SlideShare una empresa de Scribd logo
1 de 154
Descargar para leer sin conexión
Thèse présentée pour l’obtention du grade de
                      Docteur de l’Université Louis Pasteur
                                                        Strasbourg I

                              Discipline : Physique Nucléaire

                                         par Sébastien Bianchin




                            Multifragmentation :
                  Rôle de la masse et de l’isospin

                                 Soutenue publiquement le 21 Septembre 2007




Membres du jury

Pr. Wolfgang Trautmann      Co-Directeur de thèse (GSI Darmstadt)
Dr. Fouad Rami              Co-Directeur de thèse (IPHC & ULP Strasbourg)
Pr. Abdelmjid Nourreddine   Président du jury (IPHC & ULP Strasbourg)
Dr. Christian Beck          Rapporteur interne (IPHC & ULP Strasbourg)
Dr. Abdelouahad Chbihi      Rapporteur externe (GANIL Caen)
Pr. Helmut Oeschler         Rapporteur externe (Université de Darmstadt)
Remerciements

   Mes premiers remerciements iront tout naturellement à messieurs Fouad Rami et
Wolfgang Trautmann pour m’avoir donné l’opportunité de travailler dans un domaine
de recherche aussi passionnant. Je tiens à ce titre à remercier particulièrement monsieur
Trautmann ainsi que tous mes collègues du groupe ALADiN pour leur accueil, leur dispo-
nibilité et pour les échanges souvent fructueux que l’on a pu avoir. Je pense notamment à
Arnaud Le Fèvre, Jerzy Lukasik, Carsten Schwarz, Alexander Botvina, Uli Lynen, Khalid
Kezzar et Titti sans la collaboration de qui ce travail n’aurait certainement pas pu se faire.

Je tiens également à remercier le professeur Abdelmjid Nourreddine ainsi que tous les
membres du jury (messieurs Christian Beck, Abdelouahad Chbihi et Helmut Oeschler)
pour m’avoir fait l’honneur de leur présence, pour l’intérêt qu’ils ont porté à la lecture
de ce document, mais aussi pour leur enthousiasme et leurs remarques bien souvent per-
tinentes.

Un immense merci également à toute l’équipe rédactionnelle du chapitre 6 (Antoine Bac-
quias, David Boutin, Audrey Chatillon, Tudi Le Bleis, Christophe Rappold, Titti et Ni-
colas Winckler) pour leurs commentaires et leurs corrections, mais surtout pour m’avoir
permis de terminer la rédaction de ce manuscrit sans trop déborder sur les délais.
J’aimerais, à ce titre, adresser un remerciement spécial et tout particulier à celle qui restera
de loin ma "collègue" préférée (Audrey Chatillon) sans le soutien de qui, c’est certain (si,
si !), je n’aurais jamais été capable de terminer dans les temps. Merci de m’avoir poussé,
de m’avoir tenu tête et d’y avoir cru quand je n’y croyais plus. J’espère sincèrement avoir
tort et que les ponts ne s’écrouleront pas.

Merci à toutes les personnes que j’ai pu rencontrer au cours de ces presque quatre an-
nées passées à GSI et que j’apprécie énormément : Lucia Caceres, Juan Castillo, la french
connexion, Stoyanka "Tania" Ilieva1 , Adam Klimkiewicz, Olga Lepyoshkina (thanks for
the dances) Barbara Soulignano (merci pour ces longues conversations tardives à GSI),
Martino Trassinelli (merci pour ces longues conversations tardives au restaurant), Sergiy
Trotsenko et bien sûr ............................2 .

Je tiens également à remercier mes "non-GSI friends"3 , ainsi que leurs familles respec-
tives4 , pour leur soutien : Hassan (de loin mon meilleur ami), Aurélien, Cédric, Claire
(merci encore pour tout), Clément, Danaé, Kathia et Nico, Julie et Bérangère (n’atten-
  1
    Cette petite phrase en français n’est rien que pour toi.
  2
    Si j’ai oublié votre nom, merci de l’inscrire ici.
  3
    "Mes amis éxtérieurs à GSI" pour les non anglophones.
  4
    Mension spéciale à la famille Cherradi pour leur hospitalité et leur gentillesse.
6


dons pas encore 10 ans pour nous revoir), Sam, Stéphane, Thomas, ............................5 et
bien entendu Isa pour avoir toujours été là même si je ne l’ai pas toujours vu (j’espère
qu’un jour tu seras cap de me pardonner).

Et parce que la vie ne s’arrête pas après la thèse (loin de là !), je voudrais également
remercier monsieur Takehiko Saito ainsi que tous les membres du groupe HypHI (Olga
Borodina, Myroslav Kavatsyuk, Shizu Minami, Daisuke Nakajima et Christophe Rappold)
pour m’avoir accueilli si chaleureusement parmi eux.

Bien entendu, je terminerais en remerciant ma famille à qui je dois tout et sans qui je ne
serais littéralement pas là où j’en suis aujourd’hui. Je pense bien sur à ma famille proche :
mon père (ma plus grande source d’inspiration), Geneviève, mes deux soeurs que j’adore
Amandine et Aurélie, le petit Valentin, Kévin et Régis et leur petite famille respective,
mais également à tous mes oncles, tantes, cousins et cousines aux quatre coins de la France
et bien sûr une pensée spéciale pour Amélie (on pense tous très fort à toi).




    5
        Voir 2 .
À ma famille
Table des matières

Introduction                                                                                               15

1 Propriétés de la matière nucléaire et collisions entre ions lourds                                       17
  1.1 Équation d’état de la matière nucléaire . . . . . . . . . . . . . . . .              .   .   .   .   17
      1.1.1 Notion de saturation . . . . . . . . . . . . . . . . . . . . . .               .   .   .   .   18
      1.1.2 Énergie de saturation . . . . . . . . . . . . . . . . . . . . . .              .   .   .   .   19
      1.1.3 Module d’incompressibilité de la matière nucléaire . . . . . .                 .   .   .   .   20
  1.2 Diagramme de phases de la matière nucléaire . . . . . . . . . . . . .                .   .   .   .   21
  1.3 Les transitions de phases . . . . . . . . . . . . . . . . . . . . . . . .            .   .   .   .   22
  1.4 Les collisions entre ions lourds aux énergies relativistes . . . . . . .             .   .   .   .   23
      1.4.1 Mécanismes réactionnels . . . . . . . . . . . . . . . . . . . .                .   .   .   .   23
      1.4.2 Courbe calorique nucléaire . . . . . . . . . . . . . . . . . . .               .   .   .   .   25
  1.5 Motivations physiques . . . . . . . . . . . . . . . . . . . . . . . . .              .   .   .   .   29

2 Dispositif expérimental                                                                                  35
  2.1 Le complexe accélérateur GSI . . . . . . . . . . . . . . . .     .   .   .   .   .   .   .   .   .   35
  2.2 Le séparateur de fragments FRS . . . . . . . . . . . . . . .     .   .   .   .   .   .   .   .   .   36
      2.2.1 Production de faisceaux radioactifs . . . . . . . . .      .   .   .   .   .   .   .   .   .   37
  2.3 Les détecteurs auxiliaires et la partie diagnostic du faisceau   .   .   .   .   .   .   .   .   .   38
      2.3.1 Le détecteur Veto . . . . . . . . . . . . . . . . . . .    .   .   .   .   .   .   .   .   .   38
      2.3.2 Le détecteur STELZER . . . . . . . . . . . . . . .         .   .   .   .   .   .   .   .   .   39
      2.3.3 Le détecteur start . . . . . . . . . . . . . . . . . . .   .   .   .   .   .   .   .   .   .   40
      2.3.4 Le détecteur de position . . . . . . . . . . . . . . .     .   .   .   .   .   .   .   .   .   40
      2.3.5 L’hodoscope de Catane . . . . . . . . . . . . . . . .      .   .   .   .   .   .   .   .   .   41
  2.4 L’aimant ALADiN . . . . . . . . . . . . . . . . . . . . . .      .   .   .   .   .   .   .   .   .   42
  2.5 La chambre d’ionisation TP-MUSIC IV . . . . . . . . . . .        .   .   .   .   .   .   .   .   .   43
      2.5.1 Les chambres d’ionisation . . . . . . . . . . . . . .      .   .   .   .   .   .   .   .   .   44
      2.5.2 Les compteurs proportionnels . . . . . . . . . . . .       .   .   .   .   .   .   .   .   .   45
      2.5.3 L’électronique de lecture . . . . . . . . . . . . . . .    .   .   .   .   .   .   .   .   .   46
      2.5.4 Performances . . . . . . . . . . . . . . . . . . . . .     .   .   .   .   .   .   .   .   .   47
  2.6 Le mur de temps de vol . . . . . . . . . . . . . . . . . . . .   .   .   .   .   .   .   .   .   .   48
      2.6.1 Principe de détection . . . . . . . . . . . . . . . . .    .   .   .   .   .   .   .   .   .   49
      2.6.2 Électronique associée . . . . . . . . . . . . . . . . .    .   .   .   .   .   .   .   .   .   50
10                                                               TABLE DES MATIÈRES


     2.7   Le détecteur de neutrons LAND . . . . . . . . . . . . . . . . . . . . . . . . 52
     2.8   Systèmes étudiés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Mesure de la masse des fragments                                                         55
  3.1 Reconstruction de la trajectoire des fragments . . . . . . . . . . . . . . . .       55
      3.1.1 Identification des traces dans la chambre d’ionisation TP-MUSIC IV              55
      3.1.2 Reconstruction des trajectoires à l’intérieur de l’aimant ALADiN . .           56
  3.2 Détermination de la masse des produits de réaction . . . . . . . . . . . . .         57
      3.2.1 Sélection en charge des fragments . . . . . . . . . . . . . . . . . . .        57
      3.2.2 Étalonnage des photomultiplicateurs du mur de temps de vol . . . .             58
  3.3 Détermination des taux de production des différents isotopes . . . . . . . .          63

4 Propriétés générales des événements de fragmentation                                     71
  4.1 Définition de la source spectatrice . . . . . . . . . . . . . . . .     . . . . . . . 71
  4.2 Sélection du paramètre d’impact - l’observable Zbound . . . . .        . . . . . . . 72
  4.3 Multiplicité moyenne de fragments de masse intermédiaire - le          "Rise and
      Fall" de la multifragmentation . . . . . . . . . . . . . . . . . .     . . . . . . . 74
  4.4 Charge du plus gros fragment détecté . . . . . . . . . . . . . .       . . . . . . . 76
  4.5 Effets pair-impairs . . . . . . . . . . . . . . . . . . . . . . . .     . . . . . . . 78

5 Mesure de la température                                                                 83
  5.1 Méthodes de mesure des températures . . . . . . . . . . . . . . . . . . . .          83
  5.2 Notion de température isotopique . . . . . . . . . . . . . . . . . . . . . . .       84
  5.3 Choix du thermomètre isotopique . . . . . . . . . . . . . . . . . . . . . . .        86
  5.4 Étalonnage des thermomètres isotopiques . . . . . . . . . . . . . . . . . . .        88
  5.5 Résultats expérimentaux . . . . . . . . . . . . . . . . . . . . . . . . . . . .      90
      5.5.1 Analyse des rapports des taux de production isotopiques . . . . . .            90
      5.5.2 Mesures de températures pour les trois systèmes 124 Sn, 124 La et 107 Sn       91
      5.5.3 Comparaison entre les systèmes pour les températures THeLi et TBeLi            92

6 Isoscaling et énergie de symétrie                                                      97
  6.1 Le phénomène d’isoscaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
  6.2 Énergie de symétrie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Conclusion                                                                               119

Appendices                                                                               123

A Le modèle statistique de multifragmentation SMM                                        123

B Taux de production isotopiques mesurés                                                 127

Bibliographie                                                                            147
Table des figures

 1.1  Densités nucléaires obtenues pour différents noyaux . . . . . . . . . . . . .           18
 1.2  Équation d’état de la matière nucléaire à T = 0 . . . . . . . . . . . . . . .          19
 1.3  Diagramme de phases de la matière nucléaire . . . . . . . . . . . . . . . . .          21
 1.4  Équation d’état de la matière nucléaire à T = 0 . . . . . . . . . . . . . . .          22
 1.5  Illustration de la notion participant-spectateur . . . . . . . . . . . . . . . .       24
 1.6  Les différentes étapes de la multifragmentation . . . . . . . . . . . . . . . .         25
 1.7  Courbe calorique nucléaire . . . . . . . . . . . . . . . . . . . . . . . . . . .       26
 1.8  Masse moyenne du préfragment et énergie d’excitation en fonction de Zbound             27
 1.9  Températures limites prédites par le modèle Hartree-Fock . . . . . . . . . .           28
 1.10 Courbe calorique obtenue pour des données provenant de différentes expé-
      riences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    29
 1.11 Températures limites expérimentales . . . . . . . . . . . . . . . . . . . . .          30
 1.12 Compositions isotopiques et masses des fragments prédites par le modèle
      statistique SMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        31
 1.13 Courbes caloriques prédites par le modèle SMM pour les systèmes 124 Sn,
      124
          La et 197 Au . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   32

 2.1  Le complexe accélérateur GSI . . . . . . . . . . . . . . . . . . . . . . . .      .    36
 2.2  Le séparateur de fragments FRS . . . . . . . . . . . . . . . . . . . . . . .      .    37
 2.3  Composition isotopique des faisceaux secondaires utilisés . . . . . . . . .       .    39
 2.4  Le détecteur de position . . . . . . . . . . . . . . . . . . . . . . . . . . .    .    40
 2.5  Profil des faisceaux dans le détecteur de position . . . . . . . . . . . . . .     .    41
 2.6  L’hodoscope de Catane . . . . . . . . . . . . . . . . . . . . . . . . . . . .     .    42
 2.7  Le dispositif expérimental ALADiN . . . . . . . . . . . . . . . . . . . . .       .    43
 2.8  La chambre d’ionisation TP-MUSIC IV . . . . . . . . . . . . . . . . . . .         .    44
 2.9  Coupe horizontale du détecteur TP-MUSIC IV . . . . . . . . . . . . . . .          .    46
 2.10 Électronique de lecture du détecteur TP-MUSIC IV . . . . . . . . . . . .          .    47
 2.11 Spectre en charge obtenu grâce au détecteur TP-MUSIC IV . . . . . . .             .    48
 2.12 Corrélation entre la charge mesurée à l’aide des compteurs proportionnels
      et celle mesurée à l’aide des chambres d’ionisation . . . . . . . . . . . . .     .    49
 2.13 Module du mur de temps de vol . . . . . . . . . . . . . . . . . . . . . . .       .    49
 2.14 Le mur de temps de vol . . . . . . . . . . . . . . . . . . . . . . . . . . . .    .    51
 2.15 Performances du mur de temps de vol . . . . . . . . . . . . . . . . . . . .       .    51
12                                                                      TABLE DES FIGURES


     2.16 Logique de lecture du mur de temps de vol . . . . . . . . . . . . . . . . . . 52
     2.17 Le détecteur de neutrons LAND . . . . . . . . . . . . . . . . . . . . . . . . 53

     3.1    Reconstruction des traces dans la chambre d’ionisation TP-MUSIC IV .             .   .   56
     3.2    Sélection en charge des fragments . . . . . . . . . . . . . . . . . . . . .      .   .   58
     3.3    Correction du walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     .   .   59
     3.4    ∆A en fonction du numéro de scintillateur avant les corrections de walk          .   .   60
     3.5    Corrections fines appliquées à la fonction de walk . . . . . . . . . . . .        .   .   62
     3.6    ∆A en fonction du numéro de scintillateur après les corrections de walk          .   .   63
     3.7    Spectres en masse obtenus pour le système 124 Sn . . . . . . . . . . . . .       .   .   64
     3.8    Spectres en masse obtenus pour le système 124 La . . . . . . . . . . . . .       .   .   65
     3.9    Spectres en masse obtenus pour le système 107 Sn . . . . . . . . . . . . .       .   .   66
     3.10   Variation de σ en fonction de la masse des fragments. . . . . . . . . . .        .   .   67
     3.11   Ajustement du bruit de fond . . . . . . . . . . . . . . . . . . . . . . . .      .   .   68
     3.12   Ajustement d’un spectre en masse obtenu pour le système 124 Sn . . . .           .   .   69
     3.13   Rapport signal sur bruit . . . . . . . . . . . . . . . . . . . . . . . . . .     .   .   70

     4.1  Dynamique de la réaction et détection des fragments . . . . . . . . . . .              . 71
     4.2  Spectre en vitesse (β) et sélection de la source spectatrice . . . . . . . . .         . 72
     4.3  Distributions de l’observable Zbound pour les trois systèmes 124 Sn, 124 La et
          107
              Sn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     . 73
     4.4 Multiplicité moyenne de fragments de masse intermédiaire <MFMI > . . .                  . 75
     4.5 Multiplicité moyenne de fragments de masse intermédiaire - Comparaison
          avec le modèle SMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . .           . 76
     4.6 Corrélation entre les observables Zmax et Zbound . . . . . . . . . . . . . .            . 77
     4.7 Zmax /Zproj moyen en fonction de Zbound /Zproj . . . . . . . . . . . . . . .            . 78
     4.8 Valeurs de <N>/Z en fonction du numéro atomique Z pour différentes
          centralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      . 79
     4.9 Rapport <N/Z> en fonction du numéro atomique Z . . . . . . . . . . .                    . 80
     4.10 Rapport <N>/Z en fonction du numéro atomique Z - Comparaison avec
          les données FRS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         . 81

     5.1    Différentes méthodes de mesure de température des systèmes hadroniques .                  84
     5.2    Valeurs des paramètres α et ∆B pour différentes combinaisons de paires
            d’isotopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       87
     5.3    Température apparente obtenue pour plusieurs thermomètres isotopiques .                  88
     5.4    Etalonnage des thermomètres isotopiques grâce au modèle statistique QSM                  90
     5.5    Rapports des taux de production de quelques paires d’isotopes en fonction
            de Zbound /Zmax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        92
     5.6    Températures isotopiques mesurées pour les trois systèmes 124 Sn, 124 La et
            107
                Sn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     94
     5.7    Températures isotopiques THeLi et TBeLi . . . . . . . . . . . . . . . . . . . .          95
TABLE DES FIGURES                                                                             13


  6.1    Rapport R21 entre les taux de production isotopiques et isotoniques pour les
         réactions 124 Sn+124 Sn et 112 Sn+112 Sn en fonction de N et Z respectivement 98
  6.2    Rapport R12 en fonction de t3 = (N − Z)/2 . . . . . . . . . . . . . . . . . 99
  6.3    Rapports des taux de production obtenus pour les réactions 124 Sn+Sn et
         107
             Sn+Sn en fonction de N et Z - résultats de la méthode d’ajustement ‚ 100
  6.4    Valeurs de α et β obtenues par ajustement bidimentionnel (méthode d’ajus-
         tement ‚) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
  6.5    Rapports des taux de production obtenus pour les réactions 124 Sn+Sn et
         107
             Sn+Sn en fonction de N et Z - résultats de la méthode d’ajustement ƒ 102
  6.6    Valeurs moyennes de α et β obtenues par ajustement individuel des isotopes
         et isotones (méthode d’ajustement ƒ) . . . . . . . . . . . . . . . . . . . . . 103
  6.7    Rapports des taux de production obtenus pour les réactions 124 Sn+Sn et
         107
             Sn+Sn en fonction de N et Z - résultats de la méthode d’ajustement „ 104
  6.8    Valeurs de α et β obtenues en supposant α = −β (méthode d’ajustement „)105
  6.9    Rapport réduit S(N) pour le système réactionnel (124 Sn/107 Sn) . . . . . . . 106
  6.10   Paramètres d’isoscaling α et β en fonction de Zbound . . . . . . . . . . . . 108
  6.11   Comparaison des résultats obtenus pour le coefficient γ du terme d’énergie
         de symétrie entre les deux systèmes réactionnels isobares (124 Sn/124 La) et
         isotopiques (124 Sn/107 Sn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
  6.12   Paramètre α, température isotopique THeLi et terme d’énergie de symétrie
         γapp obtenus grâce au détecteur INDRA . . . . . . . . . . . . . . . . . . . 110
  6.13   Corrélation entre les deux observables liées au paramètre d’impact dans le
         cas du détecteur INDRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
  6.14   Comparaison des résultats obtenus pour le coefficient γ du terme d’énergie
         de symétrie à partir des données collectées grâce aux détecteurs INDRA et
         ALADiN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
  6.15   Comparaison des résultats obtenus pour le coefficient γ du terme d’énergie
         de symétrie en utilisant les valeurs de la température mesurée grâce aux
         thermomètres THeLi et TBeLi . . . . . . . . . . . . . . . . . . . . . . . . . . 113
  6.16   Comparaison des résultats obtenus pour le coefficient γ du terme d’éner-
         gie de symétrie à partir des données collectées grâce aux détecteurs IN-
         DRA et ALADiN, mais également dans le cadre de l’expérience menée par
         D.V. Shetty et al. [She07] . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
  6.17   Comparaison des résultats obtenus pour le coefficient γ du terme d’énergie
         de symétrie en utilisant la méthode d’isoscaling pour les fragments pro-
         duits lors de la réaction et le rapport des taux de production de neutrons
         libres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

