SlideShare a Scribd company logo
1 of 33
Download to read offline
Network Analysis
Chapter 2 e, Phasor, and
Sinusoidal Steady-State Analysis
Chien-Jung Li
Department of Electronic Engineering
National Taipei University of Technology
Department of Electronic Engineering, NTUT
Compound Interest
• 複利公式: 本金P, 年利率r, 一年複利n次,
t年後本金加利息之總和為
 
= + 
 
1
nt
r
S P
n
• Let P=1, r=1, and t=1
 
= + 
 
1
1
n
S
n
When n goes to infinite, S converges to 2.718… (= e)
Let P=10萬, r/n=10%/12, t=1 S=11,0471
Let P=10萬, r/n=10%, and n=36, t=1 S=3,091,268
2/33
Department of Electronic Engineering, NTUT
Development of Logarithm
• Michael Stifel (1487-1567)
• John Napier (1550-1617)
• 利用對數而將乘法變成加法的特性,刻卜勒成功
計算了火星繞日的軌道。
( )+
∗ = =
2 52 5 7
m m m m
( )−
= =
7 7 4 3
4
m m m
m
( )− −
= = =
2 2 3 1
3
1m m m
mm
− − −
=⋯ ⋯3 2 1 0 1 2 3
, , , , 1, , , ,m m m m m m m
3/33
Department of Electronic Engineering, NTUT
Definition of dB (分貝)
• , where
• Power gain
• Voltage gain
• Power (dBW)
• Power (dBm)
• Voltage (dBV)
• Voltage (dBuV)
( )= ⋅10 logdB G ( )= aG
b
 = ⋅  
 
2
1
10 log
P
P
 = ⋅  
 
2
1
20 log
V
V
( )= ⋅10 log
1-W
P
( )= ⋅10 log
1-mW
P
( )= ⋅20 log
1-Volt
V
( )µ
= ⋅20 log
1- V
V
相對量 ((((比例,,,, 比值,,,, 無單位, dB), dB), dB), dB)
絕對量 ((((因相對於一絕對單位,,,,
因此可表示一絕對量.... 有單位,,,,
單位即為dBWdBWdBWdBW,,,, dBmdBmdBmdBm,,,, dBVdBVdBVdBV…)…)…)…)
4/33
Department of Electronic Engineering, NTUT
In some textbooks, phasor may be
represented as
Euler’s Formula
• Euler’s Formula cos sinjx
e x j x= +
( ) ( ) ( )
{ } { }ω φ φ ω
ω φ +
= ⋅ + = ⋅ = ⋅cos Re Re
j t j j t
p p pv t V t V e V e e
φ
φ= ⋅ = ∠
def
j
p pV V e V
• Phasor (相量)
Don’t be confused with VectorVectorVectorVector (向量) which is commonly
denoted as A
(How it comes?)
取實部 (即cosine部分) phasor
A real sinusoidal signal v(t) that can be represented as:
V
V
5/33
Department of Electronic Engineering, NTUT
Definition of e
lim 1
n
x
n
x
e
n→∞
 
= + 
 
2 3
lim 1 1
1! 2! 3!
n
x
n
x x x x
e
n→∞
 
= + = + + + + 
 
…
x jx=
( ) ( )
2 3
1
1! 2! 3!
jx jx jxjx
e = + + + +…
• Euler played a trick let , where 1j = −
1
lim 1
n
n
e
n→∞
 
= + 
 
6/33
Department of Electronic Engineering, NTUT
• Since , , ,
How It Comes…
1j = − 2
1j = − 3
1j = − − 4
1j =
   
