SlideShare una empresa de Scribd logo
Guía de “Ecuaciones Cuadráticas”
Nivel: er
3 año medio
Nombre:........................................................................................
Concepto de Ecuaciones de 2º grado:
Es aquella ecuación en la que el mayor exponente de la incógnita es dos y por lo tanto su conjunto solución
posee dos soluciones.
Su forma general es:
Existen ecuaciones cuadráticas completas e incompletas:
 ;02
=++ cbxax ;1≠a ;0≠b 0≠c Ec. Completa General.
 ;02
=++ cbxx ;1=a ;0≠b 0≠c Ec. Completa Particular.
 ;02
=+cax ;0=b 0≠c Ec. Incompleta Pura.
 ;02
=+bxax ;0≠b 0=c Ec. Incompleta Binomial.
 ;02
=ax 0== cb Ec. Incompleta.
Ejercicios:
Aprendizaje esperado: Reconocer una ecuación cuadrática e identificar sus coeficientes. Clasificar las
ecuaciones cuadráticas.
1. ¿Cuáles de las ecuaciones dadas son de 2º
grado?
I) 052 2
12
=+− xx
II) ( ) 22
4 xx =−
III) 7625 2
=− xx
a) Sólo I, II
b) Sólo I, III
c) Sólo II, III
d) Sólo I
e) I, II y III
2. El valor del coeficiente b en la ecuación
05103 2
=−+ xx es:
a) 3
b) 0
c) 10
d) 5
e) -5
3. ¿Cuáles de las ecuaciones dadas son
incompletas?
I) 072
=+ xx
II) 05 4
32
=−− x
III) ( ) ( ) 6
9
2
3
2
1
3
2
34 =+−−− xxxx
a) Sólo I
b) Sólo II
c) I y II
d) I y III
e) I, II y III
4. Si la ecuación ( ) ( ) 222
21 yyy =−−− la
escribimos de la forma ;02
=++ cbxax
¿Cuál es el valor del coeficiente c?
a) 3
b) 2
c) -5
d) -2
e) 1
5. En la ecuación
( ) ( )( ) ( )xxxxx −=+−−+ 46141 el
coeficiente a vale:
a) 0
b) -1
c) 1
d) 2
e) -2
6. La ecuación ;0
4
3
84
=−
+
x
x
al expresarla
como ;02
=++ cbxax ¿Cuál es el valor de
los coeficientes b y c, en ese orden?
a) -8 y 12
b) 4 y 12
c) -4 y 8
d) 8 y -12
e) 12 y -8
7. En la ecuación ;0653 12
=+− −−
xx
expresándola como ;02
=++ cbxax el valor
de ( )cb 32 +− es igual a:
a) 1
b) 2
c) 8
d) -1
e) -8
8. La ecuación
( ) 02
4
8
=+
−xx
expresándola
como ( ) ;04 2
=++ cbxxa entonces el
producto de los coeficientes a, b y c es:
a) -1
b) -4
c) 4
d) 0
e) 1
;02
=++ cbxax ;,, IRcba ∈∀
0≠a
Internado Nacional Barros Arana
Departamento de Matemática
Profesora Inés Aravena
Aprendizajes esperados:
Plantean y resuelven problemas que
involucran ecuaciones de segundo grado;
explicitan sus procedimientos de solución y
analizan la existencia y pertinencia de las
soluciones obtenidas.
9. En la ecuación ( ) xxx 323 =++ al
expresarla como ;02
=++ cbxax el valor
del producto ba ⋅ es:
a) 1
b) 0
c) -1
d) 2
e) -2
10. En la ecuación ,0132 2
=−− xx el valor de
( )bac ⋅⋅2 es:
a) 0
b) 6
c) 8
d) 10
e) 12
11. La ecuación ( ) xxx 1123 −=++ es:
a) Completa general
b) Completa particular
c) Incompleta pura
d) Incompleta binomial
e) Incompleta
Resolución de Ecuaciones cuadráticas
El objetivo de resolver una ecuación cuadrática es determinar los valores numéricos para la variable x que hacen
que la expresión cbxax ++2
valga cero. Equivale a determinar los valores numéricos para la variable x que en
la función cuadrática ( ) cbxaxxf ++= 2
tienen imagen cero.
I. Resolución de ecuaciones cuadráticas incompletas, cuando uno de los coeficientes b o c es cero:
a) Incompleta de la forma 02
=+ cax
Se despeja la incógnita y se obtiene su raíz cuadrada
02
=+ cax
cax −=2
a
c
x
−
=2
a
c
x
−
±=
Ejemplo: 0182 2
=−x
182 2
=x
2
182
=x
92
=x
3±=x
Por lo tanto su conjunto solución es { }3,3 −=S
b) Incompleta de la forma 02
=+ bxax
Se factoriza por la incógnita para obtener los factores que igualados a cero darán la solución:
02
=+ bxax
( ) 0=+⋅ baxx
0=x ∨ 0=+ bax
Luego 0'=x ∨
a
b
x
−
="
Ejemplo: 023 2
=− xx
( ) 023 =−⋅ xx
0=x ∨ 023 =−x
Entonces 0'=x ∨
3
2
" =x
Su conjunto solución es { }3
2,0=S
II. Resolución de ecuaciones cuadráticas completas 02
=++ cbxax
a) ;02
=++ cbxx ;1=a ;0≠b 0≠c Ecuación Completa Particular
b) ;02
=++ cbxax ;1≠a ;0≠b 0≠c Ecuación Completa General
En el caso de la ecuación completa particular a veces es posible resolverla por factorización de un trinomio
ordenado.
Ejemplos:
0652
=++ xx
( ) ( ) 032 =+⋅+ xx
02 =+x ∨ 03 =+x
Entonces 2' −=x ∨ 3" −=x
01522
=−− xx
( ) ( ) 035 =+⋅− xx
05 =−x ∨ 03 =+x
Entonces 5'=x ∨ 3" −=x
En el caso que el trinomio no sea factorizable, que 'x y "x no sean números enteros, entonces la
ecuación cuadrática Completa Particular (y Completa General) se puede resolver a través de la fórmula:
Con esta fórmula se obtienen sus dos soluciones que son:
Claves
1 b 5 d 9 b
2 c 6 d 10 e
3 e 7 a 11 b
4 a 8 a
a
acbb
x
2
42
−±−
=
y
Ejemplo:
1. 0672
=+− xx
,1=a 7−=b y ,6=c por lo tanto:
( ) ( )
2
57
2
257
2
24497
12
61477
2
±
=
±
=
−±
=
⋅
⋅⋅−−±−−
=x
Entonces:
6
2
12
2
57
' ==
+
=x 1
2
2
2
57
" ==
−
=x
Luego el conjunto solución es { }6,1=S
2. 0273 2
=++ xx
,3=a 7=b y 2=c
6
57
6
257
6
24497
32
23477 2
±−
=
±−
=
−±−
=
⋅
⋅⋅−±−
=x
Entonces
3
1
6
2
6
57
'
−
=
−
=
+−
=x 2
6
12
6
57
" −=
−
=
−−
=x
De dónde se obtiene la fórmula
a
acbb
x
2
42
−±−
=
02
=++ cbxax Puede dividirse por a ya que 0≠a
aa
c
a
bx
a
ax 02
=++ que equivale a
,02
=++
a
c
a
bx
x como el primer término es un cuadrado perfecto se formará un cuadrado de binomio
a
c
a
bx
x −=+
2
22
pero falta agregar el cuadrado del segundo término en ambos lados de la igualdad
a
c
a
b
a
b
a
bx
x −=++ 2
2
2
2
2
442
2
El lado izquierdo de la igualdad es un cuadrado de binomio
2
22
4
4
2 a
acb
a
b
x
−
=





