SlideShare una empresa de Scribd logo
1 de 40
Descargar para leer sin conexión
高頻電子電路
第一章 知識回顧與通訊系統簡介
李健榮 助理教授
Department of Electronic Engineering
National Taipei University of Technology
大綱
• dB的定義
• 相量(Phasor)
• 調變
• 線性調變與線性發射機
• 線性解調變與線性接收機
• 調變訊號譜
• 複數波包
Department of Electronic Engineering, NTUT2/40
dB的定義
• , where
• Power gain
• Voltage gain
• Power (dBW)
• Power (dBm)
• Voltage (dBV)
• Voltage (dBuV)
( )dB 10 log G= ⋅ ( )aG
b
=
2
1
10 log
P
P
 = ⋅  
 
2
1
20 log
V
V
 = ⋅  
 
( )10 log
1-W
P= ⋅
( )10 log
1-mW
P= ⋅
( )20 log
1-Volt
V= ⋅
( )20 log
1- V
V
µ= ⋅
相對的相對的相對的相對的(Relative )
(比值比值比值比值, 無單位無單位無單位無單位, dB)
絕對的絕對的絕對的絕對的(Absolute )
(單位單位單位單位, dBW, dBm, dBV…)
Department of Electronic Engineering, NTUT3/40
In some textbooks, phasor may be
represented as
尤拉公式
• Euler’s Formula states that: cos sinjx
e x j x= +
( ) ( ) ( )
{ } { }cos Re Re
j t j j t
p p pv t V t V e V e e
ω φ φ ω
ω φ +
= ⋅ + = ⋅ = ⋅
( )cos sin
def
j
p p pV V e V V jφ
φ φ φ= ⋅ = ∠ = +• Phasor :
Don’t be confused with Vector which is commonly denoted as .A
phasor
A real signal can be represented as:
V
V
( ) ( )cospv t V tω φ= ⋅ +
Department of Electronic Engineering, NTUT4/40
Euler’s Trick on the Definition of e
2 3
lim 1 1
1! 2! 3!
n
x
n
x x x x
e
n→∞
 
= + = + + + + 
 
…
x jx=
( ) ( )
2 3 2 4 3 5
1 1
1! 2! 3! 2! 4! 3! 5!
jx jx jxjx x x x x
e j x
   
= + + + + = − + − + + − + − +   
   
… … …
• Euler played a trick : Let , where 1j = −
1
lim 1
n
n
e
n→∞
 
= + 
 
6/33
2 4
cos 1
2! 4!
x x
x = − + − +…
3 5
sin
3! 5!
x x
x x= − + − +…
cos sinjx
e x j x= +
cos sinjx
e x j x−
= −
cos
2
jx jx
e e
x
−
+
=
sin
2
jx jx
e e
x
j
−
−
=
• Use and
we have
Department of Electronic Engineering, NTUT5/40
座標系統
x-axis
y-axis
x-axis
y-axis
P(r,θ)
θ
r
P(x,y)
2 2
r x y= +
1
tan
y
x
θ −
=
cosx r θ=
siny r θ=
Cartesian Coordinate System Polar Coordinate System
(x,0)
(0,y)
( )cos ,0r θ
( )0, sinr θ
Projection
on x-axis
Projection
on y-axis
Department of Electronic Engineering, NTUT6/40
正弦波形
x-axis
y-axis
P(x,y)
x
y
r
θ θθ
y
θ
0 π/2 π 3π/2 2π
Go along the circle, the projection on y-axis results in a sine
wave.
Department of Electronic Engineering, NTUT7/40
x
θ
0
π/2
π
3π/2
餘弦波形
x-axis
y-axis
θ
Go along the circle, the projection
on x-axis results in a cosine wave.
Sinusoidal waves relate to a Circle
very closely.
Complete going along the circle to
finish a cycle, and the angle θ
rotates with 2π rads and you are
back to the original starting-point
and. Complete another cycle again,
sinusoidal waveform in one period
repeats again. Keep going along the
circle, the waveform will
periodically appear.
Department of Electronic Engineering, NTUT8/40
複數平面(I)
It seems to be the same thing with x-y plan, right?
• Carl Friedrich Gauss (1777-1855) defined the complex plan.
He defined the unit length on Im-axis is equal to “j”.
A complex Z = x + jy can be denoted as (x, yj) on the complex plan.
(sometimes, ‘j’may be written as ‘i’which represent imaginary)
Re-axis
Im-axis
Re-axis
Im-axis
P(r,θ)
θ
r
P(x,yj)
2 2
r x y= +
1
tan
y
x
θ −
=
cosx r θ=
siny r θ=
(x,0j)
(0,yj)
( )cos ,0r θ
( )0, sinr θ
( )1j = −
Department of Electronic Engineering, NTUT9/40
複數平面(II)
Re-axis
Im-axis
1
Every time you multiply something by j, that thing will rotate 90 degrees.
1j = − 2
1j = − 3
1j = − − 4
1j =
1*j=j
j
j*j=-1
-1
-j
-1*j=-j -j*j=1
(0.5,0.2j)
(-0.2, 0.5j)
(-0.5, -0.2j)
(0.2, -0.5j)
• Multiplying j by j and so on:
Department of Electronic Engineering, NTUT10/40
正弦波
Re-axis
Im-axis
P(x,y)
x
y
r
θ θθ
y = rsinθ
θ
0 π/2 π 3π/2 2π
To see the cosine waveform, the same operation can be applied to trace out
the projection on Re-axis.
Department of Electronic Engineering, NTUT11/40
相量表示法 (I) – 以sine為基底
( ) ( ) { } { }sin Im Imj j t j j
sv t A t Ae e Ae eφ ω φ θ
ω φ= + = =
Re-axis
Im-axis
P(A,ϕ)
y = Asinϕ
θ
0 π/2 π 3π/2 2π
ϕ
tθ ω=
Given the phasor denoted as a point on the complex-plan, you should know it
represents a sinusoidal signal. Keep this in mind, it is very important!
time-domain waveform
Department of Electronic Engineering, NTUT12/40
相量表示法 (II) – 以cosine為基底
( ) ( ) { } { }cos Re Rej j t j j
sv t A t Ae e Ae eφ ω φ θ
ω φ= + = =
Re-axis
Im-axis
P(A, ϕ)
y = Acos ϕ
θ
0 π/2 π 3π/2 2π
ϕ
tθ ω=
time-domain waveform
Department of Electronic Engineering, NTUT13/40
相量表示法 (III)
( ) ( ) { }1
1 1 1 1sin Im j j t
v t A t Ae eφ ω
ω φ= + =
Re-axis
Im-axis
P(A1, ϕ1)
ϕ1
P(A2, ϕ2)
P(A3, ϕ3)
θ
0 π/2 π 3π/2 2π
tθ ω=
A1sin ϕ1
( ) ( ) { }2
2 2 2 2sin Im j j t
v t A t A e eφ ω
