SlideShare a Scribd company logo
1 of 72
PARTIAL DIFFERENTIAL 
EQUATIONS
Formation of Partial Differential equations 
Partial Differential Equation can be formed either 
by elimination of arbitrary constants or by the 
elimination of arbitrary functions from a relation 
involving three or more variables . 
SOLVED PROBLEMS 
1.Eliminate two arbitrary constants a and b from 
here R is known 
( x - a)2 + ( y - b)2 + z2 = R2 
constant .
(OR) Find the differential equation of all spheres 
of fixed radius having their centers in x y- plane. 
solution 
( x - a)2 + ( y -b)2 + z2 = R2.......(1) 
Differentiating both sides with respect to x and y 
x a 
=- - 
2 2( ) 
y b 
=- - 
2 2( ) 
q 
p z 
¶ 
¶ 
¶ 
¶ 
= ¶ 
y 
z z 
x 
z z 
z 
¶ 
x 
y 
= 
¶ 
x a pz y b qz 
¶ 
- =- - =- 
, 
,
By substituting all these values in (1) 
2 2 2 2 2 2 
p z + q z + z = 
R 
2 
z R 
2 2 1 
2 
+ + 
Þ = 
p q 
or 
1 
2 
z R 
2 2 
2 
ö 
+ ÷ ÷ø 
æ 
z 
¶ 
+¶ ÷ø 
ç çè 
z 
¶ 
= 
æ 
ö ¶ 
çè 
y 
x
2. Find the partial Differential Equation by eliminating 
arbitrary functions from 
z = f (x2 - y2 ) 
2 2 
SOLUTION 
z f x y 
( )..........(1) 
d . wr . . to . 
xandy 
' 2 2 
( ) 2 ......(2) 
' 2 2 
f x y y 
( ) 2 ......(3) 
z 
¶ 
z 
¶ 
y 
f x y x 
x 
= - ´- 
¶ 
= - ´ 
¶ 
= -
(2) 
By (3) 
x 
=- 
z 
¶ 
ö çè 
ö 
÷ ÷ø 
x 
æ 
¶ 
x 
z 
=- Þ + =0 
ç çè 
¶ 
÷ø 
æ 
¶ 
py qx 
y 
p 
q 
y 
y
3.Find Partial Differential Equation 
by eliminating two arbitrary functions from 
z = yf (x) +xg( y) 
SOLUTION 
z = yf (x)+xg( y)......(1) 
Differentiating both sides with respect to x and y 
( ) ( )........(2) 
f x xg y 
( ) ( )........(3) 
z 
¶ 
z 
¶ 
y 
yf x g y 
x 
= + ¢ 
¶ 
= ¢ + 
¶
Again d . w .r. to x and yin equation (2)and(3) 
= ¢ + ¢ 
f x g y 
z 
¶ 
x y 
( ) ( ) 
¶ ¶ 
x (2) y (3)...... to ... 
get 
2 
´ + ´
= 
y z 
+ ¶ 
¶ 
x z 
xg y yf x xy f x g y 
( ) ( ) ( ( ) ( )) 
( ) 
ö 
÷ ÷ø 
æ 
¶ ¶ 
¶ 
= + ¢+ ¢ 
z xy z 
= + ¶ 
ç çè 
z xy f g 
y z 
+ ¶ 
¶ 
x z 
Þ ¶ 
¶ 
+ + ¢ + ¢ 
¶ 
x y 
y 
x 
y 
x 
2
Different Integrals of Partial Differential 
Equation 
1. Complete Integral (solution) 
Let 
F x y z ¶ z 
¶ 
z 
F x y z p q 
( , , , , ) = ( , , , , ) = 0......(1) 
y 
¶ 
x 
¶ 
be the Partial Differential Equation. 
The complete integral of equation (1) is given 
by 
f (x, y, z, a,b) = 0..........(2)
2. Particular solution 
A solution obtained by giving particular values to 
the arbitrary constants in a complete integral is 
called particular solution . 
3.Singular solution 
The eliminant of a , b between 
= 
x y z a b 
f f 
f 
( , , , , ) 0 
= ¶ 
= 
¶ 
0, 0 
¶ 
¶ 
a b 
when it exists , is called singular solution
4. General solution 
In equation (2) assume an arbitrary relation 
of the form . b = f (a) Then (2) becomes 
f (x, y, z, a, f (a)) = 0.........(3) 
Differentiating (2) with respect to a, 
¶ f a 
a b 
¢( ) = 0..........(4) 
+ ¶ 
¶ 
f f 
¶ 
The eliminant of (3) and (4) if exists, 
is called general solution
Standard types of first order equations 
TYPE-I 
The Partial Differential equation of the form 
f ( p,q) = 0 
has solution 
z = a x + b y + c with 
f (a,b) = 0 
TYPE-II 
The Partial Differential Equation of the form 
z = px + qy + f ( p, q) 
is called Clairaut’s form 
of pde , it’s solution is given by 
z = ax + by + f (a,b)
f (z, p,q) = 0 
TYPE-III 
If the pde is given by 
then assume that 
z = f 
x + 
ay 
( ) 
u = x + 
ay 
z f 
u 
( ) 
=
dz 
z 
= ¶ 
¶ 
.1 
a a dz 
u 
du 
z 
u 
u 
= ¶ 
¶ 
u 
u 
= ¶ 
¶ 
y 
z 
p z 
q z 
= ¶ 
¶ 
y 
du 
u 
x 
z 
x 
= 
¶ 
¶ 
¶ 
= ¶ 
= 
¶ 
¶ 
¶ 
= ¶ 
. 
 The given pde can be written as 
f ( z , dz , a dz 
) = 0 
.And also this can 
dx 
dy 
be integrated to get solution
TYPE-IV 
The pde of the form f (x, p) = g( y,q) 
can be 
solved by assuming 
f ( x , p ) = g ( y , q ) 
= 
a 
f x p = a Þ p = 
f 
x a 
( , ) ( , ) 
g y q = a Þ q = Y 
y a 
( , ) ( , ) 
dz = ¶ 
z 
dx + ¶ 
z 
dy 
¶ 
x 
¶ 
y 
= f 
( , ) +Y( , ) 
dz x a dx y a dy 
Integrate the above equation to get solution
SOLVED PROBLEMS 
1.Solve the pde p2 - q = 1 
and find the complete 
and singular solutions 
Solution 
Complete solution is given by 
z = ax + by + c 
2 
Þ = - 
1 
1 
2 
a b 
- = 
b a 
with
z =ax +(a2 -1) y +c 
d.w.r.to. a and c then 
2 
= = 
1 0 
z 
¶ 
z 
¶ 
¶ 
= + 
¶ 
c 
x ay 
a 
Which is not possible 
Hence there is no singular solution 
pq + p +q =0 
2.Solve the pde and find the 
complete, general and singular solutions
Solution 
The complete solution is given by 
z = ax +by +c 
with 
ab a b 
+ + = 
a b 
1 
0 
= - 
+ 
b 
.......(1) 
z b + + 
1 
x by c 
 = - 
b 
+
= - 
1 
( ) 
1 0 
0 
1 
2 
= = 
z 
¶ 
z 
¶ 
¶ 
+ = 
+ 
¶ 
c 
x y 
b b 
no singular solution 
To get general solution assume that 
c = g(b) 
( ).......(2) 
From eq (1) 
