Se ha denunciado esta presentación.
Utilizamos tu perfil de LinkedIn y tus datos de actividad para personalizar los anuncios y mostrarte publicidad más relevante. Puedes cambiar tus preferencias de publicidad en cualquier momento.

Building Decision Tree model with numerical attributes

74.088 visualizaciones

Publicado el

This presentation show method to build Decision Tree model with numerical attributes

Publicado en: Datos y análisis

Building Decision Tree model with numerical attributes

  1. 1. การสร้างโมเดล Decision Tree 
 สำหรับแอตทริบิวต์ที่มีค่าตัวเลข (data)3
 base|warehouse|mining http://www.dataminingtrend.com
 http://facebook.com/datacube.th Eakasit Pacharawongsakda, Ph.D. Data Cube: http://facebook.com/datacube.th E-mail: eakasit@datacube.asia
  2. 2. (data)3
 base|warehouse|mining http://dataminingtrend.com http://facebook.com/datacube.th Decision Tree • ข้อมูลเป็นตัวเลข • เรียงลำดับข้อมูลที่เป็นตัวเลขจากน้อยไปมาก • แบ่งข้อมูลออกเป็น 2 ส่วนโดยการหาจุดกึ่งกลางระหว่างค่าตัวเลข 2 ค่า • คำนวณค่า Information Gain จากข้อมูล 2 ส่วนที่แบ่งได้ • เลือกจุดกึ่งกลางที่ให้ค่า Information Gain สูงที่สุดมาใช้งานต่อ 2
  3. 3. (data)3
 base|warehouse|mining http://dataminingtrend.com http://facebook.com/datacube.th Decision Tree • ข้อมูลเป็นตัวเลข • เมื่อใช้ Humidity = 67.5 เป็นตัวแบ่ง ได้ค่า IG = 0.11 3 ID Humidity Play 7 65.0 no 6 70.0 no 9 70.0 yes 11 70.0 yes 13 75.0 yes 3 78.0 no 5 80.0 yes 10 80.0 no 14 80.0 yes 1 85.0 yes 2 90.0 yes 12 90.0 yes 8 95.0 yes 4 96.0 no ค่าเฉลี่ย = 67.5 ID Humidity Play 7 < 67.5 no 6 > 67.5 no 9 > 67.5 yes 11 > 67.5 yes 13 > 67.5 yes 3 > 67.5 no 5 > 67.5 yes 10 > 67.5 no 14 > 67.5 yes 1 > 67.5 yes 2 > 67.5 yes 12 > 67.5 yes 8 > 67.5 yes 4 > 67.5 no กลุ่มที่ 1 กลุ่มที่ 2
  4. 4. (data)3
 base|warehouse|mining http://dataminingtrend.com http://facebook.com/datacube.th Decision Tree • ข้อมูลเป็นตัวเลข • เมื่อใช้ Humidity = 72.5 เป็นตัวแบ่ง ได้ค่า IG = 0.25 4 ID Humidity Play 7 65.0 no 6 70.0 no 9 70.0 yes 11 70.0 yes 13 75.0 yes 3 78.0 no 5 80.0 yes 10 80.0 no 14 80.0 yes 1 85.0 yes 2 90.0 yes 12 90.0 yes 8 95.0 yes 4 96.0 no ค่าเฉลี่ย = 72.5 ID Humidity Play 7 < 72.5 no 6 < 72.5 no 9 < 72.5 yes 11 < 72.5 yes 13 > 72.5 yes 3 > 72.5 no 5 > 72.5 yes 10 > 72.5 no 14 > 72.5 yes 1 > 72.5 yes 2 > 72.5 yes 12 > 72.5 yes 8 > 72.5 yes 4 > 72.5 no กลุ่มที่ 2 กลุ่มที่ 1
