SlideShare una empresa de Scribd logo
1 de 51
Descargar para leer sin conexión
Scala Data
Pipelines @
Spotify
Neville Li
@sinisa_lyh
Who am I?
‣ SpotifyNYCsince2011
‣ FormerlyYahoo!Search
‣ Musicrecommendations
‣ Datainfrastructure
‣ Scalasince2013
Spotify in numbers
• Started in 2006, 58 markets
• 75M+ active users, 20M+ paying
• 30M+ songs, 20K new per day
• 1.5 billion playlists
• 1 TB logs per day
• 1200+ node Hadoop cluster
• 10K+ Hadoop jobs per day
Music recommendation @ Spotify
• Discover Weekly
• Radio
• RelatedArtists
• Discover Page
Recommendation systems
A little teaser
PGroupedTable<K,V>::combineValues(CombineFn<K,V> combineFn,
CombineFn<K,V> reduceFn)
Crunch: CombineFns are used to represent the associative operations…
Grouped[K, +V]::reduce[U >: V](fn: (U, U) U)
Scalding: reduce with fn which must be associative and commutative…
PairRDDFunctions[K, V]::reduceByKey(fn: (V, V) => V)
Spark: Merge the values for each key using an associative reduce function…
Monoid!
enables map side reduce
Actually it’s a semigroup
One more teaser
Linear equation inAlternate Least Square (ALS) Matrix factorization
xu = (YTY + YT(Cu − I)Y)−1YTCup(u)
vectors.map { case (id, v) => (id, v * v) }.map(_._2).reduce(_ + _) // YtY
ratings.keyBy(fixedKey).join(outerProducts) // YtCuIY
.map { case (_, (r, op)) =>
(solveKey(r), op * (r.rating * alpha))
}.reduceByKey(_ + _)
ratings.keyBy(fixedKey).join(vectors) // YtCupu
.map { case (_, (r, v)) =>
val (Cui, pui) = (r.rating * alpha + 1, if (Cui > 0.0) 1.0 else 0.0)
(solveKey(r), v * (Cui * pui))
}.reduceByKey(_ + _)
http://www.slideshare.net/MrChrisJohnson/scala-data-pipelines-for-music-recommendations
Success story
• Mid 2013: 100+ Python Luigi M/R jobs, few tests
• 10+ new hires since, most fresh grads
• Few with Java experience, none with Scala
• Now: 300+ Scalding jobs, 400+ tests
• More ad-hoc jobs untracked
• Spark also taking off
First 10 months
……
Activity over time
Guess how many jobs
written by yours truly?
Performance vs. Agility
https://nicholassterling.wordpress.com/2012/11/16/scala-performance/
Let’sdiveinto
something
technical
To join or not to join?
val streams: TypedPipe[(String, String)] = _ // (track, user)
val tgp: TypedPipe[(String, String)] = _ // (track, genre)
streams
.join(tgp)
.values // (user, genre)
.group
.mapValueStream(vs => Iterator(vs.toSet)) // reducer-only
Hash join
val streams: TypedPipe[(String, String)] = _ // (track, user)
val tgp: TypedPipe[(String, String)] = _ // (track, genre)
streams
.hashJoin(tgp.forceToDisk) // tgp replicated to all mappers
.values // (user, genre)
.group
.mapValueStream(vs => Iterator(vs.toSet)) // reducer-only
CoGroup
val streams: TypedPipe[(String, String)] = _ // (track, user)
val tgp: TypedPipe[(String, String)] = _ // (track, genre)
streams
.cogroup(tgp) { case (_, users, genres) =>
users.map((_, genres.toSet))
} // (track, (user, genres))
.values // (user, genres)

.group
.reduce(_ ++ _) // map-side reduce!
CoGroup
val streams: TypedPipe[(String, String)] = _ // (track, user)
val tgp: TypedPipe[(String, String)] = _ // (track, genre)
streams
.cogroup(tgp) { case (_, users, genres) =>
users.map((_, genres.toSet))
} // (track, (user, genres))
.values // (user, genres)

.group
.sum // SetMonoid[Set[T]] from Algebird
* sum[U >:V](implicit sg: Semigroup[U])
Key-value file as distributed cache
val streams: TypedPipe[(String, String)] = _ // (gid, user)
val tgp: SparkeyManager = _ // tgp replicated to all mappers
streams
.map { case (track, user) =>
(user, tgp.get(track).split(",").toSet)
}
.group
.sum
https://github.com/spotify/sparkey
SparkeyManagerwraps DistributedCacheFile
Joins and CoGroups
• Require shuffle and reduce step
• Some ops force everything to reducers

e.g. mapGroup, mapValueStream
• CoGroup more flexible for complex logic
• Scalding flattens a.join(b).join(c)…