ω φ= + =
( ) ( ) { }3
3 3 3 3sin Im j j t
v t A t A e eφ ω
ω φ= + =
A2sin ϕ2
A3sin ϕ3
Department of Electronic Engineering, NTUT14/40
到處都是相量
• Circuit Analysis, Microelectronics:
Phasor is often constant.
• Field and Wave Electromagnetics, Microwave Engineering:
Phasor varies with the propagation distance.
• Communication System:
Phasor varies with time (complex envelope, envelope, or
equivalent lowpass signal of the bandpass signal).
( ) ( )5cos 1000 30sv t t= + 5 30sV = ∠
( ) ( ) ( ) ( ) ( )
{ }, cos cos Re
j x t j x t
v x t A x t B x t Ae Be
β ω β ω
β ω β ω − − +
= − + + = +
( ) j x j x
V x Ae Beβ β−
= +
( ){ }Re j t
V x e ω
=
Department of Electronic Engineering, NTUT15/40
調變(調制)
• Why modulation?
Communication
Bandwidth
Antenna Size
Security, avoid Interferes, etc.
Voice
Electric signal
Audio
Equipment
Audio
Equipment
Modulator Demodulator
Electric signal
Voice
Department of Electronic Engineering, NTUT16/40
振幅調變(Amplitude Modulation)
( ) ( ) cos2m BB cs t s t A f tπ= ⋅
Baseband real signal
Voice
Electric signal
Audio
Equipment
Audio
Equipment
Modulator Demodulator
Electric signal
Voice
( )BBs t
cos2 cA f tπ
Carrier (or local)
High-frequency sinusoid
Amplitude-modulated signal
(AM signal)
Department of Electronic Engineering, NTUT17/40
頻率調變(Frequency Modulation)
( ) ( ){ }cos 2m c f BBs t A f K s t tπ  = + ⋅ 
Voice
Electric signal
Audio
Equipment
Audio
Equipment
Modulator Demodulator
Electric signal
Voice
Baseband real signal
( )BBs t
cos2 cA f tπ
Carrier (or local)
High-frequency sinusoid
Frequency-modulated signal
(FM signal)
Department of Electronic Engineering, NTUT18/40
相位調變(Phase Modulation)
Voice
Electric signal
Audio
Equipment
Audio
Equipment
Modulator Demodulator
Electric signal
Voice
( ) ( )cos 2m c p BBs t A f t K s tπ = + 
( )cos 2 c BBA f t tπ φ= +  
Baseband real signal
( )BBs t
cos2 cA f tπ
Carrier (or local)
High-frequency sinusoid
Phase-modulated signal
(PM signal)
Department of Electronic Engineering, NTUT19/40
線性調變(Linear Modulation)
( ) ( ) ( )cos 2m BB c BBs t A t f t tπ φ= ⋅ +  
Voice
Electric signal
Audio
Equipment
Audio
Equipment
Modulator Demodulator
Electric signal
Voice
Baseband real signal
( )BBs t
cos2 cA f tπ
Carrier (or local)
High-frequency sinusoid
Linear-modulated signal
( )BBs t ( ) ( ), ?BB BBA t tφ
Department of Electronic Engineering, NTUT20/40
線性調變之數學推導
• Consider a modulated signal
( ) ( ) ( ) ( ) ( )
{ }2
cos 2 Re c BBj f t t
m BB c BB BBs t A t f t t A t e
π φ
π φ
+  
= ⋅ + = ⋅  
( ) ( )
( ) ( ) ( ){ }2 2
Re Re cos sinBB c cj t j f t j f t
BB BB BB BBA t e e A t t j t eφ π π
φ φ = ⋅ = ⋅ +   
( ) ( ) ( )
( ) ( ) ( )cos sinBBj t
l BB BB BB BBs t A t e A t t j t
φ
φ φ= ⋅ = ⋅ +  
( ) ( ) ( ) ( ) ( ) ( )cos sinBB BB BB BBA t t jA t t I t jQ tφ φ= ⋅ + ⋅ = +
( ) ( ) ( ) ( ){ }Re cos2 sin2m c cs t I t jQ t f t j f tπ π= + ⋅ +  
( ) ( )cos2 sin 2c cI t f t Q t f tπ π= −
Time-varying phasor (information in both amplitude and phase)
( )BBs t : real
( )ls t : complex
Modulated signal is the linear combination of I(t), Q(t), and the carrier. Thus the linear modulator
is also called “I/Q Modulator,” and it is an universal modulator.
Department of Electronic Engineering, NTUT21/40
線性調變器
• The modulator accomplishes the mathematical operation.
( ) ( ) ( ) ( ) ( ){ }Re cos sin cos2 sin 2m BB BB BB c cs t A t t j t f t j f tφ φ π π= ⋅ + +  
( ) ( ) ( ) ( )cos cos2 sin sin 2BB BB c BB BB cA t t f t A t t f tφ π φ π= −
( ) ( )cos2 sin 2c cI t f t Q t f tπ π= −
( )I t
cos ctω
sin ctω−
( )Q t
( )ms t
( )I t
cos ctω
sin ctω
( )Q t
( )ms t
+
− 90
( )I t
cos ctω
( )Q t
( )ms t
Department of Electronic Engineering, NTUT
I component Q component
I channel Q channel
22/40
線性發射機架構
• Linear Transmitter
90
( )I t
cos ctω
( )Q t
( )ms t
Power Amplifier
(PA)
Antenna
Baseband
Processor
90
cos ctω
( )ms t
Power Amplifier
(PA)
Antenna
Matching /
BPF
Matching
( )I t
( )Q t
Baseband
Processor
Department of Electronic Engineering, NTUT23/40
線性解調變
( ) ( ) ( ) ( ) ( )cos 2 cos2 sin2m BB c BB c cs t A t f t t I t f t Q t f tπ φ π π= ⋅ + = −  
( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 1
cos2 cos 2 sin2 cos2 cos4 1 sin4 sin0
2 2
m c c c c c cs t f t I t f t Q t f t f t I t f t Q t f tπ π π π π π= − ⋅ = ⋅ + − ⋅ +
( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 1
sin2 cos2 sin2 sin 2 sin4 sin0 1 cos4
2 2
m c c c c c cs t f t I t f t f t Q t f t I t f t Q t f tπ π π π π π− = − + = − ⋅ + + ⋅ −
( ) ( ) ( )cos4 sin 4
2 2 2
c c
I t I t Q t
f t f tπ π
 
