high values may impede infiltration)




                                                              courtesy Pennsylvania State University
National HGM Classification (Brinson 1993)
HGM Class            Water Sources That Define It   Usual NWI Systems
Estuarine Fringe     ocean> runoff> groundwater     Estuarine> Riverine> Palustrine
Riverine             runoff> groundwater> precip    Riverine> Palustrine
Slope                groundwater> runoff            Palustrine> Riverine
Flats                precip> groundwater> runoff    Palustrine
Depressional         runoff> groundwater> precip    Palustrine
Lacustrine Fringe    runoff> precip> groundwater    Lacustrine> Palustrine
WESPAK‐SE  model for Surface Water Storage 




IF((SurfWater=0), 0.5*(average (Freezing,Gradient, Subsurf)),

IF((NoOutlet=1), (average (LiveStore,Freezing,Gradient, Subsurf)),

ELSE: (3*OutDura + 2*LiveStore + 2*Gradient + Freezing + Subsurf + Friction)/10))

                   Value of Surface Water Storage =
             FloodBdg X AVERAGE:
             [ average (CAunveg,Glacier), 
               average (ShedPos,CApct),Transport)]
WESPAK‐SE  model for Stream Flow Support (SFS)




OutDur * { [(2*GroundwaterInput) + ClimateFactors)] / 3 }




           Value of Stream Flow Support =
  average (InvScore,AnadScore,ResFishScore,Glacier,Elev)
Water Quality Functions and Values

Functions                    Values of the Functions (examples)

Water Cooling                salmonid summer habitat in lowlands
Water Warming                marine productivity & wintering fish habitat
Sediment Retention &         protect salmonid spawning areas; keep toxic 
Stabilization                metals from mobilizing
Phosphorus Retention         maintain preferred food webs?
Nitrate Removal              maintain preferred food webs?  
                             detoxification?
model for Water Cooling (WC)           model for Water Warming (WW)




If no surface water in summer, then    If no surface water, then 
Groundwater factors only.              Groundwater factors only.  
Else, the average of 2x Groundwater    If surface water, then the average of 
factors and Solar Heat factors.        Groundwater factors and Solar Heat 
                                       factors. 

 Value of Water Cooling =               Value of Water Warming =
 OutDur  X [AVERAGE(ShadeIn,           OutDur X average 
 Fringe,Glacier,Elev,Aspect,Im         (AmphScore,Fringe,Glacier,TidePr
 perv) + AnadFish] /2                  ox,Elev,Aspect,Imperv))
Sediment Retention & Stabilization
                                              Tidal
                                              IF((AreaTrend=1),1,average
                                              (AreaTrend,Vwidth,HighMarsh,Gcover,
                                              Complex, BlindChan,Mudflat,Fetch))




  IF((NoOutlet2=1),IFNOOUT2,IF((AllDry2=1),
IFDRY2,IFOUT2))                                 Value of Sediment Retention 
Value of Sediment Retention                    MAX (Eelgrass,(average:
AVERAGE(Inflo2,FlowIn2,Glacier2,Imperv          (average
PctSS,ErodibleSS,SedIn2,CAnatPct2,             (BuffCovPct,BuffSlope,CAcover,Glacier),
BuffSlope2,Elev,CApct2,TransportSS,MaxF        average
luc2,NewWet2a,ToxData2)                        (TidalRiver,TribDist,TribGrad,Transport))
Phosphorus Retention
model for Phosphorus Retention




Value of Phosphorus Retention: 
[MAX(Pload3,ImpervCA3,NatCApct3)+AVERAGE(Inflo3,BuffSlope3,ErodScore3,PosShed3, 
NewWet3,CApct3,Transport3,Anad3,Groundw3,Glacier3, StreamInGrad3)] /2)
Nitrogen Removal ‐‐ wetlands VERY important
model for Nitrate Removal




Value of Nitrate Removal
AVERAGE(MAX(Aquifer,Drink),MAX(NSource,CAnatPct,Imperv,PopDist), 
average (Inflo,ShedPos,BuffSlope,Transport, Anad,Nsource,Nfix) 
Organic Matter Cycling  ‐‐ contrasting values?

Functions                 Values of the Functions (examples)
Carbon Sequestration      maintain global climate; 
                          maintain wetland soil  integrity (up to a point)
Organic Matter Export     critically important nutrients for food webs 
                          (nearshore marine, streams, lakes);
                          immobilize toxic metals;
                          protect aquatic life from ultraviolet radiation
model for Carbon Sequestration   model for Organic Matter Export
Habitat Functions of Wetlands




Functions of Habitat:  

• Accessible and Timely Sheltering from Predators and the Elements 
    (Corridors, Refugia, etc.)