+ Se debe despejar la variable x
2
2
4
4
2 a
acb
a
b
x
−
±=+ Una base positiva o negativa tiene su cuadrado positivo
,
2
4
2
2
a
acb
a
b
x
−
±
−
= lo que se expresa como
a
acbb
x
2
42
−±−
=
Ecuaciones Literales
Son ecuaciones que algunos o todos sus coeficientes son letras distintas a la incógnita y se resuelven de la misma
manera que las anteriores.
Ejemplo:
032 22
=−+ aaxx Donde ,2=a ab = y 2
3ac −=
Ejercicios:
1. La ecuación 0322
=−− xx tiene como
soluciones:
a) -1 y 3
b) -3 y -1
c) -3 y 1
d) 3 y 1
e) 0 y 1
a
acbb
x
2
4
'
2
−+−
= y
a
acbb
x
2
4
"
2
−−−
=
2. Las soluciones o raíces de la ecuación
021102
=++ xx son:
a) -3 y -8
b) 7 y -7
c) -7 y -3
d) 3 y 2
e) -3 y -2
3. En la ecuación 022
=−+ pxx una de sus
soluciones es -5, luego el valor de p es:
a) 1
b) 8
c) -12
d) 15
e) -15
4. El conjunto solución de la ecuación
( ) ( )11025 2
−=− xxxx es:
a) { }2,0
b) { }2,0 −
c) { }2
d) { }5,2
e) { }5,0
5. En la ecuación
60
11
5
7
3
1
2
−=
xx
las raíces o
soluciones son:
a) 2 y -3
b) -3 y
3
2
c) -2 y
4
3−
d) 5 y
16
1−
e) 2 y 11
9
3−
6. La ecuación axxa =− 22
23 tiene como
solución :
a) a− y a2−
b) a y a3
c) a y
2
3a−
d) 1 y a
e) -1 y
2
a
7. La ecuación 02 22
=++ aaxx tiene como
solución:
a) –a y a2
b) a− y a−
c) a2 y a
d) a4 y a−
e) Ninguna de las anteriores.
Claves:
1. a
2. c
3. d
4. a
5. e
6. c
7. b
Naturaleza de las soluciones de una ecuación de
segundo grado:
Anteriormente se mencionó que una parábola puede
intersectar o no al eje X, y que esto depende del
discriminante.
Se establece que una ecuación cuadrática tiene:
a) Dos soluciones reales ( )0>∆
b) Una solución real ( )0=∆
c) No tiene soluciones reales ( )0<∆ ,
lo que es equivalente a afirmar que una ecuación
cuadrática tiene:
a) Dos soluciones reales distintas.
b) Dos soluciones reales iguales.
c) Dos soluciones complejas conjugadas

Más contenido relacionado

La actualidad más candente

Problemas selectos de Razonamiento Matemático PAMER ccesa007
Problemas selectos de Razonamiento Matemático PAMER ccesa007Problemas selectos de Razonamiento Matemático PAMER ccesa007
Problemas selectos de Razonamiento Matemático PAMER ccesa007
Demetrio Ccesa Rayme
 
Prueba 1 función inversa dom rec
Prueba 1 función inversa dom recPrueba 1 función inversa dom rec
Prueba 1 función inversa dom rec
Hernan Rodriguez Troncoso
 
Prueba 1 enteros y fracciones
Prueba 1 enteros y fraccionesPrueba 1 enteros y fracciones
Prueba 1 enteros y fracciones
Hernan Rodriguez Troncoso
 
Banco de preguntas
Banco de preguntasBanco de preguntas
Banco de preguntas
Alberto Pazmiño
 
IDENTIDADES TRIGONOMÉTRICAS DEL ÁNGULO DOBLE
IDENTIDADES TRIGONOMÉTRICAS DEL ÁNGULO DOBLEIDENTIDADES TRIGONOMÉTRICAS DEL ÁNGULO DOBLE
IDENTIDADES TRIGONOMÉTRICAS DEL ÁNGULO DOBLE
EDWIN RONALD CRUZ RUIZ
 
Material pedro de valdivia (PSU ) 03 números racionales
Material pedro de valdivia (PSU ) 03 números racionalesMaterial pedro de valdivia (PSU ) 03 números racionales
Material pedro de valdivia (PSU ) 03 números racionales
Marcelo Calderón
 
Teorema de thales prueba rocket
Teorema de thales prueba rocketTeorema de thales prueba rocket
Teorema de thales prueba rocket
Hernan Rodriguez Troncoso
 
Sistema de medidas angulares
Sistema de medidas angularesSistema de medidas angulares
Sistema de medidas angulares
e4meli
 
Fraccion generatriz
Fraccion generatrizFraccion generatriz
Fraccion generatriz
teo diaz
 
prueba potencias octavo
prueba potencias octavoprueba potencias octavo
prueba potencias octavo
israelparadaf
 
Triangulo rectangulo
Triangulo rectanguloTriangulo rectangulo
Triangulo rectangulo
beatrizjyj2011
 
Prueba de selección multiple
Prueba de selección multiplePrueba de selección multiple
Prueba de selección multiple
Daniel Pino Espinoza
 
Evaluacion trigonometria 3 m
Evaluacion trigonometria 3 mEvaluacion trigonometria 3 m
Evaluacion trigonometria 3 m
Escuela EBIMA
 