= + − 
 
( ) ( ) ( )sin4 cos4
2 2 2
c c
Q t I t Q t
f t f tπ π
 
= − + 
 
?
Receiver
( )ms t ( )BBs t
Received modulated signal:
Multiplied by “cosine”:
Multiplied by “−−−− sine”:
High-frequency components
(should be filtered out)
High-frequency components
(should be filtered out)
Department of Electronic Engineering, NTUT24/40
線性解調器
( )I t
cos ctω
sin ctω−
( )Q t
( )ms t
LPF
LPF
( )I t
( )Q t
( )ms t
LPF
LPF
90
cos ctω
( ) ( ) ( )
( ) ( )BBj t
l BBs t A t e I t jQ t
φ
= ⋅ = +
( ) ( ) ( )2 2
BBA t I t Q t= +
( )
( )
( )
1
tanBB
Q t
t
I t
φ −
=
Baseband
Processing
Original Information (or data)
( )I t
( )Q t
Department of Electronic Engineering, NTUT25/40
線性接收機架構
• Linear Receiver (direct conversion)
90
( )I t
cos ctω
( )Q t
( )ms t
Low Noise Amplifier
(LNA)
Baseband
Processor
LPF
LPF
Matching /
BPF
90
( )I t
cos ctω
( )Q t
( )ms t
Low Noise Amplifier
(LNA)
Baseband
Processor
LPF
LPF
Matching
Department of Electronic Engineering, NTUT26/40
調變訊號的頻譜
• Fourier Series Representations
• Non-periodic Waveform and Fourier Transform
• Spectrum of a Real Signal
• AM, PM, and Linear Modulated Signal
• Concept of Complex Envelope
Department of Electronic Engineering, NTUT27/40
傅立葉級數
• There are three forms to represent the Fourier Series of a
periodic signal :
Sine-cosine form
Amplitude-phase form
Complex exponential form
( ) ( )0 1 1
1
cos sinn n
n
x t A A n t B n tω ω
∞
=
= + +∑
( ) ( )0 1
1
cosn n
n
x t C C n tω φ
∞
=
= + +∑
( ) 1jn t
n
n
x t X e ω
∞
=−∞
= ∑
( )x t
Department of Electronic Engineering, NTUT
t
x(t)
t
t
t
( )X jω
ω
1f 13 f 15 f
.etc
T1
1 1C φ∠
2 2C φ∠
3 3C φ∠
28/40
Sine-Cosine Form
( )0 0
area under curve in one cycle
period T
1 T
A x t dt
T
= =∫
( ) 10
2
cos , for 1 but not for 0
T
nA x t n tdt n n
T
ω= ≥ =∫
( ) 10
2
sin , for 1
T
nB x t n tdt n
T
ω= ≥∫
is the DC term
(average value over one cycle)
• Other than DC, there are two components appearing at a given
harmonic frequency in the most general case: a cosine term
with an amplitude An and a sine term with an amplitude Bn.
(A complete cycle can also be noted
from )~
2 2
T T−
Department of Electronic Engineering, NTUT29/40
Amplitude-Phase Form
( ) ( )0 1
1
cosn n
n
x t C C n tω φ
∞
=
= + +∑
( ) ( )0 1
1
sinn n
n
x t C C n tω θ
∞
=
= + +∑
2 2
n n nC A B= +
• The sum of two or more sinusoids of a given frequency is
equivalent to a single sinusoid at the same frequency.
• The amplitude-phase form of the Fourier series can be
expressed as either
or
0 0C A= is the DC term
is the net amplitude of a given component at frequency nf1,
since sine and cosine phasor forms are always
perpendicular to each other.
where
Department of Electronic Engineering, NTUT30/40
Complex Exponential Form (I)
1
1 1cos sinjn t
e n t j n tω
ω ω= +
1
1 1cos sinjn t
e n t j n tω
ω ω−
= −
1 1
1cos
2
jn t jn t
e e
n t
ω ω
ω
−
+
=
1 1
1sin
2
jn t jn t
e e
n t
j
ω ω
ω
−
−
=
cos sinjx
e x j x= +
cos sinjx
e x j x−
= −
cos
2
jx jx
e e
x
−
+
=
sin
2
jx jx
e e
x
j
−
−
=
Recall that
• Euler’s formula
1
nω is called the positive frequency, and 1
nω− the negative frequency
From Euler’s formula, we know that both positive-frequency and negative-
frequency terms are required to completely describe the sine or cosine
function with complex exponential form.
Here
1jn t
e ω
1jn t
e ω−
Department of Electronic Engineering, NTUT31/40
Complex Exponential Form (II)
1 1jk t jk t
k kX e X eω ω−
−+ ( )where kkX X− =
( ) 1jn t
n
n
x t X e ω
∞
=−∞
= ∑
( ) 1
0
1 T
jn t
nX x t e dt
T
ω−
= ∫
• The general form of the complex exponential form of the
Fourier series can be expressed as
where Xn is a complex value
• At a given real frequency kf1, (k>0), that spectral representation
consists of
The first term is thought of as the “positive frequency” contribution, whereas the second is the
corresponding “negative frequency” contribution. Although either one of the two terms is a
complex quantity, they add together in such a manner as to create a real function, and this
is why both terms are required to make the mathematical form complete.
Department of Electronic Engineering, NTUT32/40
當週期趨近無限大
T 2T 3T 4T 5T
( )x t
f
nX
T 2T
T
T
f
nX
f
nX
f
nX
Single pulse T → ∞
Department of Electronic Engineering, NTUT33/40
傅立葉轉換
( ) ( )X f F x t=   F ( ) ( )1
x t F X f−
=   F
( ) ( ) j t
X f x t e dtω
∞
−
−∞
= ∫
( ) ( ) j t
x t X f e dfω
∞
−∞
= ∫
• Fourier transformation and its inverse operation :
• The actual mathematical processes involved in these operations
are as follows:
2 fω π=
• The Fourier transform is, in general, a complex function
and has both a magnitude and an angle:
( )X f
( ) ( ) ( )
( ) ( )j f
X f X f e X f fφ
φ= = ∠
( )X f
f
For the nonperiodic signal, its spectrum is continuous, and, in
general, it consists of components at all frequencies in the
range over which the spectrum is present.
Department of Electronic Engineering, NTUT34/40
調變譜 (I)
• From Euler’s Formula :
• AM signal (DSB-SC)
cos
2
jx jx
e e
x
−
+
=
A “real signal” is composed of positive and negative frequency components.
( ) ( )cos2m cs t A t f tπ=
Two-sided amplitude frequency spectrum
( ) ( )2 1000 2 10001
50cos 2 1000
2
j t j t
t e eπ π
π × − ×
× = +
2525
0 Hz 1 kHz1 kHz−
f
One-sided amplitude frequency spectrum
50
0 Hz 1 kHz
( )50cos 2 1000tπ ×
f
t( ) ( )BBs t A t=
f
f
cf0 Hzcf−
0 Hz
USBLSB
USBLSBLSBUSB
cos2 cf tπ
Department of Electronic Engineering, NTUT
“real signal”
35/40
Phase
Modulator
調變譜 (II)
t( )BBs t
f
0 Hz
USBLSB
cos2 cf tπ
( ) ( )2 2
2 2
c cj t j tj f t j f tA A
e e e e
φ φπ π− −
= +
( ) ( )( )cos 2m cs t A f t tπ φ= +
( )
{ } ( )
{ }2 2
Re Rec c
j f t t j t j f t
A e A e e
π φ φ π+  
= ⋅ = ⋅
Department of Electronic Engineering, NTUT
“real signal”
f
cf0 Hzcf−
USBLSBLSBUSB
“complex”“complex” “real”
• PM signal
Complex conjugate
36/40
調變譜 (III)
I/Q
Modulator
t( )BBs t
f
0 Hz
USBLSB
cos2 cf tπ
( ) ( ) ( ) ( )2 2
2 2
c cj t j tj f t j f tA t A t
e e e eφ φπ π− −
= +
( ) ( ) ( )( )cos 2m cs t A t f t tπ φ= +
( ) ( )
{ }2
Re cj t j f t
A t e eφ π
= ⋅
“real signal”
• I/Q modulated signal
( )I t
( )Q t
f
cf0 Hzcf−
USBLSBLSBUSB
“complex”“complex” “real”
Department of Electronic Engineering, NTUT
Complex conjugate
37/40
複數波包的概念 (I)
• Bandpass real signal :
( ) ( ) ( )( )
( ) ( ) ( ) ( )2 2
cos 2
2 2
c cj t j tj f t j f t
m c
A t A t
s t A t f t t e e e e
φ φπ π
π φ − −
= + = +
( ) ( )
( ) ( )2 21 1
2 2
c cj t j tj f t j f t
A t e e A t e eφ φπ π− −
= +
( )ls t ( )ls t∗
( )lS f∗
( )lS f
Complex timed value
Spectrum
( ) ( )
( ) ( )2 21 1
2 2
c cj t j tj f t j f t
A t e e A t e eφ φπ π− −
= +
( ) 2 cj f t
ls t e π
⋅ ( ) 2 cj f t
ls t e π−∗
⋅
( )l cS f f∗
− −( )l cS f f−
Complex timed value
Spectrum
( ) ( ) ( )
1
2
m l c l cS f S f f S f f∗
 = − + − − 
f
cf0 Hzcf−
USBLSBLSBUSB
( )
1
2
l cS f f−( )
1
2
l cS f f∗
− −
Spectrum of the bandpass signal
Department of Electronic Engineering, NTUT38/40
複數波包的概念 (II)
• Equivalent low-pass signal (complex envelope):
f
0 Hz
( )lS f
cfcf−
( ) 21
2
cj f t
ls t e π
⋅( ) 21
2
cj f t
ls t e π−∗
⋅
( ) ( ) ( )
( ) ( )j t
ls t A t e I t jQ t
φ
= = +
( ) ( ) ( )
1
2
m l c l cS f S f f S f f∗
 = − + − − 
f
cf0 Hzcf−
USBLSBLSBUSB
( ) ( )
1
2
I t jQ t+  
Spectrum of the bandpass signal
( ) ( )
1
2
I t jQ t−  
( )ms t
( ) ( ) ( )
( ) ( )BBj t
ls t A t e I t jQ t
φ
= = +
complex envelope
( ) ( ) ( ) ( ) ( ) 2
cos 2 Re cj t j f t
m cs t A t f t t A t e eφ π
π φ  = ⋅ + = ⋅    
( ) ( ){ }2
Re cj f t
I t jQ t e π
= +  
complex envelope
carriercarrier2 cj f t
e π
carrier
Department of Electronic Engineering, NTUT39/40
本章總結
• In this chapter, the phasor was introduced to manifest itself in
the mathematical operation for communication engineering.
• A modulated signal is a linear combination of I(t), Q(t), and
the carrier. This mathematical combination can be realized
with a practical circuitry, say, “modulator.”
• The demodulation is the decomposition of the modulated
signal, which is the reverse process to recover the baseband
signal I(t) and Q(t).
• The modulated signal can be viewed as a complex envelope
carried by a sinusoidal carrier. With this equivalent lowpass
form to represent a bandpass system, the mathematical
analysis can be easily simplified.
Department of Electronic Engineering, NTUT40/40

Más contenido relacionado

La actualidad más candente

射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬Simen Li
 
RF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversRF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversSimen Li
 
專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧Simen Li
 
Agilent ADS 模擬手冊 [實習2] 放大器設計
Agilent ADS 模擬手冊 [實習2]  放大器設計Agilent ADS 模擬手冊 [實習2]  放大器設計
Agilent ADS 模擬手冊 [實習2] 放大器設計Simen Li
 
電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路Simen Li
 
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬Simen Li
 
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisRF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisSimen Li
 
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬Simen Li
 
傳輸線理論
傳輸線理論傳輸線理論
傳輸線理論祁 周
 
射頻電子 - [實驗第三章] 濾波器設計
射頻電子 - [實驗第三章] 濾波器設計射頻電子 - [實驗第三章] 濾波器設計
射頻電子 - [實驗第三章] 濾波器設計Simen Li
 
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬Simen Li
 
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Simen Li
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Simen Li
 
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain ExpressionsRF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain ExpressionsSimen Li
 