  A.1 Les ensembles thermodynamiques . . . . . . . . . . . . . . . . . . . . . . . 123

  B.1 Taux de production pour le système         124
                                                     Sn (0, 0 ≤ Zbound /Zproj ≤ 0, 2) . . . 129
                                                 124
  B.2 Taux de production pour le système             Sn (0, 2 ≤ Zbound /Zproj ≤ 0, 4) . . . 130
  B.3 Taux de production pour le système         124
                                                     Sn (0, 4 ≤ Zbound /Zproj ≤ 0, 6) . . . 131
14                                                                              TABLE DES FIGURES


     B.4    Taux   de   production   pour   le   système   124
                                                               Sn   (0, 6 ≤ Zbound /Zproj ≤ 0, 8)   .   .   .   132
     B.5    Taux   de   production   pour   le   système   124
                                                               Sn   (0, 8 ≤ Zbound /Zproj ≤ 1, 0)   .   .   .   133
     B.6    Taux   de   production   pour   le   système   124
                                                               Sn   (données inclusives) . . . .    .   .   .   134
                                                           107
     B.7    Taux   de   production   pour   le   système       Sn   (0, 0 ≤ Zbound /Zproj ≤ 0, 2)   .   .   .   135
     B.8    Taux   de   production   pour   le   système   107
                                                               Sn   (0, 2 ≤ Zbound /Zproj ≤ 0, 4)   .   .   .   136
     B.9    Taux   de   production   pour   le   système   107
                                                               Sn   (0, 4 ≤ Zbound /Zproj ≤ 0, 6)   .   .   .   137
     B.10   Taux   de   production   pour   le   système   107
                                                               Sn   (0, 6 ≤ Zbound /Zproj ≤ 0, 8)   .   .   .   138
     B.11   Taux   de   production   pour   le   système   107
                                                               Sn   (0, 8 ≤ Zbound /Zproj ≤ 1, 0)   .   .   .   139
                                                           107
     B.12   Taux   de   production   pour   le   système       Sn   (données inclusives) . . . .    .   .   .   140
     B.13   Taux   de   production   pour   le   système   124
                                                               La   (0, 0 ≤ Zbound /Zproj ≤ 0, 2)   .   .   .   141
     B.14   Taux   de   production   pour   le   système   124
                                                               La   (0, 2 ≤ Zbound /Zproj ≤ 0, 4)   .   .   .   142
     B.15   Taux   de   production   pour   le   système   124
                                                               La   (0, 4 ≤ Zbound /Zproj ≤ 0, 6)   .   .   .   143
     B.16   Taux   de   production   pour   le   système   124
                                                               La   (0, 6 ≤ Zbound /Zproj ≤ 0, 8)   .   .   .   144
     B.17   Taux   de   production   pour   le   système   124
                                                               La   (0, 8 ≤ Zbound /Zproj ≤ 1, 0)   .   .   .   145
     B.18   Taux   de   production   pour   le   système   124
                                                               La   (données inclusives) . . . .    .   .   .   146
Introduction

    Les collisions entre ions lourds aux énergies relativistes ont pour objectif principal de
produire des noyaux dit "chauds", c’est-à-dire des noyaux dans lesquels la matière nu-
cléaire est soumise à des conditions extrêmes de température et de densité. L’étude de ces
collisions permet donc d’explorer le diagramme des phases de cette matière nucléaire et,
finalement, d’en écrire son équation d’état.
Des questions se posent actuellement concernant le rôle de l’isospin dans ces réactions et
notamment dans le processus de multifragmentation. Afin de répondre à ces questions,
des données ont récemment été collectées grâce au spectromètre ALADiN auprès du syn-
chrotron d’ions lourds SIS (SchwerIonen Synchrotron). La décroissance des projectiles de
différentes compositions isotopiques a été mesurée en cinématique inverse. La reconstruc-
tion de traces, couplée à des mesures de temps de vol, permet de déterminer l’impulsion
et la masse des fragments produits. Des faisceaux stables de 197 Au et de 124 Sn, ainsi que
des faisceaux radioactifs secondaires de 124 La et de 107 Sn, disponibles grâce au séparateur
de fragments FRS, ont été utilisés dans le but de couvrir une large gamme de compo-
sitions massiques et isotopiques, permettant ainsi une étude comparative du processus
de multifragmentation des systèmes spectateurs formés aux énergies relativistes (dans le
cadre de ce travail de thèse Eproj = 600 MeV/nucléon) en fonction de la masse (124 Sn,
197
    Au) et de la composition isotopique du système. Pour ce dernier point, la paire d’iso-
bares 124 Sn/124 La et la paire isotopique 124 Sn/107 Sn sont utilisées. La cinématique inverse
offre l’avantage de s’affranchir d’un seuil de détection des fragments lourds ainsi que des
résidus, ce qui permet un accès unique à la dynamique de la réaction. De plus, le dispositif
ALADiN permet la détection de tous les produits de la réaction. Des progrès significatifs
dans l’interprétation de l’énergie cinétique des fragments et dans la compréhension du
mécanisme de multifragmentation peuvent alors être espérés.

Dans les collisions entre ions lourds, la multifragmentation du projectile spectateur peut
être considérée comme universelle. Cette universalité a été démontrée par la collabora-
tion ALADiN durant ses premières campagnes d’expériences [Sch96]. Une des principales
motivations de la campagne S254 est de vérifier si cette universalité est invariante par
rapport à l’isospin.
Outre ce dernier, la masse peut également jouer un rôle important dans le processus de
fragmentation. En effet, cette influence a été suggérée pour la température limite [Nat02],
qui gouverne la courbe calorique (température en fonction de l’énergie d’excitation). Cette
quantité représente la température maximale au-delà de laquelle les noyaux n’existent
16


plus comme des systèmes auto-liés dans les calculs de type Hartree-Fock [Bes89]. Pour les
systèmes les plus légers, la température limite est plus élevée, principalement parce que
l’énergie coulombienne y est plus faible. Toutefois, l’approche statistique SMM (Statisti-
cal Multifragmentation Model) prédit que la température est pratiquement invariante en
masse dans la région de coexistance liquide-gaz [Bon95].

Nous nous attendons donc, avec ce choix de projectiles, à ce que les influences relatives
de la masse et de l’isospin, ainsi que le rôle de la température limite dans la décroissance
multi-fragments puissent être discernés et étudiés. La comparaison de deux systèmes de
masses différentes devrait donc permettre de distinguer si la température de breakup est
déterminée par l’énergie de liaison du système nucléaire "chaud" (description microsco-
pique) ou par l’espace des phases accessible par fragmentation (description statistique).
La même comparaison peut être faite en variant l’isospin du système.
Chapitre 1

Propriétés de la matière nucléaire et
collisions entre ions lourds

    La matière nucléaire se caractérise essentiellement par sa densité élevée et par la nature
fermionique de ses constituants, les nucléons, dont les interactions sont régies à la fois par
l’interaction forte, l’interaction faible et la force électromagnétique. Bien que différente
de la matière "visible" ou macroscopique, la matière nucléaire peut être décrite par les
mêmes grandeurs thermodynamiques (densité, température et pression). Etudier la ma-
tière nucléaire dans des conditions extrêmes de température et/ou de pression (densité)
permet alors de mieux comprendre et d’appréhender son comportement, et ainsi d’établir
ce que l’on appelle l’équation d’état de la matière nucléaire. Une fois établie, cette dernière
permet de décrire totalement l’évolution des systèmes nucléaires et ainsi de prédire leurs
éventuelles transitions de phases. Au-delà de l’équation d’état de la matière nucléaire,
ces études approfondissent nos connaissances sur la formation de la matière au début de
l’Univers, la structure des étoiles à neutrons, ainsi que sur les mécanismes d’explosion des
supernovæ.



1.1     Équation d’état de la matière nucléaire
    L’équation d’état d’un système est la relation qui lie des grandeurs thermodynamiques
telles que la pression P , la densité ρ et la température T . Cette équation est un outil fon-
damental de physique statistique et de thermodynamique qui permet, par exemple, de
prédire l’existence de transitions de phases liquide-gaz dans les fluides réels de type Van
der Waals. Dans le cas des noyaux, qui sont des systèmes à faible nombre de constituants,
il est possible de définir un système idéal infini que l’on appelle la matière nucléaire.
Un des points de l’équation d’état de la matière nucléaire à température nulle est connu
expérimentalement : le point dit de "saturation". Les caractéristiques de ce dernier cor-
respondent essentiellement à celles du fluide nucléaire qui compose la partie centrale des
noyaux lourds.
18                   Propriétés de la matière nucléaire et collisions entre ions lourds


1.1.1    Notion de saturation
     Dès les premières expériences de mise en évidence des noyaux atomiques, au début du
siècle, l’on s’est aperçu que les noyaux n’étaient pas ponctuels. Dès lors, de nombreuses
expériences ont été réalisées dans ce domaine, notamment par diffusion d’électrons [Hof56].
Il a alors été établi que la densité de charge, au centre des noyaux massifs, est pratiquement
indépendante du noyau considéré, démontrant ainsi que la densité totale des nucléons au
centre des noyaux lourds est, elle aussi, indépendante du noyau.




Fig. 1.1 – Densités nucléaires déduites par diffusion électronique (figure extraite de [Dan01]).


On exprime cette indépendance de la densité centrale des noyaux lourds en disant que la
densité de nucléons "sature" pour une densité appelée densité de saturation (ou encore
densité normale), ρ0 = 0, 16 ± 0, 02 fm−3 (Fig. 1.1). L’incertitude sur cette valeur provient
essentiellement des incertitudes sur la densité des neutrons et sur le fait que la densité au
cœur des noyaux présente de petites oscillations dûes à des effets quantiques. Ces mêmes
expériences de diffusion d’électrons ont également permis de déterminer avec une bonne
précision que les rayons des noyaux obéissent à une relation de la forme :

                                         R = r0 A1/3                                     (1.1)
où r0 ≈ 1, 2 fm est indépendant du noyau considéré et où A est le nombre de masse de ce
Équation d’état de la matière nucléaire                                                        19


dernier. Un nucléon occupe donc ainsi le même volume élémentaire 4πr0 /3 ≈ 6 − 7 fm3 à
                                                                    3

l’intérieur de n’importe quel noyau.

1.1.2     Énergie de saturation
   Le concept de matière nucléaire infinie (ou symétrique) permet de se représenter les
noyaux comme de minuscules échantillons de matière nucléaire. Cette représentation est
valable pour la partie centrale des noyaux constituée d’un fluide de matière nucléaire.
                       E (AMeV)




                                   60



                                                         E th
                                   40




                                   20

                                                                EC


                                   0
                                            1        2               3   ρ/ρ0

                                  −16
                                         Point de
                                        saturation

Fig. 1.2 – Comportement prédit de l’équation d’état de la matière nucléaire à température
nulle. L’énergie par nucléon E est représentée en fonction de la densité ρ normalisée à la densité
normale ρ0 . L’énergie totale du système à température nulle, symbolisée par la ligne horizontale
en pointillés, se compose d’une partie thermale Eth et d’une autre liée à la compression EC .
La valeur de l’énergie de liaison à température nulle au point de saturation E0 = −16 AM eV
correspond à la valeur minimale de l’énergie totale.


Afin de décrire les noyaux réels, ce modèle simple doit être corrigé en introduisant des
effets dits de taille finie, et en particulier les forces coulombiennes entre les protons, ainsi
que des effets de surface modélisant la zone intermédiaire entre la partie centrale dense
du noyau et l’extérieur vide. Une correction supplémentaire, dite d’asymétrie, est enfin
nécessaire pour pouvoir considérer les noyaux pour lesquels N = Z. Cette représentation
des noyaux sous forme de fluide fini est à l’origine du modèle dit de la goutte liquide qui
permet de rendre compte de certaines propriétés globales des noyaux. L’intérêt de tels
20                    Propriétés de la matière nucléaire et collisions entre ions lourds


modèles est lié au succès des formules de masse de type Bethe-Weizsäcker, par le biais
desquelles l’énergie de liaison B d’un noyau peut être reproduite à l’aide d’une expression
du type :

                                    2
                                            2    1        (N − Z)2         1
                   B = av A − as A − ac Z A
                                    3
                                                −3
                                                     − aa          ± ap A− 2             (1.2)
                                                             A


Le premier terme, av , représente ici la contribution dite de volume, associée à la partie
intérieure du noyau. Le second, as , correspond à la contribution de la surface nucléaire, le
troisième, ac , est la contribution coulombienne. Le terme aa , quant à lui est la contribution
due à l’asymétrie du système et, enfin, ap représente le terme d’appariement permettant
de tenir compte des effets quantiques.
Du point de vue de la matière nucléaire, le terme de volume av correspond à l’énergie
liée aux interactions nucléaires, d’un système infini, symétrique, à la densité ρ0 . La valeur
empirique de l’énergie de liaison par nucléon dans la matière nucléaire infinie vaut donc :

                                   E0 /A = −16 ± 1MeV                                    (1.3)
Cette valeur, comme on le voit sur la figure 1.2, correspond au minimum de l’équation
d’état de la matière nucléaire

1.1.3     Module d’incompressibilité de la matière nucléaire
    Il est intéressant d’avoir davantage d’informations sur l’équation d’état au voisinage
du point de saturation. La courbure de l’équation d’état E/A = E/A(ρ), à la densité
de saturation permet par exemple d’explorer le proche voisinage du point de saturation,
autrement dit les petites perturbations en densité des noyaux autour de leur état d’équi-
libre. Cette courbure est appelée le module d’incompressibilité K de la matière nucléaire
infinie et n’est définie qu’au point de saturation par l’expression :

                                          d2 Ec (ρ, T = 0)
                                K = 9ρ2                                                  (1.4)
                                                 dρ2         ρ=ρ0

Le module d’incompressibilité est en général étudié par diffusion de particules α [You01,
Ito01] ou dans le cadre d’études liées à l’astrophysique [Gle88]. Les valeurs communément
admises pour ce module d’incompressibilité K se situent entre 200 et 400 MeV. Si la valeur
de K est faible (≈ 200 MeV), l’équation d’état est dite "molle" (sof t), car l’énergie de
compression nécessaire pour atteindre des densités élevées est faible. Si, au contraire, la
valeur de K est élevée (≈ 400 MeV), on parle d’une équation "dure" (hard), car l’énergie
de compression à fournir pour atteindre ces même densités est supérieure. L’équation
d’état au voisinage du point de saturation s’écrit alors :

                                                      K (ρ − ρ0 )2
                            E/A(ρ) ∼ E/A(ρ0 ) +
                                   =                     ·                               (1.5)
                                                      18   ρ2
                                                            0
Diagramme de phases de la matière nucléaire                                                                            21


1.2                       Diagramme de phases de la matière nucléaire
   A l’instar de la matière macroscopique, la matière nucléaire peut être décrite en quatre
phases distinctes représentées sur la figure 1.3 :
   • La phase liquide correspond aux régions de faibles températures et de densité proche
     de celle du noyau dans son état fondamental (ρ0 ).
   • La phase solide (ou condensat) correspond à ce que l’on appelle la matière "froide"
     (faibles températures), mais cette fois à des densités très élevées. Cette phase est
     proche de la structure des étoiles à neutrons.
   • La phase gazeuse, quant à elle, se présente sous la forme d’un gaz de hadrons à
     température élevée.
   • Enfin, la phase plasma apparaît pour des densités 5 à 10 fois supérieures à celle
     du noyau dans son état fondamental ainsi que pour des températures supérieures à
     150 MeV. Cette phase se caractérise par le déconfinement des quarks à l’intérieur
     des nucléons et aboutit à la formation d’un plasma de quarks et de gluons.


                          200
      Température (MeV)




                          150


                                                                                                         plasma de
                                                                                                           quarks et
                          100                       gaz de hadrons                                         de gluons

                                                                                                  
                                                                     ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡




                                                                                                  
                                                                     ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡




                                                                      
                                                                     ¡
                                                                          
                                                                         ¡
                                                                              
                                                                             ¡
                                                                                  
                                                                                 ¡
                                                                                      
                                                                                     ¡
                                                                                          
                                                                                         ¡
                                                                                              
                                                                                             ¡




                                                                                                 coexistence
                                                                                                  
                                                                                                 ¡




                          50                                          
                                                                     ¡
                                                                          
                                                                         ¡
                                                                              
                                                                             ¡
                                                                                  
                                                                                 ¡
                                                                                      
                                                                                     ¡
                                                                                          
                                                                                         ¡
                                                                                              
                                                                                             ¡




                                                                                                 gaz−plasma
                                                                                                  
                                                                                                 ¡




                                                                                                  
                                                                     ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡




                                                                                                  
                                                                     ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡




                                                                   matière
                                ¢   ¢   ¢   ¢   ¢




                                                                                                  
                                £   £   £   £   £                    ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡




                                ¢   ¢   ¢   ¢   ¢




                                            phase liquide
                                £   £   £   £   £




                                                                   condensée
                                ¢   ¢   ¢   ¢   ¢




                                                                                                  
                                                                     ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡
                                £   £   £   £   £




                                ¢   ¢   ¢   ¢   ¢




                                £   £   £   £   £




                                ¢   ¢   ¢   ¢   ¢




                                                                                                  
                                                                     ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡
                                £   £   £   £   £




                                ¢   ¢   ¢   ¢   ¢




                           0
                                £   £   £   £   £




                                ¢   ¢   ¢   ¢   ¢




                                                                                                  
                                                                     ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡
                                £   £   £   £   £




                               0                1        2     3         4               5           6    7     8
                                                                                                               ρ/ρ0

Fig. 1.3 – Diagramme de phases de la matière nucléaire. La température est représentée en
fonction de la densité ρ normalisée à la densité normale ρ0 . Les quatre états de la matière nucléaire
sont représentés : phase liquide, matière condensée, gaz de hadrons et plasma de quarks et de
gluons.
22                                                              Propriétés de la matière nucléaire et collisions entre ions lourds


1.3                          Les transitions de phases
    Les transitions de phases sont des propriétés universelles de la matière. Elles sont
étudiées depuis plus d’un siècle pour des systèmes macroscopiques pour lesquels on est
proche de la limite thermodynamique, autrement dit pour des systèmes composés d’une
infinité de constituants. Une transition de phase se produit lorsqu’un état de la matière
devient instable pour certaines conditions thermodynamiques décrites par les variables
de contrôle que sont la température T et la pression P . Il y a maintenant une trentaine
d’années, l’analogie entre l’interaction nucléon-nucléon dans les noyaux et les forces in-
tramoléculaire de Van der Waals dans les fluides macroscopiques a conduit à émettre
l’hypothèse de l’existence d’une transition de phase liquide-gaz pour la matière nucléaire
[Lam78, Jaq83, Sie83]. Il est également possible d’observer une région de coexistence de
phases, ainsi que l’existence d’un point critique pour cette transition de phase, lié à la
forme de l’interaction nucléon-nucléon, répulsive à courte portée et attractive à longue
et moyenne portée [Eva55, Lac80]. Tous les calculs sur la matière nucléaire estiment la
température critique Tc de la transition liquide-gaz aux alentours de kTc ≈ 16 − 18 MeV
et la densité associée ρc ≈ 0, 05 − 0, 06 fm−3 .
 pression (MeV.fm −3 )