into MultiJoin(a, b, c, …)
Distributed cache
• Fasterwith off-heap binary files
• Building cache = more wiring
• Memory mapping may interfere withYARN
• E.g. 64GB nodes with 48GB for containers (no cgroup)
• 12 × 2GB containers each with 2GB JVM heap + mmap cache
• OOM and swap!
• Keep files small (< 1GB) or fallback to joins…
Analyze your jobs
• Concurrent Driven
• Visualize job execution
• Workflow optimization
• Bottlenecks
• Data skew
Notenough
math?
Recommending tracks
• User listened to Rammstein - Du Hast
• Recommend 10 similartracks
• 40 dimension feature vectors fortracks
• Compute cosine similarity between all pairs
• O(n) lookup per userwhere n ≈ 30m
• Trythat with 50m users * 10 seed tracks each
ANNOY - cheat by approximation
• Approximate Nearest Neighbor OhYeah
• Random projections and binarytree search
• Build index on single machine
• Load in mappers via distribute cache
• O(log n) lookup
https://github.com/spotify/annoy
https://github.com/spotify/annoy-java
ANN Benchmark
https://github.com/erikbern/ann-benchmarks
Filtering candidates
• Users don’t like seeing artist/album/tracks they already know
• But may forget what they listened long ago
• 50m * thousands of items each
• Over 5 years of streaming logs
• Need to update daily
• Need to purge old items per user
Options
• Aggregate all logs daily
• Aggregate last x days daily
• CSVof artist/album/track ids
• Bloom filters
Decayed value with cutoff
• Compute new user-item score daily
• Weighted on context, e.g. radio, search, playlist
• score’ = score + previous * 0.99
• half life = log0.99
0.5 = 69 days
• Cut off at top 2000
• Items that users might remember seeing recently
Bloom filters
• Probabilistic data structure
• Encoding set of items with m bits and k hash functions
• No false negative
• Tunable false positive probability
• Size proportional to capacity & FP probability
• Let’s build one per user-{artists,albums,tracks}
• Algebird BloomFilterMonoid: z = all zero bits, + = bitwise OR
Size versus max items & FP prob
• User-item distribution is uneven
• Assuming same setting for all users
• # items << capacity → wasting space
• # items > capacity → high FP rate
Scalable Bloom Filter
• Growing sequence of standard BFs
• Increasing capacity and tighter FP probability
• Most users have few BFs
• Power users have many
• Serialization and lookup overhead
Scalable Bloom Filter
• Growing sequence of standard BFs
• Increasing capacity and tighter FP probability
• Most users have few BFs
• Power users have many
• Serialization and lookup overhead
n=1k
item
Scalable Bloom Filter
• Growing sequence of standard BFs
• Increasing capacity and tighter FP probability
• Most users have few BFs
• Power users have many
• Serialization and lookup overhead
n=1k n=10k
item
full
Scalable Bloom Filter
• Growing sequence of standard BFs
• Increasing capacity and tighter FP probability
• Most users have few BFs
• Power users have many
• Serialization and lookup overhead
item
n=1k n=10k n=100k
fullfull
Scalable Bloom Filter
• Growing sequence of standard BFs
• Increasing capacity and tighter FP probability
• Most users have few BFs
• Power users have many
• Serialization and lookup overhead
n=1k n=10k n=100k n=1m
item
fullfullfull
Opportunistic Bloom Filter
• Building n BFs of increasing capacity in parallel
• Up to << N max possible items
• Keep smallest one with capacity > items inserted
• Expensive to build
• Cheap to store and lookup
Opportunistic Bloom Filter
• Building n BFs of increasing capacity in parallel
• Up to << N max possible items
• Keep smallest one with capacity > items inserted
• Expensive to build
• Cheap to store and lookup
n=1k
 
80%
n=10k
 
8%
n=100k
 
0.8%
n=1m
 
0.08%
item
Opportunistic Bloom Filter
• Building n BFs of increasing capacity in parallel
• Up to  N max possible items
• Keep smallest one with capacity  items inserted
• Expensive to build
• Cheap to store and lookup
n=1k
 
100%
n=10k
 
70%
n=100k
 
7%
n=1m
 
0.7%
item
full
Opportunistic Bloom Filter
• Building n BFs of increasing capacity in parallel
• Up to  N max possible items
• Keep smallest one with capacity  items inserted
• Expensive to build
• Cheap to store and lookup
n=1k
 
100%
n=10k
 
100%
n=100k
 
60%
n=1m

Más contenido relacionado

La actualidad más candente

Personalized Playlists at Spotify
Personalized Playlists at SpotifyPersonalized Playlists at Spotify
Personalized Playlists at SpotifyRohan Agrawal
 
Machine Learning and Big Data for Music Discovery at Spotify
Machine Learning and Big Data for Music Discovery at SpotifyMachine Learning and Big Data for Music Discovery at Spotify
Machine Learning and Big Data for Music Discovery at SpotifyChing-Wei Chen
 
Music Personalization At Spotify
Music Personalization At SpotifyMusic Personalization At Spotify
Music Personalization At SpotifyVidhya Murali
 
Personalizing the listening experience
Personalizing the listening experiencePersonalizing the listening experience
Personalizing the listening experienceMounia Lalmas-Roelleke
 
Music recommendations @ MLConf 2014
Music recommendations @ MLConf 2014Music recommendations @ MLConf 2014
Music recommendations @ MLConf 2014Erik Bernhardsson
 
CF Models for Music Recommendations At Spotify
CF Models for Music Recommendations At SpotifyCF Models for Music Recommendations At Spotify
CF Models for Music Recommendations At SpotifyVidhya Murali
 
Scala Data Pipelines for Music Recommendations
Scala Data Pipelines for Music RecommendationsScala Data Pipelines for Music Recommendations
Scala Data Pipelines for Music RecommendationsChris Johnson
 
From Idea to Execution: Spotify's Discover Weekly
From Idea to Execution: Spotify's Discover WeeklyFrom Idea to Execution: Spotify's Discover Weekly
From Idea to Execution: Spotify's Discover WeeklyChris Johnson
 
Securing Hadoop with Apache Ranger
Securing Hadoop with Apache RangerSecuring Hadoop with Apache Ranger
Securing Hadoop with Apache RangerDataWorks Summit
 
Hadoop Query Performance Smackdown
Hadoop Query Performance SmackdownHadoop Query Performance Smackdown
Hadoop Query Performance SmackdownDataWorks Summit
 
Playlist Recommendations @ Spotify
Playlist Recommendations @ SpotifyPlaylist Recommendations @ Spotify
Playlist Recommendations @ SpotifyNikhil Tibrewal
 
[MLOps KR 행사] MLOps 춘추 전국 시대 정리(210605)
[MLOps KR 행사] MLOps 춘추 전국 시대 정리(210605)[MLOps KR 행사] MLOps 춘추 전국 시대 정리(210605)
[MLOps KR 행사] MLOps 춘추 전국 시대 정리(210605)Seongyun Byeon
 