電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理Simen Li
 
電路學 - [第二章] 電路分析方法
電路學 - [第二章] 電路分析方法電路學 - [第二章] 電路分析方法
電路學 - [第二章] 電路分析方法Simen Li
 
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingRF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingSimen Li
 
電路學 - [第四章] 儲能元件
電路學 - [第四章] 儲能元件電路學 - [第四章] 儲能元件
電路學 - [第四章] 儲能元件Simen Li
 
電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路Simen Li
 

La actualidad más candente (20)

射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
 
RF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversRF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF Transceivers
 
專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧
 
Agilent ADS 模擬手冊 [實習2] 放大器設計
Agilent ADS 模擬手冊 [實習2]  放大器設計Agilent ADS 模擬手冊 [實習2]  放大器設計
Agilent ADS 模擬手冊 [實習2] 放大器設計
 
電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路
 
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
 
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisRF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
 
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
 
傳輸線理論
傳輸線理論傳輸線理論
傳輸線理論
 
射頻電子 - [實驗第三章] 濾波器設計
射頻電子 - [實驗第三章] 濾波器設計射頻電子 - [實驗第三章] 濾波器設計
射頻電子 - [實驗第三章] 濾波器設計
 
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
 
PA linearity
PA linearityPA linearity
PA linearity
 
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
 
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain ExpressionsRF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
 
電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理
 
電路學 - [第二章] 電路分析方法
電路學 - [第二章] 電路分析方法電路學 - [第二章] 電路分析方法
電路學 - [第二章] 電路分析方法
 
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingRF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
 
電路學 - [第四章] 儲能元件
電路學 - [第四章] 儲能元件電路學 - [第四章] 儲能元件
電路學 - [第四章] 儲能元件
 
電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路
 

Destacado

電磁波健康效應之評估報告
電磁波健康效應之評估報告電磁波健康效應之評估報告
電磁波健康效應之評估報告Wei Chung Chang
 
電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析Simen Li
 
Circuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier AnalysisCircuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier AnalysisSimen Li
 
Circuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformSimen Li
 
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor AmplifierRF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor AmplifierSimen Li
 
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsCircuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsSimen Li
 
電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路Simen Li
 
RF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartRF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartSimen Li
 
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisCircuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisSimen Li
 
RF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave NetworkRF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave NetworkSimen Li
 
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband AmplifierRF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband AmplifierSimen Li
 
RF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line TheoryRF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line TheorySimen Li
 
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Simen Li
 

Destacado (13)

電磁波健康效應之評估報告
電磁波健康效應之評估報告電磁波健康效應之評估報告
電磁波健康效應之評估報告
 
電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析
 
Circuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier AnalysisCircuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier Analysis
 
Circuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace Transform
 
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor AmplifierRF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
 
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsCircuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
 
電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路
 
RF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartRF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith Chart
 
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisCircuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
 
RF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave NetworkRF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave Network
 
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband AmplifierRF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
 
RF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line TheoryRF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line Theory
 
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
 

Similar a 射頻電子 - [第一章] 知識回顧與通訊系統簡介

Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Simen Li
 
eecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfeecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfNahshonMObiri
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise AmplifierSimen Li
 
Introduction of GPS BPSK-R and BOC
Introduction of GPS BPSK-R and BOCIntroduction of GPS BPSK-R and BOC
Introduction of GPS BPSK-R and BOCPei-Che Chang
 
Frequency Modulation.ppt
Frequency Modulation.pptFrequency Modulation.ppt
Frequency Modulation.pptStefan Oprea
 
Digital modulation
Digital modulationDigital modulation
Digital modulationumair khan
 
Presentació renovables
Presentació renovablesPresentació renovables
Presentació renovablesJordi Cusido
 
Wideband Frequency Modulation.pdf
Wideband Frequency Modulation.pdfWideband Frequency Modulation.pdf
Wideband Frequency Modulation.pdfArijitDhali
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsSimen Li
 
Variable frequencyresponseanalysis8ed
Variable frequencyresponseanalysis8edVariable frequencyresponseanalysis8ed
Variable frequencyresponseanalysis8edxebiikhan
 
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorSimen Li
 
Noise Performance of CW system
Noise Performance of CW systemNoise Performance of CW system
Noise Performance of CW systemDr Naim R Kidwai
 
A Simple Communication System Design Lab #3 with MATLAB Simulink
A Simple Communication System Design Lab #3 with MATLAB SimulinkA Simple Communication System Design Lab #3 with MATLAB Simulink
A Simple Communication System Design Lab #3 with MATLAB SimulinkJaewook. Kang
 
Signal Processing Algorithms for MIMO Radar
Signal Processing Algorithms for MIMO RadarSignal Processing Algorithms for MIMO Radar
Signal Processing Algorithms for MIMO Radarsansam77
 

Similar a 射頻電子 - [第一章] 知識回顧與通訊系統簡介 (20)

Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1]
 
eecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfeecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdf
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise Amplifier
 
Introduction of GPS BPSK-R and BOC
Introduction of GPS BPSK-R and BOCIntroduction of GPS BPSK-R and BOC
Introduction of GPS BPSK-R and BOC
 
E 2017 1
E 2017 1E 2017 1
E 2017 1
 
Frequency Modulation.ppt
Frequency Modulation.pptFrequency Modulation.ppt
Frequency Modulation.ppt
 
Frequency modulation
Frequency modulationFrequency modulation
Frequency modulation
 
Digital modulation
Digital modulationDigital modulation
Digital modulation
 
Ph ddefence
Ph ddefencePh ddefence
Ph ddefence
 
Presentació renovables
Presentació renovablesPresentació renovables
Presentació renovables
 
Wideband Frequency Modulation.pdf
Wideband Frequency Modulation.pdfWideband Frequency Modulation.pdf
Wideband Frequency Modulation.pdf
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked Loops
 
Variable frequencyresponseanalysis8ed
Variable frequencyresponseanalysis8edVariable frequencyresponseanalysis8ed
Variable frequencyresponseanalysis8ed
 
Pixel rf
Pixel rfPixel rf
Pixel rf
 
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
 
Noise Performance of CW system
Noise Performance of CW systemNoise Performance of CW system
Noise Performance of CW system
 
A Simple Communication System Design Lab #3 with MATLAB Simulink
A Simple Communication System Design Lab #3 with MATLAB SimulinkA Simple Communication System Design Lab #3 with MATLAB Simulink
A Simple Communication System Design Lab #3 with MATLAB Simulink
 
13486500-FFT.ppt
13486500-FFT.ppt13486500-FFT.ppt
13486500-FFT.ppt
 
Signal Processing Algorithms for MIMO Radar
Signal Processing Algorithms for MIMO RadarSignal Processing Algorithms for MIMO Radar
Signal Processing Algorithms for MIMO Radar
 
Ee gate-2011
Ee gate-2011 Ee gate-2011
Ee gate-2011
 

Más de Simen Li

2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)Simen Li
 
全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版Simen Li
 
Node.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterNode.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterSimen Li
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Simen Li
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignSimen Li
 
ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作Simen Li
 
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack FirmwareSimen Li
 
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack FirmwareSimen Li
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)Simen Li
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)Simen Li
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)Simen Li
 
深入淺出C語言
深入淺出C語言深入淺出C語言
深入淺出C語言Simen Li
 
[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階Simen Li
 
Multiband Transceivers - [Chapter 7] Spec. Table
Multiband Transceivers - [Chapter 7]  Spec. TableMultiband Transceivers - [Chapter 7]  Spec. Table
Multiband Transceivers - [Chapter 7] Spec. TableSimen Li
 
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Simen Li
 
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversMultiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversSimen Li
 
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosMultiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosSimen Li
 
Multiband Transceivers - [Chapter 5] Software-Defined Radios
Multiband Transceivers - [Chapter 5]  Software-Defined RadiosMultiband Transceivers - [Chapter 5]  Software-Defined Radios
Multiband Transceivers - [Chapter 5] Software-Defined RadiosSimen Li
 
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3]  Basic Concept of Comm. SystemsMultiband Transceivers - [Chapter 3]  Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. SystemsSimen Li
 
Multiband Transceivers - [Chapter 2] Noises and Linearities
Multiband Transceivers - [Chapter 2]  Noises and LinearitiesMultiband Transceivers - [Chapter 2]  Noises and Linearities
Multiband Transceivers - [Chapter 2] Noises and LinearitiesSimen Li
 

Más de Simen Li (20)

2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
 
全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版
 
Node.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterNode.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitter
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and Design
 
ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作
 
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
 
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
 
深入淺出C語言
深入淺出C語言深入淺出C語言
深入淺出C語言
 
[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階
 
Multiband Transceivers - [Chapter 7] Spec. Table
Multiband Transceivers - [Chapter 7]  Spec. TableMultiband Transceivers - [Chapter 7]  Spec. Table
Multiband Transceivers - [Chapter 7] Spec. Table
 
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
 
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversMultiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
 
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosMultiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
 
Multiband Transceivers - [Chapter 5] Software-Defined Radios
Multiband Transceivers - [Chapter 5]  Software-Defined RadiosMultiband Transceivers - [Chapter 5]  Software-Defined Radios
Multiband Transceivers - [Chapter 5] Software-Defined Radios
 
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3]  Basic Concept of Comm. SystemsMultiband Transceivers - [Chapter 3]  Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
 
Multiband Transceivers - [Chapter 2] Noises and Linearities
Multiband Transceivers - [Chapter 2]  Noises and LinearitiesMultiband Transceivers - [Chapter 2]  Noises and Linearities
Multiband Transceivers - [Chapter 2] Noises and Linearities
 

Último

EPE3163_Hydro power stations_Unit2_Lect2.pptx
EPE3163_Hydro power stations_Unit2_Lect2.pptxEPE3163_Hydro power stations_Unit2_Lect2.pptx
EPE3163_Hydro power stations_Unit2_Lect2.pptxJoseeMusabyimana
 
Phase noise transfer functions.pptx
Phase noise transfer      functions.pptxPhase noise transfer      functions.pptx
Phase noise transfer functions.pptxSaiGouthamSunkara
 
The relationship between iot and communication technology
The relationship between iot and communication technologyThe relationship between iot and communication technology
The relationship between iot and communication technologyabdulkadirmukarram03
 
Best-NO1 Best Rohani Amil In Lahore Kala Ilam In Lahore Kala Jadu Amil In Lah...
Best-NO1 Best Rohani Amil In Lahore Kala Ilam In Lahore Kala Jadu Amil In Lah...Best-NO1 Best Rohani Amil In Lahore Kala Ilam In Lahore Kala Jadu Amil In Lah...
Best-NO1 Best Rohani Amil In Lahore Kala Ilam In Lahore Kala Jadu Amil In Lah...Amil baba
 
Popular-NO1 Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialis...
Popular-NO1 Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialis...Popular-NO1 Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialis...
Popular-NO1 Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialis...Amil baba
 
Guardians and Glitches: Navigating the Duality of Gen AI in AppSec
Guardians and Glitches: Navigating the Duality of Gen AI in AppSecGuardians and Glitches: Navigating the Duality of Gen AI in AppSec
Guardians and Glitches: Navigating the Duality of Gen AI in AppSecTrupti Shiralkar, CISSP
 
sdfsadopkjpiosufoiasdoifjasldkjfl a asldkjflaskdjflkjsdsdf
sdfsadopkjpiosufoiasdoifjasldkjfl a asldkjflaskdjflkjsdsdfsdfsadopkjpiosufoiasdoifjasldkjfl a asldkjflaskdjflkjsdsdf
sdfsadopkjpiosufoiasdoifjasldkjfl a asldkjflaskdjflkjsdsdfJulia Kaye
 
Vertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptx
Vertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptxVertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptx
Vertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptxLMW Machine Tool Division
 
IT3401-WEB ESSENTIALS PRESENTATIONS.pptx
IT3401-WEB ESSENTIALS PRESENTATIONS.pptxIT3401-WEB ESSENTIALS PRESENTATIONS.pptx
IT3401-WEB ESSENTIALS PRESENTATIONS.pptxSAJITHABANUS
 
Mohs Scale of Hardness, Hardness Scale.pptx
Mohs Scale of Hardness, Hardness Scale.pptxMohs Scale of Hardness, Hardness Scale.pptx
Mohs Scale of Hardness, Hardness Scale.pptxKISHAN KUMAR
 
Test of Significance of Large Samples for Mean = µ.pptx
Test of Significance of Large Samples for Mean = µ.pptxTest of Significance of Large Samples for Mean = µ.pptx
Test of Significance of Large Samples for Mean = µ.pptxHome
 
Strategies of Urban Morphologyfor Improving Outdoor Thermal Comfort and Susta...
Strategies of Urban Morphologyfor Improving Outdoor Thermal Comfort and Susta...Strategies of Urban Morphologyfor Improving Outdoor Thermal Comfort and Susta...
Strategies of Urban Morphologyfor Improving Outdoor Thermal Comfort and Susta...amrabdallah9
 
Landsman converter for power factor improvement
Landsman converter for power factor improvementLandsman converter for power factor improvement
Landsman converter for power factor improvementVijayMuni2
 
Engineering Mechanics Chapter 5 Equilibrium of a Rigid Body
Engineering Mechanics  Chapter 5  Equilibrium of a Rigid BodyEngineering Mechanics  Chapter 5  Equilibrium of a Rigid Body
Engineering Mechanics Chapter 5 Equilibrium of a Rigid BodyAhmadHajasad2
 
UNIT4_ESD_wfffffggggggggggggith_ARM.pptx
UNIT4_ESD_wfffffggggggggggggith_ARM.pptxUNIT4_ESD_wfffffggggggggggggith_ARM.pptx
UNIT4_ESD_wfffffggggggggggggith_ARM.pptxrealme6igamerr
 
Clutches and brkesSelect any 3 position random motion out of real world and d...
Clutches and brkesSelect any 3 position random motion out of real world and d...Clutches and brkesSelect any 3 position random motion out of real world and d...
Clutches and brkesSelect any 3 position random motion out of real world and d...sahb78428
 

Último (20)

EPE3163_Hydro power stations_Unit2_Lect2.pptx
EPE3163_Hydro power stations_Unit2_Lect2.pptxEPE3163_Hydro power stations_Unit2_Lect2.pptx
EPE3163_Hydro power stations_Unit2_Lect2.pptx
 
Lecture 2 .pptx
Lecture 2                            .pptxLecture 2                            .pptx
Lecture 2 .pptx
 
計劃趕得上變化
計劃趕得上變化計劃趕得上變化
計劃趕得上變化
 
Phase noise transfer functions.pptx
Phase noise transfer      functions.pptxPhase noise transfer      functions.pptx
Phase noise transfer functions.pptx
 
The relationship between iot and communication technology
The relationship between iot and communication technologyThe relationship between iot and communication technology
The relationship between iot and communication technology
 
Best-NO1 Best Rohani Amil In Lahore Kala Ilam In Lahore Kala Jadu Amil In Lah...
Best-NO1 Best Rohani Amil In Lahore Kala Ilam In Lahore Kala Jadu Amil In Lah...Best-NO1 Best Rohani Amil In Lahore Kala Ilam In Lahore Kala Jadu Amil In Lah...
Best-NO1 Best Rohani Amil In Lahore Kala Ilam In Lahore Kala Jadu Amil In Lah...
 
Litature Review: Research Paper work for Engineering
Litature Review: Research Paper work for EngineeringLitature Review: Research Paper work for Engineering
Litature Review: Research Paper work for Engineering
 
Popular-NO1 Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialis...
Popular-NO1 Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialis...Popular-NO1 Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialis...
Popular-NO1 Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialis...
 
Guardians and Glitches: Navigating the Duality of Gen AI in AppSec
Guardians and Glitches: Navigating the Duality of Gen AI in AppSecGuardians and Glitches: Navigating the Duality of Gen AI in AppSec
Guardians and Glitches: Navigating the Duality of Gen AI in AppSec
 
sdfsadopkjpiosufoiasdoifjasldkjfl a asldkjflaskdjflkjsdsdf
sdfsadopkjpiosufoiasdoifjasldkjfl a asldkjflaskdjflkjsdsdfsdfsadopkjpiosufoiasdoifjasldkjfl a asldkjflaskdjflkjsdsdf
sdfsadopkjpiosufoiasdoifjasldkjfl a asldkjflaskdjflkjsdsdf
 
Vertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptx
Vertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptxVertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptx
Vertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptx
 
IT3401-WEB ESSENTIALS PRESENTATIONS.pptx
IT3401-WEB ESSENTIALS PRESENTATIONS.pptxIT3401-WEB ESSENTIALS PRESENTATIONS.pptx
IT3401-WEB ESSENTIALS PRESENTATIONS.pptx
 
Mohs Scale of Hardness, Hardness Scale.pptx
Mohs Scale of Hardness, Hardness Scale.pptxMohs Scale of Hardness, Hardness Scale.pptx
Mohs Scale of Hardness, Hardness Scale.pptx
 
Test of Significance of Large Samples for Mean = µ.pptx
Test of Significance of Large Samples for Mean = µ.pptxTest of Significance of Large Samples for Mean = µ.pptx
Test of Significance of Large Samples for Mean = µ.pptx
 
Présentation IIRB 2024 Chloe Dufrane.pdf
Présentation IIRB 2024 Chloe Dufrane.pdfPrésentation IIRB 2024 Chloe Dufrane.pdf
Présentation IIRB 2024 Chloe Dufrane.pdf
 
Strategies of Urban Morphologyfor Improving Outdoor Thermal Comfort and Susta...
Strategies of Urban Morphologyfor Improving Outdoor Thermal Comfort and Susta...Strategies of Urban Morphologyfor Improving Outdoor Thermal Comfort and Susta...
Strategies of Urban Morphologyfor Improving Outdoor Thermal Comfort and Susta...
 
