SlideShare una empresa de Scribd logo
1 de 28
Descargar para leer sin conexión
Chapter 11
11-1

For the deep-groove 02-series ball bearing with R = 0.90, the design life x D , in multiples
of rating life, is
L
60D nD 60  25000  350
xD  D 

 525 Ans.
LR
L10
106
The design radial load is
FD  1.2  2.5   3.0 kN
1/3

Eq. (11-6):



525


C10  3.0 
1/1.483 
 0.02   4.459  0.02  ln 1/ 0.9  






C 10 = 24.3 kN
Table 11-2:

Ans.

Choose an 02-35 mm bearing with C 10 = 25.5 kN.

Ans.

1.483
3


  525  3 / 25.5  0.02  
Eq. (11-18): R  exp  
Ans.
   0.920
4.459  0.02
 
 

 

______________________________________________________________________________

11-2

For the angular-contact 02-series ball bearing as described, the rating life multiple is
L
60D nD 60  40 000  520
xD  D 

 1248
LR
L10
106
The design radial load is

FD  1.4  725  1015 lbf  4.52 kN
Eq. (11-6):
1/3



1248


C10  1015 
1/1.483 
 0.02   4.459  0.02   ln 1/ 0.9  





 10 930 lbf  48.6 kN

Select an 02-60 mm bearing with C 10 = 55.9 kN. Ans.
1.483
3


 1248  4.52 / 55.9   0.02  
Eq. (11-18): R  exp  
Ans.
   0.945
4.439

 
 
 

______________________________________________________________________________
Table 11-2:

Chapter 11, Page 1/28
11-3

For the straight-roller 03-series bearing selection, x D = 1248 rating lives from Prob. 11-2
solution.
FD  1.4  2235  3129 lbf  13.92 kN
 1248 
C10  13.92 

 1 

Table 11-3:

3/10

 118 kN

Select an 03-60 mm bearing with C 10 = 123 kN.

Ans.

1.483
10/3


 1248 13.92 /123  0.02  
Eq. (11-18): R  exp  
   0.917 Ans.
4.459  0.02
 
 
 
 
______________________________________________________________________________

11-4

The combined reliability of the two bearings selected in Probs. 11-2 and 11-3 is

R   0.945 0.917   0.867

Ans.

We can choose a reliability goal of 0.90  0.95 for each bearing. We make the
selections, find the existing reliabilities, multiply them together, and observe that the
reliability goal is exceeded due to the roundup of capacity upon table entry.
Another possibility is to use the reliability of one bearing, say R 1 . Then set the reliability
goal of the second as
R2 

0.90
R1

or vice versa. This gives three pairs of selections to compare in terms of cost, geometry
implications, etc.
______________________________________________________________________________
11-5

Establish a reliability goal of
contact ball bearing,

0.90  0.95 for each bearing. For an 02-series angular
1/3



1248


C10  1015 
1/1.483 
 0.02  4.439 ln 1/ 0.95 





 12822 lbf  57.1 kN
Select an 02-65 mm angular-contact bearing with C 10 = 63.7 kN.
1.483
3


 1248  4.52 / 63.7   0.02  
RA  exp  
   0.962
4.439
 
 
 
 

Chapter 11, Page 2/28
For an 03-series straight roller bearing,
3/10



1248


C10  13.92 
1/1.483 
 0.02  4.439  ln 1/ 0.95  






 136.5 kN

Select an 03-65 mm straight-roller bearing with C 10 = 138 kN.
 1248 13.92 /138 10/3  0.02 1.483 




RB  exp  
   0.953
4.439
 
 
 
 

The overall reliability is R = (0.962)(0.953) = 0.917, which exceeds the goal.
______________________________________________________________________________
11-6

For the straight cylindrical roller bearing specified with a service factor of 1, R = 0.95 and
F R = 20 kN.
60D nD 60  8000  950
L
xD  D 

 456
106
LR
L10
3/10



456


C10  20 
 145 kN
Ans.
1/1.483 
 0.02  4.439  ln 1/ 0.95  





______________________________________________________________________________

11-7

Both bearings need to be rated in terms of the same catalog rating system in order to
compare them. Using a rating life of one million revolutions, both bearings can be rated
in terms of a Basic Load Rating.
1/ a

Eq. (11-3):

L 
C A  FA  A 
 LR 
 8.96 kN

1/ a

  n 60 
 FA  A A 
 LR 

  3000  500  60  
 2.0 

106



1/3

Bearing B already is rated at one million revolutions, so C B = 7.0 kN. Since C A > C B ,
bearing A can carry the larger load.
Ans.
______________________________________________________________________________
11-8

F D = 2 kN, L D = 109 rev, R = 0.90
1/ a

1/3

 LD 
 109 
Eq. (11-3):
C10  FD 
  2  6   20 kN Ans.
 10 
 LR 
______________________________________________________________________________

Chapter 11, Page 3/28
11-9

F D = 800 lbf,  D = 12 000 hours, n D = 350 rev/min, R = 0.90

 12 000  350  60  
  n 60 
Eq. (11-3):
C10  FD  D D   800 
  5050 lbf Ans
106
 LR 


______________________________________________________________________________
1/ a

1/3

11-10 F D = 4 kN,  D = 8 000 hours, n D = 500 rev/min, R = 0.90
 8 000  500  60  
  n 60 
Eq. (11-3):
C10  FD  D D   4 
  24.9 kN Ans
106
 LR 


______________________________________________________________________________
1/ a

1/3

11-11 F D = 650 lbf, n D = 400 rev/min, R = 0.95









 D = (5 years)(40 h/week)(52 week/year) = 10 400 hours

Assume an application factor of one. The multiple of rating life is
xD 

LD 10 400  400  60 

 249.6
LR
106
1/3



249.6


C10  1 650  
Eq. (11-6):
1/1.483 




 0.02  4.439 ln 1/ 0.95  

 4800 lbf Ans.
______________________________________________________________________________

11-12 F D = 9 kN, L D = 108 rev, R = 0.99
Assume an application factor of one. The multiple of rating life is
xD 

LD 108

 100
LR 106
1/3



100


C10  1 9  
Eq. (11-6):
1/1.483 
 0.02  4.439 ln 1/ 0.99  





 69.2 kN Ans.
______________________________________________________________________________

11-13 F D = 11 kips,  D = 20 000 hours, n D = 200 rev/min, R = 0.99
Assume an application factor of one. Use the Weibull parameters for Manufacturer 2 on
p. 608.

Chapter 11, Page 4/28
The multiple of rating life is
xD 

LD  20 000  200  60 

 240
LR
106
1/3



240


C10  111 
Eq. (11-6):
1/1.483 
 0.02  4.439 ln 1/ 0.99  





 113 kips Ans.
______________________________________________________________________________

11-14 From the solution to Prob. 3-68, the ground reaction force carried by the bearing at C is
R C = F D = 178 lbf. Use the Weibull parameters for Manufacturer 2 on p. 608.
xD 

LD 15000 1200  60 

 1080
LR
106
1/ a

Eq. (11-7):



xD
C10  a f FD 

1/ b
 x0    x0 1  RD  



1/3



1080
C10  1.2 178  

1/1.483
 0.02   4.459  0.02 1  0.95 



 2590 lbf Ans.
______________________________________________________________________________

11-15 From the solution to Prob. 3-69, the ground reaction force carried by the bearing at C is
R C = F D = 1.794 kN. Use the Weibull parameters for Manufacturer 2 on p. 608.
xD 

LD 15000 1200  60 

 1080
LR
106
1/ a

Eq. (11-7):



xD
C10  a f FD 

1/ b
 x0    x0 1  RD  



1/3



1080
C10  1.2 1.794  

1/1.483
 0.02   4.459  0.02 1  0.95 



 26.1 kN Ans.
______________________________________________________________________________

11-16 From the solution to Prob. 3-70, R Cz = –327.99 lbf, R Cy = –127.27 lbf
1/ 2

2
2
RC  FD   327.99    127.27    351.8 lbf


Use the Weibull parameters for Manufacturer 2 on p. 608.

Chapter 11, Page 5/28
xD 

LD 15000 1200  60 

 1080
LR
106
1/ a

Eq. (11-7):



xD
C10  a f FD 

1/ b
 xo    xo 1  RD  



1/3



1080
C10  1.2  351.8  

1/1.483
 0.02   4.459  0.02 1  0.95 



 5110 lbf Ans.
______________________________________________________________________________

11-17 From the solution to Prob. 3-71, R Cz = –150.7 N, R Cy = –86.10 N
1/2

2
2
RC  FD   150.7    86.10    173.6 N


Use the Weibull parameters for Manufacturer 2 on p. 608.

xD 

LD 15000 1200  60 

 1080
106
LR
1/ a

Eq. (11-7):



xD
C10  a f FD 

1/ b
 x0    x0 1  RD  



1/3



1080
C10  1.2 173.6  

1/1.483
 0.02   4.459  0.02 1  0.95 



 2520 N Ans.
______________________________________________________________________________

11-18 From the solution to Prob. 3-77, R Az = 444 N, R Ay = 2384 N



RA  FD  4442  23842



1/2

 2425 N  2.425 kN

Use the Weibull parameters for Manufacturer 2 on p. 608. The design speed is equal to
the speed of shaft AD,
d
125
nD  F ni 
191  95.5 rev/min
dC
250
xD 

LD 12 000  95.5  60 

 68.76
LR
106
1/ a

Eq. (11-7):



xD
C10  a f FD 

1/ b
 x0    x0 1  RD  



Chapter 11, Page 6/28
1/3



68.76
C10  1 2.425  

1/1.483
 0.02   4.459  0.02 1  0.95 



 11.7 kN Ans.
______________________________________________________________________________

11-19 From the solution to Prob. 3-79, R Az = 54.0 lbf, R Ay = 140 lbf



RA  FD  54.02  1402



1/2

 150.1 lbf

Use the Weibull parameters for Manufacturer 2 on p. 608. The design speed is equal to
the speed of shaft AD,
d
10
nD  F ni   280   560 rev/min
dC
5
xD 
Eq. (11-7):

LD 14 000  560  60 

 470.4
LR
106



xD
C10  a f FD 

1/ b
 x0    x0 1  RD  



1/ a

3/10



470.4
C10  1150.1 

1/1.483
 0.02   4.459  0.02 1  0.98 



 1320 lbf Ans.
______________________________________________________________________________

11-20 (a) Fa  3 kN, Fr  7 kN, nD  500 rev/min, V  1.2
From Table 11-2, with a 65 mm bore, C 0 = 34.0 kN.
F a / C 0 = 3 / 34 = 0.088
From Table 11-1, 0.28  e  3.0.
Fa
3

 0.357
VFr 1.2  7 
Since this is greater than e, interpolating Table 11-1 with F a / C 0 = 0.088, we obtain
X 2 = 0.56 and Y 2 = 1.53.

Eq. (11-9):

Fe  X iVFr  Yi Fa   0.56 1.2  7   1.53 3  9.29 kN
F e > F r so use F e .

Ans.

(b) Use Eq. (11-7) to determine the necessary rated load the bearing should have to carry
the equivalent radial load for the desired life and reliability. Use the Weibull
parameters for Manufacturer 2 on p. 608.