Taller teorema de pitagoras problemas
Taller teorema de pitagoras problemasTaller teorema de pitagoras problemas
Taller teorema de pitagoras problemas
racevedo5
 
Prueba inecuaciones hoja 1 (autoguardado)
Prueba inecuaciones hoja 1 (autoguardado)Prueba inecuaciones hoja 1 (autoguardado)
Prueba inecuaciones hoja 1 (autoguardado)
Alfredo Omar Vukovic González
 
Guía 2 operaciones con números enteros
Guía 2 operaciones con números enterosGuía 2 operaciones con números enteros
Guía 2 operaciones con números enteros
sebastian
 
Teorema de Pitágoras y triángulos notables ccesa007
Teorema de Pitágoras y  triángulos notables  ccesa007Teorema de Pitágoras y  triángulos notables  ccesa007
Teorema de Pitágoras y triángulos notables ccesa007
Demetrio Ccesa Rayme
 
Taller funcion cuadratica chircales
Taller funcion cuadratica chircalesTaller funcion cuadratica chircales
Taller funcion cuadratica chircales
Carlopto
 
Ejercicios de paralelas y perpendiculares
Ejercicios de paralelas y perpendicularesEjercicios de paralelas y perpendiculares
Ejercicios de paralelas y perpendiculares
Luis Roberto Dávila Cubero
 
Semana n° 03
Semana n° 03Semana n° 03

La actualidad más candente (20)

Problemas selectos de Razonamiento Matemático PAMER ccesa007
Problemas selectos de Razonamiento Matemático PAMER ccesa007Problemas selectos de Razonamiento Matemático PAMER ccesa007
Problemas selectos de Razonamiento Matemático PAMER ccesa007
 
Prueba 1 función inversa dom rec
Prueba 1 función inversa dom recPrueba 1 función inversa dom rec
Prueba 1 función inversa dom rec
 
Prueba 1 enteros y fracciones
Prueba 1 enteros y fraccionesPrueba 1 enteros y fracciones
Prueba 1 enteros y fracciones
 
Banco de preguntas
Banco de preguntasBanco de preguntas
Banco de preguntas
 
IDENTIDADES TRIGONOMÉTRICAS DEL ÁNGULO DOBLE
IDENTIDADES TRIGONOMÉTRICAS DEL ÁNGULO DOBLEIDENTIDADES TRIGONOMÉTRICAS DEL ÁNGULO DOBLE
IDENTIDADES TRIGONOMÉTRICAS DEL ÁNGULO DOBLE
 
Material pedro de valdivia (PSU ) 03 números racionales
Material pedro de valdivia (PSU ) 03 números racionalesMaterial pedro de valdivia (PSU ) 03 números racionales
Material pedro de valdivia (PSU ) 03 números racionales
 
Teorema de thales prueba rocket
Teorema de thales prueba rocketTeorema de thales prueba rocket
Teorema de thales prueba rocket
 
Sistema de medidas angulares
Sistema de medidas angularesSistema de medidas angulares
Sistema de medidas angulares
 
Fraccion generatriz
Fraccion generatrizFraccion generatriz
Fraccion generatriz
 
prueba potencias octavo
prueba potencias octavoprueba potencias octavo
prueba potencias octavo
 
Triangulo rectangulo
Triangulo rectanguloTriangulo rectangulo
Triangulo rectangulo
 
Prueba de selección multiple
Prueba de selección multiplePrueba de selección multiple
Prueba de selección multiple
 
Evaluacion trigonometria 3 m
Evaluacion trigonometria 3 mEvaluacion trigonometria 3 m
Evaluacion trigonometria 3 m
 
Taller teorema de pitagoras problemas
Taller teorema de pitagoras problemasTaller teorema de pitagoras problemas
Taller teorema de pitagoras problemas
 
Prueba inecuaciones hoja 1 (autoguardado)
Prueba inecuaciones hoja 1 (autoguardado)Prueba inecuaciones hoja 1 (autoguardado)
Prueba inecuaciones hoja 1 (autoguardado)
 
Guía 2 operaciones con números enteros
Guía 2 operaciones con números enterosGuía 2 operaciones con números enteros
Guía 2 operaciones con números enteros
 
Teorema de Pitágoras y triángulos notables ccesa007
Teorema de Pitágoras y  triángulos notables  ccesa007Teorema de Pitágoras y  triángulos notables  ccesa007
Teorema de Pitágoras y triángulos notables ccesa007
 
Taller funcion cuadratica chircales
Taller funcion cuadratica chircalesTaller funcion cuadratica chircales
Taller funcion cuadratica chircales
 
Ejercicios de paralelas y perpendiculares
Ejercicios de paralelas y perpendicularesEjercicios de paralelas y perpendiculares
Ejercicios de paralelas y perpendiculares
 
Semana n° 03
Semana n° 03Semana n° 03
Semana n° 03
 

Destacado

Multiplicacion
MultiplicacionMultiplicacion
Multiplicacion
Samuel López
 
Reduccion al primer cuadrante
Reduccion al primer cuadranteReduccion al primer cuadrante
Reduccion al primer cuadrante
Liceo Naval
 
Sistemas de Ecuaciones
Sistemas de EcuacionesSistemas de Ecuaciones
Sistemas de Ecuaciones
Samuel López
 
Guía función cuadrática
Guía función cuadráticaGuía función cuadrática
Guía función cuadrática
sitayanis
 
Algebra lineal 1. sistemas de ecuaciones lineales
Algebra lineal 1. sistemas de ecuaciones linealesAlgebra lineal 1. sistemas de ecuaciones lineales
Algebra lineal 1. sistemas de ecuaciones lineales
Edward Ropero
 
Trimestral globalizador de matemática 1º4º 2º informe
Trimestral globalizador de matemática 1º4º 2º informeTrimestral globalizador de matemática 1º4º 2º informe
Trimestral globalizador de matemática 1º4º 2º informe
Escuela EBIMA
 
Sistemas de ecuaciones lineales (álgebra)
Sistemas de ecuaciones lineales (álgebra)Sistemas de ecuaciones lineales (álgebra)
Sistemas de ecuaciones lineales (álgebra)
mathsgosanti
 
Función Cuadrática
Función CuadráticaFunción Cuadrática
Función Cuadrática
Carlopto
 
Como graficar-funcion-racional
Como graficar-funcion-racionalComo graficar-funcion-racional
Como graficar-funcion-racional
Pablo Perez
 
