SlideShare una empresa de Scribd logo
http://www.cepamarm.es

Acceso a CFGS Matemáticas

ESG - 05/2011

Pág. 1 de 8

Probabilidad (Problemas resueltos)
(Basado en VITUTOR)

1.- Hallar la probabilidad de que al lanzar al aire dos monedas, salgan:
a) Dos caras.
p(2c) = p(c)*p(c) = 1/2 * 1/2 = 1/4
b) Dos cruces.
p(2x) = p(x)*p(x) = 1/2 * 1/2 = 1/4
c) Una cara y una cruz.
p(1c&1x) = p(cx) + p(xc) = p(c)*p(x) + p(x)*p(c) = 1/2*1/2 + 1/2*1/2 = 1/4 + 1/4 = 1/2

2.- Hallar la probabilidad de que al levantar una fichas de dominó se obtenga un número de puntos mayor
que 9 o que sea múltiplo de 4.
Casos posibles: CR 7 2 = (7+2-1)! / [2! * (7-1)!] = 8! / (2*6!) = 8*7/2 = 4*7 = 28
Casos favorables: A(> 9) = {(4|6),(5|5),(5|6),(6|6)}
=>

p(A) = 4/28

Casos favorables: B(m4) = {(b|4),(1|3),(2|2),(2|6),(3|5),(4|4),(6|6)}
=>
=>

Casos favorables: A(>9) y B(m4) = {(6|6)}

p(B) = 7/28
p(A ∩ B) = p(A)*p(B) = 1/28

p(A U B) = p(A) + p(B) - p(A ∩ B) = 4/28 + 7/28 - 1/28 = 10/28 = 5/14

3.- Un dado está trucado, de forma que las probabilidades de obtener las distintas caras son proporcionales
a los números de estas. Hallar:
a) La probabilidad de obtener el 6 en un lanzamiento.
p(1)=p ,, p(2)=2p ,, p(3)=3p ,, p(4)=4p ,, p(5)=5p ,, p(6)=6p
p(1) + p(2) + p(3) + p(4) + p(5) + p(6) = 1
p(1) + p(2) + p(3) + p(4) + p(5) + p(6) = p + 2p + 3p + 4p + 5p + 6p = 21p
21p = 1

=>

p = 1/21

p(6) = 6p = 6*1/21 = 6/21
b) La probabilidad de conseguir un número impar en un lanzamiento.
http://www.cepamarm.es

Acceso a CFGS Matemáticas

ESG - 05/2011

Pág. 2 de 8

Probabilidad (Problemas resueltos)
(Basado en VITUTOR)

p(1 U 3 U 5) = p(1) + p(3) + p(5) = p + 3p + 5p = 9p = 9*1/21 = 9/21 = 3/7

4.- Se lanzan dos dados al aire y se anota la suma de los puntos obtenidos. Se pide:
a) La probabilidad de que salga 7.
Casos posibles: VR 6 2 = 62 = 36
Casos favorables: A(s7) = {(1|6),(2|5),(3|4),(4|3),(5|2),(6|1)}
p(A) = 6/36 = 1/6
b) La probabilidad de que el número obtenido sea par.
p(par) = 18/36 = 1/2
c) La probabilidad de que el número obtenido sea múltiplo de tres.
A(m3) = {(1|2),(1|5),(2|1),(2|4),(3|3),(3|6),(4|2),(4|5),(5|1),(5|4),(6|3),(6|6)}
p(A) = 12/36 = 1/3

5.- Se lanzan tres dados. Encontrar la probabilidad de que:
a) Salga 6 en todos.
p(6 1 ∩ 6 2 ∩ 6 3 ) = p(6 1 )*p(6 2 )*p(6 3 ) = 1/6*1/6*1/6 = 1/216
b) Los puntos obtenidos sumen 7.
Casos posibles: VR 6 3 = 63 = 216
A(s7) = {(1|1|5),(1|2|4),(1|3|3),(1|4|2),(1|5|1),
(2|1|4),(2|2|3),(2|3|2),(2|4|1),
(3|1|3),(3|2|2),(3|2|1),
(4|1|2),(4|2|1),
(5|1|1),}
p(A) = 15/216 = 5/72

6.- Busca la probabilidad de que al echar un dado al aire, salga :
a) Un número par.
p(par) = 3/6 = 1/2
http://www.cepamarm.es

Acceso a CFGS Matemáticas

ESG - 05/2011

Pág. 3 de 8

Probabilidad (Problemas resueltos)
(Basado en VITUTOR)

b) Un múltiplo de tres.
p(m3) = 2/6 = 1/3
c) Mayor que cuatro.
P(>4) = 2/6 = 1/3

7.- Se sacan dos bolas de una urna que se compone de una bola blanca , otra roja, otra verde y otra negra.
Describir el espacio muestral cuando:
a) La primera bola se devuelve a la urna antes de sacar la segunda.
E = {BB, BR, BV, BN , RB, RR, RV , RN, VB, VR, VV, VN, NB, NR, NV, NN}
b) La primera bola no se devuelve.
E = {BR, BV, BN , RB, RV, RN, VB, VR, VN, NB, NR, NV}