Chapter 11, Page 7/28
xD 

LD 10 000  500  60 

 300
LR
106
1/ a



xD
Eq. (11-7): C10  a f FD 

1/ b
 x0    x0 1  RD  





300
C10  1 9.29  

1/1.483
 0.02   4.459  0.02 1  0.95 



 73.4 kN

1/3

From Table 11-2, the 65 mm bearing is rated for 55.9 kN, which is less than the
necessary rating to meet the specifications. This bearing should not be expected to meet
the load, life, and reliability goals.
Ans.
______________________________________________________________________________
11-21 (a) Fa  2 kN, Fr  5 kN, nD  400 rev/min, V  1
From Table 11-2, 30 mm bore, C 10 = 19.5 kN, C 0 = 10.0 kN
F a / C 0 = 2 / 10 = 0.2
From Table 11-1, 0.34  e  0.38.
Fa
2

 0.4
VFr 1 5 

Since this is greater than e, interpolating Table 11-1, with F a / C 0 = 0.2, we obtain X 2 =
0.56 and Y 2 = 1.27.
Ans.
Eq. (11-9): Fe  X iVFr  Yi Fa   0.56 1 5  1.27  2   5.34 kN
F e > F r so use F e .
(b) Solve Eq. (11-7) for x D .
 C
xD   10
 a f FD


a


1/ b
  x0    x0 1  RD  
 


3

 19.5 
 0.02   4.459  0.02 1  0.99 1/1.483 
xD  
 1 5.34   




xD  10.66

xD 

LD D nD  60 

LR
106

Chapter 11, Page 8/28
D 

   10.66 10   444 h

xD 106

6

Ans.
nD  60   400  60 
______________________________________________________________________________

11-22 Fr  8 kN, R  0.9, LD  109 rev
1/ a

Eq. (11-3):

L 
C10  FD  D 
 LR 

1/3

 109 
 8 6 
 10 

 80 kN

From Table 11-2, select the 85 mm bore. Ans.
______________________________________________________________________________
11-23 Fr  8 kN, Fa  2 kN, V  1, R  0.99
Use the Weibull parameters for Manufacturer 2 on p. 608.
xD 

LD 10 000  400  60 

 240
LR
106

First guess: Choose from middle of Table 11-1, X = 0.56, Y = 1.63
Eq. (11-9):

Fe  0.56 1 8   1.63  2   7.74 kN
F e < F r , so just use F r as the design load.

Eq. (11-7):



xD
C10  a f FD 

1/ b
 xo    xo 1  RD  



1/ a

1/3



240
C10  1 8  
  82.5 kN
1/1.483
 0.02   4.459  0.02 1  0.99 



From Table 11-2, try 85 mm bore with C 10 = 83.2 kN, C 0 = 53.0 kN
Iterate the previous process:

F a / C 0 = 2 / 53 = 0.038
0.22  e  0.24
Fa
2

 0.25  e
VFr 1 8 
Interpolate Table 11-1 with F a / C 0 = 0.038 to obtain X 2 = 0.56 and Y 2 = 1.89.
Table 11-1:

Eq. (11-9):

Fe  0.56(1)8  1.89(2)  8.26 > Fr

Eq. (11-7):



240
C10  1 8.26  

1/1.483
 0.02   4.459  0.02 1  0.99 




1/3

 85.2 kN

Chapter 11, Page 9/28
Table 11-2: Move up to the 90 mm bore with C 10 = 95.6 kN, C 0 = 62.0 kN.
Iterate again:
F a / C 0 = 2 / 62 = 0.032
Again, 0.22  e  0.24
Fa
2

 0.25  e
VFr 1 8 
Interpolate Table 11-1 with F a / C 0 = 0.032 to obtain X 2 = 0.56 and Y 2 = 1.95.
Table 11-1:

Eq. (11-9):

Fe  0.56(1)8  1.95(2)  8.38 > Fr
1/3



240
Eq. (11-7):
C10  1 8.38  
  86.4 kN
1/1.483
 0.02   4.459  0.02 1  0.99 



The 90 mm bore is acceptable. Ans.
______________________________________________________________________________

11-24 Fr  8 kN, Fa  3 kN, V  1.2, R  0.9, LD  108 rev
First guess: Choose from middle of Table 11-1, X = 0.56, Y = 1.63
Eq. (11-9):

Fe  0.56 1.2  8   1.63  3  10.3 kN
Fe  Fr
1/ a

Eq. (11-3):

L 
C10  Fe  D 
 LR 

1/3

 108 
 10.3  6 
 10 

 47.8 kN

From Table 11-2, try 60 mm with C 10 = 47.5 kN, C 0 = 28.0 kN
Iterate the previous process:
F a / C 0 = 3 / 28 = 0.107
0.28  e  0.30
Fa
3

 0.313  e
VFr 1.2  8 
Interpolate Table 11-1 with F a / C 0 = 0.107 to obtain X 2 = 0.56 and Y 2 = 1.46
Table 11-1:

Eq. (11-9):

Fe  0.56 1.2  8   1.46  3  9.76 kN > Fr
1/3

 108 
Eq. (11-3):
C10  9.76  6   45.3 kN
 10 
From Table 11-2, we have converged on the 60 mm bearing. Ans.
______________________________________________________________________________

Chapter 11, Page 10/28
11-25 Fr  10 kN, Fa  5 kN, V  1, R  0.95
Use the Weibull parameters for Manufacturer 2 on p. 608.
xD 

LD 12 000  300  60 

 216
LR
106

First guess: Choose from middle of Table 11-1, X = 0.56, Y = 1.63
Eq. (11-9):

Fe  0.56 110   1.63  5   13.75 kN
F e > F r , so use F e as the design load.

Eq. (11-7):



xD
C10  a f FD 

1/ b
 x0    x0 1  RD  



1/ a

1/3



216
C10  113.75  

1/1.483
 0.02   4.459  0.02 1  0.95 




 97.4 kN

From Table 11-2, try 95 mm bore with C 10 = 108 kN, C 0 = 69.5 kN
Iterate the previous process:
F a / C 0 = 5 / 69.5 = 0.072
Table 11-1:

0.27  e  0.28
Fa
5

 0.5  e
VFr 110 

Interpolate Table 11-1 with F a / C 0 = 0.072 to obtain X 2 = 0.56 and Y 2 = 1.62  1.63
Since this is where we started, we will converge back to the same bearing. The 95 mm
bore meets the requirements. Ans.
______________________________________________________________________________
11-26 Note to the Instructor. In the first printing of the 9th edition, the design life was
incorrectly given to be 109 rev and will be corrected to 108 rev in subsequent printings.
We apologize for the inconvenience.
Fr  9 kN, Fa  3 kN, V  1.2, R  0.99
Use the Weibull parameters for Manufacturer 2 on p. 608.
xD 

LD 108

 100
LR 106

First guess: Choose from middle of Table 11-1, X = 0.56, Y = 1.63

Chapter 11, Page 11/28
Eq. (11-9):

Fe  0.56 1.2  9   1.63  3  10.9 kN
F e > F r , so use F e as the design load.

Eq. (11-7):



xD
C10  a f FD 

1/ b
 x0    x0 1  RD  



1/ a

1/3



100
C10  110.9  

1/1.483
 0.02   4.459  0.02 1  0.99 




 83.9 kN

From Table 11-2, try 90 mm bore with C 10 = 95.6 kN, C 0 = 62.0 kN. Try this bearing.
Iterate the previous process:
F a / C 0 = 3 / 62 = 0.048
0.24  e  0.26
Fa
3

 0.278  e
VFr 1.2  9 
Interpolate Table 11-1 with F a / C 0 = 0.048 to obtain X 2 = 0.56 and Y 2 = 1.79
Table 11-1:

Eq. (11-9):

Fe  0.56 1.2  9   1.79  3  11.4 kN  Fr

11.4
83.9  87.7 kN
10.9
From Table 11-2, this converges back to the same bearing. The 90 mm bore meets the
requirements. Ans.
______________________________________________________________________________
C10 

11-27 (a) nD  1200 rev/min, LD  15 kh, R  0.95, a f  1.2
From Prob. 3-72, R Cy = 183.1 lbf, R Cz = –861.5 lbf.
1/2

2
RC  FD  183.12   861.5    881 lbf


15000 1200  60 
L
xD  D 
 1080
LR
106

1/3



1080
Eq. (11-7): C10  1.2  881 

1/1.483
 0.02  4.439 1  0.95 



 12800 lbf  12.8 kips Ans.

(b) Results will vary depending on the specific bearing manufacturer selected. A general
engineering components search site such as www.globalspec.com might be useful as
a starting point.
______________________________________________________________________________

Chapter 11, Page 12/28
11-28 (a) nD  1200 rev/min, LD  15 kh, R  0.95, a f  1.2
From Prob. 3-72, R Oy = –208.5 lbf, R Oz = 259.3 lbf.
1/ 2

2
RC  FD   259.32   208.5    333 lbf


15000 1200  60 
L
xD  D 
 1080
106
LR

1/3



1080
Eq. (11-7): C10  1.2  333 

1/1.483
 0.02  4.439 1  0.95 



 4837 lbf  4.84 kips Ans.
(b) Results will vary depending on the specific bearing manufacturer selected. A general
engineering components search site such as www.globalspec.com might be useful as
a starting point.
______________________________________________________________________________

11-29 (a) nD  900 rev/min, LD  12 kh, R  0.98, a f  1.2
From Prob. 3-73, R Cy = 8.319 kN, R Cz = –10.830 kN.
2 1/ 2

RC  FD  8.319 2   10.830    13.7 kN


12 000  900  60 
L
xD  D 
 648
LR
106
1/3



648
Eq. (11-7): C10  1.2 13.7  
  204 kN Ans.
1/1.483
 0.02  4.439 1  0.98 



(b) Results will vary depending on the specific bearing manufacturer selected. A general
engineering components search site such as www.globalspec.com might be useful as
a starting point.
______________________________________________________________________________

11-30 (a) nD  900 rev/min, LD  12 kh, R  0.98, a f  1.2
From Prob. 3-73, R Oy = 5083 N, R Oz = 494 N.



RC  FD  50832  4942

xD 



1/2

 5106 N  5.1 kN

LD 12 000  900  60 

 648
LR
106
1/3



648
Eq. (11-7): C10  1.2  5.1 
  76.1 kN Ans.
1/1.483
 0.02  4.439 1  0.98 



(b) Results will vary depending on the specific bearing manufacturer selected. A general
engineering components search site such as www.globalspec.com might be useful as
a starting point.
______________________________________________________________________________
Chapter 11, Page 13/28
11-31 Assume concentrated forces as shown.

Pz  8  28   224 lbf
Py  8  35  280 lbf
T  224  2   448 lbf  in
T x  448  1.5 F cos 20  0
448
F
 318 lbf
1.5  0.940 

z
y
M O  5.75Py  11.5RA  14.25F sin 20  0

y
5.75  280   11.5RA  14.25  318 0.342   0
y
RA  5.24 lbf
y
z
M O  5.75 Pz  11.5 RA  14.25 F cos 20  0

z
5.75  224   11.5RA  14.25  318 0.940   0
1/2

2
2
RA   482    5.24  


z
z
z

F  RO  Pz  RA  F cos 20  0
z
RA  482 lbf;

 482 lbf

z
RO  224  482  318  0.940   0
z
RO  40.9 lbf

y
y
F y  RO  Py  RA  F sin 20  0

y
RO  280  5.24  318  0.342   0
y
RO  166 lbf

1/2

2
2
RO   40.9    166  



 171 lbf

So the reaction at A governs.
Reliability Goal: 0.92  0.96

FD  1.2  482   578 lbf
xD  35 000  350  60  / 106  735
1/3



735


C10  578 
1/1.483 
 0.02   4.459  0.02  ln 1/ 0.96  





 6431 lbf  28.6 kN

From Table 11-2, a 40 mm bore angular contact bearing is sufficient with a rating of
Chapter 11, Page 14/28
31.9 kN.
Ans.
______________________________________________________________________________
11-32 For a combined reliability goal of 0.95, use 0.95  0.975 for the individual bearings.

xD 

40 000  420  60 
106

 1008

The resultant of the given forces are
R O = [(–387)2 + 4672]1/2 = 607 lbf
R B = [3162 + (–1615)2]1/2 = 1646 lbf
At O:
1/3



1008


C10  1.2  607  
Eq. (11-6):
1/1.483 
 0.02   4.459  0.02  ln 1/ 0.975  





 9978 lbf  44.4 kN

From Table 11-2, select an 02-55 mm angular-contact ball bearing with a basic load
rating of 46.2 kN. Ans.
At B:
3/10

Eq. (11-6):