Taller de algebra lineal final
Taller de algebra lineal finalTaller de algebra lineal final
Taller de algebra lineal final
YOLVI ADRIANA CORDOBA BUITRAGO
 
Función cuadrática
Función cuadráticaFunción cuadrática
Función cuadrática
Raul Monroy Pamplona
 
Guía matemática 2º
Guía matemática 2ºGuía matemática 2º
Guía matemática 2º
missyasnita
 
Sistemas de ecuaciones
Sistemas de ecuacionesSistemas de ecuaciones
Sistemas de ecuaciones
Shashirc
 
Horario por semestre primer semestre 2017
Horario por semestre primer  semestre 2017Horario por semestre primer  semestre 2017
Horario por semestre primer semestre 2017
Katia Hernandez
 
Guia logaritmo
Guia logaritmoGuia logaritmo
Guia logaritmo
Luna Acosadora
 
Unidad3
Unidad3Unidad3
Grupo conta
Grupo contaGrupo conta
Grupo conta
Samuel López
 
54 ecuación 2do grado y función cuadrática
54 ecuación 2do grado y función cuadrática54 ecuación 2do grado y función cuadrática
54 ecuación 2do grado y función cuadrática
Marcelo Calderón
 
A 8
A 8A 8
Guiafuncioncuadratica
GuiafuncioncuadraticaGuiafuncioncuadratica
Guiafuncioncuadratica
Colegio Alicante del Rosal
 

Destacado (20)

Multiplicacion
MultiplicacionMultiplicacion
Multiplicacion
 
Reduccion al primer cuadrante
Reduccion al primer cuadranteReduccion al primer cuadrante
Reduccion al primer cuadrante
 
Sistemas de Ecuaciones
Sistemas de EcuacionesSistemas de Ecuaciones
Sistemas de Ecuaciones
 
Guía función cuadrática
Guía función cuadráticaGuía función cuadrática
Guía función cuadrática
 
Algebra lineal 1. sistemas de ecuaciones lineales
Algebra lineal 1. sistemas de ecuaciones linealesAlgebra lineal 1. sistemas de ecuaciones lineales
Algebra lineal 1. sistemas de ecuaciones lineales
 
Trimestral globalizador de matemática 1º4º 2º informe
Trimestral globalizador de matemática 1º4º 2º informeTrimestral globalizador de matemática 1º4º 2º informe
Trimestral globalizador de matemática 1º4º 2º informe
 
Sistemas de ecuaciones lineales (álgebra)
Sistemas de ecuaciones lineales (álgebra)Sistemas de ecuaciones lineales (álgebra)
Sistemas de ecuaciones lineales (álgebra)
 
Función Cuadrática
Función CuadráticaFunción Cuadrática
Función Cuadrática
 
Como graficar-funcion-racional
Como graficar-funcion-racionalComo graficar-funcion-racional
Como graficar-funcion-racional
 
Taller de algebra lineal final
Taller de algebra lineal finalTaller de algebra lineal final
Taller de algebra lineal final
 
Función cuadrática
Función cuadráticaFunción cuadrática
Función cuadrática
 
Guía matemática 2º
Guía matemática 2ºGuía matemática 2º
Guía matemática 2º
 
Sistemas de ecuaciones
Sistemas de ecuacionesSistemas de ecuaciones
Sistemas de ecuaciones
 
Horario por semestre primer semestre 2017
Horario por semestre primer  semestre 2017Horario por semestre primer  semestre 2017
Horario por semestre primer semestre 2017
 
Guia logaritmo
Guia logaritmoGuia logaritmo
Guia logaritmo
 
Unidad3
Unidad3Unidad3
Unidad3
 
Grupo conta
Grupo contaGrupo conta
Grupo conta
 
54 ecuación 2do grado y función cuadrática
54 ecuación 2do grado y función cuadrática54 ecuación 2do grado y función cuadrática
54 ecuación 2do grado y función cuadrática
 
A 8
A 8A 8
A 8
 
Guiafuncioncuadratica
GuiafuncioncuadraticaGuiafuncioncuadratica
Guiafuncioncuadratica
 

Similar a 2da guia ecuacion cuadratica 3ro medio

Ecuaciones direneciales con matlab
Ecuaciones direneciales con matlabEcuaciones direneciales con matlab
Ecuaciones direneciales con matlab
Max Angel Rojas Martínez
 
Funciones CuadráTicas
Funciones CuadráTicas Funciones CuadráTicas
Funciones CuadráTicas
Carmen Batiz
 
ecuaciones_cuadraticas.pdf
ecuaciones_cuadraticas.pdfecuaciones_cuadraticas.pdf
ecuaciones_cuadraticas.pdf
AnthonySanchez419562
 
Ecuaciones y desigualdades
Ecuaciones y desigualdadesEcuaciones y desigualdades
Ecuaciones y desigualdades
UTPL UTPL
 
Semana 10 2018-garcia-listo
Semana 10 2018-garcia-listoSemana 10 2018-garcia-listo
Semana 10 2018-garcia-listo
Carlos Garcia Saez
 
Cap 6 ecuaciones
Cap 6 ecuacionesCap 6 ecuaciones
Cap 6 ecuaciones
nivelacion008
 
N cap 6 ecuaciones
N cap 6 ecuacionesN cap 6 ecuaciones
N cap 6 ecuaciones
Student
 
1. Ecuaciones cuadráticas 2 3°.pdf
1. Ecuaciones cuadráticas 2 3°.pdf1. Ecuaciones cuadráticas 2 3°.pdf
1. Ecuaciones cuadráticas 2 3°.pdf
RosarioAlvarezGarcia
 
Fundamentos Matematicos
Fundamentos MatematicosFundamentos Matematicos
Fundamentos Matematicos
Videoconferencias UTPL
 
Ecuación de 2 grado
Ecuación de 2 gradoEcuación de 2 grado
Ecuación de 2 grado
Victor Mardones Hermosilla
 
Ecuaciones cuadraticas
Ecuaciones cuadraticasEcuaciones cuadraticas
Ecuaciones cuadraticas
Club Fisicos Matematicos
 
Unidad iv inecuaciones
Unidad iv  inecuacionesUnidad iv  inecuaciones
Unidad iv inecuaciones
Alberto Pazmiño
 
ejericicos de matematica las areas de geometria, aritmetica, algem¡bra
ejericicos de matematica las areas de geometria, aritmetica, algem¡braejericicos de matematica las areas de geometria, aritmetica, algem¡bra
ejericicos de matematica las areas de geometria, aritmetica, algem¡bra
rusbel rodriguez rosales
 