  5. 5. (data)3
 base|warehouse|mining http://dataminingtrend.com http://facebook.com/datacube.th Decision Tree • ข้อมูลเป็นตัวเลข • เมื่อใช้ Humidity = 76.5 เป็นตัวแบ่ง ได้ค่า IG = 0.03 5 ID Humidity Play 7 65.0 no 6 70.0 no 9 70.0 yes 11 70.0 yes 13 75.0 yes 3 78.0 no 5 80.0 yes 10 80.0 no 14 80.0 yes 1 85.0 yes 2 90.0 yes 12 90.0 yes 8 95.0 yes 4 96.0 no ค่าเฉลี่ย = 76.5 ID Humidity Play 7 < 76.5 no 6 < 76.5 no 9 < 76.5 yes 11 < 76.5 yes 13 < 76.5 yes 3 > 76.5 no 5 > 76.5 yes 10 > 76.5 no 14 > 76.5 yes 1 > 76.5 yes 2 > 76.5 yes 12 > 76.5 yes 8 > 76.5 yes 4 > 76.5 no กลุ่มที่ 1 กลุ่มที่ 2
  6. 6. (data)3
 base|warehouse|mining http://dataminingtrend.com http://facebook.com/datacube.th Decision Tree • ข้อมูลเป็นตัวเลข • เมื่อใช้ Humidity = 79.0 เป็นตัวแบ่ง ได้ค่า IG = 0.05 6 ID Humidity Play 7 65.0 no 6 70.0 no 9 70.0 yes 11 70.0 yes 13 75.0 yes 3 78.0 no 5 80.0 yes 10 80.0 no 14 80.0 yes 1 85.0 yes 2 90.0 yes 12 90.0 yes 8 95.0 yes 4 96.0 no ค่าเฉลี่ย = 79.0 ID Humidity Play 7 < 79.0 no 6 < 79.0 no 9 < 79.0 yes 11 < 79.0 yes 13 < 79.0 yes 3 < 79.0 no 5 > 79.0 yes 10 > 79.0 no 14 > 79.0 yes 1 > 79.0 yes 2 > 79.0 yes 12 > 79.0 yes 8 > 79.0 yes 4 > 79.0 no กลุ่มที่ 1 กลุ่มที่ 2
  7. 7. (data)3
 base|warehouse|mining http://dataminingtrend.com http://facebook.com/datacube.th Decision Tree • ข้อมูลเป็นตัวเลข • เมื่อใช้ Humidity = 82.5 เป็นตัวแบ่ง ได้ค่า IG = 0.05 7 ID Humidity Play 7 65.0 no 6 70.0 no 9 70.0 yes 11 70.0 yes 13 75.0 yes 3 78.0 no 5 80.0 yes 10 80.0 no 14 80.0 yes 1 85.0 yes 2 90.0 yes 12 90.0 yes 8 95.0 yes 4 96.0 no ค่าเฉลี่ย = 82.5 ID Humidity Play 7 < 82.5 no 6 < 82.5 no 9 < 82.5 yes 11 < 82.5 yes 13 < 82.5 yes 3 < 82.5 no 5 < 82.5 yes 10 < 82.5 no 14 < 82.5 yes 1 > 82.5 yes 2 > 82.5 yes 12 > 82.5 yes 8 > 82.5 yes 4 > 82.5 no กลุ่มที่ 1 กลุ่มที่ 2
  8. 8. (data)3