1008


C10  1.2 1646  
1/1.483 
 0.02   4.459  0.02  ln 1/ 0.975  





 20827 lbf  92.7 kN

From Table 11-3, select an 02-75 mm or 03-55 mm cylindrical roller. Ans.
______________________________________________________________________________
11-33 The reliability of the individual bearings is R  0.98  0.9899

Chapter 11, Page 15/28
From statics,
T = (270  50) = (P 1  P 2 )125
= (P 1  0.15 P 1 )125
P 1 = 310.6 N,
P 2 = 0.15 (310.6) = 46.6 N
P 1 + P 2 = 357.2 N
FAy  357.2 sin 45  252.6 N  FAz

M
F
M
F

y
y
 850RE  300(252.6)  0  RE  89.2 N

z
O

y

y
y
 252.6  89.2  RO  0  RO  163.4 N
z
z
 850RE  700(320)  300(252.6)  0  RE  174.4 N

y
O

z

z
z
 174.4  320  252.6  RO  0  RO  107 N

RO 

 163.4 

2

RE 

 89.2 

  174.4   196 N

2

 107 2  195 N
2

The radial loads are nearly the same at O and E. We can use the same bearing at both
locations.
xD 

60 000 1500  60 
106

 5400
1/3

Eq. (11-6):



5400


C10  1 0.196  
1/1.483 
 0.02  4.439 ln 1/ 0.9899  






 5.7 kN

From Table 11-2, select an 02-12 mm deep-groove ball bearing with a basic load rating
of 6.89 kN. Ans.
______________________________________________________________________________
11-34

R  0.96  0.980
T  12(240 cos 20 )  2706 lbf  in
F

2706
 498 lbf
6 cos 25

In xy-plane:
z
y
M O  16(82.1)  30(210)  42 RC  0

Chapter 11, Page 16/28
y
RC  181 lbf
y
RO  82.1  210  181  111.1 lbf

In xz-plane:
y
z
M O  16(226)  30(451)  42 RC  0
z
RC  236 lbf
z
RO  226  451  236  11 lbf


 181

RO  111.12  112
RC

xD 

2

 236 2




1/ 2

 112 lbf

Ans.

1/ 2

 297 lbf

Ans.

50000  300  60 
106

 900
1/3

 C10 O



900


 1.2 112  
1/1.483 




 0.02  4.439 ln 1/ 0.980  

 1860 lbf  8.28 kN

1/3

 C10 C



900


 1.2  297  
1/1.483 




 0.02  4.439 ln 1/ 0.980  

 4932 lbf  21.9 kN

Bearing at O: Choose a deep-groove 02-17 mm. Ans.
Bearing at C: Choose a deep-groove 02-35 mm. Ans.
______________________________________________________________________________
11-35 Shafts subjected to thrust can be constrained by bearings, one of which supports the
thrust. The shaft floats within the endplay of the second (roller) bearing. Since the thrust
force here is larger than any radial load, the bearing absorbing the thrust (bearing A) is
heavily loaded compared to bearing B. Bearing B is thus likely to be oversized and may
not contribute measurably to the chance of failure. If this is the case, we may be able to
obtain the desired combined reliability with bearing A having a reliability near 0.99 and
bearing B having a reliability near 1. This would allow for bearing A to have a lower
capacity than if it needed to achieve a reliability of 0.99 . To determine if this is the
case, we will start with bearing B.
Bearing B (straight roller bearing)
30000  500  60 
xD 
 900
106



Fr  36 2  67 2



1/ 2

 76.1 lbf  0.339 kN

Try a reliability of 1 to see if it is readily obtainable with the available bearings.

Chapter 11, Page 17/28
3/10

Eq. (11-6):



900


C10  1.2  0.339  
1/1.483 
 0.02  4.439  ln 1/1.0  






 10.1 kN

The smallest capacity bearing from Table 11-3 has a rated capacity of 16.8 kN.
Therefore, we select the 02-25 mm straight cylindrical roller bearing. Ans.
Bearing at A (angular-contact ball)
With a reliability of 1 for bearing B, we can achieve the combined reliability goal of 0.99
if bearing A has a reliability of 0.99.



Fr  36 2  2122



1/ 2

 215 lbf  0.957 kN

Fa  555 lbf  2.47 kN
Trial #1:
Tentatively select an 02-85 mm angular-contact with C 10 = 90.4 kN and C 0 = 63.0 kN.
Fa 2.47

 0.0392
C0 63.0
30000  500  60 
xD 
 900
106

Table 11-1:

Interpolating, X 2 = 0.56, Y 2 = 1.88

Eq. (11-9):

Fe  0.56  0.957   1.88  2.47   5.18 kN
1/3

Eq. (11-6):



900


C10  1.2  5.18  
1/1.483 




 0.02  4.439  ln 1/ 0.99  

 99.54 kN  90.4 kN

Trial #2:
Tentatively select a 02-90 mm angular-contact ball with C 10 = 106 kN and C 0 = 73.5 kN.
Fa 2.47

 0.0336
C0 73.5

Table 11-1:

Interpolating, X 2 = 0.56, Y 2 = 1.93

Fe  0.56  0.957   1.93  2.47   5.30 kN
1/3



900


C10  1.2  5.30  
1/1.483 
 0.02  4.439 ln 1/ 0.99  






 102 kN < 106 kN O.K.

Chapter 11, Page 18/28
Select an 02-90 mm angular-contact ball bearing. Ans.
______________________________________________________________________________
11-36 We have some data. Let’s estimate parameters b and θ from it. In Fig. 11-5, we will use
line AB. In this case, B is to the right of A.

 x 1 

For F = 18 kN,

115  2000  60 
106

 13.8

This establishes point 1 on the R = 0.90 line.

The R = 0.20 locus is above and parallel to the R = 0.90 locus. For the two-parameter
Weibull distribution, x 0 = 0 and points A and B are related by [see Eq. (20-25)]:
x A   ln 1/ 0.90  



1/ b

(1)

xB   ln 1/ 0.20  



1/ b

and x B /x A is in the same ratio as 600/115. Eliminating θ,
b

ln ln 1/ 0.20  / ln 1/ 0.90  


ln  600 /115

 1.65

Ans.

Solving for θ in Eq. (1),



xA
ln 1/ RA  



1/1.65



1
ln 1/ 0.90  



1/1.65

 3.91

Ans.

Chapter 11, Page 19/28
Therefore, for the data at hand,
  x 1.65 
R  exp   
 
  3.91  


Check R at point B: x B = (600/115) = 5.217
  5.217 1.65 
R  exp   
   0.20
  3.91  


Note also, for point 2 on the R = 0.20 line,

log  5.217   log 1  log  xm 2  log 13.8 

 xm 2  72

______________________________________________________________________________
11-37 This problem is rich in useful variations. Here is one.
Decision: Make straight roller bearings identical on a given shaft. Use a reliability goal of
(0.99)1/6 = 0.9983.
Shaft a


  502

FAr  2392  1112
FBr

2



1/ 2

 264 lbf  1.175 kN



1/ 2

 10752

 1186 lbf  5.28 kN

Thus the bearing at B controls.
xD 

10 000 1200  60 
106

 720

0.02  4.439  ln 1/ 0.9983 



1/1.483

 720 
C10  1.2  5.28  

 0.080 26 

 0.080 26

0.3

 97.2 kN

Select either an 02-80 mm with C 10 = 106 kN or an 03-55 mm with C 10 = 102 kN.
Shaft b


  393

FCr  874 2  2274 2
r
FD

2

 657 2





1/ 2

1/ 2

 2436 lbf

 766 lbf

or
or

Ans.

10.84 kN
3.41 kN

The bearing at C controls.

Chapter 11, Page 20/28
xD 

10 000  240  60 
106

 144

 144 
C10  1.2 10.84  

 0.080 26 

0.3

 123 kN

Select either an 02-90 mm with C 10 = 142 kN or an 03-60 mm with C 10 = 123 kN.
Shaft c


  417

FEr  11132  23852
FFr

 8952

2



1/ 2



1/ 2

 2632 lbf

 987 lbf

or

or

Ans.

11.71 kN

4.39 kN

The bearing at E controls.
xD 

10 000  80  60 
106

 48

 48 
C10  1.2 11.71 

 0.080 26 

0.3

 95.7 kN

Select an 02-80 mm with C 10 = 106 kN or an 03-60 mm with C 10 = 123 kN. Ans.
______________________________________________________________________________
11-38 Express Eq. (11-1) as
a
F1a L1  C10 L10  K

For a ball bearing, a = 3 and for an 02-30 mm angular contact bearing, C 10 = 20.3 kN.

 

 

K   20.3 106  8.365 109
3

At a load of 18 kN, life L 1 is given by:

 

9
K 8.365 10
L1  a 
 1.434 106 rev
3
18
F1
For a load of 30 kN, life L 2 is:

L2 

 

   0.310 10 rev
 
30

8.365 109

6

3

In this case, Eq. (6-57) – the Palmgren-Miner cycle-ratio summation rule – can be
expressed as

Chapter 11, Page 21/28
l1 l2

1
L1 L2

Substituting,
l2
200 000

1
6
1.434 10
0.310 106
l2

 
 
 0.267 10  rev Ans.
6

______________________________________________________________________________
11-39 Total life in revolutions
Let:
l = total turns
f 1 = fraction of turns at F 1
f 2 = fraction of turns at F 2
From the solution of Prob. 11-38, L 1 = 1.434(106) rev and L 2 = 0.310(106) rev.
Palmgren-Miner rule:
l1 l2
fl f l

 1  2 1
L1 L2 L1 L2

from which
l

1
f1 / L1  f 2 / L2

l

0.40 / 1.434 10   0.60 / 0.310 10 

 451 585 rev

1

6

6

Ans.

Total life in loading cycles
4 min at 2000 rev/min = 8000 rev/cycle
6 min at 2000 rev/min = 12 000 rev/cycle
Total rev/cycle = 8000 + 12 000 = 20 000
451 585 rev
 22.58 cycles
20 000 rev/cycle

Ans.

Chapter 11, Page 22/28
Total life in hours
 min   22.58 cycles 
10

  3.76 h Ans.
 cycle   60 min/h 
______________________________________________________________________________
FrA  560 lbf
FrB  1095 lbf
Fae  200 lbf

11-40

xD 

LD 40 000  400  60 

 10.67
LR
90 106

 

R  0.90  0.949
Eq. (11-15):
Eq. (11-15):

0.47 FrA 0.47  560 

 175.5 lbf
KA
1.5
0.47 FrB 0.47 1095 
FiB 

 343.1 lbf
KB
1.5
FiA 

FiA  ?   FiB  Fae 

175.5 lbf   343.1  200   543.1 lbf, so Eq. (11-16) applies.
We will size bearing B first since its induced load will affect bearing A, but is not itself
affected by the induced load from bearing A [see Eq. (11-16)].
From Eq. (11-16b), F eB = F rB = 1095 lbf.

Eq. (11-7):



10.67

FRB  1.4 1095  
 4.48 1  0.949 1/1.5 



3/10

 3607 lbf

Ans.