Machine learning @ Spotify - Madison Big Data Meetup
Machine learning @ Spotify - Madison Big Data MeetupMachine learning @ Spotify - Madison Big Data Meetup
Machine learning @ Spotify - Madison Big Data MeetupAndy Sloane
 
Splunk: Druid on Kubernetes with Druid-operator
Splunk: Druid on Kubernetes with Druid-operatorSplunk: Druid on Kubernetes with Druid-operator
Splunk: Druid on Kubernetes with Druid-operatorImply
 
Big Data At Spotify
Big Data At SpotifyBig Data At Spotify
Big Data At SpotifyAdam Kawa
 
Interactive Recommender Systems with Netflix and Spotify
Interactive Recommender Systems with Netflix and SpotifyInteractive Recommender Systems with Netflix and Spotify
Interactive Recommender Systems with Netflix and SpotifyChris Johnson
 
DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...
DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...
DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...Hakka Labs
 
DevOps for Data Engineers - Automate Your Data Science Pipeline with Ansible,...
DevOps for Data Engineers - Automate Your Data Science Pipeline with Ansible,...DevOps for Data Engineers - Automate Your Data Science Pipeline with Ansible,...
DevOps for Data Engineers - Automate Your Data Science Pipeline with Ansible,...Mihai Criveti
 
ksqlDB: A Stream-Relational Database System
ksqlDB: A Stream-Relational Database SystemksqlDB: A Stream-Relational Database System
ksqlDB: A Stream-Relational Database Systemconfluent
 
Introduction to Streaming Analytics
Introduction to Streaming AnalyticsIntroduction to Streaming Analytics
Introduction to Streaming AnalyticsGuido Schmutz
 

La actualidad más candente (20)

Personalized Playlists at Spotify
Personalized Playlists at SpotifyPersonalized Playlists at Spotify
Personalized Playlists at Spotify
 
Machine Learning and Big Data for Music Discovery at Spotify
Machine Learning and Big Data for Music Discovery at SpotifyMachine Learning and Big Data for Music Discovery at Spotify
Machine Learning and Big Data for Music Discovery at Spotify
 
Music Personalization At Spotify
Music Personalization At SpotifyMusic Personalization At Spotify
Music Personalization At Spotify
 
Personalizing the listening experience
Personalizing the listening experiencePersonalizing the listening experience
Personalizing the listening experience
 
Music recommendations @ MLConf 2014
Music recommendations @ MLConf 2014Music recommendations @ MLConf 2014
Music recommendations @ MLConf 2014
 
CF Models for Music Recommendations At Spotify
CF Models for Music Recommendations At SpotifyCF Models for Music Recommendations At Spotify
CF Models for Music Recommendations At Spotify
 
Scala Data Pipelines for Music Recommendations
Scala Data Pipelines for Music RecommendationsScala Data Pipelines for Music Recommendations
Scala Data Pipelines for Music Recommendations
 
From Idea to Execution: Spotify's Discover Weekly
From Idea to Execution: Spotify's Discover WeeklyFrom Idea to Execution: Spotify's Discover Weekly
From Idea to Execution: Spotify's Discover Weekly
 
Securing Hadoop with Apache Ranger
Securing Hadoop with Apache RangerSecuring Hadoop with Apache Ranger
Securing Hadoop with Apache Ranger
 
Hadoop Query Performance Smackdown
Hadoop Query Performance SmackdownHadoop Query Performance Smackdown
Hadoop Query Performance Smackdown
 
Playlist Recommendations @ Spotify
Playlist Recommendations @ SpotifyPlaylist Recommendations @ Spotify
Playlist Recommendations @ Spotify
 
[MLOps KR 행사] MLOps 춘추 전국 시대 정리(210605)
[MLOps KR 행사] MLOps 춘추 전국 시대 정리(210605)[MLOps KR 행사] MLOps 춘추 전국 시대 정리(210605)
[MLOps KR 행사] MLOps 춘추 전국 시대 정리(210605)
 
Machine learning @ Spotify - Madison Big Data Meetup
Machine learning @ Spotify - Madison Big Data MeetupMachine learning @ Spotify - Madison Big Data Meetup
Machine learning @ Spotify - Madison Big Data Meetup
 
Splunk: Druid on Kubernetes with Druid-operator
Splunk: Druid on Kubernetes with Druid-operatorSplunk: Druid on Kubernetes with Druid-operator
Splunk: Druid on Kubernetes with Druid-operator
 
Big Data At Spotify
Big Data At SpotifyBig Data At Spotify
Big Data At Spotify
 
Interactive Recommender Systems with Netflix and Spotify
Interactive Recommender Systems with Netflix and SpotifyInteractive Recommender Systems with Netflix and Spotify
Interactive Recommender Systems with Netflix and Spotify
 
DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...
DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...
DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...
 