z b + + 
1 
x by g b 
 = - 
b 
+
z = - 
1 
+ + ¢ 
( ) ( ).......(3) 
1 
2 x y g b 
¶ 
c b 
+ 
¶ 
Eliminate from (2) and (3) to get general 
solution 
3.Solve the pde 
z = px + qy + 1+ p2 + q2 
and find the complete and singular solutions 
Solution 
The pde 
z = px + qy + 1+ p2 + q2 
is in Clairaut’s form
complete solution of (1) is 
z =ax+by + 1+a2 +b2 .......(2) 
d.w.r.to “a” and “b” 
ö 
........(3) 
0 
x a 
y b 
1 
0 
1 
2 2 
2 2 
÷ ÷ ÷ ÷ ÷ 
ø 
= 
+ + 
= + 
z 
¶ 
z 
¶ 
¶ 
= 
+ + 
= + 
¶ 
a b 
b 
a b 
a
y b 
2 2 
2 
From (3) 
x a 
x y a b 
1 ( ) 
+ = + 
1 
1 
2 
1 
1 
, 
1 
2 2 
2 2 
2 2 
2 2 
2 2 
2 
2 2 
2 
x y 
a b 
a b 
a b 
a b 
= - + 
+ + 
Þ 
+ + 
+ + 
= 
+ + 
=
2 
2 2 
ax a 
a b 
+ + 
2 2 
= 
= 
by b 
a b 
+ + 
1 1 
= Þ = - + 
0 1 ( ) 
1 
1 
1 
0 
1 
0 
1 
0 
1 
+ + 
2 2 2 
2 2 2 
2 2 
2 2 
2 2 
2 
+ 
+ 
- 
Þ + + = 
= 
+ + 
+ + + + - 
x y z 
z x y 
a b 
z 
a b 
ax by a b 
is required singular solution
4.Solve the pde(1- x) p + (2 - y)q = 3- z 
Solution 
pde 
- x p + - y q = - 
z 
= + + - - 
(1 ) (2 ) 3 
z px qy p q 
(3 2 ) 
Complete solution of above pde is 
z =ax +by +(3-a -2b) 
5.Solve the pde p2 + q2 = z 
Solution 
Assume that z =f(x+ay)
u = x + 
ay 
z =f 
(u) 
dz 
z 
= ¶ 
¶ 
.1 
a a dz 
u 
du 
z 
u 
u 
= ¶ 
¶ 
u 
u 
= ¶ 
¶ 
y 
z 
p z 
q z 
= ¶ 
¶ 
y 
du 
u 
x 
z 
x 
= 
¶ 
¶ 
¶ 
= ¶ 
= 
¶ 
¶ 
¶ 
= ¶ 
. 
2 
2 
÷ø 
p q z dz + a 2 
æ ÷ø 
dz 
= 2 
+ = Þ æ 
2 2 z 
du 
du 
ö çè 
ö çè 
From given pde
du 
dz 
z a 
z 
z 
2 
a 
dz 
ö çè 
dz 
ö du 
çè 
a 
du 
2 2 
2 
1 
1 
1 
1 
+ 
Þ = 
+ 
= ÷ø 
æ 
+ 
= ÷ø 
æ 
Integrating on both sides 
b 
2 
z x ay 
a 
b 
a 
z u 
+ 
= + 
+ 
+ 
+ 
= 
2 
1 
2 
1 
2
6. Solve the pde zpq = p + q 
Solution 
Assume 
q = ap 
Substituting in given equation 
dy 
zpap = p + 
ap 
q a 
p a 
= + = + 
1 , 1 
dx +¶ 
z 
x 
¶ 
dx a 
z 
=¶ 
¶ 
dz a 
az 
dy 
y 
dz z 
z 
az 
Þ = 1 + + 1 
+
zadz =(1+a)(dx+ady) 
Integrating on both sides 
a z 2 
=(1+a)(x+ay)+b 
2 
7.Solve pde 
pq xy 
z 
z 
¶ 
¶ 
(or) xy 
y 
x 
= 
¶ 
¶ 
= 
( )( ) 
Solution 
q 
y 
p = 
x
Assume that 
y 
= = 
p ax q y 
p 
 = = 
, 
dz pdx qdy axdx y 
dy 
a 
a 
a 
q 
x 
= + = + 
Integrating on both sides 
2 2 
z =a x + y + 
b 
a 
2 2
8. Solve the equation p2 + q2 = x + y 
Solution 
2 2 
p - x = y - q = 
a 
p = a + x , 
q = y - 
a 
dz = pdx + qdy = a + xdx + y - 
ady 
integrating 
3 
3 
z = a + x + y - a 2 + b 
( ) 2 
( ) 
3 
2
Equations reducible to the standard forms 
(i)If and occur in the pde as in 
(xm p) ( ynq) 
F(xm p, ynq) = 0 Or in F(z, xm p, ynq) = 0 
Case (a) Put and 
x1-m = X y1-n = Y 
m ¹ 1 n ¹ 1 
if ; 
n 
m 
(1 ) 
n y 
z 
= ¶ 
¶ 
z 
= ¶ 
¶ 
Y 
X 
z 
= ¶ 
¶ 
z 
Y 
Y 
x 
p z 
q z 
= ¶ 
¶ 
y 
m x 
X 
x 
X 
x 
- 
- 
- 
¶ 
¶ 
¶ 
= ¶ 
- 
¶ 
¶ 
¶ 
= ¶ 
(1 )
(1 ) (1 ) 
n Q n 
(1 ) (1 ) 
x m 
p = ¶ 
z 
y q = ¶ 
z 
Y 
m P m 
X 
n 
- = - 
¶ 
- = - 
¶ 
z = 
P z 
¶ , 
= ¶ 
where Q 
Y 
X 
¶ 
¶ 
Then F ( x m p , y n q ) = 0 reduces to F(P,Q) = 0 
F(z, xm p, ynq) = 0 F(z, P,Q) = 0 
Similarly reduces 
to
case(b) 
m = 1 n = 1 
log x = X ,log y = Y 
If or 
put 
qy Q 
p = ¶ 
z 
q =¶ 
z 
1 
Y y 
px P 
X x 
Þ = 
¶ 
Þ = 
¶ 
1 
(zk p) (zkq) F(zk p, zkq) 
(ii)If and occur in pde as in 
( , ) ( , ) 1 2 Or in f x zk p = f y zkq
Case(a) Put z 1 + k = Z if k ¹ -1 
= + ¶ 
¶ 
k k 
- - - 
`1 `1 
(1 ) (1 ) 
= + ¶ 
¶ 
- - - 
z q k Q 
z k Z 
z k Z 
Þ = + 
¶ 
y 
Z 
Z 
= ¶ 
¶ 
z 
Z 
Z 
y 
z 
z 
= ¶ 
¶ 
y 
z p k P 
x 
x 
z 
x 
k k 
`1 `1 
(1 ) (1 ) 
¶ 
¶ 
¶ 
Þ = + 
¶ 
¶ 
¶ 
¶ 
Z = 
Q 
P Z 
¶ , where 
= ¶ 
y 
x 
¶ 
¶ 
Given pde reduces to 
F(P,Q) and 
f ( x , P ) = f ( y , Q 
) 1 2
Case(b) if k = -1 log z = Z 
- 
1 
z q Q 
z Z 
= ¶ 
¶ 
z Z 
y 
Z 
Z 
= ¶ 
¶ 
Z 
Z 
= ¶ 
¶ 
y 
z 
z 
z 
= ¶ 
¶ 
y 
z p P 
x 
x 
z 
x 
Þ = 
¶ 
¶ 
¶ 
¶ 
Þ = 
¶ 
¶ 
¶ 
¶ 
- 
1 
Solved Problems 
1.Solve 
p2x4 +q2 y4 = z2 
2 2 2 2 
ö 
æ 
+ ÷ ÷ø 
æ 
qy 
px 
Solution 1.......(1) 
= ÷ ÷ø 
ç çè 
ö 
ç çè 
z 
z
m n 
= = 
k 
2, 2 
=- 
1 
x-1 = X y-1 = Y log z = Z 
= - ¶ 
¶ 
- - 
2 2 
= - ¶ 
¶ 
- - 
zy Q 
zx Z 
zy Z 
Y 
X 
X 
¶ 
¶ 
Y 
Y 
y 
z 
Z 
Z 
p = ¶ 
z 
q z 
y 
zx P 
X 
x 
z 
Z 
Z 
x 
2 2 
= - 
¶ 
¶ 
¶ 
¶ 
¶ 
= ¶ 
= ¶ 
¶ 
= - 
¶ 
¶ 
¶ 
= ¶ 
¶ 
Z = 
Q 
P Z 
¶ , where 
= ¶ 
Y 
X 
¶ 
¶
Q 
px = - = - 
P qy 
z 
z 
2 2 
, 
( ) ( ) 
2 2 
+ = 
P Q 
- + - = 
P Q 
1 
1 
2 2 
(1)becomes 
Z aX bY c 
 = + + 
a 2 + b 2 = 1, b = 1 
- 
a 
2 
log 1 
2 2 2 
z = ax + - a y + 
c
2. Solve the pde p2 + q2 = z2 (x2 + y2 ) 
SOLUTION 
p = + ÷ø 
( 2 2 ).....(1) 
2 2 
x y 
q 
z 
z 
æ + ÷ø 
ö çè 
çè 
æ 
ö k =-1 log z = Z 
- 
1 
z q Q 
z Z 
= ¶ 
¶ 
z Z 
y 
Z 
Z 
= ¶ 
¶ 
y 
z 
z 
= ¶ 
¶ 
= ¶ 
¶ 
Z 
z 
z 
y 
z p P 
x 
x 
Z 
x 
Þ = 
¶ 
¶ 
¶ 
¶ 
Þ = 
¶ 
¶ 
¶ 
¶ 
- 
1
Eq(1) becomes 
P 2 + Q 2 = ( x 2 + 
y 
2 ).....(2) 
P 2 - x 2 = y 2 - Q 2 = 
a 
2 
x a x 
1 2 2 