Select cone 32305, cup 32305, with 0.9843 in bore, and rated at 3910 lbf with K = 1.95.
Ans.
With bearing B selected, we re-evaluate the induced load from bearing B using the actual
value for K.
0.47 FrB 0.47 1095
Eq. (11-15): FiB 

 263.9 lbf
KB
1.95
Find the equivalent radial load for bearing A from Eq. (11-16), which still applies.
Eq. (11-16a): FeA  0.4 FrA  K A  FiB  Fae 

FeA  0.4  560   1.5  263.9  200   920 lbf

Chapter 11, Page 23/28
FeA  FrA
Eq. (11-7):



10.67

FRA  1.4  920  
 4.48 1  0.949 1/1.5 



3/10

 3030 lbf

Tentatively select cone M86643, cup M86610, with 1 in bore, and rated at 3250 lbf with
K = 1.07. Iterating with the new value for K, we get F eA = 702 lbf and F rA = 2312 lbf.
Ans.
By using a bearing with a lower K, the rated load decreased significantly, providing a
higher than requested reliability. Further examination with different combinations of
bearing choices could yield additional acceptable solutions.
______________________________________________________________________________
11-41 The thrust load on shaft CD is from the axial component of the force transmitted through
the bevel gear, and is directed toward bearing C. By observation of Fig. 11-14, direct
mounted bearings would allow bearing C to carry the thrust load. Ans.
From the solution to Prob. 3-74, the axial thrust load is F ae = 362.8 lbf, and the bearing
radial forces are F Cx = 287.2 lbf, F Cz = 500.9 lbf, F Dx = 194.4 lbf, and F Dz = 307.1 lbf.
Thus, the radial forces are
FrC  287.22  500.9 2  577 lbf
FrD  194.4 2  307.12  363 lbf

The induced loads are
0.47 FrC 0.47  577 

 181 lbf
Eq. (11-15): FiC 
1.5
KC
0.47 FrD 0.47  363

 114 lbf
Eq. (11-15): FiD 
KD
1.5
Check the condition on whether to apply Eq. (11-16) or Eq. (11-17), where bearings C
and D are substituted, respectively, for labels A and B in the equations.
FiC  ?  FiD  Fae
181 lbf  114  362.8  476.8 lbf, so Eq.(11-16) applies
Eq. (11-16a): FeC  0.4 FrC  KC  FiD  Fae 

 0.4  577   1.5 114  362.8   946 lbf  FrC , so use FeC
Assume for tapered roller bearings that the specifications for Manufacturer 1 on p. 608
are applicable.

Chapter 11, Page 24/28
xD 

LD
108

 1.11
LR 90 106 

R  0.90  0.949


1.11

Eq. (11-7):
FRC  1 946  
1/1.5
 4.48 1  0.949  


Eq. (11-16b): FeD  FrD  363 lbf

3/10

 1130 lbf

Ans.

3/10



1.11
  433 lbf Ans.
Eq. (11-7):
FRD  1 363 
1/1.5
 4.48 1  0.949  


______________________________________________________________________________

11-42 The thrust load on shaft AB is from the axial component of the force transmitted through
the bevel gear, and is directed to the right. By observation of Fig. 11-14, indirect
mounted bearings would allow bearing A to carry the thrust load. Ans.
From the solution to Prob. 3-76, the axial thrust load is F ae = 92.8 lbf, and the bearing
radial forces are F Ay = 639.4 lbf, F Az = 1513.7 lbf, F By = 276.6 lbf, and F Bz = 705.7 lbf.
Thus, the radial forces are
FrA  639.4 2  1513.7 2  1643 lbf
FrB  276.62  705.7 2  758 lbf

The induced loads are
0.47 FrA 0.47 1643
Eq. (11-15): FiA 

 515 lbf
KA
1.5
0.47 FrB 0.47  758 
Eq. (11-15): FiB 

 238 lbf
1.5
KB
Check the condition on whether to apply Eq. (11-16) or Eq. (11-17).
FiA  ?  FiB  Fae
515 lbf  238  92.8  330.8 lbf, so Eq.(11-17) applies
Notice that the induced load from bearing A is sufficiently large to cause a net axial force
to the left, which must be supported by bearing B.
Eq. (11-17a): FeB  0.4 FrB  K B  FiA  Fae 

 0.4  758  1.5  515  92.8  937 lbf  FrB , so use FeB
Assume for tapered roller bearings that the specifications for Manufacturer 1 on p. 608
are applicable.
Chapter 11, Page 25/28
6
LD 500 10 
xD 

 5.56
LR
90 106 

R  0.90  0.949


5.56

Eq. (11-7):
FRB  1 937  
 4.48 1  0.949 1/1.5 


Eq. (11-16b): FeA  FrA  1643 lbf

3/10

 1810 lbf

Ans.

3/10



5.56
  3180 lbf Ans.
Eq. (11-7):
FRA  11643 
 4.48 1  0.949 1/1.5 


______________________________________________________________________________

11-43 The lower bearing is compressed by the axial load, so it is designated as bearing A.
FrA  25 kN
FrB  12 kN
Fae  5 kN

0.47 FrA 0.47  25 

 7.83 kN
KA
1.5
0.47 FrB 0.47 12 
Eq. (11-15): FiB 

 3.76 kN
KB
1.5
Check the condition on whether to apply Eq. (11-16) or Eq. (11-17)
Eq. (11-15):

FiA 

FiA  ?  FiB  Fae
7.83 kN  3.76  5  8.76 kN, so Eq.(11-16) applies
Eq. (11-16a): FeA  0.4 FrA  K A  FiB  Fae 

 0.4  25   1.5  3.76  5   23.1 kN  FrA, so use FrA
 60 min   8 hr   5 day   52 weeks 
LD   250 rev/min  

  5 yrs 


yr
 hr   day   week  


 

 156 106 rev
Assume for tapered roller bearings that the specifications for Manufacturer 1 on p. 608
are applicable.
Eq. (11-3):

L 
FRA  a f FD  D 
 LR 

3/10

 

 


156 106
 1.2  25  
 90 106


3/10

 35.4 kN

Ans.

Eq. (11-16b): FeB  FrB  12 kN

Chapter 11, Page 26/28
3/10

156 
FRB  1.2 12  
 17.0 kN Ans.
 90 

______________________________________________________________________________

Eq. (11-3):

11-44 The left bearing is compressed by the axial load, so it is properly designated as bearing A.
FrA  875 lbf
FrB  625 lbf
Fae  250 lbf
Assume K = 1.5 for each bearing for the first iteration. Obtain the induced loads.
Eq. (11-15):
Eq. (11-15):

0.47 FrA 0.47  875 

 274 lbf
1.5
KA
0.47 FrB 0.47  625 
FiB 

 196 lbf
KB
1.5
FiA 

Check the condition on whether to apply Eq. (11-16) or Eq. (11-17).
FiA  ?  FiB  Fae
274 lbf  196  250 lbf, so Eq.(11-16) applies
We will size bearing B first since its induced load will affect bearing A, but it is not
affected by the induced load from bearing A [see Eq. (11-16)].
From Eq. (11-16b), F eB = F rB = 625 lbf.

Eq. (11-3):

L 
FRB  a f FD  D 
 LR 

3/10

 90 000 150  60  

 1 625  
90 106





3/10

 

FRB  1208 lbf
Select cone 07100, cup 07196, with 1 in bore, and rated at 1570 lbf with K = 1.45. Ans.
With bearing B selected, we re-evaluate the induced load from bearing B using the actual
value for K.
0.47 FrB 0.47  625 
Eq. (11-15): FiB 

 203 lbf
KB
1.45
Find the equivalent radial load for bearing A from Eq. (11-16), which still applies.

Chapter 11, Page 27/28
Eq. (11-16a): FeA  0.4 FrA  K A  FiB  Fae 

 0.4  875  1.5  203  250   1030 lbf
FeA  FrA
Eq. (11-3):

L 
FRA  a f FD  D 
 LR 

3/10

 90 000 150  60  

 11030  
90 106





3/10

 

FRA  1990 lbf
Any of the bearings with 1-1/8 in bore are more than adequate. Select cone 15590, cup
15520, rated at 2480 lbf with K = 1.69. Iterating with the new value for K, we get F eA =
1120 lbf and F rA = 2160 lbf. The selected bearing is still adequate. Ans.
______________________________________________________________________________

Chapter 11, Page 28/28

Más contenido relacionado

La actualidad más candente

Solution manual for mechanics of materials 10th edition hibbeler sample
Solution manual for mechanics of materials 10th edition hibbeler  sampleSolution manual for mechanics of materials 10th edition hibbeler  sample
Solution manual for mechanics of materials 10th edition hibbeler samplezammok
 
Solution 2 3_8_bar_with_a_hole
Solution 2 3_8_bar_with_a_holeSolution 2 3_8_bar_with_a_hole
Solution 2 3_8_bar_with_a_holePraditaFirmansyah
 
Chapter 6-structural-analysis-8th-edition-solution
Chapter 6-structural-analysis-8th-edition-solutionChapter 6-structural-analysis-8th-edition-solution
Chapter 6-structural-analysis-8th-edition-solutionDaniel Nunes
 
Ch06 07 pure bending &amp; transverse shear
Ch06 07 pure bending &amp; transverse shearCh06 07 pure bending &amp; transverse shear
Ch06 07 pure bending &amp; transverse shearDario Ch
 
060 ครอบครัวไทยเป็นสุข7
060 ครอบครัวไทยเป็นสุข7060 ครอบครัวไทยเป็นสุข7
060 ครอบครัวไทยเป็นสุข7thana bkk
 
Chapter 16 solutions
Chapter 16 solutionsChapter 16 solutions
Chapter 16 solutionsLK Education
 

La actualidad más candente (20)

Solution manual 16
Solution manual 16Solution manual 16
Solution manual 16
 
Solution manual for mechanics of materials 10th edition hibbeler sample
Solution manual for mechanics of materials 10th edition hibbeler  sampleSolution manual for mechanics of materials 10th edition hibbeler  sample
Solution manual for mechanics of materials 10th edition hibbeler sample
 
Solution 2 3_8_bar_with_a_hole
Solution 2 3_8_bar_with_a_holeSolution 2 3_8_bar_with_a_hole
Solution 2 3_8_bar_with_a_hole
 
Chapter 6-structural-analysis-8th-edition-solution
Chapter 6-structural-analysis-8th-edition-solutionChapter 6-structural-analysis-8th-edition-solution
Chapter 6-structural-analysis-8th-edition-solution
 
Chapter 2.1
Chapter 2.1Chapter 2.1
Chapter 2.1
 
Shi20396 ch08
Shi20396 ch08Shi20396 ch08
Shi20396 ch08
 
Ch06 07 pure bending &amp; transverse shear
Ch06 07 pure bending &amp; transverse shearCh06 07 pure bending &amp; transverse shear
Ch06 07 pure bending &amp; transverse shear
 
Đề Thi HK2 Toán 8 - THCS Phú Mỹ
Đề Thi HK2 Toán 8 - THCS Phú MỹĐề Thi HK2 Toán 8 - THCS Phú Mỹ
Đề Thi HK2 Toán 8 - THCS Phú Mỹ
 
Mech chapter 03
Mech chapter 03Mech chapter 03
Mech chapter 03
 
Chapter 17
Chapter 17Chapter 17
Chapter 17
 
R 2
R 2R 2
R 2
 
Eu2 equiponro3
Eu2 equiponro3Eu2 equiponro3
Eu2 equiponro3
 
Chapter 04
Chapter 04Chapter 04
Chapter 04
 
060 ครอบครัวไทยเป็นสุข7
060 ครอบครัวไทยเป็นสุข7060 ครอบครัวไทยเป็นสุข7
060 ครอบครัวไทยเป็นสุข7
 
Cap 03
Cap 03Cap 03
Cap 03
 
Chapter 03
Chapter 03Chapter 03
Chapter 03
 
Chapter 16 solutions
Chapter 16 solutionsChapter 16 solutions
Chapter 16 solutions
 
Problemas de funciones
Problemas de funcionesProblemas de funciones
Problemas de funciones
 
Temperature changes problems
Temperature changes problemsTemperature changes problems
Temperature changes problems
 
Solution manual 9
Solution manual 9Solution manual 9
Solution manual 9
 

Similar a Chapter 11 solutions

Capítulo 11 mancais de contato rolante
Capítulo 11   mancais de contato rolanteCapítulo 11   mancais de contato rolante
Capítulo 11 mancais de contato rolanteJhayson Carvalho
 
Design of Synchronous machine.pdf
Design of Synchronous machine.pdfDesign of Synchronous machine.pdf
Design of Synchronous machine.pdfMaulikPandya25
 
Centrifugal pump design rev 2
Centrifugal pump design   rev 2Centrifugal pump design   rev 2
Centrifugal pump design rev 2Junea June
 
IRJET- Design and Development of Open Differential for Transmission System of...
IRJET- Design and Development of Open Differential for Transmission System of...IRJET- Design and Development of Open Differential for Transmission System of...
IRJET- Design and Development of Open Differential for Transmission System of...IRJET Journal
 