DevOps for Data Engineers - Automate Your Data Science Pipeline with Ansible,...
DevOps for Data Engineers - Automate Your Data Science Pipeline with Ansible,...DevOps for Data Engineers - Automate Your Data Science Pipeline with Ansible,...
DevOps for Data Engineers - Automate Your Data Science Pipeline with Ansible,...
 
ksqlDB: A Stream-Relational Database System
ksqlDB: A Stream-Relational Database SystemksqlDB: A Stream-Relational Database System
ksqlDB: A Stream-Relational Database System
 
Introduction to Streaming Analytics
Introduction to Streaming AnalyticsIntroduction to Streaming Analytics
Introduction to Streaming Analytics
 

Similar a Scala Data Pipelines @ Spotify

London devops logging
London devops loggingLondon devops logging
London devops loggingTomas Doran
 
CPANTS: Kwalitative website and its tools
CPANTS: Kwalitative website and its toolsCPANTS: Kwalitative website and its tools
CPANTS: Kwalitative website and its toolscharsbar
 
Introduction to Apache Beam & No Shard Left Behind: APIs for Massive Parallel...
Introduction to Apache Beam & No Shard Left Behind: APIs for Massive Parallel...Introduction to Apache Beam & No Shard Left Behind: APIs for Massive Parallel...
Introduction to Apache Beam & No Shard Left Behind: APIs for Massive Parallel...Dan Halperin
 
Intelligent Search
Intelligent SearchIntelligent Search
Intelligent SearchTed Dunning
 
Vertica architecture
Vertica architectureVertica architecture
Vertica architectureZvika Gutkin
 
Introduction to Vertica (Architecture & More)
Introduction to Vertica (Architecture & More)Introduction to Vertica (Architecture & More)
Introduction to Vertica (Architecture & More)LivePerson
 
Stream processing from single node to a cluster
Stream processing from single node to a clusterStream processing from single node to a cluster
Stream processing from single node to a clusterGal Marder
 
Tuning Your Engine
Tuning Your EngineTuning Your Engine
Tuning Your Enginejoelbradbury
 
Mendeley’s Research Catalogue: building it, opening it up and making it even ...
Mendeley’s Research Catalogue: building it, opening it up and making it even ...Mendeley’s Research Catalogue: building it, opening it up and making it even ...
Mendeley’s Research Catalogue: building it, opening it up and making it even ...Kris Jack
 
Scala in practice - 3 years later
Scala in practice - 3 years laterScala in practice - 3 years later
Scala in practice - 3 years laterpatforna
 
Scala in-practice-3-years by Patric Fornasier, Springr, presented at Pune Sca...
Scala in-practice-3-years by Patric Fornasier, Springr, presented at Pune Sca...Scala in-practice-3-years by Patric Fornasier, Springr, presented at Pune Sca...
Scala in-practice-3-years by Patric Fornasier, Springr, presented at Pune Sca...Thoughtworks
 
Scaling ingest pipelines with high performance computing principles - Rajiv K...
Scaling ingest pipelines with high performance computing principles - Rajiv K...Scaling ingest pipelines with high performance computing principles - Rajiv K...
Scaling ingest pipelines with high performance computing principles - Rajiv K...SignalFx
 
Analyze one year of radio station songs aired with Spark SQL, Spotify, and Da...
Analyze one year of radio station songs aired with Spark SQL, Spotify, and Da...Analyze one year of radio station songs aired with Spark SQL, Spotify, and Da...
Analyze one year of radio station songs aired with Spark SQL, Spotify, and Da...Paul Leclercq
 
Message:Passing - lpw 2012
Message:Passing - lpw 2012Message:Passing - lpw 2012
Message:Passing - lpw 2012Tomas Doran
 

Similar a Scala Data Pipelines @ Spotify (20)

London devops logging
London devops loggingLondon devops logging
London devops logging
 
Intelligent Search
Intelligent SearchIntelligent Search
Intelligent Search
 
CPANTS: Kwalitative website and its tools
CPANTS: Kwalitative website and its toolsCPANTS: Kwalitative website and its tools
CPANTS: Kwalitative website and its tools
 
Introduction to Apache Beam & No Shard Left Behind: APIs for Massive Parallel...
Introduction to Apache Beam & No Shard Left Behind: APIs for Massive Parallel...Introduction to Apache Beam & No Shard Left Behind: APIs for Massive Parallel...
Introduction to Apache Beam & No Shard Left Behind: APIs for Massive Parallel...
 
Let's Get to the Rapids
Let's Get to the RapidsLet's Get to the Rapids
Let's Get to the Rapids
 
Intelligent Search
Intelligent SearchIntelligent Search
Intelligent Search
 
Vertica architecture
Vertica architectureVertica architecture
Vertica architecture
 
Introduction to Vertica (Architecture & More)
Introduction to Vertica (Architecture & More)Introduction to Vertica (Architecture & More)
Introduction to Vertica (Architecture & More)
 
Stream processing from single node to a cluster
Stream processing from single node to a clusterStream processing from single node to a cluster
Stream processing from single node to a cluster
 
Akka streams
Akka streamsAkka streams
Akka streams
 
Tuning Your Engine
Tuning Your EngineTuning Your Engine
Tuning Your Engine
 
Mendeley’s Research Catalogue: building it, opening it up and making it even ...
Mendeley’s Research Catalogue: building it, opening it up and making it even ...Mendeley’s Research Catalogue: building it, opening it up and making it even ...
Mendeley’s Research Catalogue: building it, opening it up and making it even ...
 
Scala in practice - 3 years later
Scala in practice - 3 years laterScala in practice - 3 years later
Scala in practice - 3 years later
 
Scala in-practice-3-years by Patric Fornasier, Springr, presented at Pune Sca...
Scala in-practice-3-years by Patric Fornasier, Springr, presented at Pune Sca...Scala in-practice-3-years by Patric Fornasier, Springr, presented at Pune Sca...
Scala in-practice-3-years by Patric Fornasier, Springr, presented at Pune Sca...
 
Hive at Last.fm
Hive at Last.fmHive at Last.fm
Hive at Last.fm
 
Graphite
GraphiteGraphite
Graphite
 
Scaling ingest pipelines with high performance computing principles - Rajiv K...
Scaling ingest pipelines with high performance computing principles - Rajiv K...Scaling ingest pipelines with high performance computing principles - Rajiv K...
Scaling ingest pipelines with high performance computing principles - Rajiv K...
 