= − + − + + − + − +   
   
… …
2 4 3 5
1
2! 4! 3! 5!
x x x x
j x
2 4
cos 1
2! 4!
x x
x = − + − +…
3 5
sin
3! 5!
x x
x x= − + − +…
cos sinjx
e x j x= +
cos sinjx
e x j x−
= −
cos
2
jx jx
e e
x
−
+
=
−
−
=sin
2
jx jx
e e
x
j
( ) ( )= + + + +…
2 3
1
1! 2! 3!
jx jx jxjx
e
• Use and
we have
(姊妹式)
7/33
Department of Electronic Engineering, NTUT
Coordinate Systems
x-axis
y-axis
x-axis
y-axis
P(r,θ)
θ
r
P(x,y)
2 2
r x y= +
1
tan
y
x
θ −
=
cosx r θ=
siny r θ=
Cartesian Coordinate System
(笛卡兒座標系, 直角座標系)
Polar Coordinate System
(極坐標系)
(x,0)
(0,y)
( )cos ,0r θ
( )0, sinr θ
Projection
on x-axis
Projection
on y-axis
8/33
Department of Electronic Engineering, NTUT
Sine Waveform
x-axis
y-axis
P(x,y)
x
y
r
θ θθ
y
θ
0 π/2 π 3π/2 2π
Go along the circle, the projection on y-axis results in a sine wave.
9/33
Department of Electronic Engineering, NTUT
x
θ
0
π/2
π
3π/2
Cosine Waveform
x-axis
y-axis
θ
Go along the circle, the projection
on x-axis results in a cosine wave.
Sinusoidal waves relate to a CircleCircleCircleCircle
very closely.
Complete going along the circle to
finish a cycle, and the angle θ
rotates with 2π rads and you are
back to the original starting-point
and. Complete another cycle
again, sinusoidal waveform in one
period repeats again. Keep going
along the circle, the waveform will
periodically appear.
10/33
Department of Electronic Engineering, NTUT
Complex Plan (I)
It seems to be the same thing with x-y plan, right?
• Carl Friedrich Gauss (1777-1855) defined the complex plan.
He defined the unit length on ImImImIm-axis is equal to “j”.
A complex Z=x+jy can be denoted as (x, yj) on the complex plan.
(sometimes, ‘j’ may be written as ‘i’ which represent imaginary)
Re-axis
Im-axis
Re-axis
Im-axis
P(r,θ)
θ
r
P(x,yj)
2 2
r x y= +
1
tan
y
x
θ −
=
cosx r θ=
siny r θ=
(x,0j)
(0,yj)
( )cos ,0r θ
( )0, sinr θ
( )1j = −
11/33
Department of Electronic Engineering, NTUT
Complex Plan (II)
Re-axis
Im-axis
1
Every time you multiply something by j, that thing will rotate
90 degrees.
1j = − 2
1j = − 3
1j = − − 4
1j =
1*j=j
j
j*j=-1
-1
-j
-1*j=-j -j*j=1
(0.5,0.2j)
(-0.2, 0.5j)
(-0.5, -0.2j)
(0.2, -0.5j)
• Multiplying j by j and so on:
12/33
Department of Electronic Engineering, NTUT
Sine Waveform
Re-axis
Im-axis
P(x,y)
x
y
r
θ θθ
y=rsinθ
θ
0 π/2 π 3π/2 2π
To see the cosine waveform, the same operation can be applied
to trace out the projection on ReReReRe-axis.
13/33
Department of Electronic Engineering, NTUT
Phasor Representation (I) – Sine Basis
( ) ( ) { } { }φ ω φ θ
ω φ= + = =sin Im Imj j t j j
sv t A t Ae e Ae e
Re-axis
Im-axis
P(A,ф)
y=Asin ф
θ
0 π/2 π 3π/2 2π
ф
tθ ω=
Given the phasor denoted as a point on the complex-plan, you
should know it represents a sinusoidal signal. Keep this in
mind, it is very very important!
time-domain waveform
14/33
Department of Electronic Engineering, NTUT
Phasor Representation (II) – Cosine Basis
( ) ( ) { } { }φ ω φ θ
ω φ= + = =cos Re Rej j t j j
sv t A t Ae e Ae e
Re-axis
Im-axis
P(A,ф)
y=Acos ф
θ
0 π/2 π 3π/2 2π
ф
tθ ω=
time-domain waveform
15/33
Department of Electronic Engineering, NTUT
Phasor Representation (III)
( ) ( ) { }φ ω
ω φ= + = 1
1 1 1 1sin Im j j t
v t A t A e e
Re-axis
Im-axis
P(A1,ф1)
ф1
P(A2,ф2)
P(A3,ф3)
θ
0 π/2 π 3π/2 2π
tθ ω=
A1sin ф1
( ) ( ) { }φ ω
ω φ= + = 2
2 2 2 2sin Im j j t
v t A t A e e
( ) ( ) { }φ ω
ω φ= + = 3
3 3 3 3sin Im j j t
v t A t A e e
A2sin ф2
A3sin ф3
16/33
Department of Electronic Engineering, NTUT
Mathematical Operation
j t
j tde
j e
dt
ω
ω
ω= ⋅
1j t j t
e dt e
j
ω ω
ω
= ⋅∫
( ) ( )0
1 t
v t i t dt
C
= ∫
ω
= = ⋅
1
CV I Z I
j C
( )
( )di t
v t L
dt
=
ω= ⋅ = ⋅LV j L I Z I
ω
= =
1 1
CZ
j C sC
ω= =LZ j L sL
• LLLL and CCCC: from time-domain to phasor-domain analysis
(s is the Laplace operator)
( )σ ω σ= + =, here let 0s j
17/33
Department of Electronic Engineering, NTUT
Phasor Everywhere
• 電路學、電子學: Phasor 常見為一個固定值 (亦可為變量)
• 電磁學、微波工程: Phasor 常見為變動量, 隨傳播方向變化
• 通訊系統: Phasor 常見為變動量, 隨時間變化
此變動的phasor也經常被稱作複數波包(complex envelope)、波包
(envelope),或帶通訊號的等效低通訊號(equivalent lowpass signal of
the bandpass signal)。Phasor如果被拆成正交兩成分,常稱作I/Q訊
號,而在數位通訊裡表示I/Q訊號的複數平面(座標系)也被稱為星座
圖(constellation)。
• You will see “Phasor” many times in your E.E. life. It just
appears with different names, and it is just a representation
or an analysis technique.
• Keep in mind that a phasor represents a signal, it’s like a
head on your body.
18/33
Department of Electronic Engineering, NTUT
Simple Relation Between Sine and Cosine
• Sine CosineSine CosineSine CosineSine Cosine
π/2 π 3π/2 2π
sinθ
θ
0
cosθ
• Negative sine or cosineNegative sine or cosineNegative sine or cosineNegative sine or cosine
( )θ θ= +cos sin 90
( )θ θ= −sin cos 90
( )θ θ− = +cos cos 180
( )θ θ− = +sin sin 180
Try to transform into sine-form:θ−cos
( ) ( ) ( )θ θ θ θ− = − + = + = −cos sin 90 sin 270 sin 90
19/33
Department of Electronic Engineering, NTUT
Cosine as a Basis
( ) { }ω
ω= =cos Re j t
pv t V t Ve
= ∠0pV V
( ) { }ωπ
ω ω
 
= = − = 
 
sin cos Re
2
j t
p pv t V t V t Ve
= ∠ − 90pV V
( ) ( ) { }ω
ω ω π= − = + =cos cos Re j t
p pv t V t V t Ve
= ∠180pV V
( ) { }ωπ
ω ω
 
= − = + = 
 
sin cos Re
2
j t
p pv t V t V t Ve
= ∠90pV V
cosinecosinecosinecosine
sinesinesinesine
negative cosinenegative cosinenegative cosinenegative cosine
negative sinenegative sinenegative sinenegative sine
Phasor
Phasor
Phasor
Phasor
20/33
Department of Electronic Engineering, NTUT
Sine as a Basis
( ) { }ω
ω= =sin Im j t
pv t V t Ve
= ∠0pV V
( ) { }ωπ
ω ω
 
= = + = 
 
cos sin Im
2
j t
p pv t V t V t Ve
= ∠90pV V
( ) ( ) { }ω
ω ω π= − = + =sin sin Im j t
p pv t V t V t Ve
= ∠180pV V
( ) { }ωπ
ω ω
 