                    1.5
                                                                                                           Fig. 1.4 – Équation d’état de la
                                                                        T=20                               matière nucléaire à température non
                         1                                                                                 nulle calculée pour une force de
                                                                                                           Skyrme. La pression (en MeV.fm−3 )
                                                                                                           est représentée en fonction de la den-
                                                                                                           sité (en fm−3 ) pour chaque isotherme
                    0.5
                                                                                                           (températures exprimées en MeV).
                                                                        16




                                                   Tc=17.9
                                                                     
                              ¡   ¡   ¡   ¡    ¡    ¡   ¡   ¡   ¡   ¡




                               
                              ¡




                               
                              ¡
                                   
                                  ¡




                                   
                                  ¡
                                       
                                      ¡




                                       
                                      ¡
                                           
                                          ¡




                                           
                                          ¡
                                                
                                               ¡




                                                
                                               ¡
                                                     
                                                    ¡




                                                     
                                                    ¡
                                                         
                                                        ¡




                                                         
                                                        ¡
                                                             
                                                            ¡




                                                             
                                                            ¡
                                                                 
                                                                ¡




                                                                 
                                                                ¡
                                                                     
                                                                    ¡




                                                                     
                                                                    ¡
                                                                                                           La courbe en trait gras intercep-
                                                                              12




                               
                              ¡




                               
                              ¡
                                   
                                  ¡




                                   
                                  ¡
                                       
                                      ¡




                                       
                                      ¡
                                           
                                          ¡




                                           
                                          ¡
                                                
                                               ¡




                                                
                                               ¡
                                                     
                                                    ¡




                                                     
                                                    ¡
                                                         
                                                        ¡




                                                         
                                                        ¡
                                                             
                                                            ¡




                                                             
                                                            ¡
                                                                 
                                                                ¡




                                                                 
                                                                ¡
                                                                     
                                                                    ¡




                                                                     
                                                                    ¡
                                                                                                           tant les isothermes délimite la région
                         0     
                              ¡
                                   
                                  ¡
                                       
                                      ¡
                                           
                                          ¡
                                                
                                               ¡
                                                     
                                                    ¡
                                                         
                                                        ¡
                                                             
                                                            ¡
                                                                 
                                                                ¡
                                                                     
                                                                    ¡




                                                                                                           de coexistence des phases liquide et
                                              0.05                      0.1        0.15   densité (fm−3)   gaz. Le point critique correspond à
                                                                     
                              ¡   ¡   ¡   ¡    ¡    ¡   ¡   ¡   ¡   ¡




                                                                     
                              ¡   ¡   ¡   ¡    ¡    ¡   ¡   ¡   ¡   ¡




                                                                                                           kTc = 17, 9 MeV. La partie délimi-
                                                                     
                              ¡   ¡   ¡   ¡    ¡    ¡   ¡   ¡   ¡   ¡




                                                                     
                              ¡   ¡   ¡   ¡    ¡    ¡   ¡   ¡   ¡   ¡




                                                                                                           tée par la courbe en pointillés repré-
                                                                     
                              ¡   ¡   ¡   ¡    ¡    ¡   ¡   ¡   ¡   ¡




                                                                        8
                                                                     
                              ¡   ¡   ¡   ¡    ¡    ¡   ¡   ¡   ¡   ¡




         −0.5                  
                              ¡




                               
                              ¡
                                   
                                  ¡




                                   
                                  ¡
                                       
                                      ¡




                                       
                                      ¡
                                           
                                          ¡




                                           
                                          ¡
                                                
                                               ¡




                                                
                                               ¡
                                                     
                                                    ¡




                                                     
                                                    ¡
                                                         
                                                        ¡




                                                         
                                                        ¡
                                                             
                                                            ¡




                                                             
                                                            ¡
                                                                 
                                                                ¡




                                                                 
                                                                ¡
                                                                     
                                                                    ¡




                                                                     
                                                                    ¡
                                                                                                           sente la région spinodale (figure adap-
                               
                              ¡




                               
                              ¡
                                   
                                  ¡




                                   
                                  ¡
                                       
                                      ¡




                                       
                                      ¡
                                           
                                          ¡




                                           
                                          ¡
                                                
                                               ¡




                                                
                                               ¡
                                                     
                                                    ¡




                                                     
                                                    ¡
                                                         
                                                        ¡




                                                         
                                                        ¡
                                                             
                                                            ¡




                                                             
                                                            ¡
                                                                 
                                                                ¡




                                                                 
                                                                ¡
                                                                     
                                                                    ¡




                                                                     
                                                                    ¡
                                                                        4                                  tée de [Sau76]).
                                                                     
                              ¡   ¡   ¡   ¡    ¡    ¡   ¡   ¡   ¡   ¡




                                                                     
                              ¡   ¡   ¡   ¡    ¡    ¡   ¡   ¡   ¡   ¡




La figure 1.4 représente l’équation d’état de la matière nucléaire pour différentes tem-
pératures calculées à partir d’une force de Skyrme. Une région de coexistence de phases
liquide-gaz peut être observée pour des températures inférieures à la température critique
Tc = 17, 9 MeV , ainsi qu’une région de basse densité appelée région spinodale. Cette der-
Les collisions entre ions lourds aux énergies relativistes                                 23


nière est caractérisée par une instabilité mécanique pour laquelle les perturbations ne sont
plus amorties (comme c’est le cas pour la matière nucléaire à la densité normale), mais
au contraire, amplifiées. Cette région est associée au phénomène de multifragmentation :
les noyaux y entrant éclatent en fragments de différentes tailles [Gua96, Gua97].


1.4     Les collisions entre ions lourds aux énergies relati-
        vistes
    Les collisions nucléaires et notamment les collisions entre ions lourds aux énergies
relativistes sont le seul moyen dont disposent de nos jours les physiciens pour étudier en
laboratoire la matière nucléaire dans des conditions extrêmes de température et/ou de
densité.


1.4.1    Mécanismes réactionnels
    Lorsque deux noyaux entrent en collision, la nature de l’évènement dépend de ce que
l’on appelle le paramètre d’impact b. Ce dernier correspond à la distance séparant les
lignes de vol des centres des deux noyaux entrant en collision. Il nous renseigne sur la
centralité, et donc sur la violence de la collision.
Si le paramètre d’impact b est supérieur à la somme des rayons des deux noyaux projectile
et cible (Rp + Rc ), la réaction est largement dominée par les effets coulombiens à cause de
la faible portée de l’interaction nucléaire. À faible énergie de faisceau, correspondant à une
énergie dans le centre de masse de l’ordre de la barrière coulombienne, soit typiquement
quelques dizaines à quelques centaines de MeV, la trajectoire est fortement défléchie par
la répulsion coulombienne. À plus haute énergie, en revanche, cet effet est négligeable.
L’interaction nucléaire commence à jouer un rôle dans le processus collisionnel lorsque les
deux noyaux se recouvrent, autrement dit lorsque b < Rp + Rc .
Dans les collisions périphériques pour lesquelles b reste comparable à Rp +Rc , deux types de
réactions sont observées en fonction de l’énergie du faisceau. Pour des énergies inférieures
à quelques dizaines de MeV par nucléon, le processus dominant est une diffusion dite
profondément inélastique. Dans une telle réaction les deux noyaux gardent globalement
leur identité, mais échangent matière, impulsion et énergie. Une grande partie de l’énergie
cinétique disponible est ainsi dissipée dans les degrés de liberté collectifs et nucléoniques.
Durant cet échange, on peut se représenter le système comme un état moléculaire à deux
noyaux en rotation sur lui-même (en raison du paramètre d’impact élevé, le moment angu-
laire du système est en général très élevé). À plus haute énergie de faisceau, typiquement
au delà d’une centaine de MeV par nucléon, le mécanisme change. L’énergie est alors trop
élevée pour que les deux noyaux restent "collés" comme dans le cas précédent. La vitesse
du projectile provoque une séparation, quasi-immédiate, des deux noyaux. Seuls les nu-
cléons appartenant à la zone de recouvrement sont ainsi effectivement impliqués dans le
processus collisionel. Ils sont arrachés de la cible et entraînés avec une vitesse inférieure
à celle du résidu du projectile. On parle dans ce cas de mécanisme participant-spectateur
24                     Propriétés de la matière nucléaire et collisions entre ions lourds


pour bien signifier la différence entre les résidus non affectés du projectile et de la cible,
et la zone participante, appelée f ireball (ou boule de feu) correspondant à la zone de
recouvrement. Ce concept de participant-spectateur est illustré de manière schématique
sur la figure 1.5.
Dans ce travail de thèse, nous étudierons principalement la décroissance (ou la désexcita-
tion) du projectile spectateur.



                                                                    Projectile
          Projectile                                               spectateur
                                                      Fireball


                   Cible Cible
                        spectatrice




Fig. 1.5 – Lors de collisions entre ions lourds aux énergies relativistes, il existe trois différentes
sources de fragments et/ou de particules légères en fonction du paramètre d’impact. Les noyaux
du projectile et de la cible ne participant pas directement à la collision constituent respectivement
le projectile spectateur et la cible spectatrice. Les noyaux directement impliqués dans la collision
et correspondant à la zone de recouvrement entre le projectile et la cible constituent le f ireball
ou boule de feu.
                                                 .



Le scénario de multifragmentation se décompose en trois étapes majeures. D’abord, les
deux noyaux s’interpénètrent, ce qui a un effet de compression et d’échauffement au cours
duquel la température peut atteindre quelques dizaines de MeV et la densité peut être
2 à 5 fois supérieure à la densité de saturation ρ0 . Une fois que la densité maximale est
atteinte (environ 15 fm/c, soit 5.10−23 s après la collision), une phase d’expansion a lieu
jusqu’à ce que les produits de réaction n’interagissent plus entre eux. C’est ce que l’on
appelle la phase de f reeze-out ou gel. À ce moment, le système se dissocie en aggrégats.
Une première émission de particules légères (n, p, t, 3 He, 4 He) est observée. Au moment
du désassemblage du système, appelé breakup, une émission de particules légères, de
fragments de masse intermédiaire (3 < Z < 30) ainsi que de fragments lourds (Z > 30) a
lieu. La figure 1.6 illustre ce scénario de désexcitation.
Les collisions entre ions lourds aux énergies relativistes                                     25



 POINT DE DEPART                                  POINT DE DEPART
      DES                                               DES
MODELES DYNAMIQUES                               MODELES STATISTIQUES



                            émission
                         du pré−équilibre




                                                              fragments (Z>2)
                                                                     =
                                                              gouttes liquides


        Au "freeze−out": équilibre thermique et chimique


Fig. 1.6 – Scénario possible de la multifragmentation. Les modèles statistiques, et en particulier
le modèle statistique de multifragmentation SMM, sont décrits en détail en Annexe A.



1.4.2     Courbe calorique nucléaire
    Les différentes campagnes expérimentales menées ces dernières années par la colla-
boration ALADiN [Kun96, Sch96] ont permis une bien meilleure compréhension du pro-
cessus de fragmentation du projectile spectateur aux énergies relativistes (entre 400 et
1000 MeV par nucléon). Il a ainsi pu être démontré qu’un équilibre est atteint au moment
du breakup [Sch96]. De plus, la courbe calorique interprétée comme une signature de la
transition de phases liquide-gaz, a également été établie, suggérant qu’au cours de ces
réactions, la région de coexistence est explorée [Poc95] (cf. Fig. 1.7).

Cette courbe calorique représente la variation de la température déterminée à partir des
doubles rapports entre les taux de production isotopique (cf. Chap. 5) et l’énergie totale
d’excitation par nucléon du système. Cette dernière quantité est obtenue par calorimétrie
en sommant les énergies cinétiques mesurées de toutes les particules et fragments issus
de la décroissance du projectile spectateur et en ajoutant la chaleur de réaction Q de
chacune des réactions [Cam94]. À ce titre, la figure 1.8 montre la dépendance de l’énergie
d’excitation en fonction de la variable Zbound (cf. Chap. 4). On observe également que
la taille du projectile spectateur, dans la représentation participant-spectateur, dépend
également de Zbound .
26                          Propriétés de la matière nucléaire et collisions entre ions lourds



                             12          197     197
                                            Au+ Au, 600 AMeV
                                         12 18     nat 197
                                           C, O + Ag, Au, 30-84 AMeV
                                         22    181
                             10            Ne+ Ta, 8 AMeV

                                         √10 <E0>/<A0>
                                         √
                                 8
                   THeLi (MeV)




                                 6


                                 4
                                                2
                                               --- (<E0>/<A0> - 2 MeV)
                                                3
                                 2


                                 0
                                     0          5      10      15        20
                                                 <E0>/<A0> (MeV)

Fig. 1.7 – Courbe calorique nucléaire montrant la dépendance de la température isotopique
THeLi en fonction de l’énergie d’excitation par nucléon (figure extraite de [Poc95]).




La courbe calorique, représentée sur la figure 1.7, peut être divisée en trois sections dis-
tinctes. Dans la continuité des précédentes études du régime de fusion-évaporation, l’aug-
mentation de la température THeLi pour des énergies d’excitation inférieures à 2 MeV
par nucléon est compatible avec l’approximation à basse température d’un système fer-
mionique. Dans une gamme de <E0 >/<A0 > comprise entre 3 et 10 MeV par nucléon,
où le régime de multifragmentation domine sur le processus de fusion-évaporation, une
valeur quasi-constante de la température THeLi d’environ 4,5-5 MeV est observée. Fina-
lement, au dessus d’une énergie d’excitation totale d’environ 10 MeV par nucléon, une
augmentation de la température THeLi est de nouveau observée pour une augmentation
de <E0 >/< A0 >.
À mesure que l’on augmente la température du noyau, les nucléons se mettent à occuper
un continuum d’états non-liés de manière similaire à un gaz entourant une goutte d’eau
chaude. Macroscopiquement, les nucléons à l’intérieur de la goutte sont dans la phase
liquide de la matière nucléaire, alors que les nucléons de la vapeur sont dans la phase
Les collisions entre ions lourds aux énergies relativistes                                    27




Fig. 1.8 – Masse moyenne du préfragment <A0 > et son énergie d’excitation <E0 >/<A0 >
en fonction de la variable Zbound pour différentes sélections de Zmax (cf. Chap. 4). Les barres
horizontales (panneau supérieur) représentent la taille attendue du préfragment dans le cas d’une
géométrie "participant-spectateur" idéale (figure extraite de [Poc95]).




gazeuse.
La similarité de cette courbe calorique avec une transition de phase liquide-gaz de premier
ordre pour les systèmes macroscopiques est à l’origine d’important débats au sein de la
communauté scientifique et un effort particulier est consacré à comprendre le rôle de la
masse et de l’isospin du système nucléaire dans cette transition de phase.

Il a été montré [Lev85] que, en raison de la pression coulombienne, il existe une tempé-
rature limite Tlim qui représente la température maximale à laquelle les noyaux existent
comme des objets auto-liés dans les calculs de type Hartree-Fock [Bes89].
28                    Propriétés de la matière nucléaire et collisions entre ions lourds




                   107      124      124       197
                      Sn , Sn ,          La , Au




Fig. 1.9 – Position des quatre projectiles étudiés dans le plan (N,Z). Les lignes de contour
représentent les températures limites (exprimées en MeV) prédites par [Bes89], alors que la ligne
en pointillés correspond à la vallée de stabilité. La droite pleine, enfin, correspond à la valeur
N/Z = 1, 49 du projectile 197 Au.
                                               .


La figure 1.9 montre la température limite calculée en fonction du nombre de protons Z
et du nombre de neutrons N. Comme on peut le voir, une dépendance en masse de cette
température limite est prédite : on s’attend en particulier à ce que cette dernière diminue
à mesure que la masse du noyau augmente. De plus, dans le cas des noyaux riches en
protons, une disparition de cette température limite est prédite.
La dépendance de la température de breakup sur l’énergie d’excitation pourrait alors être
gouvernée par la température limite [Nat95, Cib00]. À partir de cette considération, il a
été observé [Nat02] que l’ensemble des données existantes donne une image plutôt consis-
tante, dans les cas pour lesquels une dépendance en masse de la courbe calorique est prise
en compte. Des données de différentes mesures ont été combinées pour construire des
courbes caloriques pour cinq régions différentes de la masse nucléaire (cf. Fig. 1.10). Ces
courbes caloriques sont qualitativement similaires, et présentent des plateaux aux énergies
d’excitation plus élevées.
Motivations physiques                                                                    29




                            14

                            12

                            10
                  T ( eV)




                            8
                     M




                            6

                            4

                            2

                            0
                                 0   5          10              15
                                     E*A ( eV/
                                       / M   nucleon)

Fig. 1.10 – Courbe calorique obtenue pour des données provenant de différentes expé-
riences [Hag88, Wad89, Cus93, Chulick, Gon90, Poc95, Ode99, Hau00, Wad97, Kwi98, Mor96,
Cib00, Hag00, Rua02] (figure extraite de [Nat02]).



Pour chaque gamme de masse, la température asymptotique du plateau a été extraite et
représentée en fonction de la masse du système (cf. Fig. 1.11). Comme on peut le voir à
partir de la corrélation obtenue, il existe une décroissance monotone de la température
limite à mesure que la masse du système augmente. Il est bien entendu, intéressant de
déterminer si ce comportement, prédit par les modèles théoriques (cf. Fig. 1.9), est égale-
ment observé expérimentalement.




1.5     Motivations physiques
    Il y a une dizaine d’années, H. Müller et B.D. Serot [Mül95] ont prédit, grâce à une ap-
proche thermodynamique basée sur un modèle relativiste de champ moyen [Ser86, Ser92],
que la nature bifluide (protons et neutrons) de la matière nucléaire est responsable de son
comportement dans la région de coexistence des phases liquide et gaz. Différentes compo-
sitions isotopiques sont ainsi prédites pour ces deux phases dans la zone de coexistance
et notamment un enrichissement en neutrons de la phase gazeuse par rapport à la phase
liquide dans le cas de la matière asymétrique (N = Z). Cette différence dans les composi-
tions isotopiques est due à la décroissance de l’énergie de symétrie de la matière nucléaire
avec la densité. L’amplitude de cette dépendance est cependant fonction du modèle utilisé
30                           Propriétés de la matière nucléaire et collisions entre ions lourds




                              10
                   T (MeV)




                               5


                               0
                                0       100      200       300      400
                                                    A


Fig. 1.11 – Températures limites extraites des doubles rapports entre les taux de production
isotopiques (triangles pleins) et par des mesures de bremsstrahlung (carrés ouverts). Les lignes
représentent les températures limites calculées en utilisant les interactions proposées par Go-
gny [Zha96] et par Furnstahl [Zha99] (figure extraite de [Nat02a]).



et les données existantes ont du mal à la reproduire [Bom91]. De plus, il est à noter que
les prédictions de Müller et Serot ne s’appliquent qu’à la matière nucléaire infinie et ne
tiennent pas compte de la force coulombienne.