8.- Una urna tiene ocho bolas rojas, 5 amarillas y siete verdes. Se extrae una al azar de que:
a) Sea roja .
p(roja) = 8/20 = 0,4
b) Sea verde.
p(no roja) = 1-p(roja) = 1-0,4 = 0,6
c) Sea amarilla.
p(verde) = 7/20 = 0,35
d) No sea roja.
p(amarilla) = 5/20 = 0,25
e) No sea amarilla.
p(no amarilla) = 1-p(amarilla) = 1-0,25 = 0,75
http://www.cepamarm.es

Acceso a CFGS Matemáticas

ESG - 05/2011

Pág. 4 de 8

Probabilidad (Problemas resueltos)
(Basado en VITUTOR)

9.- Una urna contiene tres bolas rojas y siete blancas. Se extraen dos bolas al azar. Escribir el espacio
muestral y hallar la probabilidad de :
E = {RR, RB, BR, BB}
a) Extraer las dos bolas con reemplazamiento.
p(RR) = p(R)*p(R) = 3/10*3/10 = 3/100
p(BB) = p(B)*p(B) = 7/10*7/10 = 49/100
p(RB) = p(BR) = p(R)*p(B) = 3/10*7/10 = 21/100
b) Sin reemplazamiento.
p(RR) = p(R)*p(R) = 3/10*2/9 = 6/90
p(BB) = p(B)*p(B) = 7/10*6/9 = 42/90
p(RB) = p(BR) = p(R)*p(B) = 3/10*7/9 = 21/90

10.- Se extrae una bola de una urna que contiene 4 bolas rojas, 5 blancas y 5 negras, ¿cuál es la probabilidad
de que la bola sea roja o blanca? ¿Cuál es la probabilidad de que no sea blanca?
p(R U B) = p(R) + p(B) = 4/15 + 5/15 = 9/15 = 3/5
p(noB) = 1-p(B) = 1-5/15 = 10/15 = 2/3

11.- En una clase hay 10 alumnas rubias, 20 morenas, cinco alumnos rubios y 10 morenos. Un día asisten 44
alumnos, encontrar la probabilidad de que el alumno que falta:
a) Sea hombre.
p(hombre) = 15/45 = 1/3
b) Sea mujer morena.
p(mujer morena) = 20/45 = 4/9
c) Sea hombre o mujer.
p(hombre U mujer) = 15/45 + 30/45 = 45/45 = 1
http://www.cepamarm.es

Acceso a CFGS Matemáticas

ESG - 05/2011

Pág. 5 de 8

Probabilidad (Problemas resueltos)
(Basado en VITUTOR)

12.- En un sobre hay 20 papeletas, ocho llevan dibujado un coche las restantes son blancas. Hallar la
probabilidad de extraer al menos una papeleta con el dibujo de un coche:
a) Si se saca una papeleta.
p(C)= 8/20 = 2/5
b) Si se extraen dos papeletas.
p(C-)+p(-C) = p(C U C) = 8/20 + 8/20 - 8/20*7/19 = 8/20 * (2-7/19) = 2/5*31/19 = 62/95
O bien: 1-p(2B) = 1-(12/20*11/19) = 62/95
c) Si se extraen tres papeletas.
1-p(3B) = 1-(12/20*11/19*10/18) = 1-1320/6840 = 1-11/57 = 46/57

13.- Los estudiantes A y B tienen respectivamente probabilidades 1/2 y 1/5 de suspender un examen. La
probabilidad de que suspendan el examen simultáneamente es de 1/10 . Determinar la probabilidad de que
al menos uno de los dos estudiantes suspenda el examen.
p(A U B) = p(A) + p(B) - p(A ∩ B) = 1/2 + 1/5 - 1/10 = 6/10 = 3/5

14.- Dos hermanos salen de caza. El primero mata un promedio de 2 piezas cada 5 disparos y el segundo una
pieza cada 2 disparos. Si los dos disparan al mismo tiempo a una misma pieza, ¿cuál es la probabilidad de
que la maten?
p(A)= 2/5
p(B) = 1/2
p(A ∩ B) = p(A) * p(B) = 2/5*1/2 = 2/10 = 1/5
p(A U B) = p(A) + p(B) - p(A ∩ B) = 2/5 + 1/2 - 1/5 = 7/10

15.- Una clase consta de 10 hombres y 20 mujeres; la mitad de los hombres y la mitad de las mujeres tienen
los ojos castaños. Determinar la probabilidad de que una persona elegida al azar sea un hombre o tenga los
ojos castaños.
A={Hombre} ,, p(A) = 10/30 = 1/3
B={Castaños} ,, p(B) = (5+10)/30 = 15/30 = 1/2
p(A ∩ B) = p(A) * p(B) = 1/3*1/2 = 1/6
http://www.cepamarm.es

Acceso a CFGS Matemáticas

ESG - 05/2011

Pág. 6 de 8

Probabilidad (Problemas resueltos)
(Basado en VITUTOR)

p(A U B) = p(A) + p(B) - p(A ∩ B) = 1/3 + 1/2 - 1/6 = 4/6 = 2/3

16.- La probabilidad de que un hombre viva 20 años es 1/4, y la de que su mujer viva 20 años es 1/3. Se pide
calcular la probabilidad :
a) De que ambos vivan 20 años.
p(A ∩ B) = p(A) * p(B) = 1/4*1/3 = 1/12
b) De que el hombre viva 20 años y su mujer no.
p(A ∩ noB) = p(A) * p(noB) = p(A) * [ 1 - p(B) ] = 1/4*(1-1/3) = 1/4 * 2/3 = 2/12 = 1/6
c) De que ambos mueran antes de los 20 años.
p(noA ∩ noB) = p(noA) * p(noB) = [ 1 - p(A) ] * [ 1 - p(B) ] =
= (1-1/4)*(1-1/3) = 3/4 * 2/3 = 6/12 = 1/2