Landsman converter for power factor improvement
Landsman converter for power factor improvementLandsman converter for power factor improvement
Landsman converter for power factor improvement
 
Engineering Mechanics Chapter 5 Equilibrium of a Rigid Body
Engineering Mechanics  Chapter 5  Equilibrium of a Rigid BodyEngineering Mechanics  Chapter 5  Equilibrium of a Rigid Body
Engineering Mechanics Chapter 5 Equilibrium of a Rigid Body
 
UNIT4_ESD_wfffffggggggggggggith_ARM.pptx
UNIT4_ESD_wfffffggggggggggggith_ARM.pptxUNIT4_ESD_wfffffggggggggggggith_ARM.pptx
UNIT4_ESD_wfffffggggggggggggith_ARM.pptx
 
Clutches and brkesSelect any 3 position random motion out of real world and d...
Clutches and brkesSelect any 3 position random motion out of real world and d...Clutches and brkesSelect any 3 position random motion out of real world and d...
Clutches and brkesSelect any 3 position random motion out of real world and d...
 

射頻電子 - [第一章] 知識回顧與通訊系統簡介

  • 1. 高頻電子電路 第一章 知識回顧與通訊系統簡介 李健榮 助理教授 Department of Electronic Engineering National Taipei University of Technology
  • 2. 大綱 • dB的定義 • 相量(Phasor) • 調變 • 線性調變與線性發射機 • 線性解調變與線性接收機 • 調變訊號譜 • 複數波包 Department of Electronic Engineering, NTUT2/40
  • 3. dB的定義 • , where • Power gain • Voltage gain • Power (dBW) • Power (dBm) • Voltage (dBV) • Voltage (dBuV) ( )dB 10 log G= ⋅ ( )aG b = 2 1 10 log P P  = ⋅     2 1 20 log V V  = ⋅     ( )10 log 1-W P= ⋅ ( )10 log 1-mW P= ⋅ ( )20 log 1-Volt V= ⋅ ( )20 log 1- V V µ= ⋅ 相對的相對的相對的相對的(Relative ) (比值比值比值比值, 無單位無單位無單位無單位, dB) 絕對的絕對的絕對的絕對的(Absolute ) (單位單位單位單位, dBW, dBm, dBV…) Department of Electronic Engineering, NTUT3/40
  • 4. In some textbooks, phasor may be represented as 尤拉公式 • Euler’s Formula states that: cos sinjx e x j x= + ( ) ( ) ( ) { } { }cos Re Re j t j j t p p pv t V t V e V e e ω φ φ ω ω φ + = ⋅ + = ⋅ = ⋅ ( )cos sin def j p p pV V e V V jφ φ φ φ= ⋅ = ∠ = +• Phasor : Don’t be confused with Vector which is commonly denoted as .A phasor A real signal can be represented as: V V ( ) ( )cospv t V tω φ= ⋅ + Department of Electronic Engineering, NTUT4/40
  • 5. Euler’s Trick on the Definition of e 2 3 lim 1 1 1! 2! 3! n x n x x x x e n→∞   = + = + + + +    … x jx= ( ) ( ) 2 3 2 4 3 5 1 1 1! 2! 3! 2! 4! 3! 5! jx jx jxjx x x x x e j x     = + + + + = − + − + + − + − +        … … … • Euler played a trick : Let , where 1j = − 1 lim 1 n n e n→∞   = +    6/33 2 4 cos 1 2! 4! x x x = − + − +… 3 5 sin 3! 5! x x x x= − + − +… cos sinjx e x j x= + cos sinjx e x j x− = − cos 2 jx jx e e x − + = sin 2 jx jx e e x j − − = • Use and we have Department of Electronic Engineering, NTUT5/40
  • 6. 座標系統 x-axis y-axis x-axis y-axis P(r,θ) θ r P(x,y) 2 2 r x y= + 1 tan y x θ − = cosx r θ= siny r θ= Cartesian Coordinate System Polar Coordinate System (x,0) (0,y) ( )cos ,0r θ ( )0, sinr θ Projection on x-axis Projection on y-axis Department of Electronic Engineering, NTUT6/40
  • 7. 正弦波形 x-axis y-axis P(x,y) x y r θ θθ y θ 0 π/2 π 3π/2 2π Go along the circle, the projection on y-axis results in a sine wave. Department of Electronic Engineering, NTUT7/40
  • 8. x θ 0 π/2 π 3π/2 餘弦波形 x-axis y-axis θ Go along the circle, the projection on x-axis results in a cosine wave. Sinusoidal waves relate to a Circle very closely. Complete going along the circle to finish a cycle, and the angle θ rotates with 2π rads and you are back to the original starting-point and. Complete another cycle again, sinusoidal waveform in one period repeats again. Keep going along the circle, the waveform will periodically appear. Department of Electronic Engineering, NTUT8/40
  • 9. 複數平面(I) It seems to be the same thing with x-y plan, right? • Carl Friedrich Gauss (1777-1855) defined the complex plan. He defined the unit length on Im-axis is equal to “j”. A complex Z = x + jy can be denoted as (x, yj) on the complex plan. (sometimes, ‘j’may be written as ‘i’which represent imaginary) Re-axis Im-axis Re-axis Im-axis P(r,θ) θ r P(x,yj) 2 2 r x y= + 1 tan y x θ − = cosx r θ= siny r θ= (x,0j) (0,yj) ( )cos ,0r θ ( )0, sinr θ ( )1j = − Department of Electronic Engineering, NTUT9/40
  • 10. 複數平面(II) Re-axis Im-axis 1 Every time you multiply something by j, that thing will rotate 90 degrees. 1j = − 2 1j = − 3 1j = − − 4 1j = 1*j=j j j*j=-1 -1 -j -1*j=-j -j*j=1 (0.5,0.2j) (-0.2, 0.5j) (-0.5, -0.2j) (0.2, -0.5j) • Multiplying j by j and so on: Department of Electronic Engineering, NTUT10/40
  • 11. 正弦波 Re-axis Im-axis P(x,y) x y r θ θθ y = rsinθ θ 0 π/2 π 3π/2 2π To see the cosine waveform, the same operation can be applied to trace out the projection on Re-axis. Department of Electronic Engineering, NTUT11/40
  • 12. 相量表示法 (I) – 以sine為基底 ( ) ( ) { } { }sin Im Imj j t j j sv t A t Ae e Ae eφ ω φ θ ω φ= + = = Re-axis Im-axis P(A,ϕ) y = Asinϕ θ 0 π/2 π 3π/2 2π ϕ tθ ω= Given the phasor denoted as a point on the complex-plan, you should know it represents a sinusoidal signal. Keep this in mind, it is very important! time-domain waveform Department of Electronic Engineering, NTUT12/40
  • 13. 相量表示法 (II) – 以cosine為基底 ( ) ( ) { } { }cos Re Rej j t j j sv t A t Ae e Ae eφ ω φ θ ω φ= + = = Re-axis Im-axis P(A, ϕ) y = Acos ϕ θ 0 π/2 π 3π/2 2π ϕ tθ ω= time-domain waveform Department of Electronic Engineering, NTUT13/40
  • 14. 相量表示法 (III) ( ) ( ) { }1 1 1 1 1sin Im j j t v t A t Ae eφ ω ω φ= + = Re-axis Im-axis P(A1, ϕ1) ϕ1 P(A2, ϕ2) P(A3, ϕ3) θ 0 π/2 π 3π/2 2π tθ ω= A1sin ϕ1 ( ) ( ) { }2 2 2 2 2sin Im j j t v t A t A e eφ ω ω φ= + = ( ) ( ) { }3 3 3 3 3sin Im j j t v t A t A e eφ ω ω φ= + = A2sin ϕ2 A3sin ϕ3 Department of Electronic Engineering, NTUT14/40
  • 15. 到處都是相量 • Circuit Analysis, Microelectronics: Phasor is often constant. • Field and Wave Electromagnetics, Microwave Engineering: Phasor varies with the propagation distance. • Communication System: Phasor varies with time (complex envelope, envelope, or equivalent lowpass signal of the bandpass signal). ( ) ( )5cos 1000 30sv t t= + 5 30sV = ∠ ( ) ( ) ( ) ( ) ( ) { }, cos cos Re j x t j x t v x t A x t B x t Ae Be β ω β ω β ω β ω − − + = − + + = + ( ) j x j x V x Ae Beβ β− = + ( ){ }Re j t V x e ω = Department of Electronic Engineering, NTUT15/40