b 
2 
z a x 
ö çè 
y y a a y 
ö a 
çè 
a 
+ ÷ø 
- æ 
- 
+ + + ÷ø 
= æ 
- 
- 
1 
2 2 2 
cosh 
( ) 
2 2 
( ) 
2 
sinh 
2 
log
Lagrange’s Linear Equation 
Def: The linear partial differenfial equation 
of first order is called as Lagrange’s linear Equation. 
This eq is of the form Pp + Qq = R 
Where P , Q and R are functions x,y and z 
The general solution of the partial differential 
equation P p + Q q = R is F(u,v) = 0 
Where is arbitrary function of 
and 
F 1 u(x, y, z) = c 
2 v(x, y, z) = c
Here u = c and v = 1 c2 are independent solutions 
dz 
of the auxilary equations 
R 
dx = dy 
= 
Q 
P 
Solved problems 
1.Find the general solution of x2 p + y2q = (x + y)z 
Solution 
dx 
dy 
dz 
auxilary equations are = = 
x 
2 y 
2 ( x + y ) 
z
dy 
dx 
= 
Integrating on both sides 
2 y 
2 
u x y c 
( - 1 - 
1 
) 1 
x 
= - = 
2 2 ( ) 
x y z 
( ) 
( )( ) ( ) 
dz 
z 
dx - 
dy 
d x - 
y 
d x - 
y 
( ) 
x y 
dz 
x y z 
x y x y 
dz 
x y 
= 
- 
+ 
= 
- + 
+ 
= 
- 
( ) 
Integrating on both sides
x - y = z + 
c 
= - = 
log( ) log log 
v x y z c 
2 
1 
2 
( ) 
- 
The general solution is given by F(u,v) = 0 
F(x-1 - y-1,(x - y)z-1) = 0 
2.solve x2 (y - z) + y2 (z - x)q = z2 (x - y) 
solution Auxiliary equations are given by 
dz 
dy 
dx 
2 ( ) y 2 ( z x 
) z2 (x y) 
x y z 
- 
= 
- 
= 
-
dz 
dy 
dx 
2 2 2 
z 
y 
x 
( ) ( ) ( ) 
dy 
+ + 
dz 
dx 
2 2 2 
y - z + z - x + x - 
y 
( ) ( ) ( ) 
0 
dz 
dy 
+ + = 
dx 
2 2 2 
- 
= 
- 
= 
- 
z 
y 
x 
z 
y 
x 
x y 
z x 
y z 
Integrating on both sides
u =1 +1 +1 = 
a 
x y z 
- - - 
1 1 1 
z dz 
z x y 
y dy 
y z x 
x dx 
x y z 
( ) ( ) ( ) 
1 1 1 
+ + 
x y - z + y z - x + z x - 
y 
( ) ( ) ( ) 
0 
dz 
dy 
+ + = 
- 
= 
- 
= 
- 
- - - 
z 
y 
dx 
x 
x dx y dy z dz 
Integrating on both sides 
v = xyz =b
The general solution is given by 
F(x-1 + y-1 + z-1, xyz) = 0 
HOMOGENEOUS LINEAR PDE WITH 
CONSTANT COEFFICIENTS 
Equations in which partial derivatives 
occurring are all of same order (with degree 
one ) and the coefficients are constants ,such 
equations are called homogeneous linear PDE 
with constant coefficient
a z 
n 
a z 
a z 
+ ¶ 
+ ¶ 
+ ¶ 
........ ( , ) 1 1 2 2 2 F x y 
¢ = ¶ 
= ¶ 
¶ 
Assume that , . 
y 
D 
x 
D 
¶ 
¶ 
nth 
then order linear homogeneous equation is 
given by 
n + n- ¢ + n- ¢ + + ¢ = 
1 D a D D a D D a D n z F x y 
n 
( 2 2 ......... ) ( , ) 
2 
1 
or 
f (D,D¢)z = F(x, y).........(1) 
y 
x y 
x y 
x 
z 
n 
n 
n n 
n 
n 
n 
n 
= 
¶ 
¶ ¶ 
¶ ¶ 
¶ 
- -
The complete solution of equation (1) consists 
of two parts ,the complementary function and 
particular integral. 
The complementary function is complete 
solution of equation of f (D,D¢)z = 0 
Rules to find complementary function 
Consider the equation 
k z 
0 2 
2 
+ ¶ 
2 
2 
k z 
+ ¶ 
2 1 
2 
= 
¶ 
¶ ¶ 
¶ 
¶ 
y 
x y 
x 
z 
or 
D2 + k DD¢ + k D¢ z = 
( 2 ) 0.............(2) 
1 2
The auxiliary equation for (A.E) is given by 
D2 + k DD¢ + k D¢ = 
D = m,D¢ =1 
And by giving 
2 0 
1 2 
m2 + k m+ k = 
The A.E becomes 0....(3) 1 2 
Case 1 
If the equation(3) has two distinct roots 1 2 m ,m 
The complete solution of (2) is given by 
( ) ( ) 1 1 2 2z = f y + m x + f y + m x
Case 2 
If the equation(3) has two equal roots i.e 1 2 m = m 
The complete solution of (2) is given by 
( ) ( ) 1 1 2 1z = f y +m x +xf y +m x 
Rules to find the particular Integral 
Consider the equation 
D2 + k DD¢+ k D¢ z = F x y 
( 2 ) ( , ) 
1 2 
f (D,D¢)z = F(x, y)
Particular Integral (P.I) 
F x y 
( , ) 
f D D 
¢ 
( , ) 
= 
Case 1 If 
F(x, y) = eax+by 
then P.I= 
¢ 
ax + 
by 
= ¹ 
, ( , ) 0 
1 
( , ) 
1 
( , ) 
+ 
e f a b 
f a b 
e 
f D D 
ax by 
D - a ¢ 
f (a,b) = 0 ( D ) 
If and is 
b 
factor of f (D,D¢) 
then
P.I =xeax+by 
If and D - a ¢ 
is 
factor of 
2 
then P.I 
F(x, y) = sin(mx +ny)or cos(mx +ny) 
= + 
sin( ) 
mx ny 
= + 
2 2 f m2 mn n2 
( , , ) 
sin( ) 
( , , ) 
mx ny 
f D DD D 
- - - 
¢ ¢ 
Case 2 
P.I 
f (a,b) = 0 ( D )2 
b 
f (D,D¢) 
= x eax+by 
2
Case 3 
F(x, y) = xm yn 
1 = ¢ - 
xm yn [ f D D ] xm yn 
f D D 
( , ) 1 
¢ 
( , ) 
P.I = 
[ ( , )] 1 Expand f D D ¢ - in ascending powers of 
D or D ¢ and operating on x m y n term by term. 
Case 4 when is any function of x 
and y. 
P.I= 
F(x, y) 
1 F x y 
( , ) 
f D D¢ 
( , ) 
1 ( , ) ( , ) 
=ò - 
- ¢ 
F x y F x c mx dx 
D mD
(D -mD¢) f (D,D¢) 
Here is factor of 
(y + mx) 
Where ‘c’ is replaced by after integration 
Solved problems 
1.Find the solution of pde 
(D3 - D¢3 + 3DD¢2 - 3D2D¢)z = 0 
Solution 
The Auxiliary equation is given by
Solution 
The Auxiliary equation is given by 
m3 -1+3m-3m2 = 0 
By taking 
D = m,D¢ = 1 
m =1,1,1. 
2 
1 2 = f y + x + xf y + x + x f y + x 
Complete solution ( ) ( ) ( ) 3 
2. Solve the pde (D3 + 4D2D¢ - 5DD¢)z = 0 