Des études théoriques dans le cas de systèmes nucléaires finis montrent que la désintégra-
tion successive des produits de réactions tend à modifier certains des effets prédits par
les précédents calculs [Lar99]. Les rapports entre les taux de production mesurés pour
différents isotopes [Wad87] varient fortement en fonction du rapport N/Z de la source
émettrice, suivant ainsi les prédictions théoriques [Bar88, Hah88]. Récemment, des diffé-
rences significatives de comportement entre les systèmes riches et les systèmes pauvres en
neutrons ont été observées lors de réactions entre projectiles et cibles de 112,124 Sn [Xu00]
en même temps qu’un enrichissement en neutrons de la phase gazeuse pour une augmen-
tation du rapport N/Z du système, ce qui est en accord avec les prédictions de Müller et
Serot [Mül95]. Le rôle de l’énergie d’excitation dans le processus de multifragmentation
a également été étudié [Mil00], démontrant, en accord avec les prédictions du modèle
statistique de multifragmentation SMM [Bon95], que la production d’isotopes riches en
neutrons augmente avec l’énergie d’excitation.
La campagne d’expériences au centre de ce travail de thèse a pour principal objectif
d’étudier les effets de la masse et de l’isospin dans la multifragmentation du projectile
spectateur.
L’utilisation de faisceaux secondaires radioactifs (cf. Chap. 2) permet d’étendre la gamme
de compositions isotopiques bien au delà de celle accessible avec des faisceaux stables. Les
réactions utilisant ces faisceaux représentent alors un outil unique pour l’étude des effets
Motivations physiques                                                                                                                                  31


de l’isospin dans le processus de la multifragmentation. Les prédictions SMM relatives à
la fragmentation de deux systèmes isobares de masses A = 124, le 124 Sn riche en neutrons
(N/Z = 1, 48) et le 124 La pauvre en neutrons (N/Z = 1, 18), sont représentées sur la
figure 1.12. Les compositions isotopiques des fragments chauds produits au moment du
breakup sont globalement très différentes et tendent vers les rapports N/Z de leur pro-
jectile primaire respectif lorsque le nombre de masse A augmente (cf. Fig. 1.12, panneaux
supérieurs). Malgré une dépendance de l’énergie d’excitation prédite différente dans le cas
des noyaux riches en neutrons et des noyaux riches en protons, la dépendance en masse
est plutôt faible. Les courbes de masses calculées sont ainsi sensiblement les mêmes pour
les deux systèmes (cf. Fig. 1.12, panneaux inférieurs). L’étude expérimentale de ces dé-
pendances est importante pour notre compréhension du rôle de l’espace des phases dans
le processus de multifragmentation.




                               As=124, Zs=50                                                              As=124, Zs=57
 N/Z




                                                                            N/Z




                                               fragments primaires chauds                                                 fragments primaires chauds
                                                                            Taux de production relatifs
 Taux de production relatifs




                                           3 AMeV                5 AMeV                                               3 AMeV                5 AMeV
                                           4 AMeV                8 AMeV                                               4 AMeV                8 AMeV




                                   A, nombre de masse des fragments                                           A, nombre de masse des fragments

Fig. 1.12 – Compositions isotopiques N/Z (panneaux supérieurs) et masses des fragments
primaires chauds (panneaux inférieurs) produits au moment du breakup pour les deux systèmes
de même nombre de masse A = 124 obtenues grâce au modèle SMM. Les lignes correspondent à
quatre énergies d’excitation différentes comprises entre 3 et 8 MeV par nucléon. Il est important
de remarquer que l’axe des ordonnées est différent pour les panneaux supérieurs (figure adaptée
de [Sfi05]).


Comme on a pu le voir sur la figure 1.9, la température limite prédite par les modèles de
type Hartree-Fock est plus élevée dans le cas des systèmes légers, principalement parce
que l’énergie coulombienne y est plus faible. Le modèle SMM, quant à lui, prédit, comme
illustré sur la figure 1.13, que les températures dans la région de coexistence sont prati-
quement indépendantes de la masse. La comparaison de deux systèmes ayant des masses
très différentes devrait donc permettre de distinguer si la température au moment du
32                    Propriétés de la matière nucléaire et collisions entre ions lourds




Fig. 1.13 – Courbes caloriques pour les trois systèmes    124 La
                                                               (Z = 57), 124 Sn (Z = 50) et
197 Au(Z = 79) prédites par le modèle statistique de multifragmentation SMM (figure adaptée
de [Ogu02]).
                                              .



breakup est déterminée par les propriétés de liaisons des systèmes nucléaires excités ou,
au contraire, par l’espace des phases accessible par multifragmentation.

Pour tenter de répondre à ces questions, une étude systématique de la décroissance du
projectile spectateur aux énergies relativistes a été réalisée. Cette dernière est l’objet du
présent travail de thèse. Pour cela, la fragmentation de quatre projectiles différents, 124 Sn,
197
    Au, 124 La et 107 Sn, tous ayant une énergie incidente de 600 AMeV sur des cibles de 116 Sn
    197
et Au a été étudiée à l’aide du spectromètre ALADiN au laboratoire GSI de Darmstadt.
Les deux derniers faisceaux, obtenus par fragmentation d’un faisceau primaire de 142 Nd
sur une cible de production de 9 Be, ont été délivrés par le séparateur de fragments FRS.
L’utilisation d’un second faisceau radioactif pauvre en neutrons (N/Z = 1, 14) de 107 Sn
est également utilisé pour permettre, via la comparaison avec 124 Sn, de mieux comprendre
l’importance des neutrons dans le processus de multifragmentation.

La cinématique inverse offre, de plus, la possibilité de s’affranchir du seuil de détection
des fragments lourds et des résidus, permettant ainsi un accès unique à la dynamique de
la réaction. Le dispositif expérimental ALADiN autorise la détection de tous les produits
de réaction de charge Z > 1 entrant dans l’acceptance de l’aimant (cf. Chap. 2), permet-
tant ainsi de déterminer l’impulsion de toutes les particules chargées, y compris celle des
fragments les plus lourds.

Le chapitre 2 de ce travail de thèse est consacré à la description du dispositif expérimental
Motivations physiques                                                                    33


utilisé au cours de la campagne S254.

Le chapitre 3 décrit les méthodes utilisées pour la reconstruction des trajectoires, ainsi
que la détermination de la masse de chacun des fragments détectés.

Le chapitre 4, quant à lui, présente les propriétés générales des évènements de fragmen-
tation.

L’analyse et la mesures des températures isotopiques est présentée dans le chapitre 5.

Enfin, le 6eme et dernier chapitre de ce mémoire est, quant à lui, consacré à l’étude de
l’isoscaling et à la détermination du terme de symétrie de l’équation d’état de la matière
nucléaire.
34   Propriétés de la matière nucléaire et collisions entre ions lourds
Chapitre 2

Dispositif expérimental

     Au cours de l’année 2003, la campagne expérimentale S254 a été conduite par la colla-
boration ALADiN auprès de l’accélérateur du laboratoire GSI à Darmstadt en Allemagne.
Durant cette campagne, plusieurs systèmes projectiles-cibles ont été étudiés à travers l’uti-
lisation de deux types de faisceaux : des faisceaux primaires stables de 197 Au et de 124 Sn,
ainsi que des faisceaux secondaires radioactifs de 124 La et de 107 Sn. Ces différents projec-
tiles ont été choisis de façon à permettre l’étude des effets de la masse et de l’isospin dans
le processus de multifragmentation.
En effet, les deux projectiles 197 Au et 124 Sn ont sensiblement le même rapport N/Z (1,49
et 1,48 respectivement), mais des masses différentes, alors que les projectiles 124 Sn et
124
    La ont la même masse, mais des rapports N/Z très différents (1,48 et 1,18 respective-
ment). Le spectromètre ALADiN est spécialement conçu pour l’étude de la décroissance
du projectile spectateur en cinématique inverse.
Ce chapitre est consacré à la description des détecteurs qui composent le dispositif expé-
rimental ALADiN.


2.1        Le complexe accélérateur GSI
    Le complexe accélérateur GSI (Gesellschaft für SchwerIonenforschung), présenté sur la
figure 2.1, est composé de deux structures accélératrices : l’accélérateur linéaire UNILAC
(UNIversal Linear ACcelerator) et le synchrotron SIS (SchwerIonen Synchrotron). La
première de ces structures, d’une longueur de 120 m, est capable d’accélérer les ions
provenant de différentes sources [Spä98]. À titre d’exemple, l’accélérateur linéaire UNILAC
permet d’accélérer les ions 238 U28+ jusqu’à une énergie de 11,4 MeV/nucléon (énergie
d’injection) avec une vitesse d’environ 0,16 c. À ce stade, le faisceau peut être soit délivré
aux aires expérimentales de faibles énergies, soit transféré dans le synchrotron d’ions lourds
SIS [Ste92]1 pour y subir une seconde accélération à l’intérieur d’un anneau de 216 m de
circonférence composé d’une succession de dipôles magnétiques. Le pouvoir de déflection
maximale du synchrotron SIS (18 Tm) permet d’obtenir des faisceaux d’énergie maximale
  1                          238
      L’injection des ions         U28+ se fait par paquets de 1010 à 1011 ions pendant environ 100 µs.
36                                                                 Dispositif expérimental


comprise entre 1 GeV pour les noyaux de Au et de U et 4,5 GeV pour les protons. Une fois
l’énergie désirée atteinte, le faisceau d’ions est acheminé, via le séparateur de fragment
FRS ou directement, vers les aires expérimentales dites de hautes énergies. Dans le cas de
la campagne S254, le faisceau est acheminé vers l’aire expérimentale B avec une énergie
de 600 AMeV.




                                  Aire expérimentale B



Fig. 2.1 – Schéma du complexe accélérateur GSI comprenant l’accélérateur linéaire UNILAC,
le synchrotron d’ions lourds SIS, l’anneau de stockage ESR (non utilisé dans la campagne S254)
et le séparateur de fragments FRS.




2.2     Le séparateur de fragments FRS
    Le séparateur de fragments FRS [Gei92], présenté sur la figure 2.2, est un spectro-
mètre magnétique achromatique composé de quatre sections indépendantes. Chacune de
ces sections est constituée d’un dipôle magnétique assurant la séparation des fragments
provenant de la fission ou de la fragmentation du faisceau primaire en fonction de leur
rapport A/Z (A et Z étant, respectivement, la masse et la charge du fragment) et d’un
groupe de quadrupôles responsables de la focalisation du faisceau au niveau des plans
focaux S1, S2, S3 et S4. Des sextupôles sont aussi présents pour les corrections du second
ordre.
Afin de permettre une sélection en charge des fragments, et ainsi obtenir un faisceau
isotopiquement pur, un dégradeur en aluminium d’épaisseur variable peut être utilisé au
niveau du plan focal S2. Lorsqu’un fragment traverse le dégradeur, sa perte d’énergie
est fonction de sa charge. La pureté du faisceau est ainsi directement liée à l’épaisseur du
Le séparateur de fragments FRS                                                             37


dégradeur : plus le dégradeur est épais, plus le faisceau est isotopiquement pur. Cependant,
la pureté du faisceau est obtenue au détriment de son intensité. Pour cette raison, aucun
dégradeur n’a été utilisé lors de la campagne S254 permettant ainsi d’obtenir des faisceaux
secondaires d’intensité suffisamment élevée, et de bénéficier d’une statistique acceptable.
Afin de vérifier la pureté isotopique du faisceau délivré, des mesures supplémentaires sont
effectuées dans la deuxième moitié du séparateur de fragments (après le plan focal S2).
Ainsi, le temps de vol des noyaux qui composent le faisceau est mesuré sur une distance de
36 m entre deux scintillateurs plastiques d’une épaisseur de 5 mm placés respectivement
aux plans focaux S2 et S4. Ces mêmes scintillateurs servent également à mesurer la perte
d’énergie du faisceau. La position de ce dernier est, elle aussi, mesurée avec précision
événement par événement. Pour cela, des chambres proportionnelles à gaz multifils de type
MWPC (MultiWire Proportional Counter) similaires au détecteur STELZER (cf. §2.3.2)
et orientées de façon à déterminer la position des noyaux dans les deux directions du plan
perpendiculaire à la direction du faisceau sont placées sur le parcours de ce dernier.



                              S1                             S3


                                                                                 S4

    Quadrupôle                                                             Dipôle
                                        S2 (Dégradeur)
Fig. 2.2 – Le séparateur de fragments FRS. Dans le cadre de la campagne d’expériences S254,
des scintillateurs plastiques sont placés en lieu et place du dégradeur.




2.2.1     Production de faisceaux radioactifs
    Afin d’étendre au maximum la gamme de compositions isotopiques des systèmes
spectateurs étudiés, quatres projectiles différents, chacun ayant une énergie incidente de
600 MeV par nucléon, ont été utilisés dans le cadre de la campagne d’expériences S254, per-
mettant ainsi de disposer de différentes combinaisons en masses et en rapports N/Z pour
la voie d’entrée. Deux de ces projectiles, le 124 La et le 107 Sn, sont obtenus par fragmenta-
tion d’un faisceau primaire de 142 Nd (Z=60) d’énergie incidente 895 AMeV ou 875 AMeV
sur une cible de production de 9 Be ayant une épaisseur de 4009 mg/cm2 . Les fragments
ainsi produits sont conduits vers le séparateur de fragments FRS à l’intérieur duquel les
ions sont séparés en fonction de leur rapport A/Z. Les mesures de position effectuées au
niveau du plan focal S2, ainsi que la mesure du temps de vol effectuée le long des 83 m
qui séparent le séparateur de fragments du dispositif expérimental ALADiN permettent
38                                                                  Dispositif expérimental


de déterminer le rapport A/Z des projectiles sélectionnés avec une grande précision via
la formule :

                                                      2
                            A      A              ∆x γ0 (t − t0 )
                              =            . 1+     +                                    (2.1)
                            Z      Z   0          D       t0

Le premier terme de cette équation est le rapport A/Z correspondant à la valeur nominale
du faisceau désiré et a pour valeur (A/Z)0 = 2, 175 et (A/Z)0 = 2, 14 pour un faisceau
de 124 La et de 107 Sn respectivement. ∆x = x − x0 est la différence entre la position
horizontale x du faisceau mesurée à l’aide des scintillateurs plastiques situés au plan focal
S2 et celle correspondant au faisceau nominal, alors que D = −6, 81 cm/% représente la
dispersion maximale au niveau de ce même plan focal [Gei92]. t, quant à lui, est le temps
mesuré par le détecteur plastique se trouvant à la sortie du séparateur de fragments (plan
focal S8) et t − t0 représente la différence entre ce temps de vol mesuré et le temps de
vol t0 du faisceau nominal. En cas de nécessité, une sélection plus précise de la charge
du projectile peut être obtenue en utilisant les détecteurs de diagnostic situés en amont
de la cible. La composition du faisceau délivré par le séparateur de fragment FRS est
représentée sur la figure 2.3. Dans le cadre de l’analyse présentée par la suite, et afin de
bénéficier d’une statistique suffisante, le faisceau délivré par le séparateur de fragment est
utilisé sans sélection supplémentaire. La masse et la charge moyenne du faisceau sont alors
déterminées par la moyenne arithmétique des masses et des charges de tous les isotopes
qui le composent.


2.3     Les détecteurs auxiliaires et la partie diagnostic du
        faisceau
2.3.1     Le détecteur Veto
    Le détecteur Veto, aussi appelé "ROLU" pour "Rechts-Oben-Links-Unten", permet
une vérification grossière de la focalisation et de l’alignement du faisceau avant que ce
dernier n’atteigne la chambre à cibles. Il se compose de quatre scintillateurs plastiques
mobiles (de dimension 10 x 10 x 0,5 cm3 ) munis chacun d’un photomultiplicateur. Deux de
ces scintillateurs sont placés dans la direction verticale (haut et bas) de part et d’autre de
la ligne de faisceau alors que les deux autres sont placés, toujours de part et d’autre de la
ligne de faisceau, dans la direction horizontale (gauche et droite) de façon à délimiter une
fenêtre d’une surface maximale de 36 x 36 mm2 et permettant le passage du faisceau. Les
paramètres de ce dernier sont alors ajustés de façon à obtenir la plus petite fenêtre possible
sans qu’aucun des scintillateurs qui la composent ne soit touché (ou très peu) lors de son
passage. Dans le cas du faisceau stable de 124 Sn utilisé, la focalisation est telle que toutes
les particules du faisceau passent par l’acceptance du détecteur ROLU. En revanche, dans
le cas des faisceaux secondaires (124 La et 107 Sn), environ 30% des fragments qui composent
le faisceau frappent le détecteur, et ce même pour une ouverture maximale.
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final
These_final

Más contenido relacionado

La actualidad más candente

Manuel du module additionnel RF-LAMINATE pour RFEM
Manuel du module additionnel RF-LAMINATE pour RFEMManuel du module additionnel RF-LAMINATE pour RFEM
Manuel du module additionnel RF-LAMINATE pour RFEMGrégoire Dupont
 
Cours stochastic processes
Cours stochastic processesCours stochastic processes
Cours stochastic processeszoolyver
 
RAPPORT_STAGE_CROSSE_M2_G2S_2014_2015
RAPPORT_STAGE_CROSSE_M2_G2S_2014_2015RAPPORT_STAGE_CROSSE_M2_G2S_2014_2015
RAPPORT_STAGE_CROSSE_M2_G2S_2014_2015Arthur Crosse
 
RAPPORT_STAGE_CROSSE_M1_G2S_2013_2014
RAPPORT_STAGE_CROSSE_M1_G2S_2013_2014RAPPORT_STAGE_CROSSE_M1_G2S_2013_2014
RAPPORT_STAGE_CROSSE_M1_G2S_2013_2014Arthur Crosse
 
Theorie des poutres_resistance_des_mater (1)
Theorie des poutres_resistance_des_mater (1)Theorie des poutres_resistance_des_mater (1)
Theorie des poutres_resistance_des_mater (1)YoussefTrimech
 
chaleur et thermodynamique
chaleur et thermodynamiquechaleur et thermodynamique
chaleur et thermodynamiqueTeber Khalil
 
Risques hydrologiques et aménagement du territoire
Risques hydrologiques et aménagement du territoireRisques hydrologiques et aménagement du territoire
Risques hydrologiques et aménagement du territoireSouhila Benkaci
 
Cours mecasol 0_2
Cours mecasol 0_2Cours mecasol 0_2
Cours mecasol 0_2kahinarouam
 
Cours modelisation calage2010
Cours modelisation calage2010Cours modelisation calage2010
Cours modelisation calage2010Souhila Benkaci
 

La actualidad más candente (19)

Manuel du module additionnel RF-LAMINATE pour RFEM
Manuel du module additionnel RF-LAMINATE pour RFEMManuel du module additionnel RF-LAMINATE pour RFEM
Manuel du module additionnel RF-LAMINATE pour RFEM
 
Cours stochastic processes
Cours stochastic processesCours stochastic processes
Cours stochastic processes
 
RAPPORT_STAGE_CROSSE_M2_G2S_2014_2015
RAPPORT_STAGE_CROSSE_M2_G2S_2014_2015RAPPORT_STAGE_CROSSE_M2_G2S_2014_2015
RAPPORT_STAGE_CROSSE_M2_G2S_2014_2015
 
Cours thermo
Cours thermoCours thermo
Cours thermo
 
RAPPORT_STAGE_CROSSE_M1_G2S_2013_2014
RAPPORT_STAGE_CROSSE_M1_G2S_2013_2014RAPPORT_STAGE_CROSSE_M1_G2S_2013_2014
RAPPORT_STAGE_CROSSE_M1_G2S_2013_2014
 
Theorie des poutres_resistance_des_mater (1)
Theorie des poutres_resistance_des_mater (1)Theorie des poutres_resistance_des_mater (1)
Theorie des poutres_resistance_des_mater (1)
 
Feuilletage
FeuilletageFeuilletage
Feuilletage
 
chaleur et thermodynamique
chaleur et thermodynamiquechaleur et thermodynamique
chaleur et thermodynamique
 