 base|warehouse|mining http://dataminingtrend.com http://facebook.com/datacube.th Decision Tree • ข้อมูลเป็นตัวเลข • เมื่อใช้ Humidity = 87.5 เป็นตัวแบ่ง ได้ค่า IG = 0.02 8 ID Humidity Play 7 65.0 no 6 70.0 no 9 70.0 yes 11 70.0 yes 13 75.0 yes 3 78.0 no 5 80.0 yes 10 80.0 no 14 80.0 yes 1 85.0 yes 2 90.0 yes 12 90.0 yes 8 95.0 yes 4 96.0 no ค่าเฉลี่ย = 87.5 ID Humidity Play 7 < 87.5 no 6 < 87.5 no 9 < 87.5 yes 11 < 87.5 yes 13 < 87.5 yes 3 < 87.5 no 5 < 87.5 yes 10 < 87.5 no 14 < 87.5 yes 1 < 87.5 yes 2 > 87.5 yes 12 > 87.5 yes 8 > 87.5 yes 4 > 87.5 no กลุ่มที่ 1 กลุ่มที่ 2
  9. 9. (data)3
 base|warehouse|mining http://dataminingtrend.com http://facebook.com/datacube.th Decision Tree • ข้อมูลเป็นตัวเลข • เมื่อใช้ Humidity = 92.5 เป็นตัวแบ่ง ได้ค่า IG = 0.01 9 ID Humidity Play 7 65.0 no 6 70.0 no 9 70.0 yes 11 70.0 yes 13 75.0 yes 3 78.0 no 5 80.0 yes 10 80.0 no 14 80.0 yes 1 85.0 yes 2 90.0 yes 12 90.0 yes 8 95.0 yes 4 96.0 no ค่าเฉลี่ย = 92.5 ID Humidity Play 7 < 92.5 no 6 < 92.5 no 9 < 92.5 yes 11 < 92.5 yes 13 < 92.5 yes 3 < 92.5 no 5 < 92.5 yes 10 < 92.5 no 14 < 92.5 yes 1 < 92.5 yes 2 < 92.5 yes 12 < 92.5 yes 8 > 92.5 yes 4 > 92.5 no กลุ่มที่ 1 กลุ่มที่ 2
  10. 10. (data)3
 base|warehouse|mining http://dataminingtrend.com http://facebook.com/datacube.th Decision Tree • ข้อมูลเป็นตัวเลข • เมื่อใช้ Humidity = 95.5 เป็นตัวแบ่ง ได้ค่า IG = 0.01 10 ID Humidity Play 7 65.0 no 6 70.0 no 9 70.0 yes 11 70.0 yes 13 75.0 yes 3 78.0 no 5 80.0 yes 10 80.0 no 14 80.0 yes 1 85.0 yes 2 90.0 yes 12 90.0 yes 8 95.0 yes 4 96.0 no ค่าเฉลี่ย = 95.5 ID Humidity Play 7 < 95.5 no 6 < 95.5 no 9 < 95.5 yes 11 < 95.5 yes 13 < 95.5 yes 3 < 95.5 no 5 < 95.5 yes 10 < 95.5 no 14 < 95.5 yes 1 < 95.5 yes 2 < 95.5 yes 12 < 95.5 yes 8 > 95.5 yes 4 > 95.5 no กลุ่มที่ 1 กลุ่มที่ 2
  11. 11. (data)3
 base|warehouse|mining http://dataminingtrend.com http://facebook.com/datacube.th Decision Tree • ข้อมูลเป็นตัวเลข 11 ID Humidity Play 7 65.0 no 6 70.0 no 9 70.0 yes 11 70.0 yes 13 75.0 yes 3 78.0 no 5 80.0 yes 10 80.0 no 14 80.0 yes 1 85.0 yes 2 90.0 yes 12 90.0 yes 8 95.0 yes 4 96.0 no จุดตัด IG 67.5 0.11 72.5 0.25 76.5 0.03 79.0 0.05 82.5 0.05 87.5 0.02 92.5 0.01 95.5 0.01 ตารางจุดตัดและค่า Information Gain (IG) ให้ค่า IG มากที่สุด
  12. 12. (data)3
 base|warehouse|mining http://dataminingtrend.com http://facebook.com/datacube.th Decision Tree • ในกรณีที่ใช้แอตทริบิวต์ Humidity จะได้เป็น 12 Humidity < 72.5 > 72.5 แอตทริบิวต์ play = yes แอตทริบิวต์ play = no

×