Solution 
The Auxiliary equation is given by
3 2 
m m m 
+ - = 
4 5 0 
 = - 
0,1, 5 
z f y f y x f y x 
( ) ( ) ( 5 ) 
1 2 3 
m 
= + + + - 
3. Solve the pde (D2 + D¢2 )z = 0 
Solution 
the A.E is given by m2 +1=0 
m = ±i 
( ) ( ) 1 2  z = f y + ix + f y - ix
4. Find the solution of pde 
(D2 + 3DD¢ - 4D¢2 )z = e2x+ 4 y 
Solution 
Complete solution = 
Complementary Function + Particular Integral 
m2 + 3m- 4 = 0 
The A.E is given by 
m =-4,1 
. ( ) ( 4 ) 1 2 C F = f y + x +f y - x
2 4 
P I e 
3 4 36 
. 
2 4 
2 2 
- 
= 
+ ¢- ¢ 
= 
x+ y e x+ y 
D DD D 
Complete solution 
= C.F + P.I 
e x y y x y x 
36 
( ) ( 4 ) 
2 4 
1 2 
+ 
= f + +f - -
5.Solve (D3 - 3DD¢ + 2D¢3 )z = e2x- y + ex+ y 
Solution 
3 
A E m m 
= - + 
. 3 2 
 = - 
1,1, 2. 
C F y x x y x y x 
. ( ) ( ) ( 2 ) 
1 2 3 
m 
= f + + f + + f 
- 
x y 2 
x y 
2 
e 
P I e 
= 
. 2 2 
1 D 3 - DD ¢ 2 + D 
¢ 
3 
D D D D 
- ¢ + ¢ 
3 2 ( ) ( 2 ) 
= 
- -
2 
P I e 
- - 
( ) ( 2 ) 9 
. 
2 
2 
1 
x y xe x y 
D D D D 
= 
- ¢ + ¢ 
= 
x y x y 
P I e 
2 3 2 3 2 2 
x y 
P I x e 
e 
D D D D 
D DD D 
+ 
+ + 
 = 
- ¢ + ¢ 
= 
- ¢ + ¢ 
= 
6 
. 
3 2 ( ) ( 2 ) 
. 
2 
2 
1 2 z = C.F + P.I + P.I
x y 
x - 
y 
z = y + x + x y + x + y - x + xe + 
x e + 
9 6 
( ) ( ) ( 2 ) 
2 2 
1 2 3 f f f 
6.Solve (D2 -DD¢)z =cos x cos 2y 
Solution 
(D2 -DD¢)z = 1 x + y + x - y 
[cos( 2 ) cos( 2 )] 
2 
2 
A E m m 
. 0 
0,1 
C F y x y 
. ( ) ( ) 
1 2 
m 
=f + +f 
= 
= - =
P I x y = + 
. cos( 2 ) 1 2 x y x y 
cos( 2 ) 
= + 
cos( 2 ) 
(( 1) ( 2)) 
= + 
D DD 
( ) 
- - - 
- ¢ 
P I x y 
= - = x - 
y x y 
D DD 
. cos( 2 ) 2 2 - 
cos( 2 ) 
3 
cos( 2 ) 
(( 1) (2)) 
( ) 
= - 
- - 
- ¢ 
( ) ( ) cos( 2 ) 1 1 2 z = f y + x +f y - x + x + y - x - y 
cos( 2 ) 
3 
7.Solve (D2 + DD¢ - 6D¢2 )z = x2 y2 
Solution 
. 2 6 0 
= - 
A E m m 
= + - = 
2, 3. 
m
. ( 2 ) ( 3 ) 1 2 C F = f y + x +f y - x 
2 2 
2 
2 
æ ¢ 
2 
2 
2 
æ ¢ 
æ ¢ 
2 
P I x y 
D 
é 
1 1 6 
é 
D 2 
D 
2 2 
1 
2 
2 
2 2 
2 2 
6 
D 
D 
D 
ù 
ö 
ö 
1 6 6 
. 
x y 
D 
D 
D 
D 
D 
x y 
D 
D 
D 
D DD D 
ù 
ú ú 
û 
ê ê 
ë 
ö 
÷ ÷ø 
ç çè 
- 
¢ 
+ ÷ ÷ø 
ç çè 
- 
¢ 
= - 
úû 
êë 
÷ ÷ø 
ç çè 
- 
¢ 
= + 
+ ¢ - ¢ 
= 
- 
-
é ¢ 
ö 
D D 
1 6 
2 
D 
D 
2 2 
2 
x 
D x y x y 
2 6 2 2 
2 
x 
3 4 4 
D x y x y 6 2 
x x 
3 4 
D x y x y 8 2 
x 
ù 
úû 
é 
é 
2 2 2 
é 
æ ¢ 
æ 
- 
- 
- 
2 2 2 
= + + 
é 
= + + 
êë 
ù 
ö 
ö 
ù 
úû 
êë 
ù 
ù 
úû 
êë 
2 
+ ÷ ÷ø 
ç çè æ 
= - - 
úû 
êë 
+ ÷ ÷ø 
ç çè 
= - - 
úû 
êë 
+ ÷ ÷ø 
ç çè 
- 
¢ 
= - 
- 
2 
90 
2 
60 
12 
12 
3 
2 
12 
12 
3 
2 
4 2 5 6 
2 
2 
2 2 2 
2 2 
2 
2 
2 
x y x y x 
D 
D 
D 
x y 
D 
D 
D
7.Solve (D2 - 5DD¢ + 6D¢2 )z = y sin x 
Solution 
A.E is m2 - 5m+ 6 = 0 
m =3,m = 2. 
C . F =P . I f ( y y sin x 
+ 3 x ) +f ( y + 2 x 
) 1 2 2 
2 y x 
y x 
sin 
sin 
ù 
é 
[ ] 
[ x x x y x x] 
1 
1 
1 
1 
D D 
a x x x x 
D D 
a x xdx 
D D 
D D 
D D 
D D D D 
D DD D 
2 cos 2sin ( 2 ) cos 
( 3 ) 
cos 2( cos sin ) 
( 3 ) 
( 2 )sin 
( 3 ) 
( 2 ) 
( 3 ) 
( 3 )( 2 ) 
5 6 
- - + 
- ¢ 
= 
- - - + 
- ¢ 
= 
- 
- ¢ 
= 
úû 
êë 
- ¢ - ¢ 
= 
- ¢ - ¢ 
= 
- ¢ + ¢ 
= 
ò
P I y x 
. sin 2 2 
y x 
y x 
sin 
sin 
ù 
é 
here 
= +2 
[ ] 
[ x x x y x x] 
1 
1 
1 
1 
D D 
a x x x x 
D D 
a x xdx 
D D 
D D 
D D 
D D D D 
D DD D 
2 cos 2sin ( 2 ) cos 
( 3 ) 
cos 2( cos sin ) 
( 3 ) 
( 2 ) sin 
( 3 ) 
( 2 ) 
( 3 ) 
( 3 )( 2 ) 
5 6 
- - + 
- ¢ 
= 
- - - + 
- ¢ 
= 
- 
- ¢ 
= 
úû 
êë 
- ¢ - ¢ 
= 
- ¢ - ¢ 
= 
- ¢+ ¢ 
= 
ò (a y x)
[ y x x 
] 
1 
= 
D D 
= ò ( - ( b - 3 x )cos x - 
2sin x ) 
dx 
(b y x) 
b x x x x x 
= - + + + 
sin 2cos 3( sin cos ) 
y x x x x x x 
= - + + + + 
( 3 )sin 2cos 3( sin cos ) 
x y x 
5cos sin 
cos 2sin 
( 3 ) 
= - 
- - 
- ¢ 
here 
= +3
Non Homogeneous Linear PDES 
If in the equation f (D,D¢)z = F(x, y)............(1) 
the polynomial expression f (D,D¢) 
is not 
homogeneous, then (1) is a non- homogeneous 
linear partial differential equation 
Ex (D2 + 3D + D¢ - 4D¢2 )z = e2x+3 y 
Complete Solution 
= Complementary Function + Particular Integral 
To find C.F., factorize 
into factors of the form 
f (D,D¢) 
(D -mD¢-c)
If the non homogeneous equation is of the form 
- ¢ - - ¢ - = 
D m D c D m D c z F x y 
( )( ) ( , ) 
1 1 2 2 
= c x + + c x + 
C F e 1 f y m x e 2 f 
y m x 
. ( ) ( ) 
1 2 
1.Solve (D2 -DD¢+D)z = x2 
Solution 
f (D,D¢) = D2 - DD¢ + D = D(D - D¢ +1) 
. ( ) ( ) 1 2 C F =e-xf y +x +f y
2 
D 
P I x 
. 1 1 ( 1) 
x D 
x D 
1 ( 1) ( 1) ...... 
ù 
úû 
é ¢ + 
= - 
é ¢ + 
+ úûù 
é 
ù 
+ + = úû 
êë 
ù 
é 
é 
é ¢ + 
= + + 
êë 
ù 
ú úû 
ê êë 
ù 
+ úû 
êë 
êë 
= + 
úû 
êë 
- ¢ + 
= 
- 
3 12 3.4 3.4.5 12.5.6 
1 
3 4 4 5 6 
2 
2 
2 
2 
2 2 
2 
2 
1 
2 2 
x x x x x x 
D 
x 
D 
D 
D 
x 
D 
D DD D D
2.Solve (D +D¢-1)(D + 2D¢-3)z = 4 
Solution 
( ) ( 2 ) 4 1 
3 
z =exf y -x +e 3 
xf y - x + 
1