PhD_APC_UPMC_IFPEN_dec1997
PhD_APC_UPMC_IFPEN_dec1997PhD_APC_UPMC_IFPEN_dec1997
PhD_APC_UPMC_IFPEN_dec1997
 
thèse El hasnaoui khalid
 thèse El hasnaoui khalid thèse El hasnaoui khalid
thèse El hasnaoui khalid
 
ginoux
ginouxginoux
ginoux
 
Risques hydrologiques et aménagement du territoire
Risques hydrologiques et aménagement du territoireRisques hydrologiques et aménagement du territoire
Risques hydrologiques et aménagement du territoire
 
Arbelaez these
Arbelaez theseArbelaez these
Arbelaez these
 
Ids
IdsIds
Ids
 
Cours mecasol 0_2
Cours mecasol 0_2Cours mecasol 0_2
Cours mecasol 0_2
 
dugas-phd
dugas-phddugas-phd
dugas-phd
 
Cours modelisation calage2010
Cours modelisation calage2010Cours modelisation calage2010
Cours modelisation calage2010
 
Rapport
RapportRapport
Rapport
 
Theorie du signal
Theorie du signalTheorie du signal
Theorie du signal
 

Destacado

Les effets biologiques des rayonnements ionisants
Les effets biologiques des rayonnements ionisantsLes effets biologiques des rayonnements ionisants
Les effets biologiques des rayonnements ionisantsGuillaume Vaast
 
En savoir plus sur la radioactivité by AREVA - parution 2005
En savoir plus sur la radioactivité by AREVA - parution 2005En savoir plus sur la radioactivité by AREVA - parution 2005
En savoir plus sur la radioactivité by AREVA - parution 2005AREVA
 
Pratique de la radioprotection et utilisation de radioéléments
Pratique de la radioprotection et utilisation de radioélémentsPratique de la radioprotection et utilisation de radioéléments
Pratique de la radioprotection et utilisation de radioélémentsInstitut Pasteur de Madagascar
 
Cancer Prostatique RadiothéRapie Pc 09 09 08
Cancer Prostatique RadiothéRapie Pc 09 09 08Cancer Prostatique RadiothéRapie Pc 09 09 08
Cancer Prostatique RadiothéRapie Pc 09 09 08raymondteyrouz
 
STRATO Presentation
STRATO PresentationSTRATO Presentation
STRATO PresentationMAXIMELABRIE
 
Les critiques sur Georgetown au patrimoine mondial
Les critiques sur Georgetown au patrimoine mondialLes critiques sur Georgetown au patrimoine mondial
Les critiques sur Georgetown au patrimoine mondialKenneth Wong
 
Le rôle et les services d'une bibliothécaire/collection patients au Centre in...
Le rôle et les services d'une bibliothécaire/collection patients au Centre in...Le rôle et les services d'une bibliothécaire/collection patients au Centre in...
Le rôle et les services d'une bibliothécaire/collection patients au Centre in...Robyn Maler
 
Gerant mandataire
Gerant mandataireGerant mandataire
Gerant mandataireSANDRINEDU
 
Seminaire beacco juin2011
Seminaire beacco juin2011Seminaire beacco juin2011
Seminaire beacco juin2011agaudel
 
Gérant mandataire
Gérant mandataireGérant mandataire
Gérant mandataireSANDRINEDU
 

Destacado (20)

Les effets biologiques des rayonnements ionisants
Les effets biologiques des rayonnements ionisantsLes effets biologiques des rayonnements ionisants
Les effets biologiques des rayonnements ionisants
 
En savoir plus sur la radioactivité by AREVA - parution 2005
En savoir plus sur la radioactivité by AREVA - parution 2005En savoir plus sur la radioactivité by AREVA - parution 2005
En savoir plus sur la radioactivité by AREVA - parution 2005
 
Radioprotection
RadioprotectionRadioprotection
Radioprotection
 
Pratique de la radioprotection et utilisation de radioéléments
Pratique de la radioprotection et utilisation de radioélémentsPratique de la radioprotection et utilisation de radioéléments
Pratique de la radioprotection et utilisation de radioéléments
 
Rayonnements ionisants : ce que tout praticien doit connaître
Rayonnements ionisants : ce que tout praticien doit connaîtreRayonnements ionisants : ce que tout praticien doit connaître
Rayonnements ionisants : ce que tout praticien doit connaître
 
L'utilisation médicale des rayonnements ionisants
L'utilisation médicale des rayonnements ionisantsL'utilisation médicale des rayonnements ionisants
L'utilisation médicale des rayonnements ionisants
 
Rayonnements ionisants : répondre aux questions des patients
Rayonnements ionisants : répondre aux questions des patientsRayonnements ionisants : répondre aux questions des patients
Rayonnements ionisants : répondre aux questions des patients
 
Cancer Prostatique RadiothéRapie Pc 09 09 08
Cancer Prostatique RadiothéRapie Pc 09 09 08Cancer Prostatique RadiothéRapie Pc 09 09 08
Cancer Prostatique RadiothéRapie Pc 09 09 08
 
STRATO Presentation
STRATO PresentationSTRATO Presentation
STRATO Presentation
 
Dossier partenaires
Dossier partenairesDossier partenaires
Dossier partenaires
 
Les critiques sur Georgetown au patrimoine mondial
Les critiques sur Georgetown au patrimoine mondialLes critiques sur Georgetown au patrimoine mondial
Les critiques sur Georgetown au patrimoine mondial
 
La lettre de la pédagogie de l'ENTPE de Septembre 2015
La lettre de la pédagogie de l'ENTPE de Septembre 2015La lettre de la pédagogie de l'ENTPE de Septembre 2015
La lettre de la pédagogie de l'ENTPE de Septembre 2015
 
Le rôle et les services d'une bibliothécaire/collection patients au Centre in...
Le rôle et les services d'une bibliothécaire/collection patients au Centre in...Le rôle et les services d'une bibliothécaire/collection patients au Centre in...
Le rôle et les services d'une bibliothécaire/collection patients au Centre in...
 
Projet Louvois Vélizy
Projet Louvois VélizyProjet Louvois Vélizy
Projet Louvois Vélizy
 
La lettre de la pédagogie de l'ENTPE de Juillet 2015
La lettre de la pédagogie de l'ENTPE de Juillet 2015La lettre de la pédagogie de l'ENTPE de Juillet 2015
La lettre de la pédagogie de l'ENTPE de Juillet 2015
 
Irradiation Prof. Grall
Irradiation Prof. GrallIrradiation Prof. Grall
Irradiation Prof. Grall
 
Gerant mandataire
Gerant mandataireGerant mandataire
Gerant mandataire
 
La lettre de la pédagogie de l'ENTPE de novembre 2015
La lettre de la pédagogie de l'ENTPE de novembre 2015La lettre de la pédagogie de l'ENTPE de novembre 2015
La lettre de la pédagogie de l'ENTPE de novembre 2015
 
Seminaire beacco juin2011
Seminaire beacco juin2011Seminaire beacco juin2011
Seminaire beacco juin2011
 
Gérant mandataire
Gérant mandataireGérant mandataire
Gérant mandataire
 

Similar a These_final

Sebastien Bianchin - PhD Thesis
Sebastien Bianchin  -  PhD ThesisSebastien Bianchin  -  PhD Thesis
Sebastien Bianchin - PhD ThesisSebastien Bianchin
 
Cours mecasol 0
Cours mecasol 0Cours mecasol 0
Cours mecasol 0Ali Benali
 
Deep Learning : Application à la reconnaissance d’objets de classes multiples...
Deep Learning : Application à la reconnaissance d’objets de classes multiples...Deep Learning : Application à la reconnaissance d’objets de classes multiples...
Deep Learning : Application à la reconnaissance d’objets de classes multiples...Haytam EL YOUSSFI
 
Autonomous navigation of flying robot
Autonomous navigation of flying robotAutonomous navigation of flying robot
Autonomous navigation of flying robotdoukhioualid
 
Boites quantiques
Boites quantiques Boites quantiques
Boites quantiques NourChb
 
Papadatos_Constantine_2016_memoire
Papadatos_Constantine_2016_memoirePapadatos_Constantine_2016_memoire
Papadatos_Constantine_2016_memoireCosta Papadatos
 
Rd m resistance_materiaux
Rd m resistance_materiauxRd m resistance_materiaux
Rd m resistance_materiauxBeni Ludger
 
Decomposition des spectres dans des images astronomiques hyperspectrales avec...
Decomposition des spectres dans des images astronomiques hyperspectrales avec...Decomposition des spectres dans des images astronomiques hyperspectrales avec...
Decomposition des spectres dans des images astronomiques hyperspectrales avec...Kais Baccour
 
Cours genie electrique
Cours genie electriqueCours genie electrique
Cours genie electriquefatimamelkou
 
l'Évangile de Jésus-Christ par la Physique/Terminales-Séries scientifiques
l'Évangile de Jésus-Christ par la Physique/Terminales-Séries scientifiquesl'Évangile de Jésus-Christ par la Physique/Terminales-Séries scientifiques
l'Évangile de Jésus-Christ par la Physique/Terminales-Séries scientifiquesShadowWorker
 
COURS DE GÉNIE ELECTRIQUE
COURS DE GÉNIE ELECTRIQUECOURS DE GÉNIE ELECTRIQUE
COURS DE GÉNIE ELECTRIQUEmorin moli
 
Les connaissances de base en électronique analogique et nume
Les connaissances de base en électronique analogique et numeLes connaissances de base en électronique analogique et nume
Les connaissances de base en électronique analogique et numeخالد المشكوري
 
Rapport de stage
Rapport de stageRapport de stage
Rapport de stagecbellisario
 
Electrocinetiqu mpsi
Electrocinetiqu mpsiElectrocinetiqu mpsi
Electrocinetiqu mpsinada laboudi
 

Similar a These_final (20)

Sebastien Bianchin - PhD Thesis
Sebastien Bianchin  -  PhD ThesisSebastien Bianchin  -  PhD Thesis
Sebastien Bianchin - PhD Thesis
 
Cours mecasol 0
Cours mecasol 0Cours mecasol 0
Cours mecasol 0
 
Deep Learning : Application à la reconnaissance d’objets de classes multiples...
Deep Learning : Application à la reconnaissance d’objets de classes multiples...Deep Learning : Application à la reconnaissance d’objets de classes multiples...
Deep Learning : Application à la reconnaissance d’objets de classes multiples...
 
Autonomous navigation of flying robot
Autonomous navigation of flying robotAutonomous navigation of flying robot
Autonomous navigation of flying robot
 
Boites quantiques
Boites quantiques Boites quantiques
Boites quantiques
 
Papadatos_Constantine_2016_memoire
Papadatos_Constantine_2016_memoirePapadatos_Constantine_2016_memoire
Papadatos_Constantine_2016_memoire
 
Rd m resistance_materiaux
Rd m resistance_materiauxRd m resistance_materiaux
Rd m resistance_materiaux
 
booklet
bookletbooklet
booklet
 
Decomposition des spectres dans des images astronomiques hyperspectrales avec...
Decomposition des spectres dans des images astronomiques hyperspectrales avec...Decomposition des spectres dans des images astronomiques hyperspectrales avec...
Decomposition des spectres dans des images astronomiques hyperspectrales avec...
 
Rapport final-FIROZI-V2
Rapport final-FIROZI-V2Rapport final-FIROZI-V2
Rapport final-FIROZI-V2
 
Memoire_final
Memoire_finalMemoire_final
Memoire_final
 
Cours genie electrique
Cours genie electriqueCours genie electrique
Cours genie electrique
 
l'Évangile de Jésus-Christ par la Physique/Terminales-Séries scientifiques
l'Évangile de Jésus-Christ par la Physique/Terminales-Séries scientifiquesl'Évangile de Jésus-Christ par la Physique/Terminales-Séries scientifiques
l'Évangile de Jésus-Christ par la Physique/Terminales-Séries scientifiques
 
Jmc habile
Jmc habileJmc habile
Jmc habile
 
COURS DE GÉNIE ELECTRIQUE
COURS DE GÉNIE ELECTRIQUECOURS DE GÉNIE ELECTRIQUE
COURS DE GÉNIE ELECTRIQUE
 
Polycopie_CNA_CD.pdf
Polycopie_CNA_CD.pdfPolycopie_CNA_CD.pdf
Polycopie_CNA_CD.pdf
 
Cours 3 c-prof
Cours 3 c-profCours 3 c-prof
Cours 3 c-prof
 
Les connaissances de base en électronique analogique et nume
Les connaissances de base en électronique analogique et numeLes connaissances de base en électronique analogique et nume
Les connaissances de base en électronique analogique et nume
 
Rapport de stage
Rapport de stageRapport de stage
Rapport de stage
 
Electrocinetiqu mpsi
Electrocinetiqu mpsiElectrocinetiqu mpsi
Electrocinetiqu mpsi
 

Más de sbianchin

PANIC2011@MIT
PANIC2011@MITPANIC2011@MIT
PANIC2011@MITsbianchin
 
Bianchin panic2011 2
Bianchin panic2011 2Bianchin panic2011 2
Bianchin panic2011 2sbianchin
 
POEME_DE_VICTOR_HUGO_MFS
POEME_DE_VICTOR_HUGO_MFSPOEME_DE_VICTOR_HUGO_MFS
POEME_DE_VICTOR_HUGO_MFSsbianchin
 
Untitled Presentation
Untitled PresentationUntitled Presentation
Untitled Presentationsbianchin
 
Bianchin_PANIC2011
Bianchin_PANIC2011Bianchin_PANIC2011
Bianchin_PANIC2011sbianchin
 
Premier Document
Premier DocumentPremier Document
Premier Documentsbianchin
 
Bianchin_PANIC2011
Bianchin_PANIC2011Bianchin_PANIC2011
Bianchin_PANIC2011sbianchin
 

Más de sbianchin (9)

PANIC2011@MIT
PANIC2011@MITPANIC2011@MIT
PANIC2011@MIT
 
Bianchin panic2011 2
Bianchin panic2011 2Bianchin panic2011 2
Bianchin panic2011 2
 
POEME_DE_VICTOR_HUGO_MFS
POEME_DE_VICTOR_HUGO_MFSPOEME_DE_VICTOR_HUGO_MFS
POEME_DE_VICTOR_HUGO_MFS
 
Untitled Presentation
Untitled PresentationUntitled Presentation
Untitled Presentation
 