Optimum design of braking system for a formula 3 race cars with numeric compu...
Optimum design of braking system for a formula 3 race cars with numeric compu...Optimum design of braking system for a formula 3 race cars with numeric compu...
Optimum design of braking system for a formula 3 race cars with numeric compu...IRJET Journal
 
Design of Machine Elements - Unit 5 Procedure
Design of Machine Elements - Unit 5 ProcedureDesign of Machine Elements - Unit 5 Procedure
Design of Machine Elements - Unit 5 Procedures Kumaravel
 
Gate question on rolling contact bearing
Gate question on rolling contact bearingGate question on rolling contact bearing
Gate question on rolling contact bearingTHEGATEMECH
 
Steel strucure lec # (8)
Steel strucure lec #  (8)Steel strucure lec #  (8)
Steel strucure lec # (8)Civil Zone
 
IRJET- Optimal Riser Design for Sand Casting of Drop Ball using Constraint Op...
IRJET- Optimal Riser Design for Sand Casting of Drop Ball using Constraint Op...IRJET- Optimal Riser Design for Sand Casting of Drop Ball using Constraint Op...
IRJET- Optimal Riser Design for Sand Casting of Drop Ball using Constraint Op...IRJET Journal
 
Chapter 15 solutions
Chapter 15 solutionsChapter 15 solutions
Chapter 15 solutionsLK Education
 
Spur gear problem and solution
Spur gear   problem and solutionSpur gear   problem and solution
Spur gear problem and solutiondodi mulya
 
Ch04 section17 press_and_shrink_fits
Ch04 section17 press_and_shrink_fitsCh04 section17 press_and_shrink_fits
Ch04 section17 press_and_shrink_fitsParalafakyou Mens
 
Design of an automotive differential with reduction ratio greater than 6
Design of an automotive differential with reduction ratio greater than 6Design of an automotive differential with reduction ratio greater than 6
Design of an automotive differential with reduction ratio greater than 6eSAT Publishing House
 
Roller Bearing introduction
Roller Bearing introduction Roller Bearing introduction
Roller Bearing introduction Muhamed Dadoura
 
Optimal mechanical spindle speeder gearbox design
Optimal mechanical spindle speeder gearbox designOptimal mechanical spindle speeder gearbox design
Optimal mechanical spindle speeder gearbox designHarshal Borole
 
IRJET- Theoretical Analysis of Rocker Arm
IRJET- Theoretical Analysis of Rocker ArmIRJET- Theoretical Analysis of Rocker Arm
IRJET- Theoretical Analysis of Rocker ArmIRJET Journal
 

Similar a Chapter 11 solutions (20)

Shi20396 ch11
Shi20396 ch11Shi20396 ch11
Shi20396 ch11
 
Capítulo 11 mancais de contato rolante
Capítulo 11   mancais de contato rolanteCapítulo 11   mancais de contato rolante
Capítulo 11 mancais de contato rolante
 
Design of Synchronous machine.pdf
Design of Synchronous machine.pdfDesign of Synchronous machine.pdf
Design of Synchronous machine.pdf
 
Centrifugal pump design rev 2
Centrifugal pump design   rev 2Centrifugal pump design   rev 2
Centrifugal pump design rev 2
 
IRJET- Design and Development of Open Differential for Transmission System of...
IRJET- Design and Development of Open Differential for Transmission System of...IRJET- Design and Development of Open Differential for Transmission System of...
IRJET- Design and Development of Open Differential for Transmission System of...
 
Optimum design of braking system for a formula 3 race cars with numeric compu...
Optimum design of braking system for a formula 3 race cars with numeric compu...Optimum design of braking system for a formula 3 race cars with numeric compu...
Optimum design of braking system for a formula 3 race cars with numeric compu...
 
Design of Machine Elements - Unit 5 Procedure
Design of Machine Elements - Unit 5 ProcedureDesign of Machine Elements - Unit 5 Procedure
Design of Machine Elements - Unit 5 Procedure
 
Gate question on rolling contact bearing
Gate question on rolling contact bearingGate question on rolling contact bearing
Gate question on rolling contact bearing
 
Steel strucure lec # (8)
Steel strucure lec #  (8)Steel strucure lec #  (8)
Steel strucure lec # (8)
 
Shi20396 ch18
Shi20396 ch18Shi20396 ch18
Shi20396 ch18
 
IRJET- Optimal Riser Design for Sand Casting of Drop Ball using Constraint Op...
IRJET- Optimal Riser Design for Sand Casting of Drop Ball using Constraint Op...IRJET- Optimal Riser Design for Sand Casting of Drop Ball using Constraint Op...
IRJET- Optimal Riser Design for Sand Casting of Drop Ball using Constraint Op...
 
Chapter 15 solutions
Chapter 15 solutionsChapter 15 solutions
Chapter 15 solutions
 
basis-propulsion.pdf
basis-propulsion.pdfbasis-propulsion.pdf
basis-propulsion.pdf
 
Spur gear problem and solution
Spur gear   problem and solutionSpur gear   problem and solution
Spur gear problem and solution
 
Ch04 section17 press_and_shrink_fits
Ch04 section17 press_and_shrink_fitsCh04 section17 press_and_shrink_fits
Ch04 section17 press_and_shrink_fits
 
DMM-II MID-I QP.pdf
DMM-II MID-I QP.pdfDMM-II MID-I QP.pdf
DMM-II MID-I QP.pdf
 
Design of an automotive differential with reduction ratio greater than 6
Design of an automotive differential with reduction ratio greater than 6Design of an automotive differential with reduction ratio greater than 6
Design of an automotive differential with reduction ratio greater than 6
 
Roller Bearing introduction
Roller Bearing introduction Roller Bearing introduction
Roller Bearing introduction
 
Optimal mechanical spindle speeder gearbox design
Optimal mechanical spindle speeder gearbox designOptimal mechanical spindle speeder gearbox design
Optimal mechanical spindle speeder gearbox design
 
IRJET- Theoretical Analysis of Rocker Arm
IRJET- Theoretical Analysis of Rocker ArmIRJET- Theoretical Analysis of Rocker Arm
IRJET- Theoretical Analysis of Rocker Arm
 

Último

ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxVanesaIglesias10
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptxmary850239
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfVanessa Camilleri
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
TEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docxTEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docxruthvilladarez
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfPatidar M
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operationalssuser3e220a
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 
Millenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptxMillenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptxJanEmmanBrigoli
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptxiammrhaywood
 
The Contemporary World: The Globalization of World Politics
The Contemporary World: The Globalization of World PoliticsThe Contemporary World: The Globalization of World Politics
The Contemporary World: The Globalization of World PoliticsRommel Regala
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfErwinPantujan2
 

Último (20)

YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptx
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdf
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
TEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docxTEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docx
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdf
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operational
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 
Millenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptxMillenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptx
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
 
The Contemporary World: The Globalization of World Politics
The Contemporary World: The Globalization of World PoliticsThe Contemporary World: The Globalization of World Politics
The Contemporary World: The Globalization of World Politics
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
 