FÓRMULA GENERAL
FÓRMULA GENERALFÓRMULA GENERAL
FÓRMULA GENERAL
mismates1
 
Bloque 4 informatica cobao
Bloque 4 informatica cobaoBloque 4 informatica cobao
Bloque 4 informatica cobao
10091995
 
Bloque 4 informatica cobao
Bloque 4 informatica cobaoBloque 4 informatica cobao
Bloque 4 informatica cobao
10091995
 
Ecuaciones
EcuacionesEcuaciones
Ecuaciones
JUAN PABLO
 
Semana8 m2-del 20 al 24 enero-2020
Semana8 m2-del 20 al 24 enero-2020Semana8 m2-del 20 al 24 enero-2020
Semana8 m2-del 20 al 24 enero-2020
Lorena Covarrubias
 
Ecuaciones de Segundo Grado
Ecuaciones de Segundo GradoEcuaciones de Segundo Grado
Ecuaciones de Segundo Grado
Steve Felipe Pareja Castro
 
Ecuaciones e inecuaciones
Ecuaciones e inecuacionesEcuaciones e inecuaciones
Ecuaciones e inecuaciones
DIEGOLENADROIZAGAVIL
 

Similar a 2da guia ecuacion cuadratica 3ro medio (20)

Ecuaciones direneciales con matlab
Ecuaciones direneciales con matlabEcuaciones direneciales con matlab
Ecuaciones direneciales con matlab
 
Funciones CuadráTicas
Funciones CuadráTicas Funciones CuadráTicas
Funciones CuadráTicas
 
ecuaciones_cuadraticas.pdf
ecuaciones_cuadraticas.pdfecuaciones_cuadraticas.pdf
ecuaciones_cuadraticas.pdf
 
Ecuaciones y desigualdades
Ecuaciones y desigualdadesEcuaciones y desigualdades
Ecuaciones y desigualdades
 
Semana 10 2018-garcia-listo
Semana 10 2018-garcia-listoSemana 10 2018-garcia-listo
Semana 10 2018-garcia-listo
 
Cap 6 ecuaciones
Cap 6 ecuacionesCap 6 ecuaciones
Cap 6 ecuaciones
 
N cap 6 ecuaciones
N cap 6 ecuacionesN cap 6 ecuaciones
N cap 6 ecuaciones
 
1. Ecuaciones cuadráticas 2 3°.pdf
1. Ecuaciones cuadráticas 2 3°.pdf1. Ecuaciones cuadráticas 2 3°.pdf
1. Ecuaciones cuadráticas 2 3°.pdf
 
Fundamentos Matematicos
Fundamentos MatematicosFundamentos Matematicos
Fundamentos Matematicos
 
Ecuación de 2 grado
Ecuación de 2 gradoEcuación de 2 grado
Ecuación de 2 grado
 
Ecuaciones cuadraticas
Ecuaciones cuadraticasEcuaciones cuadraticas
Ecuaciones cuadraticas
 
Unidad iv inecuaciones
Unidad iv  inecuacionesUnidad iv  inecuaciones
Unidad iv inecuaciones
 
ejericicos de matematica las areas de geometria, aritmetica, algem¡bra
ejericicos de matematica las areas de geometria, aritmetica, algem¡braejericicos de matematica las areas de geometria, aritmetica, algem¡bra
ejericicos de matematica las areas de geometria, aritmetica, algem¡bra
 
FÓRMULA GENERAL
FÓRMULA GENERALFÓRMULA GENERAL
FÓRMULA GENERAL
 
Bloque 4 informatica cobao
Bloque 4 informatica cobaoBloque 4 informatica cobao
Bloque 4 informatica cobao
 
Bloque 4 informatica cobao
Bloque 4 informatica cobaoBloque 4 informatica cobao
Bloque 4 informatica cobao
 
Ecuaciones
EcuacionesEcuaciones
Ecuaciones
 
Semana8 m2-del 20 al 24 enero-2020
Semana8 m2-del 20 al 24 enero-2020Semana8 m2-del 20 al 24 enero-2020
Semana8 m2-del 20 al 24 enero-2020
 
Ecuaciones de Segundo Grado
Ecuaciones de Segundo GradoEcuaciones de Segundo Grado
Ecuaciones de Segundo Grado
 
Ecuaciones e inecuaciones
Ecuaciones e inecuacionesEcuaciones e inecuaciones
Ecuaciones e inecuaciones
 

Último

Organizacion política de los Incas, Mayas y Aztecas.pptx
Organizacion política de los Incas, Mayas y Aztecas.pptxOrganizacion política de los Incas, Mayas y Aztecas.pptx
Organizacion política de los Incas, Mayas y Aztecas.pptx
favianrea547
 
Taller intensivo de formación continua. Puebla.
Taller intensivo de formación continua. Puebla.Taller intensivo de formación continua. Puebla.
Taller intensivo de formación continua. Puebla.
OscarCruzyCruz
 
Relieve de la Región de la Selva Peruana.pdf
Relieve de la Región de la Selva Peruana.pdfRelieve de la Región de la Selva Peruana.pdf
Relieve de la Región de la Selva Peruana.pdf
angelakarenhuayre
 
2024 DIA DEL LOGRO IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO IE HONORIO DELGADO ESPINOZA2024 DIA DEL LOGRO IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO IE HONORIO DELGADO ESPINOZA
Sandra Mariela Ballón Aguedo
 
FORMATO APA - JOHNNY FELIX SURI MAMANI 2024
FORMATO APA - JOHNNY FELIX SURI MAMANI 2024FORMATO APA - JOHNNY FELIX SURI MAMANI 2024
FORMATO APA - JOHNNY FELIX SURI MAMANI 2024
JOHNNY SURI MAMANI
 
Apuntes Unidad I Conceptos Básicos_compressed.pdf
Apuntes Unidad I Conceptos Básicos_compressed.pdfApuntes Unidad I Conceptos Básicos_compressed.pdf
Apuntes Unidad I Conceptos Básicos_compressed.pdf
VeronicaCabrera50
 
Introduccion-a-la-circunferencia area y longitud
Introduccion-a-la-circunferencia area y longitudIntroduccion-a-la-circunferencia area y longitud
Introduccion-a-la-circunferencia area y longitud
AsafHdez
 
2024 DIA DEL LOGRO-COMUNICACION - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-COMUNICACION - IE HONORIO DELGADO ESPINOZA2024 DIA DEL LOGRO-COMUNICACION - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-COMUNICACION - IE HONORIO DELGADO ESPINOZA
Sandra Mariela Ballón Aguedo
 