17.- Calcular la probabilidad de sacar exactamente dos cruces al tirar una moneda cuatro veces.
Casos favorables = { xxcc, xcxc, xccx, cxxc, cxcx, ccxx} = 6
Casos posibles = VR 2 4 = 24 = 16
p(2x) = 6/16 = 3/8

18.- Un grupo de 10 personas se sienta en un banco. ¿cuál es la probabilidad de que dos personas fijadas de
antemano se sienten juntas?
Si a y b van juntos se pueden considerar como un solo elemento. Así, x+y = 8.
Casos favorables = {xaby, xbay} = P 9 + P 9 = 2 * 9!
Casos posibles = P 10 = 10! = 10*9!
p(xaby) = (2*9!)/(10*9!) = 2/10 = 1/5

19.- Se extraen cinco cartas de una baraja de 52. Hallar la probabilidad de extraer:
a) 4 ases.
Casos favorables = Cuatro de las cartas son ases * Todas las posibilidades para la quinta carta =
http://www.cepamarm.es

Acceso a CFGS Matemáticas

ESG - 05/2011

Pág. 7 de 8

Probabilidad (Problemas resueltos)
(Basado en VITUTOR)

= 1 * (52-4) = 48
Casos posibles = C 52 5 = 52! / [5! * (52-5)!] = 52*51*50*49*48*47! / [5! * 47!] =
= 52*51*50*49*48 / 5!
p(4A) = 48 / [52*51*50*49*48 / 5!] = 5! / (52*51*50*49) = 1/54.145
b) 4 ases y un rey.
Casos favorables = Cuatro de las cartas son ases * La quinta carta es un rey =
=1*4=4
Casos posibles = C 52 5 = 52! / [5! * (52-5)!] = 52*51*50*49*48*47! / [5! * 47!] =
= 52*51*50*49*48 / 5!
p(4A+R) = 4 / [52*51*50*49*48 / 5!] = 4 * 5! / (52*51*50*49*48) = 1/649.740
c) 3 cincos y 2 sotas.
Casos favorables = Tres de las cartas son cincos * Las otras dos cartas son sotas =
= C 4 3 * C 4 2 = 4!/[3!*1!] * 4!/[2!*2!] = 4 * 6 = 24
Casos posibles = C 52 5 = 52! / [5! * (52-5)!] = 52*51*50*49*48*47! / [5! * 47!] =
= 52*51*50*49*48 / 5!
p(35+2S) = 24 / [52*51*50*49*48 / 5!] = 24*5! / (52*51*50*49*48) = 1/108.290
d) Un 9, 10, sota, caballo y rey en cualquier orden.
Casos favorables = Un 9, un 10, una sota, un caballo y un rey =
= 4 * 4 * 4 * 4 * 4 = 1024
Casos posibles = C 52 5 = 52! / [5! * (52-5)!] = 52*51*50*49*48*47! / [5! * 47!] =
= 52*51*50*49*48 / 5!
p(9,10,S,C,R) = 1024 / [52*51*50*49*48 / 5!] = 1024*5! / (52*51*50*49*48) = 64/162.435
e) 3 de un palo cualquiera y 2 de otro.
Casos favorables = Tres de un palo y dos de otro = 4*C 13 3 * 3*C 13 2 =
= 4*13!/[3!*10!] * 3*13!/[2!*11!] = 4*13*12*11*10!/[6*10!] * 3*13*12*11!/[2*11!] =
=(2*13*12*11/3) * (3*13*12/2) = 13*12*11*13*12
http://www.cepamarm.es

Acceso a CFGS Matemáticas

ESG - 05/2011

Pág. 8 de 8

Probabilidad (Problemas resueltos)
(Basado en VITUTOR)

Casos posibles = C 52 5 = 52! / [5! * (52-5)!] = 52*51*50*49*48*47! / [5! * 47!] =
= 52*51*50*49*48 / 5!
p(3x+2y) = 13*12*11*13*12 / [52*51*50*49*48 / 5!] =
= 13*12*11*13*12*5! / (52*51*50*49*48) = 13*3*11 / 4.165 = 429 / 4.165
f) Al menos un as.
p(al menos 1 as) = 1 - p(ningún as)
Casos favorables = Combinaciones de 48 (no ases) en grupos de 5 = C 48 5 =
= 48! / [5! * 43!] = 48*47*46*45*44*43! / [5! * 43!] = 48*47*46*45*44 / 5!
Casos posibles = C 52 5 = 52! / [5! * (52-5)!] = 52*51*50*49*48*47! / [5! * 47!] =
= 52*51*50*49*48 / 5!
p(ningún as) = (48*47*46*45*44 / 5!) / (52*51*50*49*48 / 5!) =
= (48*47*46*45*44) / (52*51*50*49*48) = (47*46*45*44) / (52*51*50*49) =
= (47*46*45*44):120 / (52*51*50*49):120 = 35.673 / 54.145
p(al menos 1 as) = 1 - p(ningún as) = 1 - 35.673 / 54.145 = 18.472/54.145