• Accessible and Timely Provision of Food, Water, and Special Needs   
Aquatic Invertebrates
Anadromous Fish
Resident & Other Fish
Amphibians
Feeding Waterbirds
Nesting Waterbirds
Songbirds, Raptor,s &
Mammals
Pollinators
Native Plants
model for Aquatic Invertebrate Habitat




average [Struc,Productivity,average (Hydropd,Connec,Stressors,LScape]


Value of Aquatic Invertebrates 
AVERAGE(UniqPatch, average 
(AnadFish,ResFish,Amphib,WbirdF,WbirdNest,SongbMam))
models for Anadromous Fish Habitat




    IF((Access=0),0,                               IF((Constric=0),0, ELSE:
IF((Water=0),0, ELSE 
(average (Access,OutDura)) X (average 
                                                AVERAGE[Access, AVERAGE(Produc,Struc), 
(HydroRegime,Structure,Productivity, LScape,    Lscape)]
Stress)




                             Value of Anadromous Fish
    MAX [SalmoShed,                             MAX(Subsis,AVERAGE(PopCtr,BearShed), 
    average (WbirdFeed,SBMscore),
    average (Fishing, Subsist)]
                                                EstuLimited)
models for Resident & Other Fish Habitat




    IF((Access=0),0,                       IF((Constric=0),0, ELSE:
IF((Water=0),0, ELSE                       average [Access, average (Produc,Struc), 
AVERAGE(HydroRegime,Structure,             Lscape)]
Productivity,AnoxiaRisk, Stress))


                        Value of Resident & Other Fish 
AVERAGE(feeding waterbird score,           MAX(Subsis,average 
subsist, fIshing)                          (PopCtr,BearShed),EstuLimited)
WESPAK‐SE model for Amphibian Habitat




  MAX [(AmPres,average (Hydro,AqStruc,TerrStruc,Produc,Climate,Lscape, 
Waterscape,Stress)]

                    Value of Amphibian Habitat
 MAX[(average (UniqPatch,Geog),(average (WBFscore,SBMscore)]
models for Feeding Waterbird Habitat




    IF((Water=0),0,                              (Lscape+average (Water, Produc, 
IF((Wettype=Slope),0,ELSE:
average (Hydro, Struc, Produc, Climate, 
                                              Refugia, Lscape)) /2
Lscape,Stressors)
                           Value of Feeding Waterbird Habitat 
IF((MAX(Rare12,IBA)>average                    MAX (average (Visib, PopCtr), EstuShed), 
(UniqPatch,DuckHunt, Visib,                    IBA, RareSp]
PopCtr)),MAX(Rare12,IBA),average 
(UniqPatch,DuckHunt,Visib,PopCtr)))
models for Nesting Waterbird Habitat




    IF((TooSteep=1),0,
IF((DeepSpot + Lake + LakeProx + Fringe =0),0, ELSE: 
average  [AqPlantCov, Size, Wettype,Waterscape, average (Hydro,Struc,Produc,Lscape)]


                       Value of Nesting Waterbird Habitat =
         IF((MAX(Rare,_IBA)>UniqPatch),MAX(Rare,_IBA),UniqPatch
models for Songbird, Raptor, & Mammal Habitat




                                               IF((Dryland=0),0,  ELSE: average 
                                            (Structure,Productiv,Lscape))



   IF((AllWater=1),0, ELSE:  Mainland + 
average 
(StrucA,StrucB,Produc,Lscape,Wscape, 
Stress))/ 2


                    Value of Songbird, Raptor, & Mammal Habitat
 IF((MAX(Rare14,                                      MAX(IBA,RareBird)
 _IBA14)>UniqPatch14),MAX(Rare14, 
 _IBA14),average 
 (IslandSmall,UniqPatch14)]
models for Pollinator Habitat




average (PollenOnsite, PollenOffsite,NestSites)




  Value of Pollinator Habitat
   = average (wetuniq,rareherb)
models for Native Plant Habitat




                                                     (2*Substrate + 2*Salinity + Struc 
                                                  + InvasPot + Lscape) / 7



( 4*SpeciesArea + 2*AqFertil + 2*TerrFertil
+2*Climate + Compet + Lscape + Stressors)/ 12



  Value of Native Plant Habitat 
 MAX(RarePspp,(average 
 (UniqPatchPD,ScoreSBM,ScorePOLf,Score              MAX(RarePlant,EstuScape)
 Subsis))
models for Public Use & Recognition           models for Subsistence (Traditional Use)