  • 16. 調變(調制) • Why modulation? Communication Bandwidth Antenna Size Security, avoid Interferes, etc. Voice Electric signal Audio Equipment Audio Equipment Modulator Demodulator Electric signal Voice Department of Electronic Engineering, NTUT16/40
  • 17. 振幅調變(Amplitude Modulation) ( ) ( ) cos2m BB cs t s t A f tπ= ⋅ Baseband real signal Voice Electric signal Audio Equipment Audio Equipment Modulator Demodulator Electric signal Voice ( )BBs t cos2 cA f tπ Carrier (or local) High-frequency sinusoid Amplitude-modulated signal (AM signal) Department of Electronic Engineering, NTUT17/40
  • 18. 頻率調變(Frequency Modulation) ( ) ( ){ }cos 2m c f BBs t A f K s t tπ  = + ⋅  Voice Electric signal Audio Equipment Audio Equipment Modulator Demodulator Electric signal Voice Baseband real signal ( )BBs t cos2 cA f tπ Carrier (or local) High-frequency sinusoid Frequency-modulated signal (FM signal) Department of Electronic Engineering, NTUT18/40
  • 19. 相位調變(Phase Modulation) Voice Electric signal Audio Equipment Audio Equipment Modulator Demodulator Electric signal Voice ( ) ( )cos 2m c p BBs t A f t K s tπ = +  ( )cos 2 c BBA f t tπ φ= +   Baseband real signal ( )BBs t cos2 cA f tπ Carrier (or local) High-frequency sinusoid Phase-modulated signal (PM signal) Department of Electronic Engineering, NTUT19/40
  • 20. 線性調變(Linear Modulation) ( ) ( ) ( )cos 2m BB c BBs t A t f t tπ φ= ⋅ +   Voice Electric signal Audio Equipment Audio Equipment Modulator Demodulator Electric signal Voice Baseband real signal ( )BBs t cos2 cA f tπ Carrier (or local) High-frequency sinusoid Linear-modulated signal ( )BBs t ( ) ( ), ?BB BBA t tφ Department of Electronic Engineering, NTUT20/40
  • 21. 線性調變之數學推導 • Consider a modulated signal ( ) ( ) ( ) ( ) ( ) { }2 cos 2 Re c BBj f t t m BB c BB BBs t A t f t t A t e π φ π φ +   = ⋅ + = ⋅   ( ) ( ) ( ) ( ) ( ){ }2 2 Re Re cos sinBB c cj t j f t j f t BB BB BB BBA t e e A t t j t eφ π π φ φ = ⋅ = ⋅ +    ( ) ( ) ( ) ( ) ( ) ( )cos sinBBj t l BB BB BB BBs t A t e A t t j t φ φ φ= ⋅ = ⋅ +   ( ) ( ) ( ) ( ) ( ) ( )cos sinBB BB BB BBA t t jA t t I t jQ tφ φ= ⋅ + ⋅ = + ( ) ( ) ( ) ( ){ }Re cos2 sin2m c cs t I t jQ t f t j f tπ π= + ⋅ +   ( ) ( )cos2 sin 2c cI t f t Q t f tπ π= − Time-varying phasor (information in both amplitude and phase) ( )BBs t : real ( )ls t : complex Modulated signal is the linear combination of I(t), Q(t), and the carrier. Thus the linear modulator is also called “I/Q Modulator,” and it is an universal modulator. Department of Electronic Engineering, NTUT21/40
  • 22. 線性調變器 • The modulator accomplishes the mathematical operation. ( ) ( ) ( ) ( ) ( ){ }Re cos sin cos2 sin 2m BB BB BB c cs t A t t j t f t j f tφ φ π π= ⋅ + +   ( ) ( ) ( ) ( )cos cos2 sin sin 2BB BB c BB BB cA t t f t A t t f tφ π φ π= − ( ) ( )cos2 sin 2c cI t f t Q t f tπ π= − ( )I t cos ctω sin ctω− ( )Q t ( )ms t ( )I t cos ctω sin ctω ( )Q t ( )ms t + − 90 ( )I t cos ctω ( )Q t ( )ms t Department of Electronic Engineering, NTUT I component Q component I channel Q channel 22/40
  • 23. 線性發射機架構 • Linear Transmitter 90 ( )I t cos ctω ( )Q t ( )ms t Power Amplifier (PA) Antenna Baseband Processor 90 cos ctω ( )ms t Power Amplifier (PA) Antenna Matching / BPF Matching ( )I t ( )Q t Baseband Processor Department of Electronic Engineering, NTUT23/40
  • 24. 線性解調變 ( ) ( ) ( ) ( ) ( )cos 2 cos2 sin2m BB c BB c cs t A t f t t I t f t Q t f tπ φ π π= ⋅ + = −   ( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 1 cos2 cos 2 sin2 cos2 cos4 1 sin4 sin0 2 2 m c c c c c cs t f t I t f t Q t f t f t I t f t Q t f tπ π π π π π= − ⋅ = ⋅ + − ⋅ + ( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 1 sin2 cos2 sin2 sin 2 sin4 sin0 1 cos4 2 2 m c c c c c cs t f t I t f t f t Q t f t I t f t Q t f tπ π π π π π− = − + = − ⋅ + + ⋅ − ( ) ( ) ( )cos4 sin 4 2 2 2 c c I t I t Q t f t f tπ π   = + −    ( ) ( ) ( )sin4 cos4 2 2 2 c c Q t I t Q t f t f tπ π   = − +    ? Receiver ( )ms t ( )BBs t Received modulated signal: Multiplied by “cosine”: Multiplied by “−−−− sine”: High-frequency components (should be filtered out) High-frequency components (should be filtered out) Department of Electronic Engineering, NTUT24/40
  • 25. 線性解調器 ( )I t cos ctω sin ctω− ( )Q t ( )ms t LPF LPF ( )I t ( )Q t ( )ms t LPF LPF 90 cos ctω ( ) ( ) ( ) ( ) ( )BBj t l BBs t A t e I t jQ t φ = ⋅ = + ( ) ( ) ( )2 2 BBA t I t Q t= + ( ) ( ) ( ) 1 tanBB Q t t I t φ − = Baseband Processing Original Information (or data) ( )I t ( )Q t Department of Electronic Engineering, NTUT25/40
  • 26. 線性接收機架構 • Linear Receiver (direct conversion) 90 ( )I t cos ctω ( )Q t ( )ms t Low Noise Amplifier (LNA) Baseband Processor LPF LPF Matching / BPF 90 ( )I t cos ctω ( )Q t ( )ms t Low Noise Amplifier (LNA) Baseband Processor LPF LPF Matching Department of Electronic Engineering, NTUT26/40
  • 27. 調變訊號的頻譜 • Fourier Series Representations • Non-periodic Waveform and Fourier Transform • Spectrum of a Real Signal • AM, PM, and Linear Modulated Signal • Concept of Complex Envelope Department of Electronic Engineering, NTUT27/40
  • 28. 傅立葉級數 • There are three forms to represent the Fourier Series of a periodic signal : Sine-cosine form Amplitude-phase form Complex exponential form ( ) ( )0 1 1 1 cos sinn n n x t A A n t B n tω ω ∞ = = + +∑ ( ) ( )0 1 1 cosn n n x t C C n tω φ ∞ = = + +∑ ( ) 1jn t n n x t X e ω ∞ =−∞ = ∑ ( )x t Department of Electronic Engineering, NTUT t x(t) t t t ( )X jω ω 1f 13 f 15 f .etc T1 1 1C φ∠ 2 2C φ∠ 3 3C φ∠ 28/40
  • 29. Sine-Cosine Form ( )0 0 area under curve in one cycle period T 1 T A x t dt T = =∫ ( ) 10 2 cos , for 1 but not for 0 T nA x t n tdt n n T ω= ≥ =∫ ( ) 10 2 sin , for 1 T nB x t n tdt n T ω= ≥∫ is the DC term (average value over one cycle) • Other than DC, there are two components appearing at a given harmonic frequency in the most general case: a cosine term with an amplitude An and a sine term with an amplitude Bn. (A complete cycle can also be noted from )~ 2 2 T T− Department of Electronic Engineering, NTUT29/40