= − = − = 
 
cos sin Im
2
j t
p pv t V t V t Ve
= ∠ − 90pV V
Phasor
Phasor
Phasor
Phasor
cosinecosinecosinecosine
sinesinesinesine
negative cosinenegative cosinenegative cosinenegative cosine
negative sinenegative sinenegative sinenegative sine
21/33
Department of Electronic Engineering, NTUT
Addition of Sinusoidal
A basic property of sinusoidal functions is that the sum of an arbitrary
number of sinusoids of the same frequency is equivalent to a single
sinusoid of the given frequency. It must be emphasized that all sinusoids
must be of the same frequency.
( ) ( )ω θ= +sinpv t V t
θ= ∠1 1 1pV V
θ= ∠2 2 2pV V
θ= ∠n pn nV V
= + + +⋯1 2 nV V V V
( ) ( ) ( ) ( )ω θ ω θ ω θ= + + + + + +⋯1 1 2 2sin sin sinp p pn nv t V t V t V t
( )1v t ( )2v t ( )nv t
22/33
Department of Electronic Engineering, NTUT
Example
( ) ( ) ( )= +0 1 2v t v t v t
( ) ( )= −1 20cos 100 120v t t ( ) ( )= − +2 15sin 100 60v t t
= ∠ − = −1 20 30 17.3205 10V j
= ∠ − = − −2 15 120 7.5 12.9904V j
( ) ( )= − + − −0 17.3205 10 7.5 12.9904V j j
( ) ( )= −0 25sin 100 66.87v t t
= − = ∠ −9.8205 22.9904 25 66.87j
= ∠ − = − −1 20 120 10 17.321V j
= ∠ = − +2 15 150 12.9904 7.5V j
( ) ( )= − − + − +0 10 17.321 12.9904 7.5V j j
= − − = ∠22.9904 9.8205 25 203.13j
( ) ( )= +0 25cos 100 203.13v t t
( )= −25sin 100 66.87t
Choose the basis you like, and the results are identical.
andFor
calculate
use sine function as a basis use cosine function as a basis
23/33
Department of Electronic Engineering, NTUT
Steady-state Impedance
= = +
V
Z R jX
I
• Steady-state impedance
resistance
reactance
= = +
I
Y G jB
Z
• Steady-state admittance
conductance
susceptance
= +30 40Z j
= Ω30R
= Ω40X
= = −
+
1
0.012 0.016
30 40
Y j
j
= 0.012G S
= −0.016X S
24/33
Department of Electronic Engineering, NTUT
Conversion to Phasor-domain
( )i t
( )v t V
I
RR
( )i t
( )v t
( )i t
( )v t
C
L
ω
1
j C
V
I
ωj LV
I
= ⋅V R I
ω
= ⋅
1
V I
j C
ω= ⋅V j L I
V
I
V
I
V
I
V and I are in-phase
V lags I by 90o
V leads I by 90o
R
C
L
25/33
Department of Electronic Engineering, NTUT
Frequency Response
Frequency-independent
All pass
Frequency-dependent
High-pass
Frequency-dependent
Low-pass
V
I
R
ω
1
j C
V
I
ωj LV
I
= + =Z R jX R
ω
= + =
1
Z R jX
C
ω π= 2 f
ω π= 2 f
ω π= 2 f
ω= + =Z R jX L
26/33
Department of Electronic Engineering, NTUT
Calculate the Impedance (I)
ω
1
j C
V
• Calculate the impedance of a 0.01-uF capacitor at (a) f=50Hz
(b) 1kHz (c) 1MHz
( )π −
= + = + = − Ω
⋅ × 6
1
0 318.309 k
2 50 0.01 10
Z R jX j
j
= − Ω318.309 kX = Ω318.309 kZ
I
(a) f = 50 Hz
( )π −
= + = + = − Ω
× ⋅ ×3 6
1
0 15.92 k
2 1 10 0.01 10
Z R jX j
j
= − Ω15.92 kX = Ω15.92 kZ
(b) f = 1 kHz
( )π −
= + = + = − Ω
× ⋅ ×6 6
1
0 15.92
2 1 10 0.01 10
Z R jX j
j
= − Ω15.92X = Ω15.92Z
(c) f = 1 MHz
= 0.01 µFC
27/33
Department of Electronic Engineering, NTUT
Calculate the Impedance (II)
• Calculate the impedance of a 100-mH inductor at (a) f=50Hz
(b) 1kHz (c) 1MHz
( )π −
= + = + ⋅ × = Ω3
0 2 50 100 10 31.42Z R jX j j
= Ω31.42X = Ω31.42Z
(a) f = 50 Hz
( )π −
= + = + × ⋅ × = Ω3 3
0 2 1 10 100 10 628.32Z R jX j j
= Ω628.32X = Ω628.32Z
(b) f = 1 kHz
( )π −
= + = + × ⋅ × = Ω6 3
0 2 1 10 100 10 628.32 kZ R jX j j
= Ω628.32 kX = Ω628.32 kZ
(c) f = 1 MHz
ωj LV
I
= 100 mHL
28/33
Department of Electronic Engineering, NTUT
Calculate the Impedance (III)
• Calculate the impedance of following circuit at (a) f=50Hz
(b) 1kHz (c) 1MHz
( )
( )
π −
= + = + = − Ω
⋅ × 6
1
200 0.2 318.309 k
2 50 0.01 10
Z R jX j
j
= Ω318.309 kZ
(a) f = 50 Hz
( )
( )
π −
= + = + = − Ω
× ⋅ ×3 6
1
200 0.2 15.92 k
2 1 10 0.01 10
Z R jX j
j
= Ω15.92 kZ
(b) f = 1 kHz
( )
( )
π −
= + = + = − Ω
× ⋅ ×6 6
1
200 200 15.92
2 1 10 0.01 10
Z R jX j
j
= Ω200.63Z
(c) f = 1 MHz
ω
1
j C
= 0.01 µFC
R
= Ω200R
= ∠ − Ω318.309k 89.96Z
= ∠ − Ω15.92k 89.26Z
= ∠ Ω200.63 -4.55Z
29/33
Department of Electronic Engineering, NTUT
Calculate the Impedance (IV)
• Calculate the impedance of following circuit at (a) f=50Hz
(b) 1kHz (c) 1MHz
( ) ( )π −
= + = + ⋅ × = + Ω3
200 2 50 100 10 200 31.42Z R jX j j
= Ω202.45Z
(a) f = 50 Hz
( ) ( )π −
= + = + × ⋅ × = + Ω3 3
200 2 1 10 100 10 200 628.32Z R jX j j
= Ω659.38Z
(b) f = 1 kHz
( ) ( )π −
= + = + × ⋅ × = + Ω6 3
200 2 1 10 100 10 0.2 628.32 kZ R jX j j
= Ω628.32 kZ
(c) f = 1 MHz
ωj L
= 100 mHL
R
= Ω200R
= ∠ Ω202.45 8.93Z
= ∠ Ω659.38 72.34Z
= ∠ Ω628.32 k 89.98Z
30/33
Department of Electronic Engineering, NTUT
Power in AC Circuits
( ) ( )ω φ= +sinpi t I t
( ) ( )ω φ θ= + +sinpv t V t
Instantaneous power absorbed by the circuit:
( ) ( ) ( ) ( ) ( )ω φ θ ω φ= = + + +sin sinp pp t v t i t V I t t
( ) ( ) ( )= =∫ ∫0 0
1 1T T
P p t dt v t i t dt
T T
Average power:
( ) ( )= − − +
1 1
sin sin cos cos
2 2
A B A B A B
Steady-state
AC circuit
( )i t
( )v t
( ) ( )ω φ θ ω φ= + + +∫0
1
sin sin
T
p pV I t t dt
T
31/33
Department of Electronic Engineering, NTUT
Power in AC Circuits
Average power:
( )θ ω φ θ = − + +
  ∫ ∫0 0
cos cos 2 2
2
T Tp pV I
dt t dt
T
( ) ( ) { }
θ
θ θ ∗
= = = =
0
cos 1
cos cos Re
2 2 2 2
T
p p p p p pV I V I V I
t T VI
T T
Steady-state
AC circuit
( )i t
( )v t
( ) ( )ω φ θ ω φ= + + +∫0
1
sin sin
T
p pP V I t t dt
T
V
Iθ
φ
( )φ θ+
=
j
pV V e
φ∗ −
= j
pI I e
θ
=* j
p pVI V I e
{ } θ=*
Re cosp pVI V I
32/33
Department of Electronic Engineering, NTUT
Root-Mean-Square (RMS) Value
θ
θ θ= = =
cos
cos cos
22 2
p p p p
rms rms
V I V I
P V I
(RMS value is also called the effective value)
When the circuit contains L and C, the current and voltage may not be
in-phase (they can be in-phase if effects of L and C cancelled at the given frequency),
and hence the apparent power may not be totally absorbed by the circuit.
Define RMS voltage and current as
=
2
p
rms
V
V =
2
p
rms
I
I
power factor (PF)
is define as the power factor (功率因子/因素)θ≤ ≤0 cos 1
×Actual power = Apparent power Power factor
θ= cosrms rmsV I
33/33