                                               IF((NonSubsisArea=1),0,
                                               MAX(Subsist,
                                               (average (PopCtrDisS,TidalProxS,ElevS)) +
                                               (average
                                               (ConsumpU,DeerShedPS,SalmonShedPS,FishAccess))
                                               /2)
 = average (Owner,average
 (Conven,Invest,RecPot)))
                                               tidal
                                               IF((NonSubsist=1),0, ELSE: [average
                                               (ConsumpUse, Subsist,
                                               average (PopCtr,Ownershp,Access),
                                               average (Salmoshed,FishAccess,EstuShed)]




 = average [Ownership,average
 (Convenience,Investment,RecPotenPU, OppRarity) ]
Wetland Stressors (FieldS data form)

Too much: 
• enrichment      hypoxia
• contamination
• salt
• sediment
• shade 
• water
• removal of water
• removal of vegetation
The results:
• invasion by exotic species
• fragmentation of habitat
• loss of function & value (usually)
Natural Disturbances to Wetlands


    Drought: duration, frequency

    Flooding: duration, frequency, extent, depth, seasonal timing
              natural events or beaver‐related

    Fire:  frequency, seasonal timing, extent, intensity (type) –
               effects of suppression policies or increased combustion sources

    Wind: frequency, intensity, direction

    Ice:  duration, frequency, extent

    Herbivory: frequency, seasonal timing, intensity (type), extent

Disturbance is important to keeping wetlands functioning and healthy!
•   seeds of many wetland plants require periodic disturbance
•   scouring, wind, ice, fire clear away excessive plant litter that stymies seed generation
•   complete drying of wetland eliminates predatory fish and remobilizes nutrients
•   excessive water level stability causes stagnation and accelerates marsh succession to upland
model for Wetland Sensitivity 




               average (AbioSens,BioSens,Fertility,Climate,Colonizer,GrowthRate)




Tidal:
average (VwidthHi, Fetch, Nfix, BuffNatPct, BuffSlope, MarshDist, EstuShed,
MAX(RareWaterBird, RareWildlife, RarePlant), Mtrend, MarshAge)
WESPAK‐SE model for Wetland Ecological Condition 
                 – non‐tidal only



[(average (RareAll,EmSens1_C,BareGpct) + average 
(HerbDom1,WoodySens2_C,ShrubDom1,GirregCQ,StrataDiv
)) / 2




                               www.marcadamus.com
models for Wetland Stressors

IF((Toxics Onsite=1),1, ELSE:
((MAX(Wetter,Wetter Ex, Drier,DrierEx, AltTiming,Toxic,ToxicData, SedLoad,SoilDisturb,VegClear)) +
 (average (WeedSource,Core1,Core2,DistRd, VisibWet,
PopCtrDist,RdBox,CAimperv,NatVegCA,AltLCtype,BuffDisturbTyp,Owner)))/ 2

tidal
IF((Toxics Onsite=1),1, ELSE:
MAX(WetterIn, WetterCA, DrierIn, DrierCA, AltTiming, ToxicsIn, SedCA, SoilAltIn, VegClear, ErodAlt))]
average [ToxDoc, average (Core1alt, Core2alt, VisibAlt, PopCtrAlt, BarriersAlt, RoadsAlt),
average (NatDistAlt, NatPctAlt, NatTypeAlt, SizeAlt, ImpervAlt, TransptAlt)
Rapid Assessment ‐‐ Have We Created a Frankenstein?

But, these aren’t just Wetland issues ...

Economic Assessment
Educational Testing

Forest Health 
Assessment
Rangeland Assessment
Riparian Assessment
“No Net Loss” –
 Factors That Could Influence Ratios for Offsite Mitigation

a). Risk of Failure
  Type of Mitigation
  Wetland Type & Design (“appropriateness”)
  Location
    Stressors
    Sensitivity of the Geomorphic Setting
  Long-term Financial Security

b). Acres

c). Wetland Importance
     Functions, Values, Sensitivity




                        Paul Adamus March 2010
Example 2. Enhancing a degraded wetland as compensation
Multiply Scores by Acres?