Chapter 11 solutions

  • 1. Chapter 11 11-1 For the deep-groove 02-series ball bearing with R = 0.90, the design life x D , in multiples of rating life, is L 60D nD 60  25000  350 xD  D    525 Ans. LR L10 106 The design radial load is FD  1.2  2.5   3.0 kN 1/3 Eq. (11-6):   525   C10  3.0  1/1.483   0.02   4.459  0.02  ln 1/ 0.9        C 10 = 24.3 kN Table 11-2: Ans. Choose an 02-35 mm bearing with C 10 = 25.5 kN. Ans. 1.483 3     525  3 / 25.5  0.02   Eq. (11-18): R  exp   Ans.    0.920 4.459  0.02         ______________________________________________________________________________ 11-2 For the angular-contact 02-series ball bearing as described, the rating life multiple is L 60D nD 60  40 000  520 xD  D    1248 LR L10 106 The design radial load is FD  1.4  725  1015 lbf  4.52 kN Eq. (11-6): 1/3   1248   C10  1015  1/1.483   0.02   4.459  0.02   ln 1/ 0.9         10 930 lbf  48.6 kN Select an 02-60 mm bearing with C 10 = 55.9 kN. Ans. 1.483 3    1248  4.52 / 55.9   0.02   Eq. (11-18): R  exp   Ans.    0.945 4.439         ______________________________________________________________________________ Table 11-2: Chapter 11, Page 1/28
  • 2. 11-3 For the straight-roller 03-series bearing selection, x D = 1248 rating lives from Prob. 11-2 solution. FD  1.4  2235  3129 lbf  13.92 kN  1248  C10  13.92    1  Table 11-3: 3/10  118 kN Select an 03-60 mm bearing with C 10 = 123 kN. Ans. 1.483 10/3    1248 13.92 /123  0.02   Eq. (11-18): R  exp      0.917 Ans. 4.459  0.02         ______________________________________________________________________________ 11-4 The combined reliability of the two bearings selected in Probs. 11-2 and 11-3 is R   0.945 0.917   0.867 Ans. We can choose a reliability goal of 0.90  0.95 for each bearing. We make the selections, find the existing reliabilities, multiply them together, and observe that the reliability goal is exceeded due to the roundup of capacity upon table entry. Another possibility is to use the reliability of one bearing, say R 1 . Then set the reliability goal of the second as R2  0.90 R1 or vice versa. This gives three pairs of selections to compare in terms of cost, geometry implications, etc. ______________________________________________________________________________ 11-5 Establish a reliability goal of contact ball bearing, 0.90  0.95 for each bearing. For an 02-series angular 1/3   1248   C10  1015  1/1.483   0.02  4.439 ln 1/ 0.95        12822 lbf  57.1 kN Select an 02-65 mm angular-contact bearing with C 10 = 63.7 kN. 1.483 3    1248  4.52 / 63.7   0.02   RA  exp      0.962 4.439         Chapter 11, Page 2/28
  • 3. For an 03-series straight roller bearing, 3/10   1248   C10  13.92  1/1.483   0.02  4.439  ln 1/ 0.95         136.5 kN Select an 03-65 mm straight-roller bearing with C 10 = 138 kN.  1248 13.92 /138 10/3  0.02 1.483      RB  exp      0.953 4.439         The overall reliability is R = (0.962)(0.953) = 0.917, which exceeds the goal. ______________________________________________________________________________ 11-6 For the straight cylindrical roller bearing specified with a service factor of 1, R = 0.95 and F R = 20 kN. 60D nD 60  8000  950 L xD  D    456 106 LR L10 3/10   456   C10  20   145 kN Ans. 1/1.483   0.02  4.439  ln 1/ 0.95        ______________________________________________________________________________ 11-7 Both bearings need to be rated in terms of the same catalog rating system in order to compare them. Using a rating life of one million revolutions, both bearings can be rated in terms of a Basic Load Rating. 1/ a Eq. (11-3): L  C A  FA  A   LR   8.96 kN 1/ a   n 60   FA  A A   LR    3000  500  60    2.0   106   1/3 Bearing B already is rated at one million revolutions, so C B = 7.0 kN. Since C A > C B , bearing A can carry the larger load. Ans. ______________________________________________________________________________ 11-8 F D = 2 kN, L D = 109 rev, R = 0.90 1/ a 1/3  LD   109  Eq. (11-3): C10  FD    2  6   20 kN Ans.  10   LR  ______________________________________________________________________________ Chapter 11, Page 3/28
  • 4. 11-9 F D = 800 lbf,  D = 12 000 hours, n D = 350 rev/min, R = 0.90  12 000  350  60     n 60  Eq. (11-3): C10  FD  D D   800    5050 lbf Ans 106  LR    ______________________________________________________________________________ 1/ a 1/3 11-10 F D = 4 kN,  D = 8 000 hours, n D = 500 rev/min, R = 0.90  8 000  500  60     n 60  Eq. (11-3): C10  FD  D D   4    24.9 kN Ans 106  LR    ______________________________________________________________________________ 1/ a 1/3 11-11 F D = 650 lbf, n D = 400 rev/min, R = 0.95      D = (5 years)(40 h/week)(52 week/year) = 10 400 hours Assume an application factor of one. The multiple of rating life is xD  LD 10 400  400  60    249.6 LR 106 1/3   249.6   C10  1 650   Eq. (11-6): 1/1.483       0.02  4.439 ln 1/ 0.95     4800 lbf Ans. ______________________________________________________________________________ 11-12 F D = 9 kN, L D = 108 rev, R = 0.99 Assume an application factor of one. The multiple of rating life is xD  LD 108   100 LR 106 1/3   100   C10  1 9   Eq. (11-6): 1/1.483   0.02  4.439 ln 1/ 0.99         69.2 kN Ans. ______________________________________________________________________________ 11-13 F D = 11 kips,  D = 20 000 hours, n D = 200 rev/min, R = 0.99 Assume an application factor of one. Use the Weibull parameters for Manufacturer 2 on p. 608. Chapter 11, Page 4/28
  • 5. The multiple of rating life is xD  LD  20 000  200  60    240 LR 106 1/3   240   C10  111  Eq. (11-6): 1/1.483   0.02  4.439 ln 1/ 0.99         113 kips Ans. ______________________________________________________________________________ 11-14 From the solution to Prob. 3-68, the ground reaction force carried by the bearing at C is R C = F D = 178 lbf. Use the Weibull parameters for Manufacturer 2 on p. 608. xD  LD 15000 1200  60    1080 LR 106 1/ a Eq. (11-7):   xD C10  a f FD   1/ b  x0    x0 1  RD     1/3   1080 C10  1.2 178    1/1.483  0.02   4.459  0.02 1  0.95      2590 lbf Ans. ______________________________________________________________________________ 11-15 From the solution to Prob. 3-69, the ground reaction force carried by the bearing at C is R C = F D = 1.794 kN. Use the Weibull parameters for Manufacturer 2 on p. 608. xD  LD 15000 1200  60    1080 LR 106 1/ a Eq. (11-7):   xD C10  a f FD   1/ b  x0    x0 1  RD     1/3   1080 C10  1.2 1.794    1/1.483  0.02   4.459  0.02 1  0.95      26.1 kN Ans. ______________________________________________________________________________ 11-16 From the solution to Prob. 3-70, R Cz = –327.99 lbf, R Cy = –127.27 lbf 1/ 2 2 2 RC  FD   327.99    127.27    351.8 lbf   Use the Weibull parameters for Manufacturer 2 on p. 608. Chapter 11, Page 5/28
  • 6. xD  LD 15000 1200  60    1080 LR 106 1/ a Eq. (11-7):   xD C10  a f FD   1/ b  xo    xo 1  RD     1/3   1080 C10  1.2  351.8    1/1.483  0.02   4.459  0.02 1  0.95      5110 lbf Ans. ______________________________________________________________________________ 11-17 From the solution to Prob. 3-71, R Cz = –150.7 N, R Cy = –86.10 N 1/2 2 2 RC  FD   150.7    86.10    173.6 N   Use the Weibull parameters for Manufacturer 2 on p. 608. xD  LD 15000 1200  60    1080 106 LR 1/ a Eq. (11-7):   xD C10  a f FD   1/ b  x0    x0 1  RD     1/3   1080 C10  1.2 173.6    1/1.483  0.02   4.459  0.02 1  0.95      2520 N Ans. ______________________________________________________________________________ 11-18 From the solution to Prob. 3-77, R Az = 444 N, R Ay = 2384 N  RA  FD  4442  23842  1/2  2425 N  2.425 kN Use the Weibull parameters for Manufacturer 2 on p. 608. The design speed is equal to the speed of shaft AD, d 125 nD  F ni  191  95.5 rev/min dC 250 xD  LD 12 000  95.5  60    68.76 LR 106 1/ a Eq. (11-7):   xD C10  a f FD   1/ b  x0    x0 1  RD     Chapter 11, Page 6/28
  • 7. 1/3   68.76 C10  1 2.425    1/1.483  0.02   4.459  0.02 1  0.95      11.7 kN Ans. ______________________________________________________________________________ 11-19 From the solution to Prob. 3-79, R Az = 54.0 lbf, R Ay = 140 lbf  RA  FD  54.02  1402  1/2  150.1 lbf Use the Weibull parameters for Manufacturer 2 on p. 608. The design speed is equal to the speed of shaft AD, d 10 nD  F ni   280   560 rev/min dC 5 xD  Eq. (11-7): LD 14 000  560  60    470.4 LR 106   xD C10  a f FD   1/ b  x0    x0 1  RD     1/ a 3/10   470.4 C10  1150.1   1/1.483  0.02   4.459  0.02 1  0.98      1320 lbf Ans. ______________________________________________________________________________ 11-20 (a) Fa  3 kN, Fr  7 kN, nD  500 rev/min, V  1.2 From Table 11-2, with a 65 mm bore, C 0 = 34.0 kN. F a / C 0 = 3 / 34 = 0.088 From Table 11-1, 0.28  e  3.0. Fa 3   0.357 VFr 1.2  7  Since this is greater than e, interpolating Table 11-1 with F a / C 0 = 0.088, we obtain X 2 = 0.56 and Y 2 = 1.53. Eq. (11-9): Fe  X iVFr  Yi Fa   0.56 1.2  7   1.53 3  9.29 kN F e > F r so use F e . Ans. (b) Use Eq. (11-7) to determine the necessary rated load the bearing should have to carry the equivalent radial load for the desired life and reliability. Use the Weibull parameters for Manufacturer 2 on p. 608. Chapter 11, Page 7/28
  • 8. xD  LD 10 000  500  60    300 LR 106 1/ a   xD Eq. (11-7): C10  a f FD   1/ b  x0    x0 1  RD       300 C10  1 9.29    1/1.483  0.02   4.459  0.02 1  0.95      73.4 kN 1/3 From Table 11-2, the 65 mm bearing is rated for 55.9 kN, which is less than the necessary rating to meet the specifications. This bearing should not be expected to meet the load, life, and reliability goals. Ans. ______________________________________________________________________________ 11-21 (a) Fa  2 kN, Fr  5 kN, nD  400 rev/min, V  1 From Table 11-2, 30 mm bore, C 10 = 19.5 kN, C 0 = 10.0 kN F a / C 0 = 2 / 10 = 0.2 From Table 11-1, 0.34  e  0.38. Fa 2   0.4 VFr 1 5  Since this is greater than e, interpolating Table 11-1, with F a / C 0 = 0.2, we obtain X 2 = 0.56 and Y 2 = 1.27. Ans. Eq. (11-9): Fe  X iVFr  Yi Fa   0.56 1 5  1.27  2   5.34 kN F e > F r so use F e . (b) Solve Eq. (11-7) for x D .  C xD   10  a f FD  a  1/ b   x0    x0 1  RD       3  19.5   0.02   4.459  0.02 1  0.99 1/1.483  xD    1 5.34        xD  10.66 xD  LD D nD  60   LR 106 Chapter 11, Page 8/28
  • 9. D     10.66 10   444 h xD 106 6 Ans. nD  60   400  60  ______________________________________________________________________________ 11-22 Fr  8 kN, R  0.9, LD  109 rev 1/ a Eq. (11-3): L  C10  FD  D   LR  1/3  109   8 6   10   80 kN From Table 11-2, select the 85 mm bore. Ans. ______________________________________________________________________________ 11-23 Fr  8 kN, Fa  2 kN, V  1, R  0.99 Use the Weibull parameters for Manufacturer 2 on p. 608. xD  LD 10 000  400  60    240 LR 106 First guess: Choose from middle of Table 11-1, X = 0.56, Y = 1.63 Eq. (11-9): Fe  0.56 1 8   1.63  2   7.74 kN F e < F r , so just use F r as the design load. Eq. (11-7):   xD C10  a f FD   1/ b  xo    xo 1  RD     1/ a 1/3   240 C10  1 8     82.5 kN 1/1.483  0.02   4.459  0.02 1  0.99     From Table 11-2, try 85 mm bore with C 10 = 83.2 kN, C 0 = 53.0 kN Iterate the previous process: F a / C 0 = 2 / 53 = 0.038 0.22  e  0.24 Fa 2   0.25  e VFr 1 8  Interpolate Table 11-1 with F a / C 0 = 0.038 to obtain X 2 = 0.56 and Y 2 = 1.89. Table 11-1: Eq. (11-9): Fe  0.56(1)8  1.89(2)  8.26 > Fr Eq. (11-7):   240 C10  1 8.26    1/1.483  0.02   4.459  0.02 1  0.99     1/3  85.2 kN Chapter 11, Page 9/28