More Related Content

What's hot

Orthogonal sets and basis
Orthogonal sets and basisOrthogonal sets and basis
Orthogonal sets and basis
Prasanth George
 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equations
Ahmed Haider
 
Linear differential equation
Linear differential equationLinear differential equation
Linear differential equation
Pratik Sudra
 

What's hot (20)

Green Theorem
Green TheoremGreen Theorem
Green Theorem
 
Orthogonal sets and basis
Orthogonal sets and basisOrthogonal sets and basis
Orthogonal sets and basis
 
Partial differentiation B tech
Partial differentiation B techPartial differentiation B tech
Partial differentiation B tech
 
Interpolation In Numerical Methods.
 Interpolation In Numerical Methods. Interpolation In Numerical Methods.
Interpolation In Numerical Methods.
 
First order non-linear partial differential equation & its applications
First order non-linear partial differential equation & its applicationsFirst order non-linear partial differential equation & its applications
First order non-linear partial differential equation & its applications
 
Double Integrals
Double IntegralsDouble Integrals
Double Integrals
 
Higher order ODE with applications
Higher order ODE with applicationsHigher order ODE with applications
Higher order ODE with applications
 
Higher Differential Equation
Higher Differential Equation Higher Differential Equation
Higher Differential Equation
 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equations
 
First order ordinary differential equations and applications
First order ordinary differential equations and applicationsFirst order ordinary differential equations and applications
First order ordinary differential equations and applications
 
Linear differential equation of second order
Linear differential equation of second orderLinear differential equation of second order
Linear differential equation of second order
 
DIFFERENTIAL EQUATIONS
DIFFERENTIAL EQUATIONSDIFFERENTIAL EQUATIONS
DIFFERENTIAL EQUATIONS
 
Application of partial derivatives
Application of partial derivativesApplication of partial derivatives
Application of partial derivatives
 
Numerical analysis ppt
Numerical analysis pptNumerical analysis ppt
Numerical analysis ppt
 
Gauss jordan
Gauss jordanGauss jordan
Gauss jordan
 
Applied Calculus Chapter 4 multiple integrals
Applied Calculus Chapter  4 multiple integralsApplied Calculus Chapter  4 multiple integrals
Applied Calculus Chapter 4 multiple integrals
 
Jacobians new
Jacobians newJacobians new
Jacobians new
 
Divergence theorem
Divergence theoremDivergence theorem
Divergence theorem
 
Linear differential equation
Linear differential equationLinear differential equation
Linear differential equation
 
HYPERBOLIC FUNCTION
HYPERBOLIC FUNCTIONHYPERBOLIC FUNCTION
HYPERBOLIC FUNCTION
 

Viewers also liked

partial diffrentialequations
partial diffrentialequationspartial diffrentialequations
partial diffrentialequations
8laddu8
 
Taobao English Shopping Instruction
Taobao English Shopping InstructionTaobao English Shopping Instruction
Taobao English Shopping Instruction
caroline201001
 

Viewers also liked (18)

Chapter 1 (maths 3)
Chapter 1 (maths 3)Chapter 1 (maths 3)
Chapter 1 (maths 3)
 
partial diffrentialequations
partial diffrentialequationspartial diffrentialequations
partial diffrentialequations
 
APPLICATION OF PARTIAL DIFFERENTIATION
APPLICATION OF PARTIAL DIFFERENTIATIONAPPLICATION OF PARTIAL DIFFERENTIATION
APPLICATION OF PARTIAL DIFFERENTIATION
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Partial Differentiation & Application
Partial Differentiation & Application Partial Differentiation & Application
Partial Differentiation & Application
 
Chapter 3 (maths 3)
Chapter 3 (maths 3)Chapter 3 (maths 3)
Chapter 3 (maths 3)
 
Partial Differential Equations, 3 simple examples
Partial Differential Equations, 3 simple examplesPartial Differential Equations, 3 simple examples
Partial Differential Equations, 3 simple examples
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
rank of matrix
rank of matrixrank of matrix
rank of matrix
 
Hsk hanzi
Hsk hanziHsk hanzi
Hsk hanzi
 
Xu Beihong - Painting as a nationalistic propaganda of enforcing China for po...
Xu Beihong - Painting as a nationalistic propaganda of enforcing China for po...Xu Beihong - Painting as a nationalistic propaganda of enforcing China for po...
Xu Beihong - Painting as a nationalistic propaganda of enforcing China for po...
 
Origin of yuezhi tribe
Origin  of yuezhi tribeOrigin  of yuezhi tribe
Origin of yuezhi tribe
 
Hello, Joe. Hello, Mike; Hello, Robert.
Hello, Joe. Hello, Mike; Hello, Robert.Hello, Joe. Hello, Mike; Hello, Robert.
Hello, Joe. Hello, Mike; Hello, Robert.
 
Personality and soft skills development unit 1
Personality and soft skills development unit 1Personality and soft skills development unit 1
Personality and soft skills development unit 1
 
Shane's Wuthering Heights
Shane's Wuthering HeightsShane's Wuthering Heights
Shane's Wuthering Heights
 
OEP Scotland 19 March
OEP Scotland 19 MarchOEP Scotland 19 March
OEP Scotland 19 March
 
Taobao English Shopping Instruction
Taobao English Shopping InstructionTaobao English Shopping Instruction
Taobao English Shopping Instruction
 
2015 full year China media scene
 2015 full year China media scene  2015 full year China media scene
2015 full year China media scene
 

Similar to maths

Linear differential equation with constant coefficient
Linear differential equation with constant coefficientLinear differential equation with constant coefficient
Linear differential equation with constant coefficient
Sanjay Singh
 

Similar to maths (20)

MA8353 TPDE
MA8353 TPDEMA8353 TPDE
MA8353 TPDE
 
Dubey
DubeyDubey
Dubey
 
Gr 11 equations
Gr 11   equationsGr 11   equations
Gr 11 equations
 
Liner Differential Equation
Liner Differential EquationLiner Differential Equation
Liner Differential Equation
 
3c. Pedagogy of Mathematics (Part II) - Algebra (Ex 3.3)
3c. Pedagogy of Mathematics (Part II) - Algebra (Ex 3.3)3c. Pedagogy of Mathematics (Part II) - Algebra (Ex 3.3)
3c. Pedagogy of Mathematics (Part II) - Algebra (Ex 3.3)
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuity
 
Functions limits and continuity
Functions limits and continuityFunctions limits and continuity
Functions limits and continuity
 
Linear differential equation with constant coefficient
Linear differential equation with constant coefficientLinear differential equation with constant coefficient
Linear differential equation with constant coefficient
 
Ece3075 a 8
Ece3075 a 8Ece3075 a 8
Ece3075 a 8
 
Hw5sols
Hw5solsHw5sols
Hw5sols
 
Advanced Engineering Mathematics Solutions Manual.pdf
Advanced Engineering Mathematics Solutions Manual.pdfAdvanced Engineering Mathematics Solutions Manual.pdf
Advanced Engineering Mathematics Solutions Manual.pdf
 
Deber10
Deber10Deber10
Deber10
 
Application of derivatives 2 maxima and minima
Application of derivatives 2  maxima and minimaApplication of derivatives 2  maxima and minima
Application of derivatives 2 maxima and minima
 
non homogeneous equation btech math .pptx
non homogeneous equation  btech math .pptxnon homogeneous equation  btech math .pptx
non homogeneous equation btech math .pptx
 
Derivatives
DerivativesDerivatives
Derivatives
 
Complex numbers
Complex numbersComplex numbers
Complex numbers
 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdf
 
Sbma 4603 numerical methods Assignment
Sbma 4603 numerical methods AssignmentSbma 4603 numerical methods Assignment
Sbma 4603 numerical methods Assignment
 
EPCA_MODULE-2.pptx
EPCA_MODULE-2.pptxEPCA_MODULE-2.pptx
EPCA_MODULE-2.pptx
 
Sample question paper 2 with solution
Sample question paper 2 with solutionSample question paper 2 with solution
Sample question paper 2 with solution
 

Recently uploaded

Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
dharasingh5698
 

Recently uploaded (20)