Need for Caution:
• A site that is poor habitat for (say) amphibians is poor habitat, regardless of whether it 
is 0.1 acre or 100 acres.   
• Functions may be supported within only PART of a site.
• Some functions are non‐linearly related with area.
• Small wetlands in critical locations may be functionally outstanding.
• Small wetlands of high social value are unusually important.
Paul Adamus March 2010
Wetlands Credit Accounting
 Key Components
    • Eligibility

    • Calculation Method

    • Verification

    • Registration

    • Tracking

Calculation Options (examples)

A. Average the service scores (mitigation site only) and multiply by acres

B. Apply standard mitigation ratios, calculated mainly for impact site.

C. Match debit site losses with mitigation site gains, with acreage multiplier.

D. Match debit site losses with mitigation site gains, without acreage multiplier.
Strategy A.  Average the service scores (mitigation site only) and multiply by acres
                                                                  Credit Site
                                             Effectiveness 
                                             Gain                 Value             average
Function Group:
  Hydrologic Function                                         2                 2             2.00
  Water Quality Functions                                     2                 4             3.00
  Fish Support                                                6                 4             5.00
  Aquatic Support                                             8                 3             5.50
  Terrestrial Support                                         4                 7             5.50
                  Average of Scores * 0.1=                                                    0.42
                                   x acres                                                       6
                                  Credits=                                                    2.52


Important Exceptions:

 AT DEBIT SITE:            Very Low* Value       Intermediate * Value Outstanding* Value
Outstanding*                 (This strategy      use another strategy     use another 
Effectiveness                   allowed)                                    strategy
Intermediate                 (This strategy          (This strategy       use another 
Effectiveness                   allowed)               allowed)             strategy
Very Low* Effectiveness      (This strategy          (This strategy      (This strategy 
                                allowed)               allowed)            allowed)
Strategy B.  Apply standard mitigation ratios, calculated mainly for impact site.

                                            Debit Site                    Credit Site
                                    Effective                    Effective. 
                                    ness        Value Avg        Gain        Value Avg.
      Function Group:
        Hydrologic Function             7         2       4.50      ‐‐        8            8.00
        Water Quality Functions         9         8       8.50      ‐‐       10           10.00
        Fish Support                    6         6       6.00      ‐‐        9            9.00
        Aquatic Support                 8         9       8.50      ‐‐        6            6.00
        Terrestrial Support             9         7       8.00      ‐‐        7            7.00
              Average of Scores=                          7.10                             8.00
                 suggested ratio:                         2.50                             1.50
                           acres=                         6.00                             4.00
                          credits                        15.00                             2.40

In this example, on the debit side, the services score (7.10) qualifies that wetland as a “high‐level” 
service site, so the applied ratio (2.5) is the highest of the choices for ratios.  If services were 
moderate, the ratio might be 2.0, if services were low, the ratio might be 1.5.
Strategy C.  Match debit site losses with mitigation site gains, with acreage multiplier.



                              Debit Site                                   Credit Site
                                                   Effective‐
                                                   ness
                      Effective‐                   Gain 
                      ness       Value     Acres   (post‐pre)       Value Acres     Credits

                                                                                         7>2, so go to another
Hydrologic                   7        5                         2      2                       credit site

Water Quality                4        3                         6      9             2*[1+(2/4)] = 3 credits
                                             4                                2
Fish Support                 6        2                         6      4             2*[1+(2/4)] = 3 credits
                                                                                        3*[1+(2/4)] = 4.5
Aquatic Support              3        6                         6      5                    credits

                                                                                         5>3, so go to another
Terrestrial Support          5        5                         3      7                       credit site
Strategy D.  Match debit site losses with mitigation site gains, with acreage multiplier.


• No multiplication or averaging of functions and values.  

• Acreage at the credit site (i.e., the enhanced or restored part of it) must be no 
less than that lost at debit site. 

• Function Effectiveness (post‐enhancement) and Value scores of all function 
groups at the credit site must be no less than their equivalents lost at the debit 
site, ± 1 point.  

• If either the Effectiveness (post‐enhancement) or Value score is greater at the 
credit site than debit site, consider reducing the required mitigation ratio, on a 
case‐by‐case basis.
3. Function-based Crediting
  (a.k.a., Should I become a mitigation banker?)