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
Sandra Mariela Ballón Aguedo
 
Análisis y Evaluación del Impacto Ambiental.pdf
Análisis y Evaluación del Impacto Ambiental.pdfAnálisis y Evaluación del Impacto Ambiental.pdf
Análisis y Evaluación del Impacto Ambiental.pdf
JonathanCovena1
 
Informe de Evaluacion Diagnostica de Comunicacion 1-5 Ccesa007.pdf
Informe de Evaluacion Diagnostica de Comunicacion 1-5 Ccesa007.pdfInforme de Evaluacion Diagnostica de Comunicacion 1-5 Ccesa007.pdf
Informe de Evaluacion Diagnostica de Comunicacion 1-5 Ccesa007.pdf
Demetrio Ccesa Rayme
 
La Relación Mixta DA ( Riesgo)- Matriz DA
La Relación Mixta DA ( Riesgo)- Matriz DALa Relación Mixta DA ( Riesgo)- Matriz DA
La Relación Mixta DA ( Riesgo)- Matriz DA
JonathanCovena1
 
Apuntes de Enfermería (para estudiantes)
Apuntes de Enfermería (para estudiantes)Apuntes de Enfermería (para estudiantes)
Apuntes de Enfermería (para estudiantes)
milyluna0207
 
🔴 (AC-S18) Semana 18 – TRABAJO FINAL (INFORMATICA APLICADA TERMINADO y revisa...
🔴 (AC-S18) Semana 18 – TRABAJO FINAL (INFORMATICA APLICADA TERMINADO y revisa...🔴 (AC-S18) Semana 18 – TRABAJO FINAL (INFORMATICA APLICADA TERMINADO y revisa...
🔴 (AC-S18) Semana 18 – TRABAJO FINAL (INFORMATICA APLICADA TERMINADO y revisa...
FernandoEstebanLlont
 
🔴 (AC-S18) Semana 18 - Tema 01 - Tarea - Proyecto Final (terminado y revisado...
🔴 (AC-S18) Semana 18 - Tema 01 - Tarea - Proyecto Final (terminado y revisado...🔴 (AC-S18) Semana 18 - Tema 01 - Tarea - Proyecto Final (terminado y revisado...
🔴 (AC-S18) Semana 18 - Tema 01 - Tarea - Proyecto Final (terminado y revisado...
FernandoEstebanLlont
 
INSTRUMENTOS USADOS EN LA PSICOLOGÍA
INSTRUMENTOS USADOS EN LA PSICOLOGÍA INSTRUMENTOS USADOS EN LA PSICOLOGÍA
INSTRUMENTOS USADOS EN LA PSICOLOGÍA
Kiara Ocampo Apolo
 
EJEMPLOS DE FLORA Y FAUNA DE LA COSTA PERUANA
EJEMPLOS DE FLORA Y FAUNA DE LA COSTA PERUANAEJEMPLOS DE FLORA Y FAUNA DE LA COSTA PERUANA
EJEMPLOS DE FLORA Y FAUNA DE LA COSTA PERUANA
dairatuctocastro
 
Sesión Un día en el ministerio de Jesús.pdf
Sesión Un día en el ministerio de Jesús.pdfSesión Un día en el ministerio de Jesús.pdf
Sesión Un día en el ministerio de Jesús.pdf
https://gramadal.wordpress.com/
 
homeostasis.pptx. Enfermería técnica periodo 1
homeostasis.pptx. Enfermería técnica periodo 1homeostasis.pptx. Enfermería técnica periodo 1
homeostasis.pptx. Enfermería técnica periodo 1
NohemiLumiereLopezHu1
 
LABERINTOS DE DISCIPLINAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
LABERINTOS DE DISCIPLINAS OLÍMPICAS.  Por JAVIER SOLIS NOYOLALABERINTOS DE DISCIPLINAS OLÍMPICAS.  Por JAVIER SOLIS NOYOLA
LABERINTOS DE DISCIPLINAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
JAVIER SOLIS NOYOLA
 

Último (20)

Organizacion política de los Incas, Mayas y Aztecas.pptx
Organizacion política de los Incas, Mayas y Aztecas.pptxOrganizacion política de los Incas, Mayas y Aztecas.pptx
Organizacion política de los Incas, Mayas y Aztecas.pptx
 
Taller intensivo de formación continua. Puebla.
Taller intensivo de formación continua. Puebla.Taller intensivo de formación continua. Puebla.
Taller intensivo de formación continua. Puebla.
 
Relieve de la Región de la Selva Peruana.pdf
Relieve de la Región de la Selva Peruana.pdfRelieve de la Región de la Selva Peruana.pdf
Relieve de la Región de la Selva Peruana.pdf
 
2024 DIA DEL LOGRO IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO IE HONORIO DELGADO ESPINOZA2024 DIA DEL LOGRO IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO IE HONORIO DELGADO ESPINOZA
 
FORMATO APA - JOHNNY FELIX SURI MAMANI 2024
FORMATO APA - JOHNNY FELIX SURI MAMANI 2024FORMATO APA - JOHNNY FELIX SURI MAMANI 2024
FORMATO APA - JOHNNY FELIX SURI MAMANI 2024
 
Apuntes Unidad I Conceptos Básicos_compressed.pdf
Apuntes Unidad I Conceptos Básicos_compressed.pdfApuntes Unidad I Conceptos Básicos_compressed.pdf
Apuntes Unidad I Conceptos Básicos_compressed.pdf
 
Introduccion-a-la-circunferencia area y longitud
Introduccion-a-la-circunferencia area y longitudIntroduccion-a-la-circunferencia area y longitud
Introduccion-a-la-circunferencia area y longitud
 
2024 DIA DEL LOGRO-COMUNICACION - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-COMUNICACION - IE HONORIO DELGADO ESPINOZA2024 DIA DEL LOGRO-COMUNICACION - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-COMUNICACION - IE HONORIO DELGADO ESPINOZA
 
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
 
Análisis y Evaluación del Impacto Ambiental.pdf
Análisis y Evaluación del Impacto Ambiental.pdfAnálisis y Evaluación del Impacto Ambiental.pdf
Análisis y Evaluación del Impacto Ambiental.pdf
 
Informe de Evaluacion Diagnostica de Comunicacion 1-5 Ccesa007.pdf
Informe de Evaluacion Diagnostica de Comunicacion 1-5 Ccesa007.pdfInforme de Evaluacion Diagnostica de Comunicacion 1-5 Ccesa007.pdf
Informe de Evaluacion Diagnostica de Comunicacion 1-5 Ccesa007.pdf
 