Más contenido relacionado

La actualidad más candente

Ejercicios probabilidaes
Ejercicios probabilidaesEjercicios probabilidaes
Ejercicios probabilidaes
Yesseniab
 
U 9
U 9U 9
Introducción a las probabilidades
Introducción a las probabilidadesIntroducción a las probabilidades
Introducción a las probabilidades
Jhanina Blass
 
PROBABILIDADES
PROBABILIDADESPROBABILIDADES
PROBABILIDADES
Leodan Condori Quispe
 
Problemas resuelto-de-probabilidad
Problemas resuelto-de-probabilidadProblemas resuelto-de-probabilidad
Problemas resuelto-de-probabilidad
Johan Armas
 
Ejercicios yproblemasprobabilidad
Ejercicios yproblemasprobabilidadEjercicios yproblemasprobabilidad
Ejercicios yproblemasprobabilidad
magangue1230
 
Conceptos básicos del Cálculo de Probabilidades X1 ccesa007
Conceptos básicos del Cálculo de Probabilidades X1  ccesa007Conceptos básicos del Cálculo de Probabilidades X1  ccesa007
Conceptos básicos del Cálculo de Probabilidades X1 ccesa007
Demetrio Ccesa Rayme
 
Conceptos basicos del calculo de probabilidades x1 ccesa007
Conceptos basicos del calculo de probabilidades x1  ccesa007Conceptos basicos del calculo de probabilidades x1  ccesa007
Conceptos basicos del calculo de probabilidades x1 ccesa007
Demetrio Ccesa Rayme
 
EXAMEN TIPO PAE
EXAMEN TIPO PAEEXAMEN TIPO PAE
Cuarto grado escuela activa
Cuarto grado escuela activaCuarto grado escuela activa
Cuarto grado escuela activa
aristoteles socrates moreno gone
 
14 combinatoria y_probabilidad (1)
14 combinatoria y_probabilidad (1)14 combinatoria y_probabilidad (1)
14 combinatoria y_probabilidad (1)
MANUEL CONDORI QUISPE
 
Fichas refuerzo rm
Fichas refuerzo rmFichas refuerzo rm
Fichas refuerzo rm
Roy Vasquez
 
Ejercicios deber estadistica
Ejercicios deber estadisticaEjercicios deber estadistica
Ejercicios deber estadistica
Alexandra Calero
 
Problemas unidad 3
Problemas unidad 3Problemas unidad 3
Problemas unidad 3
Eduardo Salazar Lazareno
 
Algebra
Algebra                               Algebra
Problemas unidad 3.new
Problemas unidad 3.newProblemas unidad 3.new
Problemas unidad 3.new
Eduardo Salazar Lazareno
 
Razonamiento matematico
Razonamiento matematicoRazonamiento matematico
Razonamiento matematico
elmer rolando estrella grimaldo
 
cálculo de probabilidades
 cálculo de probabilidades cálculo de probabilidades
cálculo de probabilidades
luispetitt
 
Tema 3 polinomios especiales
Tema 3   polinomios especialesTema 3   polinomios especiales
Tema 3 polinomios especiales
Alexander Puicon Salazar
 
Quinto grado escuela activa
Quinto grado escuela activaQuinto grado escuela activa
Quinto grado escuela activa
aristoteles socrates moreno gone
 

La actualidad más candente (20)

Ejercicios probabilidaes
Ejercicios probabilidaesEjercicios probabilidaes
Ejercicios probabilidaes
 
U 9
U 9U 9
U 9
 
Introducción a las probabilidades
Introducción a las probabilidadesIntroducción a las probabilidades
Introducción a las probabilidades
 
PROBABILIDADES
PROBABILIDADESPROBABILIDADES
PROBABILIDADES
 
Problemas resuelto-de-probabilidad
Problemas resuelto-de-probabilidadProblemas resuelto-de-probabilidad
Problemas resuelto-de-probabilidad
 
Ejercicios yproblemasprobabilidad
Ejercicios yproblemasprobabilidadEjercicios yproblemasprobabilidad
Ejercicios yproblemasprobabilidad
 
Conceptos básicos del Cálculo de Probabilidades X1 ccesa007
Conceptos básicos del Cálculo de Probabilidades X1  ccesa007Conceptos básicos del Cálculo de Probabilidades X1  ccesa007
Conceptos básicos del Cálculo de Probabilidades X1 ccesa007
 
Conceptos basicos del calculo de probabilidades x1 ccesa007
Conceptos basicos del calculo de probabilidades x1  ccesa007Conceptos basicos del calculo de probabilidades x1  ccesa007
Conceptos basicos del calculo de probabilidades x1 ccesa007
 
EXAMEN TIPO PAE
EXAMEN TIPO PAEEXAMEN TIPO PAE
EXAMEN TIPO PAE
 
Cuarto grado escuela activa
Cuarto grado escuela activaCuarto grado escuela activa
Cuarto grado escuela activa
 
14 combinatoria y_probabilidad (1)
14 combinatoria y_probabilidad (1)14 combinatoria y_probabilidad (1)
14 combinatoria y_probabilidad (1)
 
Fichas refuerzo rm
Fichas refuerzo rmFichas refuerzo rm
Fichas refuerzo rm
 
Ejercicios deber estadistica
Ejercicios deber estadisticaEjercicios deber estadistica
Ejercicios deber estadistica
 