        CREDITS = Acres x Functional Lift
           Example:  12 acre rehabilitation at a mitigation bank

                                                     CREDIT wetland (e.g., 
                                                       Mitigation Bank)
                                                       PRE         POST
             Function Group:
               Hydrologic Function                          2.38             2.92
               Water Quality Functions                      4.10             5.17
               Fish Support Functions                       5.33             6.72
               Aquatic Support Functions                    7.01             7.28
               Terrestrial Support Functions                5.51             6.68
                     Average of Scores x 0.1=               0.49             0.58
                                      x acres              12.00            12.00
                             Function Acres=                5.88             6.96
                                                   6.96‐5.88= 1.08 credit
At Credit site: Discount 25% (1.08 x .75= 0.81 credit) if the Rehabilitation is not part of a
“Wetland Priority Area”.
Then, apply multipliers to the acreage of the Impact site:


                                                                       Some Time 
                 IMPACT Site                            No Time Loss      Loss
                 Not part of a Wetland Priority Area:    acres x 1.5    acres x 2
                 Part of a Wetland Priority Area:         acres x 2    acres x 2.5



          * Time Loss= no dirt moved or veg planted yet for rehabilitation


  So, if the Impact site is in a Wetland Priority Area AND buyer is getting credits
  from an incomplete rehabilitation, then the debit is:
               0.54 acres x 2.5 = 1.35 acres (which must be replaced)



   A mitigation bank that has finished rehabilitating 1.35 acres could meet this need
   of the buyer.
Also – in Oregon:

• Meet sequencing priorities:
    Avoidance> Minimization>
   Compensation

• Replace Impact wetland with
wetland of same HGM & Cowardin
type (usually).

• Replace within the same
Service Area (in Oregon= HUC4).

• Compensatory actions must
qualify (meet definitions).

• Compensation actions must
eventually meet performance
criteria (as monitored).
Compensating for STREAM impacts: example from Montana
Other Ecosystem Services
        (consensus of 12+ agencies, facilitated by Willamette Partnership)




“Currencies” With Tools
• Wetlands
• Upland Prairies
• Salmon Habitat
• Stream Temperature
• Nutrients




             http://willamettepartnership.org/

Más contenido relacionado

Similar a Wetland Ecosystem Service Protocol for Southeast Alaska by Dr. Paul Adamus

Leachate management of Constructed wetlands_Yuka Ogata_National Institute for...
Leachate management of Constructed wetlands_Yuka Ogata_National Institute for...Leachate management of Constructed wetlands_Yuka Ogata_National Institute for...
Leachate management of Constructed wetlands_Yuka Ogata_National Institute for...CRL Asia
 
Calidad del agua para agricultura fao 29-ayers y westcot 1985-oki
Calidad del agua para agricultura fao 29-ayers y westcot 1985-okiCalidad del agua para agricultura fao 29-ayers y westcot 1985-oki
Calidad del agua para agricultura fao 29-ayers y westcot 1985-okiPIEDRON
 
Protection goals, assessment endpoints, ecosystem services and biodiversity
Protection goals, assessment endpoints, ecosystem services and biodiversityProtection goals, assessment endpoints, ecosystem services and biodiversity
Protection goals, assessment endpoints, ecosystem services and biodiversityEFSA EU
 
3. ES Manage Project: Incorporation of Ecosystem Services Values into the Int...
3. ES Manage Project: Incorporation of Ecosystem Services Values into the Int...3. ES Manage Project: Incorporation of Ecosystem Services Values into the Int...
3. ES Manage Project: Incorporation of Ecosystem Services Values into the Int...Environmental Protection Agency, Ireland
 
Water Wednesday - Professor Barry Hart
Water Wednesday - Professor Barry HartWater Wednesday - Professor Barry Hart
Water Wednesday - Professor Barry HartUniversity of Adelaide
 
Gary burgess waste water 101 nspe 022112
Gary burgess waste water 101 nspe 022112Gary burgess waste water 101 nspe 022112
Gary burgess waste water 101 nspe 022112Gary Burgess - PE
 
Alan Andersen_Subcontinental-scale transects for assessing and monitoring eco...
Alan Andersen_Subcontinental-scale transects for assessing and monitoring eco...Alan Andersen_Subcontinental-scale transects for assessing and monitoring eco...
Alan Andersen_Subcontinental-scale transects for assessing and monitoring eco...TERN Australia
 
Shawn Rummel, Trout Unlimited, "Recovery of Coldwater Ecosystems Following Tr...
Shawn Rummel, Trout Unlimited, "Recovery of Coldwater Ecosystems Following Tr...Shawn Rummel, Trout Unlimited, "Recovery of Coldwater Ecosystems Following Tr...
Shawn Rummel, Trout Unlimited, "Recovery of Coldwater Ecosystems Following Tr...Michael Hewitt, GISP
 
Pierce County 2010 Surface Water Report Card
Pierce County 2010 Surface Water Report CardPierce County 2010 Surface Water Report Card
Pierce County 2010 Surface Water Report CardNisqually River Council
 
Pimple dimples eureka2013
Pimple dimples eureka2013Pimple dimples eureka2013
Pimple dimples eureka2013Greg Gearheart
 