Bianchin_PANIC2011
Bianchin_PANIC2011Bianchin_PANIC2011
Bianchin_PANIC2011
 
jjjfdod
jjjfdodjjjfdod
jjjfdod
 
Premier Document
Premier DocumentPremier Document
Premier Document
 
CV_Bianchin
CV_BianchinCV_Bianchin
CV_Bianchin
 
Bianchin_PANIC2011
Bianchin_PANIC2011Bianchin_PANIC2011
Bianchin_PANIC2011
 

These_final

  • 1. Thèse présentée pour l’obtention du grade de Docteur de l’Université Louis Pasteur Strasbourg I Discipline : Physique Nucléaire par Sébastien Bianchin Multifragmentation : Rôle de la masse et de l’isospin Soutenue publiquement le 21 Septembre 2007 Membres du jury Pr. Wolfgang Trautmann Co-Directeur de thèse (GSI Darmstadt) Dr. Fouad Rami Co-Directeur de thèse (IPHC & ULP Strasbourg) Pr. Abdelmjid Nourreddine Président du jury (IPHC & ULP Strasbourg) Dr. Christian Beck Rapporteur interne (IPHC & ULP Strasbourg) Dr. Abdelouahad Chbihi Rapporteur externe (GANIL Caen) Pr. Helmut Oeschler Rapporteur externe (Université de Darmstadt)
  • 2.
  • 3.
  • 4.
  • 5. Remerciements Mes premiers remerciements iront tout naturellement à messieurs Fouad Rami et Wolfgang Trautmann pour m’avoir donné l’opportunité de travailler dans un domaine de recherche aussi passionnant. Je tiens à ce titre à remercier particulièrement monsieur Trautmann ainsi que tous mes collègues du groupe ALADiN pour leur accueil, leur dispo- nibilité et pour les échanges souvent fructueux que l’on a pu avoir. Je pense notamment à Arnaud Le Fèvre, Jerzy Lukasik, Carsten Schwarz, Alexander Botvina, Uli Lynen, Khalid Kezzar et Titti sans la collaboration de qui ce travail n’aurait certainement pas pu se faire. Je tiens également à remercier le professeur Abdelmjid Nourreddine ainsi que tous les membres du jury (messieurs Christian Beck, Abdelouahad Chbihi et Helmut Oeschler) pour m’avoir fait l’honneur de leur présence, pour l’intérêt qu’ils ont porté à la lecture de ce document, mais aussi pour leur enthousiasme et leurs remarques bien souvent per- tinentes. Un immense merci également à toute l’équipe rédactionnelle du chapitre 6 (Antoine Bac- quias, David Boutin, Audrey Chatillon, Tudi Le Bleis, Christophe Rappold, Titti et Ni- colas Winckler) pour leurs commentaires et leurs corrections, mais surtout pour m’avoir permis de terminer la rédaction de ce manuscrit sans trop déborder sur les délais. J’aimerais, à ce titre, adresser un remerciement spécial et tout particulier à celle qui restera de loin ma "collègue" préférée (Audrey Chatillon) sans le soutien de qui, c’est certain (si, si !), je n’aurais jamais été capable de terminer dans les temps. Merci de m’avoir poussé, de m’avoir tenu tête et d’y avoir cru quand je n’y croyais plus. J’espère sincèrement avoir tort et que les ponts ne s’écrouleront pas. Merci à toutes les personnes que j’ai pu rencontrer au cours de ces presque quatre an- nées passées à GSI et que j’apprécie énormément : Lucia Caceres, Juan Castillo, la french connexion, Stoyanka "Tania" Ilieva1 , Adam Klimkiewicz, Olga Lepyoshkina (thanks for the dances) Barbara Soulignano (merci pour ces longues conversations tardives à GSI), Martino Trassinelli (merci pour ces longues conversations tardives au restaurant), Sergiy Trotsenko et bien sûr ............................2 . Je tiens également à remercier mes "non-GSI friends"3 , ainsi que leurs familles respec- tives4 , pour leur soutien : Hassan (de loin mon meilleur ami), Aurélien, Cédric, Claire (merci encore pour tout), Clément, Danaé, Kathia et Nico, Julie et Bérangère (n’atten- 1 Cette petite phrase en français n’est rien que pour toi. 2 Si j’ai oublié votre nom, merci de l’inscrire ici. 3 "Mes amis éxtérieurs à GSI" pour les non anglophones. 4 Mension spéciale à la famille Cherradi pour leur hospitalité et leur gentillesse.
  • 6. 6 dons pas encore 10 ans pour nous revoir), Sam, Stéphane, Thomas, ............................5 et bien entendu Isa pour avoir toujours été là même si je ne l’ai pas toujours vu (j’espère qu’un jour tu seras cap de me pardonner). Et parce que la vie ne s’arrête pas après la thèse (loin de là !), je voudrais également remercier monsieur Takehiko Saito ainsi que tous les membres du groupe HypHI (Olga Borodina, Myroslav Kavatsyuk, Shizu Minami, Daisuke Nakajima et Christophe Rappold) pour m’avoir accueilli si chaleureusement parmi eux. Bien entendu, je terminerais en remerciant ma famille à qui je dois tout et sans qui je ne serais littéralement pas là où j’en suis aujourd’hui. Je pense bien sur à ma famille proche : mon père (ma plus grande source d’inspiration), Geneviève, mes deux soeurs que j’adore Amandine et Aurélie, le petit Valentin, Kévin et Régis et leur petite famille respective, mais également à tous mes oncles, tantes, cousins et cousines aux quatre coins de la France et bien sûr une pensée spéciale pour Amélie (on pense tous très fort à toi). 5 Voir 2 .
  • 8.
  • 9. Table des matières Introduction 15 1 Propriétés de la matière nucléaire et collisions entre ions lourds 17 1.1 Équation d’état de la matière nucléaire . . . . . . . . . . . . . . . . . . . . 17 1.1.1 Notion de saturation . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.1.2 Énergie de saturation . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.1.3 Module d’incompressibilité de la matière nucléaire . . . . . . . . . . 20 1.2 Diagramme de phases de la matière nucléaire . . . . . . . . . . . . . . . . . 21 1.3 Les transitions de phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.4 Les collisions entre ions lourds aux énergies relativistes . . . . . . . . . . . 23 1.4.1 Mécanismes réactionnels . . . . . . . . . . . . . . . . . . . . . . . . 23 1.4.2 Courbe calorique nucléaire . . . . . . . . . . . . . . . . . . . . . . . 25 1.5 Motivations physiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 Dispositif expérimental 35 2.1 Le complexe accélérateur GSI . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2 Le séparateur de fragments FRS . . . . . . . . . . . . . . . . . . . . . . . . 36 2.2.1 Production de faisceaux radioactifs . . . . . . . . . . . . . . . . . . 37 2.3 Les détecteurs auxiliaires et la partie diagnostic du faisceau . . . . . . . . . 38 2.3.1 Le détecteur Veto . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.3.2 Le détecteur STELZER . . . . . . . . . . . . . . . . . . . . . . . . 39 2.3.3 Le détecteur start . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.3.4 Le détecteur de position . . . . . . . . . . . . . . . . . . . . . . . . 40 2.3.5 L’hodoscope de Catane . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.4 L’aimant ALADiN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.5 La chambre d’ionisation TP-MUSIC IV . . . . . . . . . . . . . . . . . . . . 43 2.5.1 Les chambres d’ionisation . . . . . . . . . . . . . . . . . . . . . . . 44 2.5.2 Les compteurs proportionnels . . . . . . . . . . . . . . . . . . . . . 45 2.5.3 L’électronique de lecture . . . . . . . . . . . . . . . . . . . . . . . . 46 2.5.4 Performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.6 Le mur de temps de vol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.6.1 Principe de détection . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.6.2 Électronique associée . . . . . . . . . . . . . . . . . . . . . . . . . . 50
  • 10. 10 TABLE DES MATIÈRES 2.7 Le détecteur de neutrons LAND . . . . . . . . . . . . . . . . . . . . . . . . 52 2.8 Systèmes étudiés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3 Mesure de la masse des fragments 55 3.1 Reconstruction de la trajectoire des fragments . . . . . . . . . . . . . . . . 55 3.1.1 Identification des traces dans la chambre d’ionisation TP-MUSIC IV 55 3.1.2 Reconstruction des trajectoires à l’intérieur de l’aimant ALADiN . . 56 3.2 Détermination de la masse des produits de réaction . . . . . . . . . . . . . 57 3.2.1 Sélection en charge des fragments . . . . . . . . . . . . . . . . . . . 57 3.2.2 Étalonnage des photomultiplicateurs du mur de temps de vol . . . . 58 3.3 Détermination des taux de production des différents isotopes . . . . . . . . 63 4 Propriétés générales des événements de fragmentation 71 4.1 Définition de la source spectatrice . . . . . . . . . . . . . . . . . . . . . . . 71 4.2 Sélection du paramètre d’impact - l’observable Zbound . . . . . . . . . . . . 72 4.3 Multiplicité moyenne de fragments de masse intermédiaire - le "Rise and Fall" de la multifragmentation . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.4 Charge du plus gros fragment détecté . . . . . . . . . . . . . . . . . . . . . 76 4.5 Effets pair-impairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5 Mesure de la température 83 5.1 Méthodes de mesure des températures . . . . . . . . . . . . . . . . . . . . 83 5.2 Notion de température isotopique . . . . . . . . . . . . . . . . . . . . . . . 84 5.3 Choix du thermomètre isotopique . . . . . . . . . . . . . . . . . . . . . . . 86 5.4 Étalonnage des thermomètres isotopiques . . . . . . . . . . . . . . . . . . . 88 5.5 Résultats expérimentaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.5.1 Analyse des rapports des taux de production isotopiques . . . . . . 90 5.5.2 Mesures de températures pour les trois systèmes 124 Sn, 124 La et 107 Sn 91 5.5.3 Comparaison entre les systèmes pour les températures THeLi et TBeLi 92 6 Isoscaling et énergie de symétrie 97 6.1 Le phénomène d’isoscaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.2 Énergie de symétrie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Conclusion 119 Appendices 123 A Le modèle statistique de multifragmentation SMM 123 B Taux de production isotopiques mesurés 127 Bibliographie 147
  • 11. Table des figures 1.1 Densités nucléaires obtenues pour différents noyaux . . . . . . . . . . . . . 18 1.2 Équation d’état de la matière nucléaire à T = 0 . . . . . . . . . . . . . . . 19 1.3 Diagramme de phases de la matière nucléaire . . . . . . . . . . . . . . . . . 21 1.4 Équation d’état de la matière nucléaire à T = 0 . . . . . . . . . . . . . . . 22 1.5 Illustration de la notion participant-spectateur . . . . . . . . . . . . . . . . 24 1.6 Les différentes étapes de la multifragmentation . . . . . . . . . . . . . . . . 25 1.7 Courbe calorique nucléaire . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.8 Masse moyenne du préfragment et énergie d’excitation en fonction de Zbound 27 1.9 Températures limites prédites par le modèle Hartree-Fock . . . . . . . . . . 28 1.10 Courbe calorique obtenue pour des données provenant de différentes expé- riences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.11 Températures limites expérimentales . . . . . . . . . . . . . . . . . . . . . 30 1.12 Compositions isotopiques et masses des fragments prédites par le modèle statistique SMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.13 Courbes caloriques prédites par le modèle SMM pour les systèmes 124 Sn, 124 La et 197 Au . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.1 Le complexe accélérateur GSI . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.2 Le séparateur de fragments FRS . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3 Composition isotopique des faisceaux secondaires utilisés . . . . . . . . . . 39 2.4 Le détecteur de position . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.5 Profil des faisceaux dans le détecteur de position . . . . . . . . . . . . . . . 41 2.6 L’hodoscope de Catane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.7 Le dispositif expérimental ALADiN . . . . . . . . . . . . . . . . . . . . . . 43 2.8 La chambre d’ionisation TP-MUSIC IV . . . . . . . . . . . . . . . . . . . . 44 2.9 Coupe horizontale du détecteur TP-MUSIC IV . . . . . . . . . . . . . . . . 46 2.10 Électronique de lecture du détecteur TP-MUSIC IV . . . . . . . . . . . . . 47 2.11 Spectre en charge obtenu grâce au détecteur TP-MUSIC IV . . . . . . . . 48 2.12 Corrélation entre la charge mesurée à l’aide des compteurs proportionnels et celle mesurée à l’aide des chambres d’ionisation . . . . . . . . . . . . . . 49 2.13 Module du mur de temps de vol . . . . . . . . . . . . . . . . . . . . . . . . 49 2.14 Le mur de temps de vol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.15 Performances du mur de temps de vol . . . . . . . . . . . . . . . . . . . . . 51
  • 12. 12 TABLE DES FIGURES 2.16 Logique de lecture du mur de temps de vol . . . . . . . . . . . . . . . . . . 52 2.17 Le détecteur de neutrons LAND . . . . . . . . . . . . . . . . . . . . . . . . 53 3.1 Reconstruction des traces dans la chambre d’ionisation TP-MUSIC IV . . . 56 3.2 Sélection en charge des fragments . . . . . . . . . . . . . . . . . . . . . . . 58 3.3 Correction du walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.4 ∆A en fonction du numéro de scintillateur avant les corrections de walk . . 60 3.5 Corrections fines appliquées à la fonction de walk . . . . . . . . . . . . . . 62 3.6 ∆A en fonction du numéro de scintillateur après les corrections de walk . . 63 3.7 Spectres en masse obtenus pour le système 124 Sn . . . . . . . . . . . . . . . 64 3.8 Spectres en masse obtenus pour le système 124 La . . . . . . . . . . . . . . . 65 3.9 Spectres en masse obtenus pour le système 107 Sn . . . . . . . . . . . . . . . 66 3.10 Variation de σ en fonction de la masse des fragments. . . . . . . . . . . . . 67 3.11 Ajustement du bruit de fond . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.12 Ajustement d’un spectre en masse obtenu pour le système 124 Sn . . . . . . 69 3.13 Rapport signal sur bruit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.1 Dynamique de la réaction et détection des fragments . . . . . . . . . . . . 71 4.2 Spectre en vitesse (β) et sélection de la source spectatrice . . . . . . . . . . 72 4.3 Distributions de l’observable Zbound pour les trois systèmes 124 Sn, 124 La et 107 Sn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.4 Multiplicité moyenne de fragments de masse intermédiaire <MFMI > . . . . 75 4.5 Multiplicité moyenne de fragments de masse intermédiaire - Comparaison avec le modèle SMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.6 Corrélation entre les observables Zmax et Zbound . . . . . . . . . . . . . . . 77 4.7 Zmax /Zproj moyen en fonction de Zbound /Zproj . . . . . . . . . . . . . . . . 78 4.8 Valeurs de <N>/Z en fonction du numéro atomique Z pour différentes centralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.9 Rapport <N/Z> en fonction du numéro atomique Z . . . . . . . . . . . . 80 4.10 Rapport <N>/Z en fonction du numéro atomique Z - Comparaison avec les données FRS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.1 Différentes méthodes de mesure de température des systèmes hadroniques . 84 5.2 Valeurs des paramètres α et ∆B pour différentes combinaisons de paires d’isotopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.3 Température apparente obtenue pour plusieurs thermomètres isotopiques . 88 5.4 Etalonnage des thermomètres isotopiques grâce au modèle statistique QSM 90 5.5 Rapports des taux de production de quelques paires d’isotopes en fonction de Zbound /Zmax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.6 Températures isotopiques mesurées pour les trois systèmes 124 Sn, 124 La et 107 Sn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.7 Températures isotopiques THeLi et TBeLi . . . . . . . . . . . . . . . . . . . . 95
  • 13. TABLE DES FIGURES 13 6.1 Rapport R21 entre les taux de production isotopiques et isotoniques pour les réactions 124 Sn+124 Sn et 112 Sn+112 Sn en fonction de N et Z respectivement 98 6.2 Rapport R12 en fonction de t3 = (N − Z)/2 . . . . . . . . . . . . . . . . . 99 6.3 Rapports des taux de production obtenus pour les réactions 124 Sn+Sn et 107 Sn+Sn en fonction de N et Z - résultats de la méthode d’ajustement ‚ 100 6.4 Valeurs de α et β obtenues par ajustement bidimentionnel (méthode d’ajus- tement ‚) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.5 Rapports des taux de production obtenus pour les réactions 124 Sn+Sn et 107 Sn+Sn en fonction de N et Z - résultats de la méthode d’ajustement ƒ 102 6.6 Valeurs moyennes de α et β obtenues par ajustement individuel des isotopes et isotones (méthode d’ajustement ƒ) . . . . . . . . . . . . . . . . . . . . . 103 6.7 Rapports des taux de production obtenus pour les réactions 124 Sn+Sn et 107 Sn+Sn en fonction de N et Z - résultats de la méthode d’ajustement „ 104 6.8 Valeurs de α et β obtenues en supposant α = −β (méthode d’ajustement „)105 6.9 Rapport réduit S(N) pour le système réactionnel (124 Sn/107 Sn) . . . . . . . 106 6.10 Paramètres d’isoscaling α et β en fonction de Zbound . . . . . . . . . . . . 108 6.11 Comparaison des résultats obtenus pour le coefficient γ du terme d’énergie de symétrie entre les deux systèmes réactionnels isobares (124 Sn/124 La) et isotopiques (124 Sn/107 Sn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.12 Paramètre α, température isotopique THeLi et terme d’énergie de symétrie γapp obtenus grâce au détecteur INDRA . . . . . . . . . . . . . . . . . . . 110 6.13 Corrélation entre les deux observables liées au paramètre d’impact dans le cas du détecteur INDRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.14 Comparaison des résultats obtenus pour le coefficient γ du terme d’énergie de symétrie à partir des données collectées grâce aux détecteurs INDRA et ALADiN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.15 Comparaison des résultats obtenus pour le coefficient γ du terme d’énergie de symétrie en utilisant les valeurs de la température mesurée grâce aux thermomètres THeLi et TBeLi . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.16 Comparaison des résultats obtenus pour le coefficient γ du terme d’éner- gie de symétrie à partir des données collectées grâce aux détecteurs IN- DRA et ALADiN, mais également dans le cadre de l’expérience menée par D.V. Shetty et al. [She07] . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.17 Comparaison des résultats obtenus pour le coefficient γ du terme d’énergie de symétrie en utilisant la méthode d’isoscaling pour les fragments pro- duits lors de la réaction et le rapport des taux de production de neutrons libres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 A.1 Les ensembles thermodynamiques . . . . . . . . . . . . . . . . . . . . . . . 123 B.1 Taux de production pour le système 124 Sn (0, 0 ≤ Zbound /Zproj ≤ 0, 2) . . . 129 124 B.2 Taux de production pour le système Sn (0, 2 ≤ Zbound /Zproj ≤ 0, 4) . . . 130 B.3 Taux de production pour le système 124 Sn (0, 4 ≤ Zbound /Zproj ≤ 0, 6) . . . 131
  • 14. 14 TABLE DES FIGURES B.4 Taux de production pour le système 124 Sn (0, 6 ≤ Zbound /Zproj ≤ 0, 8) . . . 132 B.5 Taux de production pour le système 124 Sn (0, 8 ≤ Zbound /Zproj ≤ 1, 0) . . . 133 B.6 Taux de production pour le système 124 Sn (données inclusives) . . . . . . . 134 107 B.7 Taux de production pour le système Sn (0, 0 ≤ Zbound /Zproj ≤ 0, 2) . . . 135 B.8 Taux de production pour le système 107 Sn (0, 2 ≤ Zbound /Zproj ≤ 0, 4) . . . 136 B.9 Taux de production pour le système 107 Sn (0, 4 ≤ Zbound /Zproj ≤ 0, 6) . . . 137 B.10 Taux de production pour le système 107 Sn (0, 6 ≤ Zbound /Zproj ≤ 0, 8) . . . 138 B.11 Taux de production pour le système 107 Sn (0, 8 ≤ Zbound /Zproj ≤ 1, 0) . . . 139 107 B.12 Taux de production pour le système Sn (données inclusives) . . . . . . . 140 B.13 Taux de production pour le système 124 La (0, 0 ≤ Zbound /Zproj ≤ 0, 2) . . . 141 B.14 Taux de production pour le système 124 La (0, 2 ≤ Zbound /Zproj ≤ 0, 4) . . . 142 B.15 Taux de production pour le système 124 La (0, 4 ≤ Zbound /Zproj ≤ 0, 6) . . . 143 B.16 Taux de production pour le système 124 La (0, 6 ≤ Zbound /Zproj ≤ 0, 8) . . . 144 B.17 Taux de production pour le système 124 La (0, 8 ≤ Zbound /Zproj ≤ 1, 0) . . . 145 B.18 Taux de production pour le système 124 La (données inclusives) . . . . . . . 146
  • 15. Introduction Les collisions entre ions lourds aux énergies relativistes ont pour objectif principal de produire des noyaux dit "chauds", c’est-à-dire des noyaux dans lesquels la matière nu- cléaire est soumise à des conditions extrêmes de température et de densité. L’étude de ces collisions permet donc d’explorer le diagramme des phases de cette matière nucléaire et, finalement, d’en écrire son équation d’état. Des questions se posent actuellement concernant le rôle de l’isospin dans ces réactions et notamment dans le processus de multifragmentation. Afin de répondre à ces questions, des données ont récemment été collectées grâce au spectromètre ALADiN auprès du syn- chrotron d’ions lourds SIS (SchwerIonen Synchrotron). La décroissance des projectiles de différentes compositions isotopiques a été mesurée en cinématique inverse. La reconstruc- tion de traces, couplée à des mesures de temps de vol, permet de déterminer l’impulsion et la masse des fragments produits. Des faisceaux stables de 197 Au et de 124 Sn, ainsi que des faisceaux radioactifs secondaires de 124 La et de 107 Sn, disponibles grâce au séparateur de fragments FRS, ont été utilisés dans le but de couvrir une large gamme de compo- sitions massiques et isotopiques, permettant ainsi une étude comparative du processus de multifragmentation des systèmes spectateurs formés aux énergies relativistes (dans le cadre de ce travail de thèse Eproj = 600 MeV/nucléon) en fonction de la masse (124 Sn, 197 Au) et de la composition isotopique du système. Pour ce dernier point, la paire d’iso- bares 124 Sn/124 La et la paire isotopique 124 Sn/107 Sn sont utilisées. La cinématique inverse offre l’avantage de s’affranchir d’un seuil de détection des fragments lourds ainsi que des résidus, ce qui permet un accès unique à la dynamique de la réaction. De plus, le dispositif ALADiN permet la détection de tous les produits de la réaction. Des progrès significatifs dans l’interprétation de l’énergie cinétique des fragments et dans la compréhension du mécanisme de multifragmentation peuvent alors être espérés. Dans les collisions entre ions lourds, la multifragmentation du projectile spectateur peut être considérée comme universelle. Cette universalité a été démontrée par la collabora- tion ALADiN durant ses premières campagnes d’expériences [Sch96]. Une des principales motivations de la campagne S254 est de vérifier si cette universalité est invariante par rapport à l’isospin. Outre ce dernier, la masse peut également jouer un rôle important dans le processus de fragmentation. En effet, cette influence a été suggérée pour la température limite [Nat02], qui gouverne la courbe calorique (température en fonction de l’énergie d’excitation). Cette quantité représente la température maximale au-delà de laquelle les noyaux n’existent