(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
 
22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 

maths

  • 2. Formation of Partial Differential equations Partial Differential Equation can be formed either by elimination of arbitrary constants or by the elimination of arbitrary functions from a relation involving three or more variables . SOLVED PROBLEMS 1.Eliminate two arbitrary constants a and b from here R is known ( x - a)2 + ( y - b)2 + z2 = R2 constant .
  • 3. (OR) Find the differential equation of all spheres of fixed radius having their centers in x y- plane. solution ( x - a)2 + ( y -b)2 + z2 = R2.......(1) Differentiating both sides with respect to x and y x a =- - 2 2( ) y b =- - 2 2( ) q p z ¶ ¶ ¶ ¶ = ¶ y z z x z z z ¶ x y = ¶ x a pz y b qz ¶ - =- - =- , ,
  • 4. By substituting all these values in (1) 2 2 2 2 2 2 p z + q z + z = R 2 z R 2 2 1 2 + + Þ = p q or 1 2 z R 2 2 2 ö + ÷ ÷ø æ z ¶ +¶ ÷ø ç çè z ¶ = æ ö ¶ çè y x
  • 5. 2. Find the partial Differential Equation by eliminating arbitrary functions from z = f (x2 - y2 ) 2 2 SOLUTION z f x y ( )..........(1) d . wr . . to . xandy ' 2 2 ( ) 2 ......(2) ' 2 2 f x y y ( ) 2 ......(3) z ¶ z ¶ y f x y x x = - ´- ¶ = - ´ ¶ = -
  • 6. (2) By (3) x =- z ¶ ö çè ö ÷ ÷ø x æ ¶ x z =- Þ + =0 ç çè ¶ ÷ø æ ¶ py qx y p q y y
  • 7. 3.Find Partial Differential Equation by eliminating two arbitrary functions from z = yf (x) +xg( y) SOLUTION z = yf (x)+xg( y)......(1) Differentiating both sides with respect to x and y ( ) ( )........(2) f x xg y ( ) ( )........(3) z ¶ z ¶ y yf x g y x = + ¢ ¶ = ¢ + ¶
  • 8. Again d . w .r. to x and yin equation (2)and(3) = ¢ + ¢ f x g y z ¶ x y ( ) ( ) ¶ ¶ x (2) y (3)...... to ... get 2 ´ + ´
  • 9. = y z + ¶ ¶ x z xg y yf x xy f x g y ( ) ( ) ( ( ) ( )) ( ) ö ÷ ÷ø æ ¶ ¶ ¶ = + ¢+ ¢ z xy z = + ¶ ç çè z xy f g y z + ¶ ¶ x z Þ ¶ ¶ + + ¢ + ¢ ¶ x y y x y x 2
  • 10. Different Integrals of Partial Differential Equation 1. Complete Integral (solution) Let F x y z ¶ z ¶ z F x y z p q ( , , , , ) = ( , , , , ) = 0......(1) y ¶ x ¶ be the Partial Differential Equation. The complete integral of equation (1) is given by f (x, y, z, a,b) = 0..........(2)
  • 11. 2. Particular solution A solution obtained by giving particular values to the arbitrary constants in a complete integral is called particular solution . 3.Singular solution The eliminant of a , b between = x y z a b f f f ( , , , , ) 0 = ¶ = ¶ 0, 0 ¶ ¶ a b when it exists , is called singular solution
  • 12. 4. General solution In equation (2) assume an arbitrary relation of the form . b = f (a) Then (2) becomes f (x, y, z, a, f (a)) = 0.........(3) Differentiating (2) with respect to a, ¶ f a a b ¢( ) = 0..........(4) + ¶ ¶ f f ¶ The eliminant of (3) and (4) if exists, is called general solution
  • 13. Standard types of first order equations TYPE-I The Partial Differential equation of the form f ( p,q) = 0 has solution z = a x + b y + c with f (a,b) = 0 TYPE-II The Partial Differential Equation of the form z = px + qy + f ( p, q) is called Clairaut’s form of pde , it’s solution is given by z = ax + by + f (a,b)
  • 14. f (z, p,q) = 0 TYPE-III If the pde is given by then assume that z = f x + ay ( ) u = x + ay z f u ( ) =
  • 15. dz z = ¶ ¶ .1 a a dz u du z u u = ¶ ¶ u u = ¶ ¶ y z p z q z = ¶ ¶ y du u x z x = ¶ ¶ ¶ = ¶ = ¶ ¶ ¶ = ¶ . The given pde can be written as f ( z , dz , a dz ) = 0 .And also this can dx dy be integrated to get solution
  • 16. TYPE-IV The pde of the form f (x, p) = g( y,q) can be solved by assuming f ( x , p ) = g ( y , q ) = a f x p = a Þ p = f x a ( , ) ( , ) g y q = a Þ q = Y y a ( , ) ( , ) dz = ¶ z dx + ¶ z dy ¶ x ¶ y = f ( , ) +Y( , ) dz x a dx y a dy Integrate the above equation to get solution
  • 17. SOLVED PROBLEMS 1.Solve the pde p2 - q = 1 and find the complete and singular solutions Solution Complete solution is given by z = ax + by + c 2 Þ = - 1 1 2 a b - = b a with
  • 18. z =ax +(a2 -1) y +c d.w.r.to. a and c then 2 = = 1 0 z ¶ z ¶ ¶ = + ¶ c x ay a Which is not possible Hence there is no singular solution pq + p +q =0 2.Solve the pde and find the complete, general and singular solutions
  • 19. Solution The complete solution is given by z = ax +by +c with ab a b + + = a b 1 0 = - + b .......(1) z b + + 1 x by c = - b +
  • 20. = - 1 ( ) 1 0 0 1 2 = = z ¶ z ¶ ¶ + = + ¶ c x y b b no singular solution To get general solution assume that c = g(b) ( ).......(2) From eq (1) z b + + 1 x by g b = - b +
  • 21. z = - 1 + + ¢ ( ) ( ).......(3) 1 2 x y g b ¶ c b + ¶ Eliminate from (2) and (3) to get general solution 3.Solve the pde z = px + qy + 1+ p2 + q2 and find the complete and singular solutions Solution The pde z = px + qy + 1+ p2 + q2 is in Clairaut’s form
  • 22. complete solution of (1) is z =ax+by + 1+a2 +b2 .......(2) d.w.r.to “a” and “b” ö ........(3) 0 x a y b 1 0 1 2 2 2 2 ÷ ÷ ÷ ÷ ÷ ø = + + = + z ¶ z ¶ ¶ = + + = + ¶ a b b a b a
  • 23. y b 2 2 2 From (3) x a x y a b 1 ( ) + = + 1 1 2 1 1 , 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 x y a b a b a b a b = - + + + Þ + + + + = + + =
  • 24. 2 2 2 ax a a b + + 2 2 = = by b a b + + 1 1 = Þ = - + 0 1 ( ) 1 1 1 0 1 0 1 0 1 + + 2 2 2 2 2 2 2 2 2 2 2 2 2 + + - Þ + + = = + + + + + + - x y z z x y a b z a b ax by a b is required singular solution
  • 25. 4.Solve the pde(1- x) p + (2 - y)q = 3- z Solution pde - x p + - y q = - z = + + - - (1 ) (2 ) 3 z px qy p q (3 2 ) Complete solution of above pde is z =ax +by +(3-a -2b) 5.Solve the pde p2 + q2 = z Solution Assume that z =f(x+ay)
  • 26. u = x + ay z =f (u) dz z = ¶ ¶ .1 a a dz u du z u u = ¶ ¶ u u = ¶ ¶ y z p z q z = ¶ ¶ y du u x z x = ¶ ¶ ¶ = ¶ = ¶ ¶ ¶ = ¶ . 2 2 ÷ø p q z dz + a 2 æ ÷ø dz = 2 + = Þ æ 2 2 z du du ö çè ö çè From given pde