More Related Content

What's hot

射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計Simen Li
 
射頻電子 - [實驗第三章] 濾波器設計
射頻電子 - [實驗第三章] 濾波器設計射頻電子 - [實驗第三章] 濾波器設計
射頻電子 - [實驗第三章] 濾波器設計Simen Li
 
射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路Simen Li
 
射頻電子 - [實驗第二章] I/O電路設計
射頻電子 - [實驗第二章] I/O電路設計射頻電子 - [實驗第二章] I/O電路設計
射頻電子 - [實驗第二章] I/O電路設計Simen Li
 
電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路Simen Li
 
RF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversRF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversSimen Li
 
專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧Simen Li
 
電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路Simen Li
 
射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計Simen Li
 
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsCircuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsSimen Li
 
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3]  Basic Concept of Comm. SystemsMultiband Transceivers - [Chapter 3]  Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. SystemsSimen Li
 
Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Simen Li
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsSimen Li
 
電路學 - [第一章] 電路元件與基本定律
電路學 - [第一章] 電路元件與基本定律電路學 - [第一章] 電路元件與基本定律
電路學 - [第一章] 電路元件與基本定律Simen Li
 
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬Simen Li
 
電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理Simen Li
 
電路學 - [第二章] 電路分析方法
電路學 - [第二章] 電路分析方法電路學 - [第二章] 電路分析方法
電路學 - [第二章] 電路分析方法Simen Li
 
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬Simen Li
 
RF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartRF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartSimen Li
 
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬Simen Li
 

What's hot (20)

射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計
 
射頻電子 - [實驗第三章] 濾波器設計
射頻電子 - [實驗第三章] 濾波器設計射頻電子 - [實驗第三章] 濾波器設計
射頻電子 - [實驗第三章] 濾波器設計
 
射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路
 
射頻電子 - [實驗第二章] I/O電路設計
射頻電子 - [實驗第二章] I/O電路設計射頻電子 - [實驗第二章] I/O電路設計
射頻電子 - [實驗第二章] I/O電路設計
 
電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路
 
RF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversRF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF Transceivers
 
專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧
 
電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路
 
射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計
 
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsCircuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
 
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3]  Basic Concept of Comm. SystemsMultiband Transceivers - [Chapter 3]  Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
 
Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1]
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked Loops
 
電路學 - [第一章] 電路元件與基本定律
電路學 - [第一章] 電路元件與基本定律電路學 - [第一章] 電路元件與基本定律
電路學 - [第一章] 電路元件與基本定律
 
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
 
電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理
 
電路學 - [第二章] 電路分析方法
電路學 - [第二章] 電路分析方法電路學 - [第二章] 電路分析方法
電路學 - [第二章] 電路分析方法
 
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
 
RF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartRF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith Chart
 
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
 

Viewers also liked

RF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave NetworkRF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave NetworkSimen Li
 
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband AmplifierRF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband AmplifierSimen Li
 
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor AmplifierRF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor AmplifierSimen Li
 
Circuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier AnalysisCircuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier AnalysisSimen Li
 
Circuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformSimen Li
 
RF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line TheoryRF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line TheorySimen Li
 
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisRF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisSimen Li
 
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain ExpressionsRF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain ExpressionsSimen Li
 
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingRF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingSimen Li
 
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Simen Li
 
全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版Simen Li
 

Viewers also liked (11)

RF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave NetworkRF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave Network
 
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband AmplifierRF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
 
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor AmplifierRF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
 
Circuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier AnalysisCircuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier Analysis
 
Circuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace Transform
 
RF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line TheoryRF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line Theory
 
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisRF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
 
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain ExpressionsRF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
 
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingRF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
 
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
 
全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版
 

Similar to Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis

EC8553 Discrete time signal processing
EC8553 Discrete time signal processing EC8553 Discrete time signal processing
EC8553 Discrete time signal processing ssuser2797e4
 
signal and system Lecture 2
signal and system Lecture 2signal and system Lecture 2
signal and system Lecture 2iqbal ahmad
 
A Simple Communication System Design Lab #3 with MATLAB Simulink
A Simple Communication System Design Lab #3 with MATLAB SimulinkA Simple Communication System Design Lab #3 with MATLAB Simulink
A Simple Communication System Design Lab #3 with MATLAB SimulinkJaewook. Kang
 
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDBenjamin Jaedon Choi
 
Wideband Frequency Modulation.pdf
Wideband Frequency Modulation.pdfWideband Frequency Modulation.pdf
Wideband Frequency Modulation.pdfArijitDhali
 
eecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfeecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfNahshonMObiri
 
SolutionsPlease see answer in bold letters.Note pi = 3.14.docx
SolutionsPlease see answer in bold letters.Note pi = 3.14.docxSolutionsPlease see answer in bold letters.Note pi = 3.14.docx
SolutionsPlease see answer in bold letters.Note pi = 3.14.docxrafbolet0
 
Lecture 12 Part B_introduction_to_electronics.pdf
Lecture 12 Part B_introduction_to_electronics.pdfLecture 12 Part B_introduction_to_electronics.pdf
Lecture 12 Part B_introduction_to_electronics.pdfAbhijeetSinghThakur13
 