  • 16. 16 plus comme des systèmes auto-liés dans les calculs de type Hartree-Fock [Bes89]. Pour les systèmes les plus légers, la température limite est plus élevée, principalement parce que l’énergie coulombienne y est plus faible. Toutefois, l’approche statistique SMM (Statisti- cal Multifragmentation Model) prédit que la température est pratiquement invariante en masse dans la région de coexistance liquide-gaz [Bon95]. Nous nous attendons donc, avec ce choix de projectiles, à ce que les influences relatives de la masse et de l’isospin, ainsi que le rôle de la température limite dans la décroissance multi-fragments puissent être discernés et étudiés. La comparaison de deux systèmes de masses différentes devrait donc permettre de distinguer si la température de breakup est déterminée par l’énergie de liaison du système nucléaire "chaud" (description microsco- pique) ou par l’espace des phases accessible par fragmentation (description statistique). La même comparaison peut être faite en variant l’isospin du système.
  • 17. Chapitre 1 Propriétés de la matière nucléaire et collisions entre ions lourds La matière nucléaire se caractérise essentiellement par sa densité élevée et par la nature fermionique de ses constituants, les nucléons, dont les interactions sont régies à la fois par l’interaction forte, l’interaction faible et la force électromagnétique. Bien que différente de la matière "visible" ou macroscopique, la matière nucléaire peut être décrite par les mêmes grandeurs thermodynamiques (densité, température et pression). Etudier la ma- tière nucléaire dans des conditions extrêmes de température et/ou de pression (densité) permet alors de mieux comprendre et d’appréhender son comportement, et ainsi d’établir ce que l’on appelle l’équation d’état de la matière nucléaire. Une fois établie, cette dernière permet de décrire totalement l’évolution des systèmes nucléaires et ainsi de prédire leurs éventuelles transitions de phases. Au-delà de l’équation d’état de la matière nucléaire, ces études approfondissent nos connaissances sur la formation de la matière au début de l’Univers, la structure des étoiles à neutrons, ainsi que sur les mécanismes d’explosion des supernovæ. 1.1 Équation d’état de la matière nucléaire L’équation d’état d’un système est la relation qui lie des grandeurs thermodynamiques telles que la pression P , la densité ρ et la température T . Cette équation est un outil fon- damental de physique statistique et de thermodynamique qui permet, par exemple, de prédire l’existence de transitions de phases liquide-gaz dans les fluides réels de type Van der Waals. Dans le cas des noyaux, qui sont des systèmes à faible nombre de constituants, il est possible de définir un système idéal infini que l’on appelle la matière nucléaire. Un des points de l’équation d’état de la matière nucléaire à température nulle est connu expérimentalement : le point dit de "saturation". Les caractéristiques de ce dernier cor- respondent essentiellement à celles du fluide nucléaire qui compose la partie centrale des noyaux lourds.
  • 18. 18 Propriétés de la matière nucléaire et collisions entre ions lourds 1.1.1 Notion de saturation Dès les premières expériences de mise en évidence des noyaux atomiques, au début du siècle, l’on s’est aperçu que les noyaux n’étaient pas ponctuels. Dès lors, de nombreuses expériences ont été réalisées dans ce domaine, notamment par diffusion d’électrons [Hof56]. Il a alors été établi que la densité de charge, au centre des noyaux massifs, est pratiquement indépendante du noyau considéré, démontrant ainsi que la densité totale des nucléons au centre des noyaux lourds est, elle aussi, indépendante du noyau. Fig. 1.1 – Densités nucléaires déduites par diffusion électronique (figure extraite de [Dan01]). On exprime cette indépendance de la densité centrale des noyaux lourds en disant que la densité de nucléons "sature" pour une densité appelée densité de saturation (ou encore densité normale), ρ0 = 0, 16 ± 0, 02 fm−3 (Fig. 1.1). L’incertitude sur cette valeur provient essentiellement des incertitudes sur la densité des neutrons et sur le fait que la densité au cœur des noyaux présente de petites oscillations dûes à des effets quantiques. Ces mêmes expériences de diffusion d’électrons ont également permis de déterminer avec une bonne précision que les rayons des noyaux obéissent à une relation de la forme : R = r0 A1/3 (1.1) où r0 ≈ 1, 2 fm est indépendant du noyau considéré et où A est le nombre de masse de ce
  • 19. Équation d’état de la matière nucléaire 19 dernier. Un nucléon occupe donc ainsi le même volume élémentaire 4πr0 /3 ≈ 6 − 7 fm3 à 3 l’intérieur de n’importe quel noyau. 1.1.2 Énergie de saturation Le concept de matière nucléaire infinie (ou symétrique) permet de se représenter les noyaux comme de minuscules échantillons de matière nucléaire. Cette représentation est valable pour la partie centrale des noyaux constituée d’un fluide de matière nucléaire. E (AMeV) 60 E th 40 20 EC 0 1 2 3 ρ/ρ0 −16 Point de saturation Fig. 1.2 – Comportement prédit de l’équation d’état de la matière nucléaire à température nulle. L’énergie par nucléon E est représentée en fonction de la densité ρ normalisée à la densité normale ρ0 . L’énergie totale du système à température nulle, symbolisée par la ligne horizontale en pointillés, se compose d’une partie thermale Eth et d’une autre liée à la compression EC . La valeur de l’énergie de liaison à température nulle au point de saturation E0 = −16 AM eV correspond à la valeur minimale de l’énergie totale. Afin de décrire les noyaux réels, ce modèle simple doit être corrigé en introduisant des effets dits de taille finie, et en particulier les forces coulombiennes entre les protons, ainsi que des effets de surface modélisant la zone intermédiaire entre la partie centrale dense du noyau et l’extérieur vide. Une correction supplémentaire, dite d’asymétrie, est enfin nécessaire pour pouvoir considérer les noyaux pour lesquels N = Z. Cette représentation des noyaux sous forme de fluide fini est à l’origine du modèle dit de la goutte liquide qui permet de rendre compte de certaines propriétés globales des noyaux. L’intérêt de tels
  • 20. 20 Propriétés de la matière nucléaire et collisions entre ions lourds modèles est lié au succès des formules de masse de type Bethe-Weizsäcker, par le biais desquelles l’énergie de liaison B d’un noyau peut être reproduite à l’aide d’une expression du type : 2 2 1 (N − Z)2 1 B = av A − as A − ac Z A 3 −3 − aa ± ap A− 2 (1.2) A Le premier terme, av , représente ici la contribution dite de volume, associée à la partie intérieure du noyau. Le second, as , correspond à la contribution de la surface nucléaire, le troisième, ac , est la contribution coulombienne. Le terme aa , quant à lui est la contribution due à l’asymétrie du système et, enfin, ap représente le terme d’appariement permettant de tenir compte des effets quantiques. Du point de vue de la matière nucléaire, le terme de volume av correspond à l’énergie liée aux interactions nucléaires, d’un système infini, symétrique, à la densité ρ0 . La valeur empirique de l’énergie de liaison par nucléon dans la matière nucléaire infinie vaut donc : E0 /A = −16 ± 1MeV (1.3) Cette valeur, comme on le voit sur la figure 1.2, correspond au minimum de l’équation d’état de la matière nucléaire 1.1.3 Module d’incompressibilité de la matière nucléaire Il est intéressant d’avoir davantage d’informations sur l’équation d’état au voisinage du point de saturation. La courbure de l’équation d’état E/A = E/A(ρ), à la densité de saturation permet par exemple d’explorer le proche voisinage du point de saturation, autrement dit les petites perturbations en densité des noyaux autour de leur état d’équi- libre. Cette courbure est appelée le module d’incompressibilité K de la matière nucléaire infinie et n’est définie qu’au point de saturation par l’expression : d2 Ec (ρ, T = 0) K = 9ρ2 (1.4) dρ2 ρ=ρ0 Le module d’incompressibilité est en général étudié par diffusion de particules α [You01, Ito01] ou dans le cadre d’études liées à l’astrophysique [Gle88]. Les valeurs communément admises pour ce module d’incompressibilité K se situent entre 200 et 400 MeV. Si la valeur de K est faible (≈ 200 MeV), l’équation d’état est dite "molle" (sof t), car l’énergie de compression nécessaire pour atteindre des densités élevées est faible. Si, au contraire, la valeur de K est élevée (≈ 400 MeV), on parle d’une équation "dure" (hard), car l’énergie de compression à fournir pour atteindre ces même densités est supérieure. L’équation d’état au voisinage du point de saturation s’écrit alors : K (ρ − ρ0 )2 E/A(ρ) ∼ E/A(ρ0 ) + = · (1.5) 18 ρ2 0
  • 21. Diagramme de phases de la matière nucléaire 21 1.2 Diagramme de phases de la matière nucléaire A l’instar de la matière macroscopique, la matière nucléaire peut être décrite en quatre phases distinctes représentées sur la figure 1.3 : • La phase liquide correspond aux régions de faibles températures et de densité proche de celle du noyau dans son état fondamental (ρ0 ). • La phase solide (ou condensat) correspond à ce que l’on appelle la matière "froide" (faibles températures), mais cette fois à des densités très élevées. Cette phase est proche de la structure des étoiles à neutrons. • La phase gazeuse, quant à elle, se présente sous la forme d’un gaz de hadrons à température élevée. • Enfin, la phase plasma apparaît pour des densités 5 à 10 fois supérieures à celle du noyau dans son état fondamental ainsi que pour des températures supérieures à 150 MeV. Cette phase se caractérise par le déconfinement des quarks à l’intérieur des nucléons et aboutit à la formation d’un plasma de quarks et de gluons. 200 Température (MeV) 150 plasma de quarks et 100 gaz de hadrons de gluons                 ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡                 ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡ coexistence   ¡ 50   ¡   ¡   ¡   ¡   ¡   ¡   ¡ gaz−plasma   ¡                 ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡                 ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ matière ¢ ¢ ¢ ¢ ¢                 £ £ £ £ £ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¢ ¢ ¢ ¢ ¢ phase liquide £ £ £ £ £ condensée ¢ ¢ ¢ ¢ ¢                 ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ £ £ £ £ £ ¢ ¢ ¢ ¢ ¢ £ £ £ £ £ ¢ ¢ ¢ ¢ ¢                 ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ £ £ £ £ £ ¢ ¢ ¢ ¢ ¢ 0 £ £ £ £ £ ¢ ¢ ¢ ¢ ¢                 ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ £ £ £ £ £ 0 1 2 3 4 5 6 7 8 ρ/ρ0 Fig. 1.3 – Diagramme de phases de la matière nucléaire. La température est représentée en fonction de la densité ρ normalisée à la densité normale ρ0 . Les quatre états de la matière nucléaire sont représentés : phase liquide, matière condensée, gaz de hadrons et plasma de quarks et de gluons.
  • 22. 22 Propriétés de la matière nucléaire et collisions entre ions lourds 1.3 Les transitions de phases Les transitions de phases sont des propriétés universelles de la matière. Elles sont étudiées depuis plus d’un siècle pour des systèmes macroscopiques pour lesquels on est proche de la limite thermodynamique, autrement dit pour des systèmes composés d’une infinité de constituants. Une transition de phase se produit lorsqu’un état de la matière devient instable pour certaines conditions thermodynamiques décrites par les variables de contrôle que sont la température T et la pression P . Il y a maintenant une trentaine d’années, l’analogie entre l’interaction nucléon-nucléon dans les noyaux et les forces in- tramoléculaire de Van der Waals dans les fluides macroscopiques a conduit à émettre l’hypothèse de l’existence d’une transition de phase liquide-gaz pour la matière nucléaire [Lam78, Jaq83, Sie83]. Il est également possible d’observer une région de coexistence de phases, ainsi que l’existence d’un point critique pour cette transition de phase, lié à la forme de l’interaction nucléon-nucléon, répulsive à courte portée et attractive à longue et moyenne portée [Eva55, Lac80]. Tous les calculs sur la matière nucléaire estiment la température critique Tc de la transition liquide-gaz aux alentours de kTc ≈ 16 − 18 MeV et la densité associée ρc ≈ 0, 05 − 0, 06 fm−3 . pression (MeV.fm −3 ) 1.5 Fig. 1.4 – Équation d’état de la T=20 matière nucléaire à température non 1 nulle calculée pour une force de Skyrme. La pression (en MeV.fm−3 ) est représentée en fonction de la den- sité (en fm−3 ) pour chaque isotherme 0.5 (températures exprimées en MeV). 16 Tc=17.9                     ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡ La courbe en trait gras intercep- 12   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡ tant les isothermes délimite la région 0   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡ de coexistence des phases liquide et 0.05 0.1 0.15 densité (fm−3) gaz. Le point critique correspond à                     ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡                     ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ kTc = 17, 9 MeV. La partie délimi-                     ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡                     ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ tée par la courbe en pointillés repré-                     ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ 8                     ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ −0.5   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡ sente la région spinodale (figure adap-   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡   ¡ 4 tée de [Sau76]).                     ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡                     ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ La figure 1.4 représente l’équation d’état de la matière nucléaire pour différentes tem- pératures calculées à partir d’une force de Skyrme. Une région de coexistence de phases liquide-gaz peut être observée pour des températures inférieures à la température critique Tc = 17, 9 MeV , ainsi qu’une région de basse densité appelée région spinodale. Cette der-
  • 23. Les collisions entre ions lourds aux énergies relativistes 23 nière est caractérisée par une instabilité mécanique pour laquelle les perturbations ne sont plus amorties (comme c’est le cas pour la matière nucléaire à la densité normale), mais au contraire, amplifiées. Cette région est associée au phénomène de multifragmentation : les noyaux y entrant éclatent en fragments de différentes tailles [Gua96, Gua97]. 1.4 Les collisions entre ions lourds aux énergies relati- vistes Les collisions nucléaires et notamment les collisions entre ions lourds aux énergies relativistes sont le seul moyen dont disposent de nos jours les physiciens pour étudier en laboratoire la matière nucléaire dans des conditions extrêmes de température et/ou de densité. 1.4.1 Mécanismes réactionnels Lorsque deux noyaux entrent en collision, la nature de l’évènement dépend de ce que l’on appelle le paramètre d’impact b. Ce dernier correspond à la distance séparant les lignes de vol des centres des deux noyaux entrant en collision. Il nous renseigne sur la centralité, et donc sur la violence de la collision. Si le paramètre d’impact b est supérieur à la somme des rayons des deux noyaux projectile et cible (Rp + Rc ), la réaction est largement dominée par les effets coulombiens à cause de la faible portée de l’interaction nucléaire. À faible énergie de faisceau, correspondant à une énergie dans le centre de masse de l’ordre de la barrière coulombienne, soit typiquement quelques dizaines à quelques centaines de MeV, la trajectoire est fortement défléchie par la répulsion coulombienne. À plus haute énergie, en revanche, cet effet est négligeable. L’interaction nucléaire commence à jouer un rôle dans le processus collisionnel lorsque les deux noyaux se recouvrent, autrement dit lorsque b < Rp + Rc . Dans les collisions périphériques pour lesquelles b reste comparable à Rp +Rc , deux types de réactions sont observées en fonction de l’énergie du faisceau. Pour des énergies inférieures à quelques dizaines de MeV par nucléon, le processus dominant est une diffusion dite profondément inélastique. Dans une telle réaction les deux noyaux gardent globalement leur identité, mais échangent matière, impulsion et énergie. Une grande partie de l’énergie cinétique disponible est ainsi dissipée dans les degrés de liberté collectifs et nucléoniques. Durant cet échange, on peut se représenter le système comme un état moléculaire à deux noyaux en rotation sur lui-même (en raison du paramètre d’impact élevé, le moment angu- laire du système est en général très élevé). À plus haute énergie de faisceau, typiquement au delà d’une centaine de MeV par nucléon, le mécanisme change. L’énergie est alors trop élevée pour que les deux noyaux restent "collés" comme dans le cas précédent. La vitesse du projectile provoque une séparation, quasi-immédiate, des deux noyaux. Seuls les nu- cléons appartenant à la zone de recouvrement sont ainsi effectivement impliqués dans le processus collisionel. Ils sont arrachés de la cible et entraînés avec une vitesse inférieure à celle du résidu du projectile. On parle dans ce cas de mécanisme participant-spectateur
  • 24. 24 Propriétés de la matière nucléaire et collisions entre ions lourds pour bien signifier la différence entre les résidus non affectés du projectile et de la cible, et la zone participante, appelée f ireball (ou boule de feu) correspondant à la zone de recouvrement. Ce concept de participant-spectateur est illustré de manière schématique sur la figure 1.5. Dans ce travail de thèse, nous étudierons principalement la décroissance (ou la désexcita- tion) du projectile spectateur. Projectile Projectile spectateur Fireball Cible Cible spectatrice Fig. 1.5 – Lors de collisions entre ions lourds aux énergies relativistes, il existe trois différentes sources de fragments et/ou de particules légères en fonction du paramètre d’impact. Les noyaux du projectile et de la cible ne participant pas directement à la collision constituent respectivement le projectile spectateur et la cible spectatrice. Les noyaux directement impliqués dans la collision et correspondant à la zone de recouvrement entre le projectile et la cible constituent le f ireball ou boule de feu. . Le scénario de multifragmentation se décompose en trois étapes majeures. D’abord, les deux noyaux s’interpénètrent, ce qui a un effet de compression et d’échauffement au cours duquel la température peut atteindre quelques dizaines de MeV et la densité peut être 2 à 5 fois supérieure à la densité de saturation ρ0 . Une fois que la densité maximale est atteinte (environ 15 fm/c, soit 5.10−23 s après la collision), une phase d’expansion a lieu jusqu’à ce que les produits de réaction n’interagissent plus entre eux. C’est ce que l’on appelle la phase de f reeze-out ou gel. À ce moment, le système se dissocie en aggrégats. Une première émission de particules légères (n, p, t, 3 He, 4 He) est observée. Au moment du désassemblage du système, appelé breakup, une émission de particules légères, de fragments de masse intermédiaire (3 < Z < 30) ainsi que de fragments lourds (Z > 30) a lieu. La figure 1.6 illustre ce scénario de désexcitation.
  • 25. Les collisions entre ions lourds aux énergies relativistes 25 POINT DE DEPART POINT DE DEPART DES DES MODELES DYNAMIQUES MODELES STATISTIQUES émission du pré−équilibre fragments (Z>2) = gouttes liquides Au "freeze−out": équilibre thermique et chimique Fig. 1.6 – Scénario possible de la multifragmentation. Les modèles statistiques, et en particulier le modèle statistique de multifragmentation SMM, sont décrits en détail en Annexe A. 1.4.2 Courbe calorique nucléaire Les différentes campagnes expérimentales menées ces dernières années par la colla- boration ALADiN [Kun96, Sch96] ont permis une bien meilleure compréhension du pro- cessus de fragmentation du projectile spectateur aux énergies relativistes (entre 400 et 1000 MeV par nucléon). Il a ainsi pu être démontré qu’un équilibre est atteint au moment du breakup [Sch96]. De plus, la courbe calorique interprétée comme une signature de la transition de phases liquide-gaz, a également été établie, suggérant qu’au cours de ces réactions, la région de coexistence est explorée [Poc95] (cf. Fig. 1.7). Cette courbe calorique représente la variation de la température déterminée à partir des doubles rapports entre les taux de production isotopique (cf. Chap. 5) et l’énergie totale d’excitation par nucléon du système. Cette dernière quantité est obtenue par calorimétrie en sommant les énergies cinétiques mesurées de toutes les particules et fragments issus de la décroissance du projectile spectateur et en ajoutant la chaleur de réaction Q de chacune des réactions [Cam94]. À ce titre, la figure 1.8 montre la dépendance de l’énergie d’excitation en fonction de la variable Zbound (cf. Chap. 4). On observe également que la taille du projectile spectateur, dans la représentation participant-spectateur, dépend également de Zbound .