  • 27. du dz z a z z 2 a dz ö çè dz ö du çè a du 2 2 2 1 1 1 1 + Þ = + = ÷ø æ + = ÷ø æ Integrating on both sides b 2 z x ay a b a z u + = + + + + = 2 1 2 1 2
  • 28. 6. Solve the pde zpq = p + q Solution Assume q = ap Substituting in given equation dy zpap = p + ap q a p a = + = + 1 , 1 dx +¶ z x ¶ dx a z =¶ ¶ dz a az dy y dz z z az Þ = 1 + + 1 +
  • 29. zadz =(1+a)(dx+ady) Integrating on both sides a z 2 =(1+a)(x+ay)+b 2 7.Solve pde pq xy z z ¶ ¶ (or) xy y x = ¶ ¶ = ( )( ) Solution q y p = x
  • 30. Assume that y = = p ax q y p = = , dz pdx qdy axdx y dy a a a q x = + = + Integrating on both sides 2 2 z =a x + y + b a 2 2
  • 31. 8. Solve the equation p2 + q2 = x + y Solution 2 2 p - x = y - q = a p = a + x , q = y - a dz = pdx + qdy = a + xdx + y - ady integrating 3 3 z = a + x + y - a 2 + b ( ) 2 ( ) 3 2
  • 32. Equations reducible to the standard forms (i)If and occur in the pde as in (xm p) ( ynq) F(xm p, ynq) = 0 Or in F(z, xm p, ynq) = 0 Case (a) Put and x1-m = X y1-n = Y m ¹ 1 n ¹ 1 if ; n m (1 ) n y z = ¶ ¶ z = ¶ ¶ Y X z = ¶ ¶ z Y Y x p z q z = ¶ ¶ y m x X x X x - - - ¶ ¶ ¶ = ¶ - ¶ ¶ ¶ = ¶ (1 )
  • 33. (1 ) (1 ) n Q n (1 ) (1 ) x m p = ¶ z y q = ¶ z Y m P m X n - = - ¶ - = - ¶ z = P z ¶ , = ¶ where Q Y X ¶ ¶ Then F ( x m p , y n q ) = 0 reduces to F(P,Q) = 0 F(z, xm p, ynq) = 0 F(z, P,Q) = 0 Similarly reduces to
  • 34. case(b) m = 1 n = 1 log x = X ,log y = Y If or put qy Q p = ¶ z q =¶ z 1 Y y px P X x Þ = ¶ Þ = ¶ 1 (zk p) (zkq) F(zk p, zkq) (ii)If and occur in pde as in ( , ) ( , ) 1 2 Or in f x zk p = f y zkq
  • 35. Case(a) Put z 1 + k = Z if k ¹ -1 = + ¶ ¶ k k - - - `1 `1 (1 ) (1 ) = + ¶ ¶ - - - z q k Q z k Z z k Z Þ = + ¶ y Z Z = ¶ ¶ z Z Z y z z = ¶ ¶ y z p k P x x z x k k `1 `1 (1 ) (1 ) ¶ ¶ ¶ Þ = + ¶ ¶ ¶ ¶ Z = Q P Z ¶ , where = ¶ y x ¶ ¶ Given pde reduces to F(P,Q) and f ( x , P ) = f ( y , Q ) 1 2
  • 36. Case(b) if k = -1 log z = Z - 1 z q Q z Z = ¶ ¶ z Z y Z Z = ¶ ¶ Z Z = ¶ ¶ y z z z = ¶ ¶ y z p P x x z x Þ = ¶ ¶ ¶ ¶ Þ = ¶ ¶ ¶ ¶ - 1 Solved Problems 1.Solve p2x4 +q2 y4 = z2 2 2 2 2 ö æ + ÷ ÷ø æ qy px Solution 1.......(1) = ÷ ÷ø ç çè ö ç çè z z
  • 37. m n = = k 2, 2 =- 1 x-1 = X y-1 = Y log z = Z = - ¶ ¶ - - 2 2 = - ¶ ¶ - - zy Q zx Z zy Z Y X X ¶ ¶ Y Y y z Z Z p = ¶ z q z y zx P X x z Z Z x 2 2 = - ¶ ¶ ¶ ¶ ¶ = ¶ = ¶ ¶ = - ¶ ¶ ¶ = ¶ ¶ Z = Q P Z ¶ , where = ¶ Y X ¶ ¶
  • 38. Q px = - = - P qy z z 2 2 , ( ) ( ) 2 2 + = P Q - + - = P Q 1 1 2 2 (1)becomes Z aX bY c = + + a 2 + b 2 = 1, b = 1 - a 2 log 1 2 2 2 z = ax + - a y + c
  • 39. 2. Solve the pde p2 + q2 = z2 (x2 + y2 ) SOLUTION p = + ÷ø ( 2 2 ).....(1) 2 2 x y q z z æ + ÷ø ö çè çè æ ö k =-1 log z = Z - 1 z q Q z Z = ¶ ¶ z Z y Z Z = ¶ ¶ y z z = ¶ ¶ = ¶ ¶ Z z z y z p P x x Z x Þ = ¶ ¶ ¶ ¶ Þ = ¶ ¶ ¶ ¶ - 1
  • 40. Eq(1) becomes P 2 + Q 2 = ( x 2 + y 2 ).....(2) P 2 - x 2 = y 2 - Q 2 = a 2 x a x 1 2 2 b 2 z a x ö çè y y a a y ö a çè a + ÷ø - æ - + + + ÷ø = æ - - 1 2 2 2 cosh ( ) 2 2 ( ) 2 sinh 2 log
  • 41. Lagrange’s Linear Equation Def: The linear partial differenfial equation of first order is called as Lagrange’s linear Equation. This eq is of the form Pp + Qq = R Where P , Q and R are functions x,y and z The general solution of the partial differential equation P p + Q q = R is F(u,v) = 0 Where is arbitrary function of and F 1 u(x, y, z) = c 2 v(x, y, z) = c
  • 42. Here u = c and v = 1 c2 are independent solutions dz of the auxilary equations R dx = dy = Q P Solved problems 1.Find the general solution of x2 p + y2q = (x + y)z Solution dx dy dz auxilary equations are = = x 2 y 2 ( x + y ) z
  • 43. dy dx = Integrating on both sides 2 y 2 u x y c ( - 1 - 1 ) 1 x = - = 2 2 ( ) x y z ( ) ( )( ) ( ) dz z dx - dy d x - y d x - y ( ) x y dz x y z x y x y dz x y = - + = - + + = - ( ) Integrating on both sides
  • 44. x - y = z + c = - = log( ) log log v x y z c 2 1 2 ( ) - The general solution is given by F(u,v) = 0 F(x-1 - y-1,(x - y)z-1) = 0 2.solve x2 (y - z) + y2 (z - x)q = z2 (x - y) solution Auxiliary equations are given by dz dy dx 2 ( ) y 2 ( z x ) z2 (x y) x y z - = - = -
  • 45. dz dy dx 2 2 2 z y x ( ) ( ) ( ) dy + + dz dx 2 2 2 y - z + z - x + x - y ( ) ( ) ( ) 0 dz dy + + = dx 2 2 2 - = - = - z y x z y x x y z x y z Integrating on both sides
  • 46. u =1 +1 +1 = a x y z - - - 1 1 1 z dz z x y y dy y z x x dx x y z ( ) ( ) ( ) 1 1 1 + + x y - z + y z - x + z x - y ( ) ( ) ( ) 0 dz dy + + = - = - = - - - - z y dx x x dx y dy z dz Integrating on both sides v = xyz =b
  • 47. The general solution is given by F(x-1 + y-1 + z-1, xyz) = 0 HOMOGENEOUS LINEAR PDE WITH CONSTANT COEFFICIENTS Equations in which partial derivatives occurring are all of same order (with degree one ) and the coefficients are constants ,such equations are called homogeneous linear PDE with constant coefficient
  • 48. a z n a z a z + ¶ + ¶ + ¶ ........ ( , ) 1 1 2 2 2 F x y ¢ = ¶ = ¶ ¶ Assume that , . y D x D ¶ ¶ nth then order linear homogeneous equation is given by n + n- ¢ + n- ¢ + + ¢ = 1 D a D D a D D a D n z F x y n ( 2 2 ......... ) ( , ) 2 1 or f (D,D¢)z = F(x, y).........(1) y x y x y x z n n n n n n n n = ¶ ¶ ¶ ¶ ¶ ¶ - -
  • 49. The complete solution of equation (1) consists of two parts ,the complementary function and particular integral. The complementary function is complete solution of equation of f (D,D¢)z = 0 Rules to find complementary function Consider the equation k z 0 2 2 + ¶ 2 2 k z + ¶ 2 1 2 = ¶ ¶ ¶ ¶ ¶ y x y x z or D2 + k DD¢ + k D¢ z = ( 2 ) 0.............(2) 1 2
  • 50. The auxiliary equation for (A.E) is given by D2 + k DD¢ + k D¢ = D = m,D¢ =1 And by giving 2 0 1 2 m2 + k m+ k = The A.E becomes 0....(3) 1 2 Case 1 If the equation(3) has two distinct roots 1 2 m ,m The complete solution of (2) is given by ( ) ( ) 1 1 2 2z = f y + m x + f y + m x