Effects of limiting water on growth, development and yield of alfalfa grown i...
Effects of limiting water on growth, development and yield of alfalfa grown i...Effects of limiting water on growth, development and yield of alfalfa grown i...
Effects of limiting water on growth, development and yield of alfalfa grown i...Caleb M Carter
 
LSD-NEERI- Water Quality Analysis.pdf
LSD-NEERI- Water Quality Analysis.pdfLSD-NEERI- Water Quality Analysis.pdf
LSD-NEERI- Water Quality Analysis.pdfShenkoJ
 
Turning dreams into reality: challenges in flow-ecology relationships
Turning dreams into reality: challenges in flow-ecology relationshipsTurning dreams into reality: challenges in flow-ecology relationships
Turning dreams into reality: challenges in flow-ecology relationshipsUniversity of Washington
 
Water Quality Regulations and Animal Agriculture
Water Quality Regulations and Animal AgricultureWater Quality Regulations and Animal Agriculture
Water Quality Regulations and Animal AgricultureLPE Learning Center
 
Jayne Brim-Box et al: 'Monitoring the impact of feral camels on water places ...
Jayne Brim-Box et al: 'Monitoring the impact of feral camels on water places ...Jayne Brim-Box et al: 'Monitoring the impact of feral camels on water places ...
Jayne Brim-Box et al: 'Monitoring the impact of feral camels on water places ...Ninti_One
 
Water Quality Criteria and standards).pdf
Water Quality Criteria and standards).pdfWater Quality Criteria and standards).pdf
Water Quality Criteria and standards).pdfMuhammadRamzan757427
 
Water Quality Data Management and Analysis
Water Quality Data Management and AnalysisWater Quality Data Management and Analysis
Water Quality Data Management and AnalysisThe Watershed Institute
 

Similar a Wetland Ecosystem Service Protocol for Southeast Alaska by Dr. Paul Adamus (20)

WESPAK-SE: Wetland Functional Assessment by Paul Adamus
WESPAK-SE: Wetland Functional Assessment by Paul AdamusWESPAK-SE: Wetland Functional Assessment by Paul Adamus
WESPAK-SE: Wetland Functional Assessment by Paul Adamus
 
Leachate management of Constructed wetlands_Yuka Ogata_National Institute for...
Leachate management of Constructed wetlands_Yuka Ogata_National Institute for...Leachate management of Constructed wetlands_Yuka Ogata_National Institute for...
Leachate management of Constructed wetlands_Yuka Ogata_National Institute for...
 
Calidad del agua para agricultura fao 29-ayers y westcot 1985-oki
Calidad del agua para agricultura fao 29-ayers y westcot 1985-okiCalidad del agua para agricultura fao 29-ayers y westcot 1985-oki
Calidad del agua para agricultura fao 29-ayers y westcot 1985-oki
 
Protection goals, assessment endpoints, ecosystem services and biodiversity
Protection goals, assessment endpoints, ecosystem services and biodiversityProtection goals, assessment endpoints, ecosystem services and biodiversity
Protection goals, assessment endpoints, ecosystem services and biodiversity
 
3. ES Manage Project: Incorporation of Ecosystem Services Values into the Int...
3. ES Manage Project: Incorporation of Ecosystem Services Values into the Int...3. ES Manage Project: Incorporation of Ecosystem Services Values into the Int...
3. ES Manage Project: Incorporation of Ecosystem Services Values into the Int...
 
Water Wednesday - Professor Barry Hart
Water Wednesday - Professor Barry HartWater Wednesday - Professor Barry Hart
Water Wednesday - Professor Barry Hart
 
Gary burgess waste water 101 nspe 022112
Gary burgess waste water 101 nspe 022112Gary burgess waste water 101 nspe 022112
Gary burgess waste water 101 nspe 022112
 
Alan Andersen_Subcontinental-scale transects for assessing and monitoring eco...
Alan Andersen_Subcontinental-scale transects for assessing and monitoring eco...Alan Andersen_Subcontinental-scale transects for assessing and monitoring eco...
Alan Andersen_Subcontinental-scale transects for assessing and monitoring eco...
 
Shawn Rummel, Trout Unlimited, "Recovery of Coldwater Ecosystems Following Tr...
Shawn Rummel, Trout Unlimited, "Recovery of Coldwater Ecosystems Following Tr...Shawn Rummel, Trout Unlimited, "Recovery of Coldwater Ecosystems Following Tr...
Shawn Rummel, Trout Unlimited, "Recovery of Coldwater Ecosystems Following Tr...
 