Problemas unidad 3
Problemas unidad 3Problemas unidad 3
Problemas unidad 3
 
Algebra
Algebra                               Algebra
Algebra
 
Problemas unidad 3.new
Problemas unidad 3.newProblemas unidad 3.new
Problemas unidad 3.new
 
Razonamiento matematico
Razonamiento matematicoRazonamiento matematico
Razonamiento matematico
 
cálculo de probabilidades
 cálculo de probabilidades cálculo de probabilidades
cálculo de probabilidades
 
Tema 3 polinomios especiales
Tema 3   polinomios especialesTema 3   polinomios especiales
Tema 3 polinomios especiales
 
Quinto grado escuela activa
Quinto grado escuela activaQuinto grado escuela activa
Quinto grado escuela activa
 

Destacado

Estudio de Inversión Publicitaria Online México Cierre 2011
Estudio de Inversión Publicitaria Online México Cierre 2011Estudio de Inversión Publicitaria Online México Cierre 2011
Estudio de Inversión Publicitaria Online México Cierre 2011
Engel Fonseca
 
санхүүгийн тайлан 2
санхүүгийн тайлан 2санхүүгийн тайлан 2
санхүүгийн тайлан 2
Dulamsuren09
 
Hernestito y sus problemas
Hernestito y sus problemasHernestito y sus problemas
Hernestito y sus problemas
Patricia Rossi
 
Conceptos de programacion
Conceptos de programacionConceptos de programacion
Conceptos de programacion
crisalexa
 
Proteccion de talud con geotextiles san bernardino
Proteccion de talud con geotextiles san bernardinoProteccion de talud con geotextiles san bernardino
Proteccion de talud con geotextiles san bernardino
Nombre Apellidos
 
Ley de Transparencia y Gobierno Abierto de Navarra-pdf
Ley de Transparencia y Gobierno Abierto de Navarra-pdfLey de Transparencia y Gobierno Abierto de Navarra-pdf
Ley de Transparencia y Gobierno Abierto de Navarra-pdf
Iñaki Agirre
 
Conferencia 18 de agosto U de A - Congreso Internacional Tecnología en Regen...
Conferencia 18 de agosto  U de A - Congreso Internacional Tecnología en Regen...Conferencia 18 de agosto  U de A - Congreso Internacional Tecnología en Regen...
Conferencia 18 de agosto U de A - Congreso Internacional Tecnología en Regen...
Eliana Santos
 
الحوسبة السحابية
الحوسبة السحابيةالحوسبة السحابية
الحوسبة السحابية
RanaAbdullah11
 
Classe3
Classe3Classe3
Classe3
Duilio Peroni
 
Vissi d'arte, vissi d'amore #10: il Brutto
Vissi d'arte, vissi d'amore #10: il BruttoVissi d'arte, vissi d'amore #10: il Brutto
Vissi d'arte, vissi d'amore #10: il Brutto
ScambiaMenti-Cervia
 
3.3 frecuencias de los parámetros
3.3 frecuencias de los parámetros3.3 frecuencias de los parámetros
3.3 frecuencias de los parámetros
Cinthia Edurne Sanchez Nieto
 
El llanto de las caléndulas
El llanto de las caléndulasEl llanto de las caléndulas
El llanto de las caléndulas
Nombre Apellidos
 
Que las mujeres jovenes aprendan
Que las mujeres jovenes aprendanQue las mujeres jovenes aprendan
Que las mujeres jovenes aprendan
eliseo530
 
Общественный контроль. Светлана Денисова
Общественный контроль. Светлана ДенисоваОбщественный контроль. Светлана Денисова
Общественный контроль. Светлана Денисова
oprfforum
 
Фонд "Созидание". Елена Смирнова
Фонд "Созидание". Елена СмирноваФонд "Созидание". Елена Смирнова
Фонд "Созидание". Елена Смирнова
oprfforum
 
سلوكنا في فضاء الانترنت
سلوكنا في فضاء الانترنتسلوكنا في فضاء الانترنت
سلوكنا في فضاء الانترنت
AlYamamah Primary
 
презентация градиент оксана сальникова
презентация градиент оксана сальниковапрезентация градиент оксана сальникова
презентация градиент оксана сальникова
OxankaSalnikova
 
Perlatmuslimanelibrimadh 150226175839-conversion-gate01
Perlatmuslimanelibrimadh 150226175839-conversion-gate01Perlatmuslimanelibrimadh 150226175839-conversion-gate01
Perlatmuslimanelibrimadh 150226175839-conversion-gate01
Denis Berberi
 

Destacado (20)

Estudio de Inversión Publicitaria Online México Cierre 2011
Estudio de Inversión Publicitaria Online México Cierre 2011Estudio de Inversión Publicitaria Online México Cierre 2011
Estudio de Inversión Publicitaria Online México Cierre 2011
 
санхүүгийн тайлан 2
санхүүгийн тайлан 2санхүүгийн тайлан 2
санхүүгийн тайлан 2
 
Hernestito y sus problemas
Hernestito y sus problemasHernestito y sus problemas
Hernestito y sus problemas
 
Conceptos de programacion
Conceptos de programacionConceptos de programacion
Conceptos de programacion
 
Proteccion de talud con geotextiles san bernardino
Proteccion de talud con geotextiles san bernardinoProteccion de talud con geotextiles san bernardino
Proteccion de talud con geotextiles san bernardino
 
Ley de Transparencia y Gobierno Abierto de Navarra-pdf
Ley de Transparencia y Gobierno Abierto de Navarra-pdfLey de Transparencia y Gobierno Abierto de Navarra-pdf
Ley de Transparencia y Gobierno Abierto de Navarra-pdf
 
Conferencia 18 de agosto U de A - Congreso Internacional Tecnología en Regen...
Conferencia 18 de agosto  U de A - Congreso Internacional Tecnología en Regen...Conferencia 18 de agosto  U de A - Congreso Internacional Tecnología en Regen...
Conferencia 18 de agosto U de A - Congreso Internacional Tecnología en Regen...
 