Linear response theory and TDDFT
Linear response theory and TDDFT Linear response theory and TDDFT
Linear response theory and TDDFT Claudio Attaccalite
 
First Order Active RC Sections
First Order Active RC SectionsFirst Order Active RC Sections
First Order Active RC SectionsHoopeer Hoopeer
 
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life OlooPundit
 
1531 fourier series- integrals and trans
1531 fourier series- integrals and trans1531 fourier series- integrals and trans
1531 fourier series- integrals and transDr Fereidoun Dejahang
 
Fourier transforms & fft algorithm (paul heckbert, 1998) by tantanoid
Fourier transforms & fft algorithm (paul heckbert, 1998) by tantanoidFourier transforms & fft algorithm (paul heckbert, 1998) by tantanoid
Fourier transforms & fft algorithm (paul heckbert, 1998) by tantanoidXavier Davias
 
nagoor kani-763-790.pdf book formula for transform
nagoor kani-763-790.pdf book formula for transformnagoor kani-763-790.pdf book formula for transform
nagoor kani-763-790.pdf book formula for transformNIETMsSaranyaRAsstPr
 

Similar to Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis (20)

A-tutorial.pdf
A-tutorial.pdfA-tutorial.pdf
A-tutorial.pdf
 
EC8553 Discrete time signal processing
EC8553 Discrete time signal processing EC8553 Discrete time signal processing
EC8553 Discrete time signal processing
 
signal and system Lecture 2
signal and system Lecture 2signal and system Lecture 2
signal and system Lecture 2
 
A Simple Communication System Design Lab #3 with MATLAB Simulink
A Simple Communication System Design Lab #3 with MATLAB SimulinkA Simple Communication System Design Lab #3 with MATLAB Simulink
A Simple Communication System Design Lab #3 with MATLAB Simulink
 
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
 
Wideband Frequency Modulation.pdf
Wideband Frequency Modulation.pdfWideband Frequency Modulation.pdf
Wideband Frequency Modulation.pdf
 
eecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfeecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdf
 
SolutionsPlease see answer in bold letters.Note pi = 3.14.docx
SolutionsPlease see answer in bold letters.Note pi = 3.14.docxSolutionsPlease see answer in bold letters.Note pi = 3.14.docx
SolutionsPlease see answer in bold letters.Note pi = 3.14.docx
 
Lecture 12 Part B_introduction_to_electronics.pdf
Lecture 12 Part B_introduction_to_electronics.pdfLecture 12 Part B_introduction_to_electronics.pdf
Lecture 12 Part B_introduction_to_electronics.pdf
 
Ecg
EcgEcg
Ecg
 
Dsp class 2
Dsp class 2Dsp class 2
Dsp class 2
 
Dsp Lab Record
Dsp Lab RecordDsp Lab Record
Dsp Lab Record
 
Linear response theory and TDDFT
Linear response theory and TDDFT Linear response theory and TDDFT
Linear response theory and TDDFT
 
Optimisation random graph presentation
Optimisation random graph presentationOptimisation random graph presentation
Optimisation random graph presentation
 
Lecture1
Lecture1Lecture1
Lecture1
 
First Order Active RC Sections
First Order Active RC SectionsFirst Order Active RC Sections
First Order Active RC Sections
 
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life
 
1531 fourier series- integrals and trans
1531 fourier series- integrals and trans1531 fourier series- integrals and trans
1531 fourier series- integrals and trans
 
Fourier transforms & fft algorithm (paul heckbert, 1998) by tantanoid
Fourier transforms & fft algorithm (paul heckbert, 1998) by tantanoidFourier transforms & fft algorithm (paul heckbert, 1998) by tantanoid
Fourier transforms & fft algorithm (paul heckbert, 1998) by tantanoid
 
nagoor kani-763-790.pdf book formula for transform
nagoor kani-763-790.pdf book formula for transformnagoor kani-763-790.pdf book formula for transform
nagoor kani-763-790.pdf book formula for transform
 

More from Simen Li

2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)Simen Li
 
Node.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterNode.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterSimen Li
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Simen Li
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignSimen Li
 
ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作Simen Li
 
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Simen Li
 
Agilent ADS 模擬手冊 [實習2] 放大器設計
Agilent ADS 模擬手冊 [實習2]  放大器設計Agilent ADS 模擬手冊 [實習2]  放大器設計
Agilent ADS 模擬手冊 [實習2] 放大器設計Simen Li
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Simen Li
 
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬Simen Li
 
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack FirmwareSimen Li
 
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack FirmwareSimen Li
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)Simen Li
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)Simen Li
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)Simen Li
 
深入淺出C語言
深入淺出C語言深入淺出C語言
深入淺出C語言Simen Li
 
[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階Simen Li
 
Multiband Transceivers - [Chapter 7] Spec. Table
Multiband Transceivers - [Chapter 7]  Spec. TableMultiband Transceivers - [Chapter 7]  Spec. Table
Multiband Transceivers - [Chapter 7] Spec. TableSimen Li
 
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Simen Li
 
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversMultiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversSimen Li
 
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosMultiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosSimen Li
 

More from Simen Li (20)

2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
 
Node.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterNode.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitter
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and Design
 
ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作
 
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
 
Agilent ADS 模擬手冊 [實習2] 放大器設計
Agilent ADS 模擬手冊 [實習2]  放大器設計Agilent ADS 模擬手冊 [實習2]  放大器設計
Agilent ADS 模擬手冊 [實習2] 放大器設計
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
 
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
 
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
 
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
 
深入淺出C語言
深入淺出C語言深入淺出C語言
深入淺出C語言
 
[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階
 
Multiband Transceivers - [Chapter 7] Spec. Table
Multiband Transceivers - [Chapter 7]  Spec. TableMultiband Transceivers - [Chapter 7]  Spec. Table
Multiband Transceivers - [Chapter 7] Spec. Table
 
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
 
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversMultiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
 
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosMultiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
 

Recently uploaded

AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
 
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGMANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGSIVASHANKAR N
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...Call Girls in Nagpur High Profile
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsRussian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesPrabhanshu Chaturvedi
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 

Recently uploaded (20)

AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGMANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsRussian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and Properties
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 

Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis

  • 1. Network Analysis Chapter 2 e, Phasor, and Sinusoidal Steady-State Analysis Chien-Jung Li Department of Electronic Engineering National Taipei University of Technology
  • 2. Department of Electronic Engineering, NTUT Compound Interest • 複利公式: 本金P, 年利率r, 一年複利n次, t年後本金加利息之總和為   = +    1 nt r S P n • Let P=1, r=1, and t=1   = +    1 1 n S n When n goes to infinite, S converges to 2.718… (= e) Let P=10萬, r/n=10%/12, t=1 S=11,0471 Let P=10萬, r/n=10%, and n=36, t=1 S=3,091,268 2/33
  • 3. Department of Electronic Engineering, NTUT Development of Logarithm • Michael Stifel (1487-1567) • John Napier (1550-1617) • 利用對數而將乘法變成加法的特性,刻卜勒成功 計算了火星繞日的軌道。 ( )+ ∗ = = 2 52 5 7 m m m m ( )− = = 7 7 4 3 4 m m m m ( )− − = = = 2 2 3 1 3 1m m m mm − − − =⋯ ⋯3 2 1 0 1 2 3 , , , , 1, , , ,m m m m m m m 3/33
  • 4. Department of Electronic Engineering, NTUT Definition of dB (分貝) • , where • Power gain • Voltage gain • Power (dBW) • Power (dBm) • Voltage (dBV) • Voltage (dBuV) ( )= ⋅10 logdB G ( )= aG b  = ⋅     2 1 10 log P P  = ⋅     2 1 20 log V V ( )= ⋅10 log 1-W P ( )= ⋅10 log 1-mW P ( )= ⋅20 log 1-Volt V ( )µ = ⋅20 log 1- V V 相對量 ((((比例,,,, 比值,,,, 無單位, dB), dB), dB), dB) 絕對量 ((((因相對於一絕對單位,,,, 因此可表示一絕對量.... 有單位,,,, 單位即為dBWdBWdBWdBW,,,, dBmdBmdBmdBm,,,, dBVdBVdBVdBV…)…)…)…) 4/33
  • 5. Department of Electronic Engineering, NTUT In some textbooks, phasor may be represented as Euler’s Formula • Euler’s Formula cos sinjx e x j x= + ( ) ( ) ( ) { } { }ω φ φ ω ω φ + = ⋅ + = ⋅ = ⋅cos Re Re j t j j t p p pv t V t V e V e e φ φ= ⋅ = ∠ def j p pV V e V • Phasor (相量) Don’t be confused with VectorVectorVectorVector (向量) which is commonly denoted as A (How it comes?) 取實部 (即cosine部分) phasor A real sinusoidal signal v(t) that can be represented as: V V 5/33
  • 6. Department of Electronic Engineering, NTUT Definition of e lim 1 n x n x e n→∞   = +    2 3 lim 1 1 1! 2! 3! n x n x x x x e n→∞   = + = + + + +    … x jx= ( ) ( ) 2 3 1 1! 2! 3! jx jx jxjx e = + + + +… • Euler played a trick let , where 1j = − 1 lim 1 n n e n→∞   = +    6/33
  • 7. Department of Electronic Engineering, NTUT • Since , , , How It Comes… 1j = − 2 1j = − 3 1j = − − 4 1j =     = − + − + + − + − +        … … 2 4 3 5 1 2! 4! 3! 5! x x x x j x 2 4 cos 1 2! 4! x x x = − + − +… 3 5 sin 3! 5! x x x x= − + − +… cos sinjx e x j x= + cos sinjx e x j x− = − cos 2 jx jx e e x − + = − − =sin 2 jx jx e e x j ( ) ( )= + + + +… 2 3 1 1! 2! 3! jx jx jxjx e • Use and we have (姊妹式) 7/33
  • 8. Department of Electronic Engineering, NTUT Coordinate Systems x-axis y-axis x-axis y-axis P(r,θ) θ r P(x,y) 2 2 r x y= + 1 tan y x θ − = cosx r θ= siny r θ= Cartesian Coordinate System (笛卡兒座標系, 直角座標系) Polar Coordinate System (極坐標系) (x,0) (0,y) ( )cos ,0r θ ( )0, sinr θ Projection on x-axis Projection on y-axis 8/33
  • 9. Department of Electronic Engineering, NTUT Sine Waveform x-axis y-axis P(x,y) x y r θ θθ y θ 0 π/2 π 3π/2 2π Go along the circle, the projection on y-axis results in a sine wave. 9/33
  • 10. Department of Electronic Engineering, NTUT x θ 0 π/2 π 3π/2 Cosine Waveform x-axis y-axis θ Go along the circle, the projection on x-axis results in a cosine wave. Sinusoidal waves relate to a CircleCircleCircleCircle very closely. Complete going along the circle to finish a cycle, and the angle θ rotates with 2π rads and you are back to the original starting-point and. Complete another cycle again, sinusoidal waveform in one period repeats again. Keep going along the circle, the waveform will periodically appear. 10/33
  • 11. Department of Electronic Engineering, NTUT Complex Plan (I) It seems to be the same thing with x-y plan, right? • Carl Friedrich Gauss (1777-1855) defined the complex plan. He defined the unit length on ImImImIm-axis is equal to “j”. A complex Z=x+jy can be denoted as (x, yj) on the complex plan. (sometimes, ‘j’ may be written as ‘i’ which represent imaginary) Re-axis Im-axis Re-axis Im-axis P(r,θ) θ r P(x,yj) 2 2 r x y= + 1 tan y x θ − = cosx r θ= siny r θ= (x,0j) (0,yj) ( )cos ,0r θ ( )0, sinr θ ( )1j = − 11/33
  • 12. Department of Electronic Engineering, NTUT Complex Plan (II) Re-axis Im-axis 1 Every time you multiply something by j, that thing will rotate 90 degrees. 1j = − 2 1j = − 3 1j = − − 4 1j = 1*j=j j j*j=-1 -1 -j -1*j=-j -j*j=1 (0.5,0.2j) (-0.2, 0.5j) (-0.5, -0.2j) (0.2, -0.5j) • Multiplying j by j and so on: 12/33
  • 13. Department of Electronic Engineering, NTUT Sine Waveform Re-axis Im-axis P(x,y) x y r θ θθ y=rsinθ θ 0 π/2 π 3π/2 2π To see the cosine waveform, the same operation can be applied to trace out the projection on ReReReRe-axis. 13/33