Apache HAWQ Architecture
Apache HAWQ ArchitectureApache HAWQ Architecture
Apache HAWQ Architecture
 
Analyze one year of radio station songs aired with Spark SQL, Spotify, and Da...
Analyze one year of radio station songs aired with Spark SQL, Spotify, and Da...Analyze one year of radio station songs aired with Spark SQL, Spotify, and Da...
Analyze one year of radio station songs aired with Spark SQL, Spotify, and Da...
 
Message:Passing - lpw 2012
Message:Passing - lpw 2012Message:Passing - lpw 2012
Message:Passing - lpw 2012
 

Más de Neville Li

Sorry - How Bieber broke Google Cloud at Spotify
Sorry - How Bieber broke Google Cloud at SpotifySorry - How Bieber broke Google Cloud at Spotify
Sorry - How Bieber broke Google Cloud at SpotifyNeville Li
 
Scio - Moving to Google Cloud, A Spotify Story
 Scio - Moving to Google Cloud, A Spotify Story Scio - Moving to Google Cloud, A Spotify Story
Scio - Moving to Google Cloud, A Spotify StoryNeville Li
 
Scio - A Scala API for Google Cloud Dataflow & Apache Beam
Scio - A Scala API for Google Cloud Dataflow & Apache BeamScio - A Scala API for Google Cloud Dataflow & Apache Beam
Scio - A Scala API for Google Cloud Dataflow & Apache BeamNeville Li
 
From stream to recommendation using apache beam with cloud pubsub and cloud d...
From stream to recommendation using apache beam with cloud pubsub and cloud d...From stream to recommendation using apache beam with cloud pubsub and cloud d...
From stream to recommendation using apache beam with cloud pubsub and cloud d...Neville Li
 
Why functional why scala
Why functional  why scala Why functional  why scala
Why functional why scala Neville Li
 
Storm at Spotify
Storm at SpotifyStorm at Spotify
Storm at SpotifyNeville Li
 

Más de Neville Li (7)

Sorry - How Bieber broke Google Cloud at Spotify
Sorry - How Bieber broke Google Cloud at SpotifySorry - How Bieber broke Google Cloud at Spotify
Sorry - How Bieber broke Google Cloud at Spotify
 
Scio - Moving to Google Cloud, A Spotify Story
 Scio - Moving to Google Cloud, A Spotify Story Scio - Moving to Google Cloud, A Spotify Story
Scio - Moving to Google Cloud, A Spotify Story
 
Scio - A Scala API for Google Cloud Dataflow & Apache Beam
Scio - A Scala API for Google Cloud Dataflow & Apache BeamScio - A Scala API for Google Cloud Dataflow & Apache Beam
Scio - A Scala API for Google Cloud Dataflow & Apache Beam
 
Scio
ScioScio
Scio
 
From stream to recommendation using apache beam with cloud pubsub and cloud d...
From stream to recommendation using apache beam with cloud pubsub and cloud d...From stream to recommendation using apache beam with cloud pubsub and cloud d...
From stream to recommendation using apache beam with cloud pubsub and cloud d...
 
Why functional why scala
Why functional  why scala Why functional  why scala
Why functional why scala
 
Storm at Spotify
Storm at SpotifyStorm at Spotify
Storm at Spotify
 

Último

AI & Machine Learning Presentation Template
AI & Machine Learning Presentation TemplateAI & Machine Learning Presentation Template
AI & Machine Learning Presentation TemplatePresentation.STUDIO
 
Introducing Microsoft’s new Enterprise Work Management (EWM) Solution
Introducing Microsoft’s new Enterprise Work Management (EWM) SolutionIntroducing Microsoft’s new Enterprise Work Management (EWM) Solution
Introducing Microsoft’s new Enterprise Work Management (EWM) SolutionOnePlan Solutions
 
How to Choose the Right Laravel Development Partner in New York City_compress...
How to Choose the Right Laravel Development Partner in New York City_compress...How to Choose the Right Laravel Development Partner in New York City_compress...
How to Choose the Right Laravel Development Partner in New York City_compress...software pro Development
 
introduction-to-automotive Andoid os-csimmonds-ndctechtown-2021.pdf
introduction-to-automotive Andoid os-csimmonds-ndctechtown-2021.pdfintroduction-to-automotive Andoid os-csimmonds-ndctechtown-2021.pdf
introduction-to-automotive Andoid os-csimmonds-ndctechtown-2021.pdfVishalKumarJha10
 
Unlocking the Future of AI Agents with Large Language Models
Unlocking the Future of AI Agents with Large Language ModelsUnlocking the Future of AI Agents with Large Language Models
Unlocking the Future of AI Agents with Large Language Modelsaagamshah0812
 
Azure_Native_Qumulo_High_Performance_Compute_Benchmarks.pdf
Azure_Native_Qumulo_High_Performance_Compute_Benchmarks.pdfAzure_Native_Qumulo_High_Performance_Compute_Benchmarks.pdf
Azure_Native_Qumulo_High_Performance_Compute_Benchmarks.pdfryanfarris8
 
A Secure and Reliable Document Management System is Essential.docx
A Secure and Reliable Document Management System is Essential.docxA Secure and Reliable Document Management System is Essential.docx
A Secure and Reliable Document Management System is Essential.docxComplianceQuest1
 
The Ultimate Test Automation Guide_ Best Practices and Tips.pdf
The Ultimate Test Automation Guide_ Best Practices and Tips.pdfThe Ultimate Test Automation Guide_ Best Practices and Tips.pdf
The Ultimate Test Automation Guide_ Best Practices and Tips.pdfkalichargn70th171
 
5 Signs You Need a Fashion PLM Software.pdf
5 Signs You Need a Fashion PLM Software.pdf5 Signs You Need a Fashion PLM Software.pdf
5 Signs You Need a Fashion PLM Software.pdfWave PLM
 
Right Money Management App For Your Financial Goals
Right Money Management App For Your Financial GoalsRight Money Management App For Your Financial Goals
Right Money Management App For Your Financial GoalsJhone kinadey
 