الحوسبة السحابية
الحوسبة السحابيةالحوسبة السحابية
الحوسبة السحابية
 
Classe3
Classe3Classe3
Classe3
 
Sway
Sway Sway
Sway
 
Vissi d'arte, vissi d'amore #10: il Brutto
Vissi d'arte, vissi d'amore #10: il BruttoVissi d'arte, vissi d'amore #10: il Brutto
Vissi d'arte, vissi d'amore #10: il Brutto
 
3.3 frecuencias de los parámetros
3.3 frecuencias de los parámetros3.3 frecuencias de los parámetros
3.3 frecuencias de los parámetros
 
El llanto de las caléndulas
El llanto de las caléndulasEl llanto de las caléndulas
El llanto de las caléndulas
 
Que las mujeres jovenes aprendan
Que las mujeres jovenes aprendanQue las mujeres jovenes aprendan
Que las mujeres jovenes aprendan
 
Общественный контроль. Светлана Денисова
Общественный контроль. Светлана ДенисоваОбщественный контроль. Светлана Денисова
Общественный контроль. Светлана Денисова
 
Фонд "Созидание". Елена Смирнова
Фонд "Созидание". Елена СмирноваФонд "Созидание". Елена Смирнова
Фонд "Созидание". Елена Смирнова
 
سلوكنا في فضاء الانترنت
سلوكنا في فضاء الانترنتسلوكنا في فضاء الانترنت
سلوكنا في فضاء الانترنت
 
3ºb
3ºb3ºb
3ºb
 
презентация градиент оксана сальникова
презентация градиент оксана сальниковапрезентация градиент оксана сальникова
презентация градиент оксана сальникова
 
Perlatmuslimanelibrimadh 150226175839-conversion-gate01
Perlatmuslimanelibrimadh 150226175839-conversion-gate01Perlatmuslimanelibrimadh 150226175839-conversion-gate01
Perlatmuslimanelibrimadh 150226175839-conversion-gate01
 

Similar a Cfgs probabilidad-problemas resueltos

Estadistica
EstadisticaEstadistica
Estadistica ejercicios de probabilidad
Estadistica ejercicios de probabilidadEstadistica ejercicios de probabilidad
Estadistica ejercicios de probabilidad
alejandrapuyobarbosa
 
783944 ud14 3_eso_avanza
783944 ud14 3_eso_avanza783944 ud14 3_eso_avanza
783944 ud14 3_eso_avanza
Silvia García Torrecilla
 
Estadistica probabilidad
Estadistica probabilidadEstadistica probabilidad
Estadistica probabilidad
alejandrapuyobarbosa
 
Trabajo estadistica
Trabajo estadisticaTrabajo estadistica
Trabajo estadistica
Linda Condor
 
Estadistica ii.
Estadistica ii.Estadistica ii.
Estadistica ii.
Carolina Salazar
 
EJERCICIOS RESUELTOS DE PROBABILIDAD.pdf
EJERCICIOS RESUELTOS DE PROBABILIDAD.pdfEJERCICIOS RESUELTOS DE PROBABILIDAD.pdf
EJERCICIOS RESUELTOS DE PROBABILIDAD.pdf
Damián Gómez Sarmiento
 
Lenguaje algebraico tema8
Lenguaje algebraico tema8Lenguaje algebraico tema8
Lenguaje algebraico tema8
marvargas1981
 
Ejercicios de probabilidad y teorema de bayes
Ejercicios de probabilidad y teorema de bayesEjercicios de probabilidad y teorema de bayes
Ejercicios de probabilidad y teorema de bayes
Belgica Chasi
 
Conteo y combinatoria
Conteo y combinatoriaConteo y combinatoria
Conteo y combinatoria
Claudio Mendieta
 
PROBABILIDADES
PROBABILIDADESPROBABILIDADES
PROBABILIDADES
Fleming Cajamarca
 
1ºbach ccss(var discreta)
1ºbach ccss(var discreta)1ºbach ccss(var discreta)
1ºbach ccss(var discreta)
marvargas1981
 
Ejercicios de probabilidades y teorema de bayes
Ejercicios de probabilidades y teorema de bayesEjercicios de probabilidades y teorema de bayes
Ejercicios de probabilidades y teorema de bayes
LuCy Liu Regalado
 
900-preguntas-de-algebra.pdf
900-preguntas-de-algebra.pdf900-preguntas-de-algebra.pdf
900-preguntas-de-algebra.pdf
12345aquino
 
DISTRIBUCIONES DE PROBABILIDAD
DISTRIBUCIONES DE PROBABILIDADDISTRIBUCIONES DE PROBABILIDAD
DISTRIBUCIONES DE PROBABILIDAD
juanniebles2
 