  • 14. Department of Electronic Engineering, NTUT Phasor Representation (I) – Sine Basis ( ) ( ) { } { }φ ω φ θ ω φ= + = =sin Im Imj j t j j sv t A t Ae e Ae e Re-axis Im-axis P(A,ф) y=Asin ф θ 0 π/2 π 3π/2 2π ф tθ ω= Given the phasor denoted as a point on the complex-plan, you should know it represents a sinusoidal signal. Keep this in mind, it is very very important! time-domain waveform 14/33
  • 15. Department of Electronic Engineering, NTUT Phasor Representation (II) – Cosine Basis ( ) ( ) { } { }φ ω φ θ ω φ= + = =cos Re Rej j t j j sv t A t Ae e Ae e Re-axis Im-axis P(A,ф) y=Acos ф θ 0 π/2 π 3π/2 2π ф tθ ω= time-domain waveform 15/33
  • 16. Department of Electronic Engineering, NTUT Phasor Representation (III) ( ) ( ) { }φ ω ω φ= + = 1 1 1 1 1sin Im j j t v t A t A e e Re-axis Im-axis P(A1,ф1) ф1 P(A2,ф2) P(A3,ф3) θ 0 π/2 π 3π/2 2π tθ ω= A1sin ф1 ( ) ( ) { }φ ω ω φ= + = 2 2 2 2 2sin Im j j t v t A t A e e ( ) ( ) { }φ ω ω φ= + = 3 3 3 3 3sin Im j j t v t A t A e e A2sin ф2 A3sin ф3 16/33
  • 17. Department of Electronic Engineering, NTUT Mathematical Operation j t j tde j e dt ω ω ω= ⋅ 1j t j t e dt e j ω ω ω = ⋅∫ ( ) ( )0 1 t v t i t dt C = ∫ ω = = ⋅ 1 CV I Z I j C ( ) ( )di t v t L dt = ω= ⋅ = ⋅LV j L I Z I ω = = 1 1 CZ j C sC ω= =LZ j L sL • LLLL and CCCC: from time-domain to phasor-domain analysis (s is the Laplace operator) ( )σ ω σ= + =, here let 0s j 17/33
  • 18. Department of Electronic Engineering, NTUT Phasor Everywhere • 電路學、電子學: Phasor 常見為一個固定值 (亦可為變量) • 電磁學、微波工程: Phasor 常見為變動量, 隨傳播方向變化 • 通訊系統: Phasor 常見為變動量, 隨時間變化 此變動的phasor也經常被稱作複數波包(complex envelope)、波包 (envelope),或帶通訊號的等效低通訊號(equivalent lowpass signal of the bandpass signal)。Phasor如果被拆成正交兩成分,常稱作I/Q訊 號,而在數位通訊裡表示I/Q訊號的複數平面(座標系)也被稱為星座 圖(constellation)。 • You will see “Phasor” many times in your E.E. life. It just appears with different names, and it is just a representation or an analysis technique. • Keep in mind that a phasor represents a signal, it’s like a head on your body. 18/33
  • 19. Department of Electronic Engineering, NTUT Simple Relation Between Sine and Cosine • Sine CosineSine CosineSine CosineSine Cosine π/2 π 3π/2 2π sinθ θ 0 cosθ • Negative sine or cosineNegative sine or cosineNegative sine or cosineNegative sine or cosine ( )θ θ= +cos sin 90 ( )θ θ= −sin cos 90 ( )θ θ− = +cos cos 180 ( )θ θ− = +sin sin 180 Try to transform into sine-form:θ−cos ( ) ( ) ( )θ θ θ θ− = − + = + = −cos sin 90 sin 270 sin 90 19/33
  • 20. Department of Electronic Engineering, NTUT Cosine as a Basis ( ) { }ω ω= =cos Re j t pv t V t Ve = ∠0pV V ( ) { }ωπ ω ω   = = − =    sin cos Re 2 j t p pv t V t V t Ve = ∠ − 90pV V ( ) ( ) { }ω ω ω π= − = + =cos cos Re j t p pv t V t V t Ve = ∠180pV V ( ) { }ωπ ω ω   = − = + =    sin cos Re 2 j t p pv t V t V t Ve = ∠90pV V cosinecosinecosinecosine sinesinesinesine negative cosinenegative cosinenegative cosinenegative cosine negative sinenegative sinenegative sinenegative sine Phasor Phasor Phasor Phasor 20/33
  • 21. Department of Electronic Engineering, NTUT Sine as a Basis ( ) { }ω ω= =sin Im j t pv t V t Ve = ∠0pV V ( ) { }ωπ ω ω   = = + =    cos sin Im 2 j t p pv t V t V t Ve = ∠90pV V ( ) ( ) { }ω ω ω π= − = + =sin sin Im j t p pv t V t V t Ve = ∠180pV V ( ) { }ωπ ω ω   = − = − =    cos sin Im 2 j t p pv t V t V t Ve = ∠ − 90pV V Phasor Phasor Phasor Phasor cosinecosinecosinecosine sinesinesinesine negative cosinenegative cosinenegative cosinenegative cosine negative sinenegative sinenegative sinenegative sine 21/33
  • 22. Department of Electronic Engineering, NTUT Addition of Sinusoidal A basic property of sinusoidal functions is that the sum of an arbitrary number of sinusoids of the same frequency is equivalent to a single sinusoid of the given frequency. It must be emphasized that all sinusoids must be of the same frequency. ( ) ( )ω θ= +sinpv t V t θ= ∠1 1 1pV V θ= ∠2 2 2pV V θ= ∠n pn nV V = + + +⋯1 2 nV V V V ( ) ( ) ( ) ( )ω θ ω θ ω θ= + + + + + +⋯1 1 2 2sin sin sinp p pn nv t V t V t V t ( )1v t ( )2v t ( )nv t 22/33
  • 23. Department of Electronic Engineering, NTUT Example ( ) ( ) ( )= +0 1 2v t v t v t ( ) ( )= −1 20cos 100 120v t t ( ) ( )= − +2 15sin 100 60v t t = ∠ − = −1 20 30 17.3205 10V j = ∠ − = − −2 15 120 7.5 12.9904V j ( ) ( )= − + − −0 17.3205 10 7.5 12.9904V j j ( ) ( )= −0 25sin 100 66.87v t t = − = ∠ −9.8205 22.9904 25 66.87j = ∠ − = − −1 20 120 10 17.321V j = ∠ = − +2 15 150 12.9904 7.5V j ( ) ( )= − − + − +0 10 17.321 12.9904 7.5V j j = − − = ∠22.9904 9.8205 25 203.13j ( ) ( )= +0 25cos 100 203.13v t t ( )= −25sin 100 66.87t Choose the basis you like, and the results are identical. andFor calculate use sine function as a basis use cosine function as a basis 23/33