  • 10. Table 11-2: Move up to the 90 mm bore with C 10 = 95.6 kN, C 0 = 62.0 kN. Iterate again: F a / C 0 = 2 / 62 = 0.032 Again, 0.22  e  0.24 Fa 2   0.25  e VFr 1 8  Interpolate Table 11-1 with F a / C 0 = 0.032 to obtain X 2 = 0.56 and Y 2 = 1.95. Table 11-1: Eq. (11-9): Fe  0.56(1)8  1.95(2)  8.38 > Fr 1/3   240 Eq. (11-7): C10  1 8.38     86.4 kN 1/1.483  0.02   4.459  0.02 1  0.99     The 90 mm bore is acceptable. Ans. ______________________________________________________________________________ 11-24 Fr  8 kN, Fa  3 kN, V  1.2, R  0.9, LD  108 rev First guess: Choose from middle of Table 11-1, X = 0.56, Y = 1.63 Eq. (11-9): Fe  0.56 1.2  8   1.63  3  10.3 kN Fe  Fr 1/ a Eq. (11-3): L  C10  Fe  D   LR  1/3  108   10.3  6   10   47.8 kN From Table 11-2, try 60 mm with C 10 = 47.5 kN, C 0 = 28.0 kN Iterate the previous process: F a / C 0 = 3 / 28 = 0.107 0.28  e  0.30 Fa 3   0.313  e VFr 1.2  8  Interpolate Table 11-1 with F a / C 0 = 0.107 to obtain X 2 = 0.56 and Y 2 = 1.46 Table 11-1: Eq. (11-9): Fe  0.56 1.2  8   1.46  3  9.76 kN > Fr 1/3  108  Eq. (11-3): C10  9.76  6   45.3 kN  10  From Table 11-2, we have converged on the 60 mm bearing. Ans. ______________________________________________________________________________ Chapter 11, Page 10/28
  • 11. 11-25 Fr  10 kN, Fa  5 kN, V  1, R  0.95 Use the Weibull parameters for Manufacturer 2 on p. 608. xD  LD 12 000  300  60    216 LR 106 First guess: Choose from middle of Table 11-1, X = 0.56, Y = 1.63 Eq. (11-9): Fe  0.56 110   1.63  5   13.75 kN F e > F r , so use F e as the design load. Eq. (11-7):   xD C10  a f FD   1/ b  x0    x0 1  RD     1/ a 1/3   216 C10  113.75    1/1.483  0.02   4.459  0.02 1  0.95      97.4 kN From Table 11-2, try 95 mm bore with C 10 = 108 kN, C 0 = 69.5 kN Iterate the previous process: F a / C 0 = 5 / 69.5 = 0.072 Table 11-1: 0.27  e  0.28 Fa 5   0.5  e VFr 110  Interpolate Table 11-1 with F a / C 0 = 0.072 to obtain X 2 = 0.56 and Y 2 = 1.62  1.63 Since this is where we started, we will converge back to the same bearing. The 95 mm bore meets the requirements. Ans. ______________________________________________________________________________ 11-26 Note to the Instructor. In the first printing of the 9th edition, the design life was incorrectly given to be 109 rev and will be corrected to 108 rev in subsequent printings. We apologize for the inconvenience. Fr  9 kN, Fa  3 kN, V  1.2, R  0.99 Use the Weibull parameters for Manufacturer 2 on p. 608. xD  LD 108   100 LR 106 First guess: Choose from middle of Table 11-1, X = 0.56, Y = 1.63 Chapter 11, Page 11/28
  • 12. Eq. (11-9): Fe  0.56 1.2  9   1.63  3  10.9 kN F e > F r , so use F e as the design load. Eq. (11-7):   xD C10  a f FD   1/ b  x0    x0 1  RD     1/ a 1/3   100 C10  110.9    1/1.483  0.02   4.459  0.02 1  0.99      83.9 kN From Table 11-2, try 90 mm bore with C 10 = 95.6 kN, C 0 = 62.0 kN. Try this bearing. Iterate the previous process: F a / C 0 = 3 / 62 = 0.048 0.24  e  0.26 Fa 3   0.278  e VFr 1.2  9  Interpolate Table 11-1 with F a / C 0 = 0.048 to obtain X 2 = 0.56 and Y 2 = 1.79 Table 11-1: Eq. (11-9): Fe  0.56 1.2  9   1.79  3  11.4 kN  Fr 11.4 83.9  87.7 kN 10.9 From Table 11-2, this converges back to the same bearing. The 90 mm bore meets the requirements. Ans. ______________________________________________________________________________ C10  11-27 (a) nD  1200 rev/min, LD  15 kh, R  0.95, a f  1.2 From Prob. 3-72, R Cy = 183.1 lbf, R Cz = –861.5 lbf. 1/2 2 RC  FD  183.12   861.5    881 lbf   15000 1200  60  L xD  D   1080 LR 106 1/3   1080 Eq. (11-7): C10  1.2  881   1/1.483  0.02  4.439 1  0.95      12800 lbf  12.8 kips Ans. (b) Results will vary depending on the specific bearing manufacturer selected. A general engineering components search site such as www.globalspec.com might be useful as a starting point. ______________________________________________________________________________ Chapter 11, Page 12/28
  • 13. 11-28 (a) nD  1200 rev/min, LD  15 kh, R  0.95, a f  1.2 From Prob. 3-72, R Oy = –208.5 lbf, R Oz = 259.3 lbf. 1/ 2 2 RC  FD   259.32   208.5    333 lbf   15000 1200  60  L xD  D   1080 106 LR 1/3   1080 Eq. (11-7): C10  1.2  333   1/1.483  0.02  4.439 1  0.95      4837 lbf  4.84 kips Ans. (b) Results will vary depending on the specific bearing manufacturer selected. A general engineering components search site such as www.globalspec.com might be useful as a starting point. ______________________________________________________________________________ 11-29 (a) nD  900 rev/min, LD  12 kh, R  0.98, a f  1.2 From Prob. 3-73, R Cy = 8.319 kN, R Cz = –10.830 kN. 2 1/ 2 RC  FD  8.319 2   10.830    13.7 kN   12 000  900  60  L xD  D   648 LR 106 1/3   648 Eq. (11-7): C10  1.2 13.7     204 kN Ans. 1/1.483  0.02  4.439 1  0.98     (b) Results will vary depending on the specific bearing manufacturer selected. A general engineering components search site such as www.globalspec.com might be useful as a starting point. ______________________________________________________________________________ 11-30 (a) nD  900 rev/min, LD  12 kh, R  0.98, a f  1.2 From Prob. 3-73, R Oy = 5083 N, R Oz = 494 N.  RC  FD  50832  4942 xD   1/2  5106 N  5.1 kN LD 12 000  900  60    648 LR 106 1/3   648 Eq. (11-7): C10  1.2  5.1    76.1 kN Ans. 1/1.483  0.02  4.439 1  0.98     (b) Results will vary depending on the specific bearing manufacturer selected. A general engineering components search site such as www.globalspec.com might be useful as a starting point. ______________________________________________________________________________ Chapter 11, Page 13/28
  • 14. 11-31 Assume concentrated forces as shown. Pz  8  28   224 lbf Py  8  35  280 lbf T  224  2   448 lbf  in T x  448  1.5 F cos 20  0 448 F  318 lbf 1.5  0.940  z y M O  5.75Py  11.5RA  14.25F sin 20  0 y 5.75  280   11.5RA  14.25  318 0.342   0 y RA  5.24 lbf y z M O  5.75 Pz  11.5 RA  14.25 F cos 20  0 z 5.75  224   11.5RA  14.25  318 0.940   0 1/2 2 2 RA   482    5.24     z z z  F  RO  Pz  RA  F cos 20  0 z RA  482 lbf;  482 lbf z RO  224  482  318  0.940   0 z RO  40.9 lbf y y F y  RO  Py  RA  F sin 20  0 y RO  280  5.24  318  0.342   0 y RO  166 lbf 1/2 2 2 RO   40.9    166      171 lbf So the reaction at A governs. Reliability Goal: 0.92  0.96 FD  1.2  482   578 lbf xD  35 000  350  60  / 106  735 1/3   735   C10  578  1/1.483   0.02   4.459  0.02  ln 1/ 0.96         6431 lbf  28.6 kN From Table 11-2, a 40 mm bore angular contact bearing is sufficient with a rating of Chapter 11, Page 14/28
  • 15. 31.9 kN. Ans. ______________________________________________________________________________ 11-32 For a combined reliability goal of 0.95, use 0.95  0.975 for the individual bearings. xD  40 000  420  60  106  1008 The resultant of the given forces are R O = [(–387)2 + 4672]1/2 = 607 lbf R B = [3162 + (–1615)2]1/2 = 1646 lbf At O: 1/3   1008   C10  1.2  607   Eq. (11-6): 1/1.483   0.02   4.459  0.02  ln 1/ 0.975         9978 lbf  44.4 kN From Table 11-2, select an 02-55 mm angular-contact ball bearing with a basic load rating of 46.2 kN. Ans. At B: 3/10 Eq. (11-6):   1008   C10  1.2 1646   1/1.483   0.02   4.459  0.02  ln 1/ 0.975         20827 lbf  92.7 kN From Table 11-3, select an 02-75 mm or 03-55 mm cylindrical roller. Ans. ______________________________________________________________________________ 11-33 The reliability of the individual bearings is R  0.98  0.9899 Chapter 11, Page 15/28
  • 16. From statics, T = (270  50) = (P 1  P 2 )125 = (P 1  0.15 P 1 )125 P 1 = 310.6 N, P 2 = 0.15 (310.6) = 46.6 N P 1 + P 2 = 357.2 N FAy  357.2 sin 45  252.6 N  FAz M F M F y y  850RE  300(252.6)  0  RE  89.2 N z O y y y  252.6  89.2  RO  0  RO  163.4 N z z  850RE  700(320)  300(252.6)  0  RE  174.4 N y O z z z  174.4  320  252.6  RO  0  RO  107 N RO   163.4  2 RE   89.2    174.4   196 N 2  107 2  195 N 2 The radial loads are nearly the same at O and E. We can use the same bearing at both locations. xD  60 000 1500  60  106  5400 1/3 Eq. (11-6):   5400   C10  1 0.196   1/1.483   0.02  4.439 ln 1/ 0.9899         5.7 kN From Table 11-2, select an 02-12 mm deep-groove ball bearing with a basic load rating of 6.89 kN. Ans. ______________________________________________________________________________ 11-34 R  0.96  0.980 T  12(240 cos 20 )  2706 lbf  in F 2706  498 lbf 6 cos 25 In xy-plane: z y M O  16(82.1)  30(210)  42 RC  0 Chapter 11, Page 16/28
  • 17. y RC  181 lbf y RO  82.1  210  181  111.1 lbf In xz-plane: y z M O  16(226)  30(451)  42 RC  0 z RC  236 lbf z RO  226  451  236  11 lbf   181 RO  111.12  112 RC xD  2  236 2   1/ 2  112 lbf Ans. 1/ 2  297 lbf Ans. 50000  300  60  106  900 1/3  C10 O   900    1.2 112   1/1.483       0.02  4.439 ln 1/ 0.980     1860 lbf  8.28 kN 1/3  C10 C   900    1.2  297   1/1.483       0.02  4.439 ln 1/ 0.980     4932 lbf  21.9 kN Bearing at O: Choose a deep-groove 02-17 mm. Ans. Bearing at C: Choose a deep-groove 02-35 mm. Ans. ______________________________________________________________________________ 11-35 Shafts subjected to thrust can be constrained by bearings, one of which supports the thrust. The shaft floats within the endplay of the second (roller) bearing. Since the thrust force here is larger than any radial load, the bearing absorbing the thrust (bearing A) is heavily loaded compared to bearing B. Bearing B is thus likely to be oversized and may not contribute measurably to the chance of failure. If this is the case, we may be able to obtain the desired combined reliability with bearing A having a reliability near 0.99 and bearing B having a reliability near 1. This would allow for bearing A to have a lower capacity than if it needed to achieve a reliability of 0.99 . To determine if this is the case, we will start with bearing B. Bearing B (straight roller bearing) 30000  500  60  xD   900 106  Fr  36 2  67 2  1/ 2  76.1 lbf  0.339 kN Try a reliability of 1 to see if it is readily obtainable with the available bearings. Chapter 11, Page 17/28
  • 18. 3/10 Eq. (11-6):   900   C10  1.2  0.339   1/1.483   0.02  4.439  ln 1/1.0         10.1 kN The smallest capacity bearing from Table 11-3 has a rated capacity of 16.8 kN. Therefore, we select the 02-25 mm straight cylindrical roller bearing. Ans. Bearing at A (angular-contact ball) With a reliability of 1 for bearing B, we can achieve the combined reliability goal of 0.99 if bearing A has a reliability of 0.99.  Fr  36 2  2122  1/ 2  215 lbf  0.957 kN Fa  555 lbf  2.47 kN Trial #1: Tentatively select an 02-85 mm angular-contact with C 10 = 90.4 kN and C 0 = 63.0 kN. Fa 2.47   0.0392 C0 63.0 30000  500  60  xD   900 106 Table 11-1: Interpolating, X 2 = 0.56, Y 2 = 1.88 Eq. (11-9): Fe  0.56  0.957   1.88  2.47   5.18 kN 1/3 Eq. (11-6):   900   C10  1.2  5.18   1/1.483       0.02  4.439  ln 1/ 0.99     99.54 kN  90.4 kN Trial #2: Tentatively select a 02-90 mm angular-contact ball with C 10 = 106 kN and C 0 = 73.5 kN. Fa 2.47   0.0336 C0 73.5 Table 11-1: Interpolating, X 2 = 0.56, Y 2 = 1.93 Fe  0.56  0.957   1.93  2.47   5.30 kN 1/3   900   C10  1.2  5.30   1/1.483   0.02  4.439 ln 1/ 0.99         102 kN < 106 kN O.K. Chapter 11, Page 18/28