Pierce County 2010 Surface Water Report Card
Pierce County 2010 Surface Water Report CardPierce County 2010 Surface Water Report Card
Pierce County 2010 Surface Water Report Card
 
Monitoring of Toxin-Producing Cyanobacteria
Monitoring of Toxin-Producing Cyanobacteria Monitoring of Toxin-Producing Cyanobacteria
Monitoring of Toxin-Producing Cyanobacteria
 
Pimple dimples eureka2013
Pimple dimples eureka2013Pimple dimples eureka2013
Pimple dimples eureka2013
 
Effects of limiting water on growth, development and yield of alfalfa grown i...
Effects of limiting water on growth, development and yield of alfalfa grown i...Effects of limiting water on growth, development and yield of alfalfa grown i...
Effects of limiting water on growth, development and yield of alfalfa grown i...
 
LSD-NEERI- Water Quality Analysis.pdf
LSD-NEERI- Water Quality Analysis.pdfLSD-NEERI- Water Quality Analysis.pdf
LSD-NEERI- Water Quality Analysis.pdf
 
Turning dreams into reality: challenges in flow-ecology relationships
Turning dreams into reality: challenges in flow-ecology relationshipsTurning dreams into reality: challenges in flow-ecology relationships
Turning dreams into reality: challenges in flow-ecology relationships
 
Water Quality Regulations and Animal Agriculture
Water Quality Regulations and Animal AgricultureWater Quality Regulations and Animal Agriculture
Water Quality Regulations and Animal Agriculture
 
State report on Gatineau Park ecosystems
State report on Gatineau Park ecosystemsState report on Gatineau Park ecosystems
State report on Gatineau Park ecosystems
 
Jayne Brim-Box et al: 'Monitoring the impact of feral camels on water places ...
Jayne Brim-Box et al: 'Monitoring the impact of feral camels on water places ...Jayne Brim-Box et al: 'Monitoring the impact of feral camels on water places ...
Jayne Brim-Box et al: 'Monitoring the impact of feral camels on water places ...
 
Water Quality Criteria and standards).pdf
Water Quality Criteria and standards).pdfWater Quality Criteria and standards).pdf
Water Quality Criteria and standards).pdf
 
Water Quality Data Management and Analysis
Water Quality Data Management and AnalysisWater Quality Data Management and Analysis
Water Quality Data Management and Analysis
 

Más de Southeast Alaska Watershed Coalition

Biofuels presentation, Karen Petersen UAF Cooperative Extension Service
Biofuels presentation, Karen Petersen UAF Cooperative Extension ServiceBiofuels presentation, Karen Petersen UAF Cooperative Extension Service
Biofuels presentation, Karen Petersen UAF Cooperative Extension ServiceSoutheast Alaska Watershed Coalition
 
Building strategic partnerships with the Forest Service by Angela Coleman
Building strategic partnerships with the Forest Service by Angela ColemanBuilding strategic partnerships with the Forest Service by Angela Coleman
Building strategic partnerships with the Forest Service by Angela ColemanSoutheast Alaska Watershed Coalition
 
Partnering with the Forest Service: Lessons Learned by Sheila Jacobson
Partnering with the Forest Service: Lessons Learned by Sheila JacobsonPartnering with the Forest Service: Lessons Learned by Sheila Jacobson
Partnering with the Forest Service: Lessons Learned by Sheila JacobsonSoutheast Alaska Watershed Coalition
 

Más de Southeast Alaska Watershed Coalition (20)

The Southeast Alaska Mitigation Fund
The Southeast Alaska Mitigation FundThe Southeast Alaska Mitigation Fund
The Southeast Alaska Mitigation Fund
 
Stewardship Contracting by Keith Rush of The Nature Conservancy
Stewardship Contracting by Keith Rush of The Nature ConservancyStewardship Contracting by Keith Rush of The Nature Conservancy
Stewardship Contracting by Keith Rush of The Nature Conservancy
 
Biomass Photo Slideshow, Karen Petersen, UAF CES
Biomass Photo Slideshow, Karen Petersen, UAF CESBiomass Photo Slideshow, Karen Petersen, UAF CES
Biomass Photo Slideshow, Karen Petersen, UAF CES
 
Biofuels presentation, Karen Petersen UAF Cooperative Extension Service
Biofuels presentation, Karen Petersen UAF Cooperative Extension ServiceBiofuels presentation, Karen Petersen UAF Cooperative Extension Service
Biofuels presentation, Karen Petersen UAF Cooperative Extension Service
 
Mitigation Site Identification in Southeast Alaska.
Mitigation Site Identification in Southeast Alaska. Mitigation Site Identification in Southeast Alaska.
Mitigation Site Identification in Southeast Alaska.
 