The Real-World Challenges of Medical Device Cybersecurity- Mitigating Vulnera...
The Real-World Challenges of Medical Device Cybersecurity- Mitigating Vulnera...The Real-World Challenges of Medical Device Cybersecurity- Mitigating Vulnera...
The Real-World Challenges of Medical Device Cybersecurity- Mitigating Vulnera...ICS
 
Define the academic and professional writing..pdf
Define the academic and professional writing..pdfDefine the academic and professional writing..pdf
Define the academic and professional writing..pdfPearlKirahMaeRagusta1
 
Learn the Fundamentals of XCUITest Framework_ A Beginner's Guide.pdf
Learn the Fundamentals of XCUITest Framework_ A Beginner's Guide.pdfLearn the Fundamentals of XCUITest Framework_ A Beginner's Guide.pdf
Learn the Fundamentals of XCUITest Framework_ A Beginner's Guide.pdfkalichargn70th171
 
+971565801893>>SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHAB...
+971565801893>>SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHAB...+971565801893>>SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHAB...
+971565801893>>SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHAB...Health
 
Software Quality Assurance Interview Questions
Software Quality Assurance Interview QuestionsSoftware Quality Assurance Interview Questions
Software Quality Assurance Interview QuestionsArshad QA
 
How To Use Server-Side Rendering with Nuxt.js
How To Use Server-Side Rendering with Nuxt.jsHow To Use Server-Side Rendering with Nuxt.js
How To Use Server-Side Rendering with Nuxt.jsAndolasoft Inc
 
AI Mastery 201: Elevating Your Workflow with Advanced LLM Techniques
AI Mastery 201: Elevating Your Workflow with Advanced LLM TechniquesAI Mastery 201: Elevating Your Workflow with Advanced LLM Techniques
AI Mastery 201: Elevating Your Workflow with Advanced LLM TechniquesVictorSzoltysek
 

Último (20)

AI & Machine Learning Presentation Template
AI & Machine Learning Presentation TemplateAI & Machine Learning Presentation Template
AI & Machine Learning Presentation Template
 
Microsoft AI Transformation Partner Playbook.pdf
Microsoft AI Transformation Partner Playbook.pdfMicrosoft AI Transformation Partner Playbook.pdf
Microsoft AI Transformation Partner Playbook.pdf
 
Introducing Microsoft’s new Enterprise Work Management (EWM) Solution
Introducing Microsoft’s new Enterprise Work Management (EWM) SolutionIntroducing Microsoft’s new Enterprise Work Management (EWM) Solution
Introducing Microsoft’s new Enterprise Work Management (EWM) Solution
 
How to Choose the Right Laravel Development Partner in New York City_compress...
How to Choose the Right Laravel Development Partner in New York City_compress...How to Choose the Right Laravel Development Partner in New York City_compress...
How to Choose the Right Laravel Development Partner in New York City_compress...
 
introduction-to-automotive Andoid os-csimmonds-ndctechtown-2021.pdf
introduction-to-automotive Andoid os-csimmonds-ndctechtown-2021.pdfintroduction-to-automotive Andoid os-csimmonds-ndctechtown-2021.pdf
introduction-to-automotive Andoid os-csimmonds-ndctechtown-2021.pdf
 
CHEAP Call Girls in Pushp Vihar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Pushp Vihar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICECHEAP Call Girls in Pushp Vihar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Pushp Vihar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
 
Unlocking the Future of AI Agents with Large Language Models
Unlocking the Future of AI Agents with Large Language ModelsUnlocking the Future of AI Agents with Large Language Models
Unlocking the Future of AI Agents with Large Language Models
 
Azure_Native_Qumulo_High_Performance_Compute_Benchmarks.pdf
Azure_Native_Qumulo_High_Performance_Compute_Benchmarks.pdfAzure_Native_Qumulo_High_Performance_Compute_Benchmarks.pdf
Azure_Native_Qumulo_High_Performance_Compute_Benchmarks.pdf
 
A Secure and Reliable Document Management System is Essential.docx
A Secure and Reliable Document Management System is Essential.docxA Secure and Reliable Document Management System is Essential.docx
A Secure and Reliable Document Management System is Essential.docx
 
The Ultimate Test Automation Guide_ Best Practices and Tips.pdf
The Ultimate Test Automation Guide_ Best Practices and Tips.pdfThe Ultimate Test Automation Guide_ Best Practices and Tips.pdf
The Ultimate Test Automation Guide_ Best Practices and Tips.pdf
 
5 Signs You Need a Fashion PLM Software.pdf
5 Signs You Need a Fashion PLM Software.pdf5 Signs You Need a Fashion PLM Software.pdf
5 Signs You Need a Fashion PLM Software.pdf
 
Vip Call Girls Noida ➡️ Delhi ➡️ 9999965857 No Advance 24HRS Live
Vip Call Girls Noida ➡️ Delhi ➡️ 9999965857 No Advance 24HRS LiveVip Call Girls Noida ➡️ Delhi ➡️ 9999965857 No Advance 24HRS Live
Vip Call Girls Noida ➡️ Delhi ➡️ 9999965857 No Advance 24HRS Live
 
Right Money Management App For Your Financial Goals
Right Money Management App For Your Financial GoalsRight Money Management App For Your Financial Goals
Right Money Management App For Your Financial Goals
 
The Real-World Challenges of Medical Device Cybersecurity- Mitigating Vulnera...
The Real-World Challenges of Medical Device Cybersecurity- Mitigating Vulnera...The Real-World Challenges of Medical Device Cybersecurity- Mitigating Vulnera...
The Real-World Challenges of Medical Device Cybersecurity- Mitigating Vulnera...
 