14.calculo probabilidades
14.calculo probabilidades14.calculo probabilidades
14.calculo probabilidades
fabiancurso
 
Tema14 2 probabilidad
Tema14 2   probabilidadTema14 2   probabilidad
Tema14 2 probabilidad
Quimica Tecnologia
 
Teoria y problemas del calculo de probabilidades cp525 ccesa007
Teoria y problemas del calculo de probabilidades cp525  ccesa007Teoria y problemas del calculo de probabilidades cp525  ccesa007
Teoria y problemas del calculo de probabilidades cp525 ccesa007
Demetrio Ccesa Rayme
 
Estadistica
EstadisticaEstadistica
Estadistica
Carlos ChE
 
Estadistik 2
Estadistik 2Estadistik 2
Estadistik 2
jessik2013
 

Similar a Cfgs probabilidad-problemas resueltos (20)

Estadistica
EstadisticaEstadistica
Estadistica
 
Estadistica ejercicios de probabilidad
Estadistica ejercicios de probabilidadEstadistica ejercicios de probabilidad
Estadistica ejercicios de probabilidad
 
783944 ud14 3_eso_avanza
783944 ud14 3_eso_avanza783944 ud14 3_eso_avanza
783944 ud14 3_eso_avanza
 
Estadistica probabilidad
Estadistica probabilidadEstadistica probabilidad
Estadistica probabilidad
 
Trabajo estadistica
Trabajo estadisticaTrabajo estadistica
Trabajo estadistica
 
Estadistica ii.
Estadistica ii.Estadistica ii.
Estadistica ii.
 
EJERCICIOS RESUELTOS DE PROBABILIDAD.pdf
EJERCICIOS RESUELTOS DE PROBABILIDAD.pdfEJERCICIOS RESUELTOS DE PROBABILIDAD.pdf
EJERCICIOS RESUELTOS DE PROBABILIDAD.pdf
 
Lenguaje algebraico tema8
Lenguaje algebraico tema8Lenguaje algebraico tema8
Lenguaje algebraico tema8
 
Ejercicios de probabilidad y teorema de bayes
Ejercicios de probabilidad y teorema de bayesEjercicios de probabilidad y teorema de bayes
Ejercicios de probabilidad y teorema de bayes
 
Conteo y combinatoria
Conteo y combinatoriaConteo y combinatoria
Conteo y combinatoria
 
PROBABILIDADES
PROBABILIDADESPROBABILIDADES
PROBABILIDADES
 
1ºbach ccss(var discreta)
1ºbach ccss(var discreta)1ºbach ccss(var discreta)
1ºbach ccss(var discreta)
 
Ejercicios de probabilidades y teorema de bayes
Ejercicios de probabilidades y teorema de bayesEjercicios de probabilidades y teorema de bayes
Ejercicios de probabilidades y teorema de bayes
 
900-preguntas-de-algebra.pdf
900-preguntas-de-algebra.pdf900-preguntas-de-algebra.pdf
900-preguntas-de-algebra.pdf
 
DISTRIBUCIONES DE PROBABILIDAD
DISTRIBUCIONES DE PROBABILIDADDISTRIBUCIONES DE PROBABILIDAD
DISTRIBUCIONES DE PROBABILIDAD
 
14.calculo probabilidades
14.calculo probabilidades14.calculo probabilidades
14.calculo probabilidades
 
Tema14 2 probabilidad
Tema14 2   probabilidadTema14 2   probabilidad
Tema14 2 probabilidad
 
Teoria y problemas del calculo de probabilidades cp525 ccesa007
Teoria y problemas del calculo de probabilidades cp525  ccesa007Teoria y problemas del calculo de probabilidades cp525  ccesa007
Teoria y problemas del calculo de probabilidades cp525 ccesa007
 
Estadistica
EstadisticaEstadistica
Estadistica
 
Estadistik 2
Estadistik 2Estadistik 2
Estadistik 2
 

Más de Christian Infante

Regla mezcla-aleación
Regla mezcla-aleaciónRegla mezcla-aleación
Regla mezcla-aleación
Christian Infante
 
Regla de mezcla ii
Regla de mezcla iiRegla de mezcla ii
Regla de mezcla ii
Christian Infante
 
Regla de mezcla
Regla de mezclaRegla de mezcla
Regla de mezcla
Christian Infante
 
Regla de interés seminario
Regla de interés seminarioRegla de interés seminario
Regla de interés seminario
Christian Infante
 
Regla de interés guia anual uni
Regla de interés guia anual uniRegla de interés guia anual uni
Regla de interés guia anual uni
Christian Infante
 
Regla de descuento
Regla de descuentoRegla de descuento
Regla de descuento
Christian Infante
 
Regla interés
Regla interésRegla interés
Regla interés
Christian Infante
 
Probabilidad y estadistica elementales
Probabilidad y estadistica elementalesProbabilidad y estadistica elementales
Probabilidad y estadistica elementales
Christian Infante
 
Clasesprobabilidades
ClasesprobabilidadesClasesprobabilidades
Clasesprobabilidades
Christian Infante
 
Tema 2 colorprobabilidades
Tema 2 colorprobabilidadesTema 2 colorprobabilidades
Tema 2 colorprobabilidades
Christian Infante
 
Tema 2 colorprobabilidades
Tema 2 colorprobabilidadesTema 2 colorprobabilidades
Tema 2 colorprobabilidades
Christian Infante
 