Building strategic partnerships with the Forest Service by Angela Coleman
Building strategic partnerships with the Forest Service by Angela ColemanBuilding strategic partnerships with the Forest Service by Angela Coleman
Building strategic partnerships with the Forest Service by Angela Coleman
 
Watershed Condition Frameworks by Angela Coleman
Watershed Condition Frameworks by Angela ColemanWatershed Condition Frameworks by Angela Coleman
Watershed Condition Frameworks by Angela Coleman
 
Watershed Assessments by John Hudson
Watershed Assessments by John HudsonWatershed Assessments by John Hudson
Watershed Assessments by John Hudson
 
Federal Programs for Watershed Restoration by John Hudson
Federal Programs for Watershed Restoration by John HudsonFederal Programs for Watershed Restoration by John Hudson
Federal Programs for Watershed Restoration by John Hudson
 
Writing a Successful Project Proposal by Kathleen Dowd-Gailey
Writing a Successful Project Proposal by Kathleen Dowd-GaileyWriting a Successful Project Proposal by Kathleen Dowd-Gailey
Writing a Successful Project Proposal by Kathleen Dowd-Gailey
 
Southeast Alaska Watershed Coalition by Jessica Kayser
Southeast Alaska Watershed Coalition by Jessica KayserSoutheast Alaska Watershed Coalition by Jessica Kayser
Southeast Alaska Watershed Coalition by Jessica Kayser
 
Watershed Collaboration on the Yukon River by Ryan Toohey
Watershed Collaboration on the Yukon River by Ryan Toohey Watershed Collaboration on the Yukon River by Ryan Toohey
Watershed Collaboration on the Yukon River by Ryan Toohey
 
Restoration: Education and Regulation by Bill Lucey
Restoration: Education and Regulation by Bill LuceyRestoration: Education and Regulation by Bill Lucey
Restoration: Education and Regulation by Bill Lucey
 
Partnering with the Forest Service: Lessons Learned by Sheila Jacobson
Partnering with the Forest Service: Lessons Learned by Sheila JacobsonPartnering with the Forest Service: Lessons Learned by Sheila Jacobson
Partnering with the Forest Service: Lessons Learned by Sheila Jacobson
 
Restoration Project Analysis in Juneau Alaska by John Hudson
Restoration Project Analysis in Juneau Alaska by John HudsonRestoration Project Analysis in Juneau Alaska by John Hudson
Restoration Project Analysis in Juneau Alaska by John Hudson
 
Planning for Watershed Restoration by Neil Stichert
Planning for Watershed Restoration by Neil StichertPlanning for Watershed Restoration by Neil Stichert
Planning for Watershed Restoration by Neil Stichert
 
Juneau Wetland Management Plan by Teri Camery and Nicole Jones
Juneau Wetland Management Plan by Teri Camery and Nicole JonesJuneau Wetland Management Plan by Teri Camery and Nicole Jones
Juneau Wetland Management Plan by Teri Camery and Nicole Jones
 
Municipal Wetland Initiatives by Frankie Barker
Municipal Wetland Initiatives by Frankie BarkerMunicipal Wetland Initiatives by Frankie Barker
Municipal Wetland Initiatives by Frankie Barker
 
The Watershed Approach by Matthew Lacroix
The Watershed Approach by Matthew Lacroix The Watershed Approach by Matthew Lacroix
The Watershed Approach by Matthew Lacroix
 
Municipal Wetland Mapping by Mike Gracz
Municipal Wetland Mapping by Mike GraczMunicipal Wetland Mapping by Mike Gracz
Municipal Wetland Mapping by Mike Gracz
 

Último

ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptxmary850239
 
The Contemporary World: The Globalization of World Politics
The Contemporary World: The Globalization of World PoliticsThe Contemporary World: The Globalization of World Politics
The Contemporary World: The Globalization of World PoliticsRommel Regala
 
TEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docxTEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docxruthvilladarez
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfErwinPantujan2
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Projectjordimapav
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptxiammrhaywood
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxVanesaIglesias10
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 

Último (20)

YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx
 
The Contemporary World: The Globalization of World Politics
The Contemporary World: The Globalization of World PoliticsThe Contemporary World: The Globalization of World Politics
The Contemporary World: The Globalization of World Politics
 
TEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docxTEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docx
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Project
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptx
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 

Wetland Ecosystem Service Protocol for Southeast Alaska by Dr. Paul Adamus