La Relación Mixta DA ( Riesgo)- Matriz DA
La Relación Mixta DA ( Riesgo)- Matriz DALa Relación Mixta DA ( Riesgo)- Matriz DA
La Relación Mixta DA ( Riesgo)- Matriz DA
 
Apuntes de Enfermería (para estudiantes)
Apuntes de Enfermería (para estudiantes)Apuntes de Enfermería (para estudiantes)
Apuntes de Enfermería (para estudiantes)
 
🔴 (AC-S18) Semana 18 – TRABAJO FINAL (INFORMATICA APLICADA TERMINADO y revisa...
🔴 (AC-S18) Semana 18 – TRABAJO FINAL (INFORMATICA APLICADA TERMINADO y revisa...🔴 (AC-S18) Semana 18 – TRABAJO FINAL (INFORMATICA APLICADA TERMINADO y revisa...
🔴 (AC-S18) Semana 18 – TRABAJO FINAL (INFORMATICA APLICADA TERMINADO y revisa...
 
🔴 (AC-S18) Semana 18 - Tema 01 - Tarea - Proyecto Final (terminado y revisado...
🔴 (AC-S18) Semana 18 - Tema 01 - Tarea - Proyecto Final (terminado y revisado...🔴 (AC-S18) Semana 18 - Tema 01 - Tarea - Proyecto Final (terminado y revisado...
🔴 (AC-S18) Semana 18 - Tema 01 - Tarea - Proyecto Final (terminado y revisado...
 
INSTRUMENTOS USADOS EN LA PSICOLOGÍA
INSTRUMENTOS USADOS EN LA PSICOLOGÍA INSTRUMENTOS USADOS EN LA PSICOLOGÍA
INSTRUMENTOS USADOS EN LA PSICOLOGÍA
 
EJEMPLOS DE FLORA Y FAUNA DE LA COSTA PERUANA
EJEMPLOS DE FLORA Y FAUNA DE LA COSTA PERUANAEJEMPLOS DE FLORA Y FAUNA DE LA COSTA PERUANA
EJEMPLOS DE FLORA Y FAUNA DE LA COSTA PERUANA
 
Sesión Un día en el ministerio de Jesús.pdf
Sesión Un día en el ministerio de Jesús.pdfSesión Un día en el ministerio de Jesús.pdf
Sesión Un día en el ministerio de Jesús.pdf
 
homeostasis.pptx. Enfermería técnica periodo 1
homeostasis.pptx. Enfermería técnica periodo 1homeostasis.pptx. Enfermería técnica periodo 1
homeostasis.pptx. Enfermería técnica periodo 1
 
LABERINTOS DE DISCIPLINAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
LABERINTOS DE DISCIPLINAS OLÍMPICAS.  Por JAVIER SOLIS NOYOLALABERINTOS DE DISCIPLINAS OLÍMPICAS.  Por JAVIER SOLIS NOYOLA
LABERINTOS DE DISCIPLINAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
 