  • 26. 26 Propriétés de la matière nucléaire et collisions entre ions lourds 12 197 197 Au+ Au, 600 AMeV 12 18 nat 197 C, O + Ag, Au, 30-84 AMeV 22 181 10 Ne+ Ta, 8 AMeV √10 <E0>/<A0> √ 8 THeLi (MeV) 6 4 2 --- (<E0>/<A0> - 2 MeV) 3 2 0 0 5 10 15 20 <E0>/<A0> (MeV) Fig. 1.7 – Courbe calorique nucléaire montrant la dépendance de la température isotopique THeLi en fonction de l’énergie d’excitation par nucléon (figure extraite de [Poc95]). La courbe calorique, représentée sur la figure 1.7, peut être divisée en trois sections dis- tinctes. Dans la continuité des précédentes études du régime de fusion-évaporation, l’aug- mentation de la température THeLi pour des énergies d’excitation inférieures à 2 MeV par nucléon est compatible avec l’approximation à basse température d’un système fer- mionique. Dans une gamme de <E0 >/<A0 > comprise entre 3 et 10 MeV par nucléon, où le régime de multifragmentation domine sur le processus de fusion-évaporation, une valeur quasi-constante de la température THeLi d’environ 4,5-5 MeV est observée. Fina- lement, au dessus d’une énergie d’excitation totale d’environ 10 MeV par nucléon, une augmentation de la température THeLi est de nouveau observée pour une augmentation de <E0 >/< A0 >. À mesure que l’on augmente la température du noyau, les nucléons se mettent à occuper un continuum d’états non-liés de manière similaire à un gaz entourant une goutte d’eau chaude. Macroscopiquement, les nucléons à l’intérieur de la goutte sont dans la phase liquide de la matière nucléaire, alors que les nucléons de la vapeur sont dans la phase
  • 27. Les collisions entre ions lourds aux énergies relativistes 27 Fig. 1.8 – Masse moyenne du préfragment <A0 > et son énergie d’excitation <E0 >/<A0 > en fonction de la variable Zbound pour différentes sélections de Zmax (cf. Chap. 4). Les barres horizontales (panneau supérieur) représentent la taille attendue du préfragment dans le cas d’une géométrie "participant-spectateur" idéale (figure extraite de [Poc95]). gazeuse. La similarité de cette courbe calorique avec une transition de phase liquide-gaz de premier ordre pour les systèmes macroscopiques est à l’origine d’important débats au sein de la communauté scientifique et un effort particulier est consacré à comprendre le rôle de la masse et de l’isospin du système nucléaire dans cette transition de phase. Il a été montré [Lev85] que, en raison de la pression coulombienne, il existe une tempé- rature limite Tlim qui représente la température maximale à laquelle les noyaux existent comme des objets auto-liés dans les calculs de type Hartree-Fock [Bes89].
  • 28. 28 Propriétés de la matière nucléaire et collisions entre ions lourds 107 124 124 197 Sn , Sn , La , Au Fig. 1.9 – Position des quatre projectiles étudiés dans le plan (N,Z). Les lignes de contour représentent les températures limites (exprimées en MeV) prédites par [Bes89], alors que la ligne en pointillés correspond à la vallée de stabilité. La droite pleine, enfin, correspond à la valeur N/Z = 1, 49 du projectile 197 Au. . La figure 1.9 montre la température limite calculée en fonction du nombre de protons Z et du nombre de neutrons N. Comme on peut le voir, une dépendance en masse de cette température limite est prédite : on s’attend en particulier à ce que cette dernière diminue à mesure que la masse du noyau augmente. De plus, dans le cas des noyaux riches en protons, une disparition de cette température limite est prédite. La dépendance de la température de breakup sur l’énergie d’excitation pourrait alors être gouvernée par la température limite [Nat95, Cib00]. À partir de cette considération, il a été observé [Nat02] que l’ensemble des données existantes donne une image plutôt consis- tante, dans les cas pour lesquels une dépendance en masse de la courbe calorique est prise en compte. Des données de différentes mesures ont été combinées pour construire des courbes caloriques pour cinq régions différentes de la masse nucléaire (cf. Fig. 1.10). Ces courbes caloriques sont qualitativement similaires, et présentent des plateaux aux énergies d’excitation plus élevées.
  • 29. Motivations physiques 29 14 12 10 T ( eV) 8 M 6 4 2 0 0 5 10 15 E*A ( eV/ / M nucleon) Fig. 1.10 – Courbe calorique obtenue pour des données provenant de différentes expé- riences [Hag88, Wad89, Cus93, Chulick, Gon90, Poc95, Ode99, Hau00, Wad97, Kwi98, Mor96, Cib00, Hag00, Rua02] (figure extraite de [Nat02]). Pour chaque gamme de masse, la température asymptotique du plateau a été extraite et représentée en fonction de la masse du système (cf. Fig. 1.11). Comme on peut le voir à partir de la corrélation obtenue, il existe une décroissance monotone de la température limite à mesure que la masse du système augmente. Il est bien entendu, intéressant de déterminer si ce comportement, prédit par les modèles théoriques (cf. Fig. 1.9), est égale- ment observé expérimentalement. 1.5 Motivations physiques Il y a une dizaine d’années, H. Müller et B.D. Serot [Mül95] ont prédit, grâce à une ap- proche thermodynamique basée sur un modèle relativiste de champ moyen [Ser86, Ser92], que la nature bifluide (protons et neutrons) de la matière nucléaire est responsable de son comportement dans la région de coexistence des phases liquide et gaz. Différentes compo- sitions isotopiques sont ainsi prédites pour ces deux phases dans la zone de coexistance et notamment un enrichissement en neutrons de la phase gazeuse par rapport à la phase liquide dans le cas de la matière asymétrique (N = Z). Cette différence dans les composi- tions isotopiques est due à la décroissance de l’énergie de symétrie de la matière nucléaire avec la densité. L’amplitude de cette dépendance est cependant fonction du modèle utilisé
  • 30. 30 Propriétés de la matière nucléaire et collisions entre ions lourds 10 T (MeV) 5 0 0 100 200 300 400 A Fig. 1.11 – Températures limites extraites des doubles rapports entre les taux de production isotopiques (triangles pleins) et par des mesures de bremsstrahlung (carrés ouverts). Les lignes représentent les températures limites calculées en utilisant les interactions proposées par Go- gny [Zha96] et par Furnstahl [Zha99] (figure extraite de [Nat02a]). et les données existantes ont du mal à la reproduire [Bom91]. De plus, il est à noter que les prédictions de Müller et Serot ne s’appliquent qu’à la matière nucléaire infinie et ne tiennent pas compte de la force coulombienne. Des études théoriques dans le cas de systèmes nucléaires finis montrent que la désintégra- tion successive des produits de réactions tend à modifier certains des effets prédits par les précédents calculs [Lar99]. Les rapports entre les taux de production mesurés pour différents isotopes [Wad87] varient fortement en fonction du rapport N/Z de la source émettrice, suivant ainsi les prédictions théoriques [Bar88, Hah88]. Récemment, des diffé- rences significatives de comportement entre les systèmes riches et les systèmes pauvres en neutrons ont été observées lors de réactions entre projectiles et cibles de 112,124 Sn [Xu00] en même temps qu’un enrichissement en neutrons de la phase gazeuse pour une augmen- tation du rapport N/Z du système, ce qui est en accord avec les prédictions de Müller et Serot [Mül95]. Le rôle de l’énergie d’excitation dans le processus de multifragmentation a également été étudié [Mil00], démontrant, en accord avec les prédictions du modèle statistique de multifragmentation SMM [Bon95], que la production d’isotopes riches en neutrons augmente avec l’énergie d’excitation. La campagne d’expériences au centre de ce travail de thèse a pour principal objectif d’étudier les effets de la masse et de l’isospin dans la multifragmentation du projectile spectateur. L’utilisation de faisceaux secondaires radioactifs (cf. Chap. 2) permet d’étendre la gamme de compositions isotopiques bien au delà de celle accessible avec des faisceaux stables. Les réactions utilisant ces faisceaux représentent alors un outil unique pour l’étude des effets
  • 31. Motivations physiques 31 de l’isospin dans le processus de la multifragmentation. Les prédictions SMM relatives à la fragmentation de deux systèmes isobares de masses A = 124, le 124 Sn riche en neutrons (N/Z = 1, 48) et le 124 La pauvre en neutrons (N/Z = 1, 18), sont représentées sur la figure 1.12. Les compositions isotopiques des fragments chauds produits au moment du breakup sont globalement très différentes et tendent vers les rapports N/Z de leur pro- jectile primaire respectif lorsque le nombre de masse A augmente (cf. Fig. 1.12, panneaux supérieurs). Malgré une dépendance de l’énergie d’excitation prédite différente dans le cas des noyaux riches en neutrons et des noyaux riches en protons, la dépendance en masse est plutôt faible. Les courbes de masses calculées sont ainsi sensiblement les mêmes pour les deux systèmes (cf. Fig. 1.12, panneaux inférieurs). L’étude expérimentale de ces dé- pendances est importante pour notre compréhension du rôle de l’espace des phases dans le processus de multifragmentation. As=124, Zs=50 As=124, Zs=57 N/Z N/Z fragments primaires chauds fragments primaires chauds Taux de production relatifs Taux de production relatifs 3 AMeV 5 AMeV 3 AMeV 5 AMeV 4 AMeV 8 AMeV 4 AMeV 8 AMeV A, nombre de masse des fragments A, nombre de masse des fragments Fig. 1.12 – Compositions isotopiques N/Z (panneaux supérieurs) et masses des fragments primaires chauds (panneaux inférieurs) produits au moment du breakup pour les deux systèmes de même nombre de masse A = 124 obtenues grâce au modèle SMM. Les lignes correspondent à quatre énergies d’excitation différentes comprises entre 3 et 8 MeV par nucléon. Il est important de remarquer que l’axe des ordonnées est différent pour les panneaux supérieurs (figure adaptée de [Sfi05]). Comme on a pu le voir sur la figure 1.9, la température limite prédite par les modèles de type Hartree-Fock est plus élevée dans le cas des systèmes légers, principalement parce que l’énergie coulombienne y est plus faible. Le modèle SMM, quant à lui, prédit, comme illustré sur la figure 1.13, que les températures dans la région de coexistence sont prati- quement indépendantes de la masse. La comparaison de deux systèmes ayant des masses très différentes devrait donc permettre de distinguer si la température au moment du
  • 32. 32 Propriétés de la matière nucléaire et collisions entre ions lourds Fig. 1.13 – Courbes caloriques pour les trois systèmes 124 La (Z = 57), 124 Sn (Z = 50) et 197 Au(Z = 79) prédites par le modèle statistique de multifragmentation SMM (figure adaptée de [Ogu02]). . breakup est déterminée par les propriétés de liaisons des systèmes nucléaires excités ou, au contraire, par l’espace des phases accessible par multifragmentation. Pour tenter de répondre à ces questions, une étude systématique de la décroissance du projectile spectateur aux énergies relativistes a été réalisée. Cette dernière est l’objet du présent travail de thèse. Pour cela, la fragmentation de quatre projectiles différents, 124 Sn, 197 Au, 124 La et 107 Sn, tous ayant une énergie incidente de 600 AMeV sur des cibles de 116 Sn 197 et Au a été étudiée à l’aide du spectromètre ALADiN au laboratoire GSI de Darmstadt. Les deux derniers faisceaux, obtenus par fragmentation d’un faisceau primaire de 142 Nd sur une cible de production de 9 Be, ont été délivrés par le séparateur de fragments FRS. L’utilisation d’un second faisceau radioactif pauvre en neutrons (N/Z = 1, 14) de 107 Sn est également utilisé pour permettre, via la comparaison avec 124 Sn, de mieux comprendre l’importance des neutrons dans le processus de multifragmentation. La cinématique inverse offre, de plus, la possibilité de s’affranchir du seuil de détection des fragments lourds et des résidus, permettant ainsi un accès unique à la dynamique de la réaction. Le dispositif expérimental ALADiN autorise la détection de tous les produits de réaction de charge Z > 1 entrant dans l’acceptance de l’aimant (cf. Chap. 2), permet- tant ainsi de déterminer l’impulsion de toutes les particules chargées, y compris celle des fragments les plus lourds. Le chapitre 2 de ce travail de thèse est consacré à la description du dispositif expérimental
  • 33. Motivations physiques 33 utilisé au cours de la campagne S254. Le chapitre 3 décrit les méthodes utilisées pour la reconstruction des trajectoires, ainsi que la détermination de la masse de chacun des fragments détectés. Le chapitre 4, quant à lui, présente les propriétés générales des évènements de fragmen- tation. L’analyse et la mesures des températures isotopiques est présentée dans le chapitre 5. Enfin, le 6eme et dernier chapitre de ce mémoire est, quant à lui, consacré à l’étude de l’isoscaling et à la détermination du terme de symétrie de l’équation d’état de la matière nucléaire.
  • 34. 34 Propriétés de la matière nucléaire et collisions entre ions lourds
  • 35. Chapitre 2 Dispositif expérimental Au cours de l’année 2003, la campagne expérimentale S254 a été conduite par la colla- boration ALADiN auprès de l’accélérateur du laboratoire GSI à Darmstadt en Allemagne. Durant cette campagne, plusieurs systèmes projectiles-cibles ont été étudiés à travers l’uti- lisation de deux types de faisceaux : des faisceaux primaires stables de 197 Au et de 124 Sn, ainsi que des faisceaux secondaires radioactifs de 124 La et de 107 Sn. Ces différents projec- tiles ont été choisis de façon à permettre l’étude des effets de la masse et de l’isospin dans le processus de multifragmentation. En effet, les deux projectiles 197 Au et 124 Sn ont sensiblement le même rapport N/Z (1,49 et 1,48 respectivement), mais des masses différentes, alors que les projectiles 124 Sn et 124 La ont la même masse, mais des rapports N/Z très différents (1,48 et 1,18 respective- ment). Le spectromètre ALADiN est spécialement conçu pour l’étude de la décroissance du projectile spectateur en cinématique inverse. Ce chapitre est consacré à la description des détecteurs qui composent le dispositif expé- rimental ALADiN. 2.1 Le complexe accélérateur GSI Le complexe accélérateur GSI (Gesellschaft für SchwerIonenforschung), présenté sur la figure 2.1, est composé de deux structures accélératrices : l’accélérateur linéaire UNILAC (UNIversal Linear ACcelerator) et le synchrotron SIS (SchwerIonen Synchrotron). La première de ces structures, d’une longueur de 120 m, est capable d’accélérer les ions provenant de différentes sources [Spä98]. À titre d’exemple, l’accélérateur linéaire UNILAC permet d’accélérer les ions 238 U28+ jusqu’à une énergie de 11,4 MeV/nucléon (énergie d’injection) avec une vitesse d’environ 0,16 c. À ce stade, le faisceau peut être soit délivré aux aires expérimentales de faibles énergies, soit transféré dans le synchrotron d’ions lourds SIS [Ste92]1 pour y subir une seconde accélération à l’intérieur d’un anneau de 216 m de circonférence composé d’une succession de dipôles magnétiques. Le pouvoir de déflection maximale du synchrotron SIS (18 Tm) permet d’obtenir des faisceaux d’énergie maximale 1 238 L’injection des ions U28+ se fait par paquets de 1010 à 1011 ions pendant environ 100 µs.
  • 36. 36 Dispositif expérimental comprise entre 1 GeV pour les noyaux de Au et de U et 4,5 GeV pour les protons. Une fois l’énergie désirée atteinte, le faisceau d’ions est acheminé, via le séparateur de fragment FRS ou directement, vers les aires expérimentales dites de hautes énergies. Dans le cas de la campagne S254, le faisceau est acheminé vers l’aire expérimentale B avec une énergie de 600 AMeV. Aire expérimentale B Fig. 2.1 – Schéma du complexe accélérateur GSI comprenant l’accélérateur linéaire UNILAC, le synchrotron d’ions lourds SIS, l’anneau de stockage ESR (non utilisé dans la campagne S254) et le séparateur de fragments FRS. 2.2 Le séparateur de fragments FRS Le séparateur de fragments FRS [Gei92], présenté sur la figure 2.2, est un spectro- mètre magnétique achromatique composé de quatre sections indépendantes. Chacune de ces sections est constituée d’un dipôle magnétique assurant la séparation des fragments provenant de la fission ou de la fragmentation du faisceau primaire en fonction de leur rapport A/Z (A et Z étant, respectivement, la masse et la charge du fragment) et d’un groupe de quadrupôles responsables de la focalisation du faisceau au niveau des plans focaux S1, S2, S3 et S4. Des sextupôles sont aussi présents pour les corrections du second ordre. Afin de permettre une sélection en charge des fragments, et ainsi obtenir un faisceau isotopiquement pur, un dégradeur en aluminium d’épaisseur variable peut être utilisé au niveau du plan focal S2. Lorsqu’un fragment traverse le dégradeur, sa perte d’énergie est fonction de sa charge. La pureté du faisceau est ainsi directement liée à l’épaisseur du
  • 37. Le séparateur de fragments FRS 37 dégradeur : plus le dégradeur est épais, plus le faisceau est isotopiquement pur. Cependant, la pureté du faisceau est obtenue au détriment de son intensité. Pour cette raison, aucun dégradeur n’a été utilisé lors de la campagne S254 permettant ainsi d’obtenir des faisceaux secondaires d’intensité suffisamment élevée, et de bénéficier d’une statistique acceptable. Afin de vérifier la pureté isotopique du faisceau délivré, des mesures supplémentaires sont effectuées dans la deuxième moitié du séparateur de fragments (après le plan focal S2). Ainsi, le temps de vol des noyaux qui composent le faisceau est mesuré sur une distance de 36 m entre deux scintillateurs plastiques d’une épaisseur de 5 mm placés respectivement aux plans focaux S2 et S4. Ces mêmes scintillateurs servent également à mesurer la perte d’énergie du faisceau. La position de ce dernier est, elle aussi, mesurée avec précision événement par événement. Pour cela, des chambres proportionnelles à gaz multifils de type MWPC (MultiWire Proportional Counter) similaires au détecteur STELZER (cf. §2.3.2) et orientées de façon à déterminer la position des noyaux dans les deux directions du plan perpendiculaire à la direction du faisceau sont placées sur le parcours de ce dernier. S1 S3 S4 Quadrupôle Dipôle S2 (Dégradeur) Fig. 2.2 – Le séparateur de fragments FRS. Dans le cadre de la campagne d’expériences S254, des scintillateurs plastiques sont placés en lieu et place du dégradeur. 2.2.1 Production de faisceaux radioactifs Afin d’étendre au maximum la gamme de compositions isotopiques des systèmes spectateurs étudiés, quatres projectiles différents, chacun ayant une énergie incidente de 600 MeV par nucléon, ont été utilisés dans le cadre de la campagne d’expériences S254, per- mettant ainsi de disposer de différentes combinaisons en masses et en rapports N/Z pour la voie d’entrée. Deux de ces projectiles, le 124 La et le 107 Sn, sont obtenus par fragmenta- tion d’un faisceau primaire de 142 Nd (Z=60) d’énergie incidente 895 AMeV ou 875 AMeV sur une cible de production de 9 Be ayant une épaisseur de 4009 mg/cm2 . Les fragments ainsi produits sont conduits vers le séparateur de fragments FRS à l’intérieur duquel les ions sont séparés en fonction de leur rapport A/Z. Les mesures de position effectuées au niveau du plan focal S2, ainsi que la mesure du temps de vol effectuée le long des 83 m qui séparent le séparateur de fragments du dispositif expérimental ALADiN permettent
  • 38. 38 Dispositif expérimental de déterminer le rapport A/Z des projectiles sélectionnés avec une grande précision via la formule : 2 A A ∆x γ0 (t − t0 ) = . 1+ + (2.1) Z Z 0 D t0 Le premier terme de cette équation est le rapport A/Z correspondant à la valeur nominale du faisceau désiré et a pour valeur (A/Z)0 = 2, 175 et (A/Z)0 = 2, 14 pour un faisceau de 124 La et de 107 Sn respectivement. ∆x = x − x0 est la différence entre la position horizontale x du faisceau mesurée à l’aide des scintillateurs plastiques situés au plan focal S2 et celle correspondant au faisceau nominal, alors que D = −6, 81 cm/% représente la dispersion maximale au niveau de ce même plan focal [Gei92]. t, quant à lui, est le temps mesuré par le détecteur plastique se trouvant à la sortie du séparateur de fragments (plan focal S8) et t − t0 représente la différence entre ce temps de vol mesuré et le temps de vol t0 du faisceau nominal. En cas de nécessité, une sélection plus précise de la charge du projectile peut être obtenue en utilisant les détecteurs de diagnostic situés en amont de la cible. La composition du faisceau délivré par le séparateur de fragment FRS est représentée sur la figure 2.3. Dans le cadre de l’analyse présentée par la suite, et afin de bénéficier d’une statistique suffisante, le faisceau délivré par le séparateur de fragment est utilisé sans sélection supplémentaire. La masse et la charge moyenne du faisceau sont alors déterminées par la moyenne arithmétique des masses et des charges de tous les isotopes qui le composent. 2.3 Les détecteurs auxiliaires et la partie diagnostic du faisceau 2.3.1 Le détecteur Veto Le détecteur Veto, aussi appelé "ROLU" pour "Rechts-Oben-Links-Unten", permet une vérification grossière de la focalisation et de l’alignement du faisceau avant que ce dernier n’atteigne la chambre à cibles. Il se compose de quatre scintillateurs plastiques mobiles (de dimension 10 x 10 x 0,5 cm3 ) munis chacun d’un photomultiplicateur. Deux de ces scintillateurs sont placés dans la direction verticale (haut et bas) de part et d’autre de la ligne de faisceau alors que les deux autres sont placés, toujours de part et d’autre de la ligne de faisceau, dans la direction horizontale (gauche et droite) de façon à délimiter une fenêtre d’une surface maximale de 36 x 36 mm2 et permettant le passage du faisceau. Les paramètres de ce dernier sont alors ajustés de façon à obtenir la plus petite fenêtre possible sans qu’aucun des scintillateurs qui la composent ne soit touché (ou très peu) lors de son passage. Dans le cas du faisceau stable de 124 Sn utilisé, la focalisation est telle que toutes les particules du faisceau passent par l’acceptance du détecteur ROLU. En revanche, dans le cas des faisceaux secondaires (124 La et 107 Sn), environ 30% des fragments qui composent le faisceau frappent le détecteur, et ce même pour une ouverture maximale.