Define the academic and professional writing..pdf
Define the academic and professional writing..pdfDefine the academic and professional writing..pdf
Define the academic and professional writing..pdf
 
Learn the Fundamentals of XCUITest Framework_ A Beginner's Guide.pdf
Learn the Fundamentals of XCUITest Framework_ A Beginner's Guide.pdfLearn the Fundamentals of XCUITest Framework_ A Beginner's Guide.pdf
Learn the Fundamentals of XCUITest Framework_ A Beginner's Guide.pdf
 
+971565801893>>SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHAB...
+971565801893>>SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHAB...+971565801893>>SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHAB...
+971565801893>>SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHAB...
 
Software Quality Assurance Interview Questions
Software Quality Assurance Interview QuestionsSoftware Quality Assurance Interview Questions
Software Quality Assurance Interview Questions
 
How To Use Server-Side Rendering with Nuxt.js
How To Use Server-Side Rendering with Nuxt.jsHow To Use Server-Side Rendering with Nuxt.js
How To Use Server-Side Rendering with Nuxt.js
 
AI Mastery 201: Elevating Your Workflow with Advanced LLM Techniques
AI Mastery 201: Elevating Your Workflow with Advanced LLM TechniquesAI Mastery 201: Elevating Your Workflow with Advanced LLM Techniques
AI Mastery 201: Elevating Your Workflow with Advanced LLM Techniques
 