2da guia ecuacion cuadratica 3ro medio

  • 1. Guía de “Ecuaciones Cuadráticas” Nivel: er 3 año medio Nombre:........................................................................................ Concepto de Ecuaciones de 2º grado: Es aquella ecuación en la que el mayor exponente de la incógnita es dos y por lo tanto su conjunto solución posee dos soluciones. Su forma general es: Existen ecuaciones cuadráticas completas e incompletas:  ;02 =++ cbxax ;1≠a ;0≠b 0≠c Ec. Completa General.  ;02 =++ cbxx ;1=a ;0≠b 0≠c Ec. Completa Particular.  ;02 =+cax ;0=b 0≠c Ec. Incompleta Pura.  ;02 =+bxax ;0≠b 0=c Ec. Incompleta Binomial.  ;02 =ax 0== cb Ec. Incompleta. Ejercicios: Aprendizaje esperado: Reconocer una ecuación cuadrática e identificar sus coeficientes. Clasificar las ecuaciones cuadráticas. 1. ¿Cuáles de las ecuaciones dadas son de 2º grado? I) 052 2 12 =+− xx II) ( ) 22 4 xx =− III) 7625 2 =− xx a) Sólo I, II b) Sólo I, III c) Sólo II, III d) Sólo I e) I, II y III 2. El valor del coeficiente b en la ecuación 05103 2 =−+ xx es: a) 3 b) 0 c) 10 d) 5 e) -5 3. ¿Cuáles de las ecuaciones dadas son incompletas? I) 072 =+ xx II) 05 4 32 =−− x III) ( ) ( ) 6 9 2 3 2 1 3 2 34 =+−−− xxxx a) Sólo I b) Sólo II c) I y II d) I y III e) I, II y III 4. Si la ecuación ( ) ( ) 222 21 yyy =−−− la escribimos de la forma ;02 =++ cbxax ¿Cuál es el valor del coeficiente c? a) 3 b) 2 c) -5 d) -2 e) 1 5. En la ecuación ( ) ( )( ) ( )xxxxx −=+−−+ 46141 el coeficiente a vale: a) 0 b) -1 c) 1 d) 2 e) -2 6. La ecuación ;0 4 3 84 =− + x x al expresarla como ;02 =++ cbxax ¿Cuál es el valor de los coeficientes b y c, en ese orden? a) -8 y 12 b) 4 y 12 c) -4 y 8 d) 8 y -12 e) 12 y -8 7. En la ecuación ;0653 12 =+− −− xx expresándola como ;02 =++ cbxax el valor de ( )cb 32 +− es igual a: a) 1 b) 2 c) 8 d) -1 e) -8 8. La ecuación ( ) 02 4 8 =+ −xx expresándola como ( ) ;04 2 =++ cbxxa entonces el producto de los coeficientes a, b y c es: a) -1 b) -4 c) 4 d) 0 e) 1 ;02 =++ cbxax ;,, IRcba ∈∀ 0≠a Internado Nacional Barros Arana Departamento de Matemática Profesora Inés Aravena Aprendizajes esperados: Plantean y resuelven problemas que involucran ecuaciones de segundo grado; explicitan sus procedimientos de solución y analizan la existencia y pertinencia de las soluciones obtenidas.
  • 2. 9. En la ecuación ( ) xxx 323 =++ al expresarla como ;02 =++ cbxax el valor del producto ba ⋅ es: a) 1 b) 0 c) -1 d) 2 e) -2 10. En la ecuación ,0132 2 =−− xx el valor de ( )bac ⋅⋅2 es: a) 0 b) 6 c) 8 d) 10 e) 12 11. La ecuación ( ) xxx 1123 −=++ es: a) Completa general b) Completa particular c) Incompleta pura d) Incompleta binomial e) Incompleta Resolución de Ecuaciones cuadráticas El objetivo de resolver una ecuación cuadrática es determinar los valores numéricos para la variable x que hacen que la expresión cbxax ++2 valga cero. Equivale a determinar los valores numéricos para la variable x que en la función cuadrática ( ) cbxaxxf ++= 2 tienen imagen cero. I. Resolución de ecuaciones cuadráticas incompletas, cuando uno de los coeficientes b o c es cero: a) Incompleta de la forma 02 =+ cax Se despeja la incógnita y se obtiene su raíz cuadrada 02 =+ cax cax −=2 a c x − =2 a c x − ±= Ejemplo: 0182 2 =−x 182 2 =x 2 182 =x 92 =x 3±=x Por lo tanto su conjunto solución es { }3,3 −=S b) Incompleta de la forma 02 =+ bxax Se factoriza por la incógnita para obtener los factores que igualados a cero darán la solución: 02 =+ bxax ( ) 0=+⋅ baxx 0=x ∨ 0=+ bax Luego 0'=x ∨ a b x − =" Ejemplo: 023 2 =− xx ( ) 023 =−⋅ xx 0=x ∨ 023 =−x Entonces 0'=x ∨ 3 2 " =x Su conjunto solución es { }3 2,0=S II. Resolución de ecuaciones cuadráticas completas 02 =++ cbxax a) ;02 =++ cbxx ;1=a ;0≠b 0≠c Ecuación Completa Particular b) ;02 =++ cbxax ;1≠a ;0≠b 0≠c Ecuación Completa General En el caso de la ecuación completa particular a veces es posible resolverla por factorización de un trinomio ordenado. Ejemplos: 0652 =++ xx ( ) ( ) 032 =+⋅+ xx 02 =+x ∨ 03 =+x Entonces 2' −=x ∨ 3" −=x 01522 =−− xx ( ) ( ) 035 =+⋅− xx 05 =−x ∨ 03 =+x Entonces 5'=x ∨ 3" −=x En el caso que el trinomio no sea factorizable, que 'x y "x no sean números enteros, entonces la ecuación cuadrática Completa Particular (y Completa General) se puede resolver a través de la fórmula: Con esta fórmula se obtienen sus dos soluciones que son: Claves 1 b 5 d 9 b 2 c 6 d 10 e 3 e 7 a 11 b 4 a 8 a a acbb x 2 42 −±− =
  • 3. y Ejemplo: 1. 0672 =+− xx ,1=a 7−=b y ,6=c por lo tanto: ( ) ( ) 2 57 2 257 2 24497 12 61477 2 ± = ± = −± = ⋅ ⋅⋅−−±−− =x Entonces: 6 2 12 2 57 ' == + =x 1 2 2 2 57 " == − =x Luego el conjunto solución es { }6,1=S 2. 0273 2 =++ xx ,3=a 7=b y 2=c 6 57 6 257 6 24497 32 23477 2 ±− = ±− = −±− = ⋅ ⋅⋅−±− =x Entonces 3 1 6 2 6 57 ' − = − = +− =x 2 6 12 6 57 " −= − = −− =x De dónde se obtiene la fórmula a acbb x 2 42 −±− = 02 =++ cbxax Puede dividirse por a ya que 0≠a aa c a bx a ax 02 =++ que equivale a ,02 =++ a c a bx x como el primer término es un cuadrado perfecto se formará un cuadrado de binomio a c a bx x −=+ 2 22 pero falta agregar el cuadrado del segundo término en ambos lados de la igualdad a c a b a b a bx x −=++ 2 2 2 2 2 442 2 El lado izquierdo de la igualdad es un cuadrado de binomio 2 22 4 4 2 a acb a b x − =      + Se debe despejar la variable x 2 2 4 4 2 a acb a b x − ±=+ Una base positiva o negativa tiene su cuadrado positivo , 2 4 2 2 a acb a b x − ± − = lo que se expresa como a acbb x 2 42 −±− = Ecuaciones Literales Son ecuaciones que algunos o todos sus coeficientes son letras distintas a la incógnita y se resuelven de la misma manera que las anteriores. Ejemplo: 032 22 =−+ aaxx Donde ,2=a ab = y 2 3ac −= Ejercicios: 1. La ecuación 0322 =−− xx tiene como soluciones: a) -1 y 3 b) -3 y -1 c) -3 y 1 d) 3 y 1 e) 0 y 1 a acbb x 2 4 ' 2 −+− = y a acbb x 2 4 " 2 −−− =
  • 4. 2. Las soluciones o raíces de la ecuación 021102 =++ xx son: a) -3 y -8 b) 7 y -7 c) -7 y -3 d) 3 y 2 e) -3 y -2 3. En la ecuación 022 =−+ pxx una de sus soluciones es -5, luego el valor de p es: a) 1 b) 8 c) -12 d) 15 e) -15 4. El conjunto solución de la ecuación ( ) ( )11025 2 −=− xxxx es: a) { }2,0 b) { }2,0 − c) { }2 d) { }5,2 e) { }5,0 5. En la ecuación 60 11 5 7 3 1 2 −= xx las raíces o soluciones son: a) 2 y -3 b) -3 y 3 2 c) -2 y 4 3− d) 5 y 16 1− e) 2 y 11 9 3− 6. La ecuación axxa =− 22 23 tiene como solución : a) a− y a2− b) a y a3 c) a y 2 3a− d) 1 y a e) -1 y 2 a 7. La ecuación 02 22 =++ aaxx tiene como solución: a) –a y a2 b) a− y a− c) a2 y a d) a4 y a− e) Ninguna de las anteriores. Claves: 1. a 2. c 3. d 4. a 5. e 6. c 7. b Naturaleza de las soluciones de una ecuación de segundo grado: Anteriormente se mencionó que una parábola puede intersectar o no al eje X, y que esto depende del discriminante. Se establece que una ecuación cuadrática tiene: a) Dos soluciones reales ( )0>∆ b) Una solución real ( )0=∆ c) No tiene soluciones reales ( )0<∆ , lo que es equivalente a afirmar que una ecuación cuadrática tiene: a) Dos soluciones reales distintas. b) Dos soluciones reales iguales. c) Dos soluciones complejas conjugadas