  • 51. Case 2 If the equation(3) has two equal roots i.e 1 2 m = m The complete solution of (2) is given by ( ) ( ) 1 1 2 1z = f y +m x +xf y +m x Rules to find the particular Integral Consider the equation D2 + k DD¢+ k D¢ z = F x y ( 2 ) ( , ) 1 2 f (D,D¢)z = F(x, y)
  • 52. Particular Integral (P.I) F x y ( , ) f D D ¢ ( , ) = Case 1 If F(x, y) = eax+by then P.I= ¢ ax + by = ¹ , ( , ) 0 1 ( , ) 1 ( , ) + e f a b f a b e f D D ax by D - a ¢ f (a,b) = 0 ( D ) If and is b factor of f (D,D¢) then
  • 53. P.I =xeax+by If and D - a ¢ is factor of 2 then P.I F(x, y) = sin(mx +ny)or cos(mx +ny) = + sin( ) mx ny = + 2 2 f m2 mn n2 ( , , ) sin( ) ( , , ) mx ny f D DD D - - - ¢ ¢ Case 2 P.I f (a,b) = 0 ( D )2 b f (D,D¢) = x eax+by 2
  • 54. Case 3 F(x, y) = xm yn 1 = ¢ - xm yn [ f D D ] xm yn f D D ( , ) 1 ¢ ( , ) P.I = [ ( , )] 1 Expand f D D ¢ - in ascending powers of D or D ¢ and operating on x m y n term by term. Case 4 when is any function of x and y. P.I= F(x, y) 1 F x y ( , ) f D D¢ ( , ) 1 ( , ) ( , ) =ò - - ¢ F x y F x c mx dx D mD
  • 55. (D -mD¢) f (D,D¢) Here is factor of (y + mx) Where ‘c’ is replaced by after integration Solved problems 1.Find the solution of pde (D3 - D¢3 + 3DD¢2 - 3D2D¢)z = 0 Solution The Auxiliary equation is given by
  • 56. Solution The Auxiliary equation is given by m3 -1+3m-3m2 = 0 By taking D = m,D¢ = 1 m =1,1,1. 2 1 2 = f y + x + xf y + x + x f y + x Complete solution ( ) ( ) ( ) 3 2. Solve the pde (D3 + 4D2D¢ - 5DD¢)z = 0 Solution The Auxiliary equation is given by
  • 57. 3 2 m m m + - = 4 5 0 = - 0,1, 5 z f y f y x f y x ( ) ( ) ( 5 ) 1 2 3 m = + + + - 3. Solve the pde (D2 + D¢2 )z = 0 Solution the A.E is given by m2 +1=0 m = ±i ( ) ( ) 1 2 z = f y + ix + f y - ix
  • 58. 4. Find the solution of pde (D2 + 3DD¢ - 4D¢2 )z = e2x+ 4 y Solution Complete solution = Complementary Function + Particular Integral m2 + 3m- 4 = 0 The A.E is given by m =-4,1 . ( ) ( 4 ) 1 2 C F = f y + x +f y - x
  • 59. 2 4 P I e 3 4 36 . 2 4 2 2 - = + ¢- ¢ = x+ y e x+ y D DD D Complete solution = C.F + P.I e x y y x y x 36 ( ) ( 4 ) 2 4 1 2 + = f + +f - -
  • 60. 5.Solve (D3 - 3DD¢ + 2D¢3 )z = e2x- y + ex+ y Solution 3 A E m m = - + . 3 2 = - 1,1, 2. C F y x x y x y x . ( ) ( ) ( 2 ) 1 2 3 m = f + + f + + f - x y 2 x y 2 e P I e = . 2 2 1 D 3 - DD ¢ 2 + D ¢ 3 D D D D - ¢ + ¢ 3 2 ( ) ( 2 ) = - -
  • 61. 2 P I e - - ( ) ( 2 ) 9 . 2 2 1 x y xe x y D D D D = - ¢ + ¢ = x y x y P I e 2 3 2 3 2 2 x y P I x e e D D D D D DD D + + + = - ¢ + ¢ = - ¢ + ¢ = 6 . 3 2 ( ) ( 2 ) . 2 2 1 2 z = C.F + P.I + P.I
  • 62. x y x - y z = y + x + x y + x + y - x + xe + x e + 9 6 ( ) ( ) ( 2 ) 2 2 1 2 3 f f f 6.Solve (D2 -DD¢)z =cos x cos 2y Solution (D2 -DD¢)z = 1 x + y + x - y [cos( 2 ) cos( 2 )] 2 2 A E m m . 0 0,1 C F y x y . ( ) ( ) 1 2 m =f + +f = = - =
  • 63. P I x y = + . cos( 2 ) 1 2 x y x y cos( 2 ) = + cos( 2 ) (( 1) ( 2)) = + D DD ( ) - - - - ¢ P I x y = - = x - y x y D DD . cos( 2 ) 2 2 - cos( 2 ) 3 cos( 2 ) (( 1) (2)) ( ) = - - - - ¢ ( ) ( ) cos( 2 ) 1 1 2 z = f y + x +f y - x + x + y - x - y cos( 2 ) 3 7.Solve (D2 + DD¢ - 6D¢2 )z = x2 y2 Solution . 2 6 0 = - A E m m = + - = 2, 3. m
  • 64. . ( 2 ) ( 3 ) 1 2 C F = f y + x +f y - x 2 2 2 2 æ ¢ 2 2 2 æ ¢ æ ¢ 2 P I x y D é 1 1 6 é D 2 D 2 2 1 2 2 2 2 2 2 6 D D D ù ö ö 1 6 6 . x y D D D D D x y D D D D DD D ù ú ú û ê ê ë ö ÷ ÷ø ç çè - ¢ + ÷ ÷ø ç çè - ¢ = - úû êë ÷ ÷ø ç çè - ¢ = + + ¢ - ¢ = - -
  • 65. é ¢ ö D D 1 6 2 D D 2 2 2 x D x y x y 2 6 2 2 2 x 3 4 4 D x y x y 6 2 x x 3 4 D x y x y 8 2 x ù úû é é 2 2 2 é æ ¢ æ - - - 2 2 2 = + + é = + + êë ù ö ö ù úû êë ù ù úû êë 2 + ÷ ÷ø ç çè æ = - - úû êë + ÷ ÷ø ç çè = - - úû êë + ÷ ÷ø ç çè - ¢ = - - 2 90 2 60 12 12 3 2 12 12 3 2 4 2 5 6 2 2 2 2 2 2 2 2 2 2 x y x y x D D D x y D D D
  • 66. 7.Solve (D2 - 5DD¢ + 6D¢2 )z = y sin x Solution A.E is m2 - 5m+ 6 = 0 m =3,m = 2. C . F =P . I f ( y y sin x + 3 x ) +f ( y + 2 x ) 1 2 2 2 y x y x sin sin ù é [ ] [ x x x y x x] 1 1 1 1 D D a x x x x D D a x xdx D D D D D D D D D D D DD D 2 cos 2sin ( 2 ) cos ( 3 ) cos 2( cos sin ) ( 3 ) ( 2 )sin ( 3 ) ( 2 ) ( 3 ) ( 3 )( 2 ) 5 6 - - + - ¢ = - - - + - ¢ = - - ¢ = úû êë - ¢ - ¢ = - ¢ - ¢ = - ¢ + ¢ = ò
  • 67. P I y x . sin 2 2 y x y x sin sin ù é here = +2 [ ] [ x x x y x x] 1 1 1 1 D D a x x x x D D a x xdx D D D D D D D D D D D DD D 2 cos 2sin ( 2 ) cos ( 3 ) cos 2( cos sin ) ( 3 ) ( 2 ) sin ( 3 ) ( 2 ) ( 3 ) ( 3 )( 2 ) 5 6 - - + - ¢ = - - - + - ¢ = - - ¢ = úû êë - ¢ - ¢ = - ¢ - ¢ = - ¢+ ¢ = ò (a y x)
  • 68. [ y x x ] 1 = D D = ò ( - ( b - 3 x )cos x - 2sin x ) dx (b y x) b x x x x x = - + + + sin 2cos 3( sin cos ) y x x x x x x = - + + + + ( 3 )sin 2cos 3( sin cos ) x y x 5cos sin cos 2sin ( 3 ) = - - - - ¢ here = +3
  • 69. Non Homogeneous Linear PDES If in the equation f (D,D¢)z = F(x, y)............(1) the polynomial expression f (D,D¢) is not homogeneous, then (1) is a non- homogeneous linear partial differential equation Ex (D2 + 3D + D¢ - 4D¢2 )z = e2x+3 y Complete Solution = Complementary Function + Particular Integral To find C.F., factorize into factors of the form f (D,D¢) (D -mD¢-c)
  • 70. If the non homogeneous equation is of the form - ¢ - - ¢ - = D m D c D m D c z F x y ( )( ) ( , ) 1 1 2 2 = c x + + c x + C F e 1 f y m x e 2 f y m x . ( ) ( ) 1 2 1.Solve (D2 -DD¢+D)z = x2 Solution f (D,D¢) = D2 - DD¢ + D = D(D - D¢ +1) . ( ) ( ) 1 2 C F =e-xf y +x +f y
  • 71. 2 D P I x . 1 1 ( 1) x D x D 1 ( 1) ( 1) ...... ù úû é ¢ + = - é ¢ + + úûù é ù + + = úû êë ù é é é ¢ + = + + êë ù ú úû ê êë ù + úû êë êë = + úû êë - ¢ + = - 3 12 3.4 3.4.5 12.5.6 1 3 4 4 5 6 2 2 2 2 2 2 2 2 1 2 2 x x x x x x D x D D D x D D DD D D
  • 72. 2.Solve (D +D¢-1)(D + 2D¢-3)z = 4 Solution ( ) ( 2 ) 4 1 3 z =exf y -x +e 3 xf y - x + 1