Scala Data Pipelines @ Spotify

  • 2. Who am I? ‣ SpotifyNYCsince2011 ‣ FormerlyYahoo!Search ‣ Musicrecommendations ‣ Datainfrastructure ‣ Scalasince2013
  • 3. Spotify in numbers • Started in 2006, 58 markets • 75M+ active users, 20M+ paying • 30M+ songs, 20K new per day • 1.5 billion playlists • 1 TB logs per day • 1200+ node Hadoop cluster • 10K+ Hadoop jobs per day
  • 4. Music recommendation @ Spotify • Discover Weekly • Radio • RelatedArtists • Discover Page
  • 6. A little teaser PGroupedTable<K,V>::combineValues(CombineFn<K,V> combineFn, CombineFn<K,V> reduceFn) Crunch: CombineFns are used to represent the associative operations… Grouped[K, +V]::reduce[U >: V](fn: (U, U) U) Scalding: reduce with fn which must be associative and commutative… PairRDDFunctions[K, V]::reduceByKey(fn: (V, V) => V) Spark: Merge the values for each key using an associative reduce function…
  • 7. Monoid! enables map side reduce Actually it’s a semigroup
  • 8. One more teaser Linear equation inAlternate Least Square (ALS) Matrix factorization xu = (YTY + YT(Cu − I)Y)−1YTCup(u) vectors.map { case (id, v) => (id, v * v) }.map(_._2).reduce(_ + _) // YtY ratings.keyBy(fixedKey).join(outerProducts) // YtCuIY .map { case (_, (r, op)) => (solveKey(r), op * (r.rating * alpha)) }.reduceByKey(_ + _) ratings.keyBy(fixedKey).join(vectors) // YtCupu .map { case (_, (r, v)) => val (Cui, pui) = (r.rating * alpha + 1, if (Cui > 0.0) 1.0 else 0.0) (solveKey(r), v * (Cui * pui)) }.reduceByKey(_ + _) http://www.slideshare.net/MrChrisJohnson/scala-data-pipelines-for-music-recommendations
  • 9. Success story • Mid 2013: 100+ Python Luigi M/R jobs, few tests • 10+ new hires since, most fresh grads • Few with Java experience, none with Scala • Now: 300+ Scalding jobs, 400+ tests • More ad-hoc jobs untracked • Spark also taking off
  • 12. Guess how many jobs written by yours truly?
  • 15. To join or not to join? val streams: TypedPipe[(String, String)] = _ // (track, user) val tgp: TypedPipe[(String, String)] = _ // (track, genre) streams .join(tgp) .values // (user, genre) .group .mapValueStream(vs => Iterator(vs.toSet)) // reducer-only
  • 16. Hash join val streams: TypedPipe[(String, String)] = _ // (track, user) val tgp: TypedPipe[(String, String)] = _ // (track, genre) streams .hashJoin(tgp.forceToDisk) // tgp replicated to all mappers .values // (user, genre) .group .mapValueStream(vs => Iterator(vs.toSet)) // reducer-only
  • 17. CoGroup val streams: TypedPipe[(String, String)] = _ // (track, user) val tgp: TypedPipe[(String, String)] = _ // (track, genre) streams .cogroup(tgp) { case (_, users, genres) => users.map((_, genres.toSet)) } // (track, (user, genres)) .values // (user, genres)
 .group .reduce(_ ++ _) // map-side reduce!
  • 18. CoGroup val streams: TypedPipe[(String, String)] = _ // (track, user) val tgp: TypedPipe[(String, String)] = _ // (track, genre) streams .cogroup(tgp) { case (_, users, genres) => users.map((_, genres.toSet)) } // (track, (user, genres)) .values // (user, genres)
 .group .sum // SetMonoid[Set[T]] from Algebird * sum[U >:V](implicit sg: Semigroup[U])
  • 19. Key-value file as distributed cache val streams: TypedPipe[(String, String)] = _ // (gid, user) val tgp: SparkeyManager = _ // tgp replicated to all mappers streams .map { case (track, user) => (user, tgp.get(track).split(",").toSet) } .group .sum https://github.com/spotify/sparkey SparkeyManagerwraps DistributedCacheFile
  • 20. Joins and CoGroups • Require shuffle and reduce step • Some ops force everything to reducers
 e.g. mapGroup, mapValueStream • CoGroup more flexible for complex logic • Scalding flattens a.join(b).join(c)…
 into MultiJoin(a, b, c, …)
  • 21. Distributed cache • Fasterwith off-heap binary files • Building cache = more wiring • Memory mapping may interfere withYARN • E.g. 64GB nodes with 48GB for containers (no cgroup) • 12 × 2GB containers each with 2GB JVM heap + mmap cache • OOM and swap! • Keep files small (< 1GB) or fallback to joins…
  • 22. Analyze your jobs • Concurrent Driven • Visualize job execution • Workflow optimization • Bottlenecks • Data skew
  • 24. Recommending tracks • User listened to Rammstein - Du Hast • Recommend 10 similartracks • 40 dimension feature vectors fortracks • Compute cosine similarity between all pairs • O(n) lookup per userwhere n ≈ 30m • Trythat with 50m users * 10 seed tracks each
  • 25. ANNOY - cheat by approximation • Approximate Nearest Neighbor OhYeah • Random projections and binarytree search • Build index on single machine • Load in mappers via distribute cache • O(log n) lookup https://github.com/spotify/annoy https://github.com/spotify/annoy-java
  • 27. Filtering candidates • Users don’t like seeing artist/album/tracks they already know • But may forget what they listened long ago • 50m * thousands of items each • Over 5 years of streaming logs • Need to update daily • Need to purge old items per user
  • 28. Options • Aggregate all logs daily • Aggregate last x days daily • CSVof artist/album/track ids • Bloom filters
  • 29. Decayed value with cutoff • Compute new user-item score daily • Weighted on context, e.g. radio, search, playlist • score’ = score + previous * 0.99 • half life = log0.99 0.5 = 69 days • Cut off at top 2000 • Items that users might remember seeing recently
  • 30. Bloom filters • Probabilistic data structure • Encoding set of items with m bits and k hash functions • No false negative • Tunable false positive probability • Size proportional to capacity & FP probability • Let’s build one per user-{artists,albums,tracks} • Algebird BloomFilterMonoid: z = all zero bits, + = bitwise OR
  • 31. Size versus max items & FP prob • User-item distribution is uneven • Assuming same setting for all users • # items << capacity → wasting space • # items > capacity → high FP rate
  • 32. Scalable Bloom Filter • Growing sequence of standard BFs • Increasing capacity and tighter FP probability • Most users have few BFs • Power users have many • Serialization and lookup overhead
  • 33. Scalable Bloom Filter • Growing sequence of standard BFs • Increasing capacity and tighter FP probability • Most users have few BFs • Power users have many • Serialization and lookup overhead n=1k item
  • 34. Scalable Bloom Filter • Growing sequence of standard BFs • Increasing capacity and tighter FP probability • Most users have few BFs • Power users have many • Serialization and lookup overhead n=1k n=10k item full
  • 35. Scalable Bloom Filter • Growing sequence of standard BFs • Increasing capacity and tighter FP probability • Most users have few BFs • Power users have many • Serialization and lookup overhead item n=1k n=10k n=100k fullfull
  • 36. Scalable Bloom Filter • Growing sequence of standard BFs • Increasing capacity and tighter FP probability • Most users have few BFs • Power users have many • Serialization and lookup overhead n=1k n=10k n=100k n=1m item fullfullfull
  • 37. Opportunistic Bloom Filter • Building n BFs of increasing capacity in parallel • Up to << N max possible items • Keep smallest one with capacity > items inserted • Expensive to build • Cheap to store and lookup
  • 38. Opportunistic Bloom Filter • Building n BFs of increasing capacity in parallel • Up to << N max possible items • Keep smallest one with capacity > items inserted • Expensive to build • Cheap to store and lookup n=1k
  • 43. Opportunistic Bloom Filter • Building n BFs of increasing capacity in parallel • Up to N max possible items • Keep smallest one with capacity items inserted • Expensive to build • Cheap to store and lookup n=1k
  • 48. Opportunistic Bloom Filter • Building n BFs of increasing capacity in parallel • Up to N max possible items • Keep smallest one with capacity items inserted • Expensive to build • Cheap to store and lookup n=1k
  • 53. Opportunistic Bloom Filter • Building n BFs of increasing capacity in parallel • Up to N max possible items • Keep smallest one with capacity items inserted • Expensive to build • Cheap to store and lookup n=1k
  • 60. Track metadata • Label dump → content ingestion • Third partytrack genres, e.g. GraceNote • Audio attributes, e.g. tempo, key, time signature • Cultural data, e.g. popularity, tags • Latent vectors from collaborative filtering • Many sources for album, artist, user metadata too
  • 61. Multiple data sources • Big joins • Complex dependencies • Wide rows with few columns accessed • Wasting I/O
  • 62. Apache Parquet • Pre-join sources into mega-datasets • Store as Parquet columnar storage • Column projection • Predicate pushdown • Avro within Scalding pipelines
  • 63. Projection pipe.map(a = (a.getName, a.getAmount)) versus Parquet.project[Account](name, amount) • Strings → unsafe and error prone • No IDE auto-completion → finger injury • my_fancy_field_name → .getMyFancyFieldName • Hard to migrate existing code
  • 64. Predicate pipe.filter(a = a.getName == Neville a.getAmount 100) versus FilterApi.and( FilterApi.eq(FilterApi.binaryColumn(name), Binary.fromString(Neville)), FilterApi.gt(FilterApi.floatColumn(amount), 100f.asInstnacesOf[java.lang.Float]))
  • 65. Macro to the rescue Code →AST→ (pattern matching) → (recursion) → (quasi-quotes) → Code Projection[Account](_.getName, _.getAmount) Predicate[Account](x = x.getName == “Neville x.getAmount 100) https://github.com/nevillelyh/parquet-avro-extra http://www.lyh.me/slides/macros.html
  • 66. What else? ‣ Analytics ‣ Adstargeting,prediction ‣ Metadataquality ‣ Zeppelin ‣ Morecoolstuffintheworks