  • 19. Select an 02-90 mm angular-contact ball bearing. Ans. ______________________________________________________________________________ 11-36 We have some data. Let’s estimate parameters b and θ from it. In Fig. 11-5, we will use line AB. In this case, B is to the right of A.  x 1  For F = 18 kN, 115  2000  60  106  13.8 This establishes point 1 on the R = 0.90 line. The R = 0.20 locus is above and parallel to the R = 0.90 locus. For the two-parameter Weibull distribution, x 0 = 0 and points A and B are related by [see Eq. (20-25)]: x A   ln 1/ 0.90     1/ b (1) xB   ln 1/ 0.20     1/ b and x B /x A is in the same ratio as 600/115. Eliminating θ, b ln ln 1/ 0.20  / ln 1/ 0.90     ln  600 /115  1.65 Ans. Solving for θ in Eq. (1),  xA ln 1/ RA     1/1.65  1 ln 1/ 0.90     1/1.65  3.91 Ans. Chapter 11, Page 19/28
  • 20. Therefore, for the data at hand,   x 1.65  R  exp        3.91     Check R at point B: x B = (600/115) = 5.217   5.217 1.65  R  exp       0.20   3.91     Note also, for point 2 on the R = 0.20 line, log  5.217   log 1  log  xm 2  log 13.8   xm 2  72 ______________________________________________________________________________ 11-37 This problem is rich in useful variations. Here is one. Decision: Make straight roller bearings identical on a given shaft. Use a reliability goal of (0.99)1/6 = 0.9983. Shaft a    502 FAr  2392  1112 FBr 2  1/ 2  264 lbf  1.175 kN  1/ 2  10752  1186 lbf  5.28 kN Thus the bearing at B controls. xD  10 000 1200  60  106  720 0.02  4.439  ln 1/ 0.9983    1/1.483  720  C10  1.2  5.28     0.080 26   0.080 26 0.3  97.2 kN Select either an 02-80 mm with C 10 = 106 kN or an 03-55 mm with C 10 = 102 kN. Shaft b    393 FCr  874 2  2274 2 r FD 2  657 2   1/ 2 1/ 2  2436 lbf  766 lbf or or Ans. 10.84 kN 3.41 kN The bearing at C controls. Chapter 11, Page 20/28
  • 21. xD  10 000  240  60  106  144  144  C10  1.2 10.84     0.080 26  0.3  123 kN Select either an 02-90 mm with C 10 = 142 kN or an 03-60 mm with C 10 = 123 kN. Shaft c    417 FEr  11132  23852 FFr  8952 2  1/ 2  1/ 2  2632 lbf  987 lbf or or Ans. 11.71 kN 4.39 kN The bearing at E controls. xD  10 000  80  60  106  48  48  C10  1.2 11.71    0.080 26  0.3  95.7 kN Select an 02-80 mm with C 10 = 106 kN or an 03-60 mm with C 10 = 123 kN. Ans. ______________________________________________________________________________ 11-38 Express Eq. (11-1) as a F1a L1  C10 L10  K For a ball bearing, a = 3 and for an 02-30 mm angular contact bearing, C 10 = 20.3 kN.     K   20.3 106  8.365 109 3 At a load of 18 kN, life L 1 is given by:   9 K 8.365 10 L1  a   1.434 106 rev 3 18 F1 For a load of 30 kN, life L 2 is: L2       0.310 10 rev   30 8.365 109 6 3 In this case, Eq. (6-57) – the Palmgren-Miner cycle-ratio summation rule – can be expressed as Chapter 11, Page 21/28
  • 22. l1 l2  1 L1 L2 Substituting, l2 200 000  1 6 1.434 10 0.310 106 l2      0.267 10  rev Ans. 6 ______________________________________________________________________________ 11-39 Total life in revolutions Let: l = total turns f 1 = fraction of turns at F 1 f 2 = fraction of turns at F 2 From the solution of Prob. 11-38, L 1 = 1.434(106) rev and L 2 = 0.310(106) rev. Palmgren-Miner rule: l1 l2 fl f l   1  2 1 L1 L2 L1 L2 from which l 1 f1 / L1  f 2 / L2 l 0.40 / 1.434 10   0.60 / 0.310 10   451 585 rev 1 6 6 Ans. Total life in loading cycles 4 min at 2000 rev/min = 8000 rev/cycle 6 min at 2000 rev/min = 12 000 rev/cycle Total rev/cycle = 8000 + 12 000 = 20 000 451 585 rev  22.58 cycles 20 000 rev/cycle Ans. Chapter 11, Page 22/28
  • 23. Total life in hours  min   22.58 cycles  10    3.76 h Ans.  cycle   60 min/h  ______________________________________________________________________________ FrA  560 lbf FrB  1095 lbf Fae  200 lbf 11-40 xD  LD 40 000  400  60    10.67 LR 90 106   R  0.90  0.949 Eq. (11-15): Eq. (11-15): 0.47 FrA 0.47  560    175.5 lbf KA 1.5 0.47 FrB 0.47 1095  FiB    343.1 lbf KB 1.5 FiA  FiA  ?   FiB  Fae  175.5 lbf   343.1  200   543.1 lbf, so Eq. (11-16) applies. We will size bearing B first since its induced load will affect bearing A, but is not itself affected by the induced load from bearing A [see Eq. (11-16)]. From Eq. (11-16b), F eB = F rB = 1095 lbf. Eq. (11-7):   10.67  FRB  1.4 1095    4.48 1  0.949 1/1.5    3/10  3607 lbf Ans. Select cone 32305, cup 32305, with 0.9843 in bore, and rated at 3910 lbf with K = 1.95. Ans. With bearing B selected, we re-evaluate the induced load from bearing B using the actual value for K. 0.47 FrB 0.47 1095 Eq. (11-15): FiB    263.9 lbf KB 1.95 Find the equivalent radial load for bearing A from Eq. (11-16), which still applies. Eq. (11-16a): FeA  0.4 FrA  K A  FiB  Fae  FeA  0.4  560   1.5  263.9  200   920 lbf Chapter 11, Page 23/28
  • 24. FeA  FrA Eq. (11-7):   10.67  FRA  1.4  920    4.48 1  0.949 1/1.5    3/10  3030 lbf Tentatively select cone M86643, cup M86610, with 1 in bore, and rated at 3250 lbf with K = 1.07. Iterating with the new value for K, we get F eA = 702 lbf and F rA = 2312 lbf. Ans. By using a bearing with a lower K, the rated load decreased significantly, providing a higher than requested reliability. Further examination with different combinations of bearing choices could yield additional acceptable solutions. ______________________________________________________________________________ 11-41 The thrust load on shaft CD is from the axial component of the force transmitted through the bevel gear, and is directed toward bearing C. By observation of Fig. 11-14, direct mounted bearings would allow bearing C to carry the thrust load. Ans. From the solution to Prob. 3-74, the axial thrust load is F ae = 362.8 lbf, and the bearing radial forces are F Cx = 287.2 lbf, F Cz = 500.9 lbf, F Dx = 194.4 lbf, and F Dz = 307.1 lbf. Thus, the radial forces are FrC  287.22  500.9 2  577 lbf FrD  194.4 2  307.12  363 lbf The induced loads are 0.47 FrC 0.47  577    181 lbf Eq. (11-15): FiC  1.5 KC 0.47 FrD 0.47  363   114 lbf Eq. (11-15): FiD  KD 1.5 Check the condition on whether to apply Eq. (11-16) or Eq. (11-17), where bearings C and D are substituted, respectively, for labels A and B in the equations. FiC  ?  FiD  Fae 181 lbf  114  362.8  476.8 lbf, so Eq.(11-16) applies Eq. (11-16a): FeC  0.4 FrC  KC  FiD  Fae   0.4  577   1.5 114  362.8   946 lbf  FrC , so use FeC Assume for tapered roller bearings that the specifications for Manufacturer 1 on p. 608 are applicable. Chapter 11, Page 24/28
  • 25. xD  LD 108   1.11 LR 90 106  R  0.90  0.949   1.11  Eq. (11-7): FRC  1 946   1/1.5  4.48 1  0.949     Eq. (11-16b): FeD  FrD  363 lbf 3/10  1130 lbf Ans. 3/10   1.11   433 lbf Ans. Eq. (11-7): FRD  1 363  1/1.5  4.48 1  0.949     ______________________________________________________________________________ 11-42 The thrust load on shaft AB is from the axial component of the force transmitted through the bevel gear, and is directed to the right. By observation of Fig. 11-14, indirect mounted bearings would allow bearing A to carry the thrust load. Ans. From the solution to Prob. 3-76, the axial thrust load is F ae = 92.8 lbf, and the bearing radial forces are F Ay = 639.4 lbf, F Az = 1513.7 lbf, F By = 276.6 lbf, and F Bz = 705.7 lbf. Thus, the radial forces are FrA  639.4 2  1513.7 2  1643 lbf FrB  276.62  705.7 2  758 lbf The induced loads are 0.47 FrA 0.47 1643 Eq. (11-15): FiA    515 lbf KA 1.5 0.47 FrB 0.47  758  Eq. (11-15): FiB    238 lbf 1.5 KB Check the condition on whether to apply Eq. (11-16) or Eq. (11-17). FiA  ?  FiB  Fae 515 lbf  238  92.8  330.8 lbf, so Eq.(11-17) applies Notice that the induced load from bearing A is sufficiently large to cause a net axial force to the left, which must be supported by bearing B. Eq. (11-17a): FeB  0.4 FrB  K B  FiA  Fae   0.4  758  1.5  515  92.8  937 lbf  FrB , so use FeB Assume for tapered roller bearings that the specifications for Manufacturer 1 on p. 608 are applicable. Chapter 11, Page 25/28
  • 26. 6 LD 500 10  xD    5.56 LR 90 106  R  0.90  0.949   5.56  Eq. (11-7): FRB  1 937    4.48 1  0.949 1/1.5    Eq. (11-16b): FeA  FrA  1643 lbf 3/10  1810 lbf Ans. 3/10   5.56   3180 lbf Ans. Eq. (11-7): FRA  11643   4.48 1  0.949 1/1.5    ______________________________________________________________________________ 11-43 The lower bearing is compressed by the axial load, so it is designated as bearing A. FrA  25 kN FrB  12 kN Fae  5 kN 0.47 FrA 0.47  25    7.83 kN KA 1.5 0.47 FrB 0.47 12  Eq. (11-15): FiB    3.76 kN KB 1.5 Check the condition on whether to apply Eq. (11-16) or Eq. (11-17) Eq. (11-15): FiA  FiA  ?  FiB  Fae 7.83 kN  3.76  5  8.76 kN, so Eq.(11-16) applies Eq. (11-16a): FeA  0.4 FrA  K A  FiB  Fae   0.4  25   1.5  3.76  5   23.1 kN  FrA, so use FrA  60 min   8 hr   5 day   52 weeks  LD   250 rev/min      5 yrs    yr  hr   day   week       156 106 rev Assume for tapered roller bearings that the specifications for Manufacturer 1 on p. 608 are applicable. Eq. (11-3): L  FRA  a f FD  D   LR  3/10       156 106  1.2  25    90 106  3/10  35.4 kN Ans. Eq. (11-16b): FeB  FrB  12 kN Chapter 11, Page 26/28
  • 27. 3/10 156  FRB  1.2 12    17.0 kN Ans.  90   ______________________________________________________________________________ Eq. (11-3): 11-44 The left bearing is compressed by the axial load, so it is properly designated as bearing A. FrA  875 lbf FrB  625 lbf Fae  250 lbf Assume K = 1.5 for each bearing for the first iteration. Obtain the induced loads. Eq. (11-15): Eq. (11-15): 0.47 FrA 0.47  875    274 lbf 1.5 KA 0.47 FrB 0.47  625  FiB    196 lbf KB 1.5 FiA  Check the condition on whether to apply Eq. (11-16) or Eq. (11-17). FiA  ?  FiB  Fae 274 lbf  196  250 lbf, so Eq.(11-16) applies We will size bearing B first since its induced load will affect bearing A, but it is not affected by the induced load from bearing A [see Eq. (11-16)]. From Eq. (11-16b), F eB = F rB = 625 lbf. Eq. (11-3): L  FRB  a f FD  D   LR  3/10  90 000 150  60     1 625   90 106     3/10   FRB  1208 lbf Select cone 07100, cup 07196, with 1 in bore, and rated at 1570 lbf with K = 1.45. Ans. With bearing B selected, we re-evaluate the induced load from bearing B using the actual value for K. 0.47 FrB 0.47  625  Eq. (11-15): FiB    203 lbf KB 1.45 Find the equivalent radial load for bearing A from Eq. (11-16), which still applies. Chapter 11, Page 27/28
  • 28. Eq. (11-16a): FeA  0.4 FrA  K A  FiB  Fae   0.4  875  1.5  203  250   1030 lbf FeA  FrA Eq. (11-3): L  FRA  a f FD  D   LR  3/10  90 000 150  60     11030   90 106     3/10   FRA  1990 lbf Any of the bearings with 1-1/8 in bore are more than adequate. Select cone 15590, cup 15520, rated at 2480 lbf with K = 1.69. Iterating with the new value for K, we get F eA = 1120 lbf and F rA = 2160 lbf. The selected bearing is still adequate. Ans. ______________________________________________________________________________ Chapter 11, Page 28/28