  • 24. Department of Electronic Engineering, NTUT Steady-state Impedance = = + V Z R jX I • Steady-state impedance resistance reactance = = + I Y G jB Z • Steady-state admittance conductance susceptance = +30 40Z j = Ω30R = Ω40X = = − + 1 0.012 0.016 30 40 Y j j = 0.012G S = −0.016X S 24/33
  • 25. Department of Electronic Engineering, NTUT Conversion to Phasor-domain ( )i t ( )v t V I RR ( )i t ( )v t ( )i t ( )v t C L ω 1 j C V I ωj LV I = ⋅V R I ω = ⋅ 1 V I j C ω= ⋅V j L I V I V I V I V and I are in-phase V lags I by 90o V leads I by 90o R C L 25/33
  • 26. Department of Electronic Engineering, NTUT Frequency Response Frequency-independent All pass Frequency-dependent High-pass Frequency-dependent Low-pass V I R ω 1 j C V I ωj LV I = + =Z R jX R ω = + = 1 Z R jX C ω π= 2 f ω π= 2 f ω π= 2 f ω= + =Z R jX L 26/33
  • 27. Department of Electronic Engineering, NTUT Calculate the Impedance (I) ω 1 j C V • Calculate the impedance of a 0.01-uF capacitor at (a) f=50Hz (b) 1kHz (c) 1MHz ( )π − = + = + = − Ω ⋅ × 6 1 0 318.309 k 2 50 0.01 10 Z R jX j j = − Ω318.309 kX = Ω318.309 kZ I (a) f = 50 Hz ( )π − = + = + = − Ω × ⋅ ×3 6 1 0 15.92 k 2 1 10 0.01 10 Z R jX j j = − Ω15.92 kX = Ω15.92 kZ (b) f = 1 kHz ( )π − = + = + = − Ω × ⋅ ×6 6 1 0 15.92 2 1 10 0.01 10 Z R jX j j = − Ω15.92X = Ω15.92Z (c) f = 1 MHz = 0.01 µFC 27/33
  • 28. Department of Electronic Engineering, NTUT Calculate the Impedance (II) • Calculate the impedance of a 100-mH inductor at (a) f=50Hz (b) 1kHz (c) 1MHz ( )π − = + = + ⋅ × = Ω3 0 2 50 100 10 31.42Z R jX j j = Ω31.42X = Ω31.42Z (a) f = 50 Hz ( )π − = + = + × ⋅ × = Ω3 3 0 2 1 10 100 10 628.32Z R jX j j = Ω628.32X = Ω628.32Z (b) f = 1 kHz ( )π − = + = + × ⋅ × = Ω6 3 0 2 1 10 100 10 628.32 kZ R jX j j = Ω628.32 kX = Ω628.32 kZ (c) f = 1 MHz ωj LV I = 100 mHL 28/33
  • 29. Department of Electronic Engineering, NTUT Calculate the Impedance (III) • Calculate the impedance of following circuit at (a) f=50Hz (b) 1kHz (c) 1MHz ( ) ( ) π − = + = + = − Ω ⋅ × 6 1 200 0.2 318.309 k 2 50 0.01 10 Z R jX j j = Ω318.309 kZ (a) f = 50 Hz ( ) ( ) π − = + = + = − Ω × ⋅ ×3 6 1 200 0.2 15.92 k 2 1 10 0.01 10 Z R jX j j = Ω15.92 kZ (b) f = 1 kHz ( ) ( ) π − = + = + = − Ω × ⋅ ×6 6 1 200 200 15.92 2 1 10 0.01 10 Z R jX j j = Ω200.63Z (c) f = 1 MHz ω 1 j C = 0.01 µFC R = Ω200R = ∠ − Ω318.309k 89.96Z = ∠ − Ω15.92k 89.26Z = ∠ Ω200.63 -4.55Z 29/33
  • 30. Department of Electronic Engineering, NTUT Calculate the Impedance (IV) • Calculate the impedance of following circuit at (a) f=50Hz (b) 1kHz (c) 1MHz ( ) ( )π − = + = + ⋅ × = + Ω3 200 2 50 100 10 200 31.42Z R jX j j = Ω202.45Z (a) f = 50 Hz ( ) ( )π − = + = + × ⋅ × = + Ω3 3 200 2 1 10 100 10 200 628.32Z R jX j j = Ω659.38Z (b) f = 1 kHz ( ) ( )π − = + = + × ⋅ × = + Ω6 3 200 2 1 10 100 10 0.2 628.32 kZ R jX j j = Ω628.32 kZ (c) f = 1 MHz ωj L = 100 mHL R = Ω200R = ∠ Ω202.45 8.93Z = ∠ Ω659.38 72.34Z = ∠ Ω628.32 k 89.98Z 30/33
  • 31. Department of Electronic Engineering, NTUT Power in AC Circuits ( ) ( )ω φ= +sinpi t I t ( ) ( )ω φ θ= + +sinpv t V t Instantaneous power absorbed by the circuit: ( ) ( ) ( ) ( ) ( )ω φ θ ω φ= = + + +sin sinp pp t v t i t V I t t ( ) ( ) ( )= =∫ ∫0 0 1 1T T P p t dt v t i t dt T T Average power: ( ) ( )= − − + 1 1 sin sin cos cos 2 2 A B A B A B Steady-state AC circuit ( )i t ( )v t ( ) ( )ω φ θ ω φ= + + +∫0 1 sin sin T p pV I t t dt T 31/33
  • 32. Department of Electronic Engineering, NTUT Power in AC Circuits Average power: ( )θ ω φ θ = − + +   ∫ ∫0 0 cos cos 2 2 2 T Tp pV I dt t dt T ( ) ( ) { } θ θ θ ∗ = = = = 0 cos 1 cos cos Re 2 2 2 2 T p p p p p pV I V I V I t T VI T T Steady-state AC circuit ( )i t ( )v t ( ) ( )ω φ θ ω φ= + + +∫0 1 sin sin T p pP V I t t dt T V Iθ φ ( )φ θ+ = j pV V e φ∗ − = j pI I e θ =* j p pVI V I e { } θ=* Re cosp pVI V I 32/33
  • 33. Department of Electronic Engineering, NTUT Root-Mean-Square (RMS) Value θ θ θ= = = cos cos cos 22 2 p p p p rms rms V I V I P V I (RMS value is also called the effective value) When the circuit contains L and C, the current and voltage may not be in-phase (they can be in-phase if effects of L and C cancelled at the given frequency), and hence the apparent power may not be totally absorbed by the circuit. Define RMS voltage and current as = 2 p rms V V = 2 p rms I I power factor (PF) is define as the power factor (功率因子/因素)θ≤ ≤0 cos 1 ×Actual power = Apparent power Power factor θ= cosrms rmsV I 33/33