  • 30. Amplitude-Phase Form ( ) ( )0 1 1 cosn n n x t C C n tω φ ∞ = = + +∑ ( ) ( )0 1 1 sinn n n x t C C n tω θ ∞ = = + +∑ 2 2 n n nC A B= + • The sum of two or more sinusoids of a given frequency is equivalent to a single sinusoid at the same frequency. • The amplitude-phase form of the Fourier series can be expressed as either or 0 0C A= is the DC term is the net amplitude of a given component at frequency nf1, since sine and cosine phasor forms are always perpendicular to each other. where Department of Electronic Engineering, NTUT30/40
  • 31. Complex Exponential Form (I) 1 1 1cos sinjn t e n t j n tω ω ω= + 1 1 1cos sinjn t e n t j n tω ω ω− = − 1 1 1cos 2 jn t jn t e e n t ω ω ω − + = 1 1 1sin 2 jn t jn t e e n t j ω ω ω − − = cos sinjx e x j x= + cos sinjx e x j x− = − cos 2 jx jx e e x − + = sin 2 jx jx e e x j − − = Recall that • Euler’s formula 1 nω is called the positive frequency, and 1 nω− the negative frequency From Euler’s formula, we know that both positive-frequency and negative- frequency terms are required to completely describe the sine or cosine function with complex exponential form. Here 1jn t e ω 1jn t e ω− Department of Electronic Engineering, NTUT31/40
  • 32. Complex Exponential Form (II) 1 1jk t jk t k kX e X eω ω− −+ ( )where kkX X− = ( ) 1jn t n n x t X e ω ∞ =−∞ = ∑ ( ) 1 0 1 T jn t nX x t e dt T ω− = ∫ • The general form of the complex exponential form of the Fourier series can be expressed as where Xn is a complex value • At a given real frequency kf1, (k>0), that spectral representation consists of The first term is thought of as the “positive frequency” contribution, whereas the second is the corresponding “negative frequency” contribution. Although either one of the two terms is a complex quantity, they add together in such a manner as to create a real function, and this is why both terms are required to make the mathematical form complete. Department of Electronic Engineering, NTUT32/40
  • 33. 當週期趨近無限大 T 2T 3T 4T 5T ( )x t f nX T 2T T T f nX f nX f nX Single pulse T → ∞ Department of Electronic Engineering, NTUT33/40
  • 34. 傅立葉轉換 ( ) ( )X f F x t=   F ( ) ( )1 x t F X f− =   F ( ) ( ) j t X f x t e dtω ∞ − −∞ = ∫ ( ) ( ) j t x t X f e dfω ∞ −∞ = ∫ • Fourier transformation and its inverse operation : • The actual mathematical processes involved in these operations are as follows: 2 fω π= • The Fourier transform is, in general, a complex function and has both a magnitude and an angle: ( )X f ( ) ( ) ( ) ( ) ( )j f X f X f e X f fφ φ= = ∠ ( )X f f For the nonperiodic signal, its spectrum is continuous, and, in general, it consists of components at all frequencies in the range over which the spectrum is present. Department of Electronic Engineering, NTUT34/40
  • 35. 調變譜 (I) • From Euler’s Formula : • AM signal (DSB-SC) cos 2 jx jx e e x − + = A “real signal” is composed of positive and negative frequency components. ( ) ( )cos2m cs t A t f tπ= Two-sided amplitude frequency spectrum ( ) ( )2 1000 2 10001 50cos 2 1000 2 j t j t t e eπ π π × − × × = + 2525 0 Hz 1 kHz1 kHz− f One-sided amplitude frequency spectrum 50 0 Hz 1 kHz ( )50cos 2 1000tπ × f t( ) ( )BBs t A t= f f cf0 Hzcf− 0 Hz USBLSB USBLSBLSBUSB cos2 cf tπ Department of Electronic Engineering, NTUT “real signal” 35/40
  • 36. Phase Modulator 調變譜 (II) t( )BBs t f 0 Hz USBLSB cos2 cf tπ ( ) ( )2 2 2 2 c cj t j tj f t j f tA A e e e e φ φπ π− − = + ( ) ( )( )cos 2m cs t A f t tπ φ= + ( ) { } ( ) { }2 2 Re Rec c j f t t j t j f t A e A e e π φ φ π+   = ⋅ = ⋅ Department of Electronic Engineering, NTUT “real signal” f cf0 Hzcf− USBLSBLSBUSB “complex”“complex” “real” • PM signal Complex conjugate 36/40
  • 37. 調變譜 (III) I/Q Modulator t( )BBs t f 0 Hz USBLSB cos2 cf tπ ( ) ( ) ( ) ( )2 2 2 2 c cj t j tj f t j f tA t A t e e e eφ φπ π− − = + ( ) ( ) ( )( )cos 2m cs t A t f t tπ φ= + ( ) ( ) { }2 Re cj t j f t A t e eφ π = ⋅ “real signal” • I/Q modulated signal ( )I t ( )Q t f cf0 Hzcf− USBLSBLSBUSB “complex”“complex” “real” Department of Electronic Engineering, NTUT Complex conjugate 37/40
  • 38. 複數波包的概念 (I) • Bandpass real signal : ( ) ( ) ( )( ) ( ) ( ) ( ) ( )2 2 cos 2 2 2 c cj t j tj f t j f t m c A t A t s t A t f t t e e e e φ φπ π π φ − − = + = + ( ) ( ) ( ) ( )2 21 1 2 2 c cj t j tj f t j f t A t e e A t e eφ φπ π− − = + ( )ls t ( )ls t∗ ( )lS f∗ ( )lS f Complex timed value Spectrum ( ) ( ) ( ) ( )2 21 1 2 2 c cj t j tj f t j f t A t e e A t e eφ φπ π− − = + ( ) 2 cj f t ls t e π ⋅ ( ) 2 cj f t ls t e π−∗ ⋅ ( )l cS f f∗ − −( )l cS f f− Complex timed value Spectrum ( ) ( ) ( ) 1 2 m l c l cS f S f f S f f∗  = − + − −  f cf0 Hzcf− USBLSBLSBUSB ( ) 1 2 l cS f f−( ) 1 2 l cS f f∗ − − Spectrum of the bandpass signal Department of Electronic Engineering, NTUT38/40
  • 39. 複數波包的概念 (II) • Equivalent low-pass signal (complex envelope): f 0 Hz ( )lS f cfcf− ( ) 21 2 cj f t ls t e π ⋅( ) 21 2 cj f t ls t e π−∗ ⋅ ( ) ( ) ( ) ( ) ( )j t ls t A t e I t jQ t φ = = + ( ) ( ) ( ) 1 2 m l c l cS f S f f S f f∗  = − + − −  f cf0 Hzcf− USBLSBLSBUSB ( ) ( ) 1 2 I t jQ t+   Spectrum of the bandpass signal ( ) ( ) 1 2 I t jQ t−   ( )ms t ( ) ( ) ( ) ( ) ( )BBj t ls t A t e I t jQ t φ = = + complex envelope ( ) ( ) ( ) ( ) ( ) 2 cos 2 Re cj t j f t m cs t A t f t t A t e eφ π π φ  = ⋅ + = ⋅     ( ) ( ){ }2 Re cj f t I t jQ t e π = +   complex envelope carriercarrier2 cj f t e π carrier Department of Electronic Engineering, NTUT39/40
  • 40. 本章總結 • In this chapter, the phasor was introduced to manifest itself in the mathematical operation for communication engineering. • A modulated signal is a linear combination of I(t), Q(t), and the carrier. This mathematical combination can be realized with a practical circuitry, say, “modulator.” • The demodulation is the decomposition of the modulated signal, which is the reverse process to recover the baseband signal I(t) and Q(t). • The modulated signal can be viewed as a complex envelope carried by a sinusoidal carrier. With this equivalent lowpass form to represent a bandpass system, the mathematical analysis can be easily simplified. Department of Electronic Engineering, NTUT40/40