T4 alumnosprobabilidades
T4 alumnosprobabilidadesT4 alumnosprobabilidades
T4 alumnosprobabilidades
Christian Infante
 
T4 alumnosprobabilidades
T4 alumnosprobabilidadesT4 alumnosprobabilidades
T4 alumnosprobabilidades
Christian Infante
 
Recuper probabilidadesyestad
Recuper probabilidadesyestadRecuper probabilidadesyestad
Recuper probabilidadesyestad
Christian Infante
 
Problemas ccs ssolprobabilidades
Problemas ccs ssolprobabilidadesProblemas ccs ssolprobabilidades
Problemas ccs ssolprobabilidades
Christian Infante
 
Probabilidades
ProbabilidadesProbabilidades
Probabilidades
Christian Infante
 
Analisiscombinatorioprobabilidades 130603213333-phpapp01
Analisiscombinatorioprobabilidades 130603213333-phpapp01Analisiscombinatorioprobabilidades 130603213333-phpapp01
Analisiscombinatorioprobabilidades 130603213333-phpapp01
Christian Infante
 
Teoria conjuntos-2
Teoria conjuntos-2Teoria conjuntos-2
Teoria conjuntos-2
Christian Infante
 
Razones proporciones
Razones proporcionesRazones proporciones
Razones proporciones
Christian Infante
 
Planteo ecuaciones-5
Planteo ecuaciones-5Planteo ecuaciones-5
Planteo ecuaciones-5
Christian Infante
 

Más de Christian Infante (20)

Regla mezcla-aleación
Regla mezcla-aleaciónRegla mezcla-aleación
Regla mezcla-aleación
 
Regla de mezcla ii
Regla de mezcla iiRegla de mezcla ii
Regla de mezcla ii
 
Regla de mezcla
Regla de mezclaRegla de mezcla
Regla de mezcla
 
Regla de interés seminario
Regla de interés seminarioRegla de interés seminario
Regla de interés seminario
 
Regla de interés guia anual uni
Regla de interés guia anual uniRegla de interés guia anual uni
Regla de interés guia anual uni
 
Regla de descuento
Regla de descuentoRegla de descuento
Regla de descuento
 
Regla interés
Regla interésRegla interés
Regla interés
 
Probabilidad y estadistica elementales
Probabilidad y estadistica elementalesProbabilidad y estadistica elementales
Probabilidad y estadistica elementales
 
Clasesprobabilidades
ClasesprobabilidadesClasesprobabilidades
Clasesprobabilidades
 
Tema 2 colorprobabilidades
Tema 2 colorprobabilidadesTema 2 colorprobabilidades
Tema 2 colorprobabilidades
 
Tema 2 colorprobabilidades
Tema 2 colorprobabilidadesTema 2 colorprobabilidades
Tema 2 colorprobabilidades
 
T4 alumnosprobabilidades
T4 alumnosprobabilidadesT4 alumnosprobabilidades
T4 alumnosprobabilidades
 
T4 alumnosprobabilidades
T4 alumnosprobabilidadesT4 alumnosprobabilidades
T4 alumnosprobabilidades
 
Recuper probabilidadesyestad
Recuper probabilidadesyestadRecuper probabilidadesyestad
Recuper probabilidadesyestad
 
Problemas ccs ssolprobabilidades
Problemas ccs ssolprobabilidadesProblemas ccs ssolprobabilidades
Problemas ccs ssolprobabilidades
 
Probabilidades
ProbabilidadesProbabilidades
Probabilidades
 
Analisiscombinatorioprobabilidades 130603213333-phpapp01
Analisiscombinatorioprobabilidades 130603213333-phpapp01Analisiscombinatorioprobabilidades 130603213333-phpapp01
Analisiscombinatorioprobabilidades 130603213333-phpapp01
 
Teoria conjuntos-2
Teoria conjuntos-2Teoria conjuntos-2
Teoria conjuntos-2
 
Razones proporciones
Razones proporcionesRazones proporciones
Razones proporciones
 
Planteo ecuaciones-5
Planteo ecuaciones-5Planteo ecuaciones-5
Planteo ecuaciones-5
 

Último

diapositivas paco yunque.pptx cartelera literaria
diapositivas paco yunque.pptx cartelera literariadiapositivas paco yunque.pptx cartelera literaria
diapositivas paco yunque.pptx cartelera literaria
TheeffitaSantosMedin
 
🔴 (AC-S18) Semana 18 – TRABAJO FINAL (INFORMATICA APLICADA TERMINADO y revisa...
🔴 (AC-S18) Semana 18 – TRABAJO FINAL (INFORMATICA APLICADA TERMINADO y revisa...🔴 (AC-S18) Semana 18 – TRABAJO FINAL (INFORMATICA APLICADA TERMINADO y revisa...
🔴 (AC-S18) Semana 18 – TRABAJO FINAL (INFORMATICA APLICADA TERMINADO y revisa...
FernandoEstebanLlont
 
Revista Universidad de Deusto - Número 155 / Año 2024
Revista Universidad de Deusto - Número 155 / Año 2024Revista Universidad de Deusto - Número 155 / Año 2024
Revista Universidad de Deusto - Número 155 / Año 2024
Universidad de Deusto - Deustuko Unibertsitatea - University of Deusto
 
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
Sandra Mariela Ballón Aguedo
 
INFORME RESULTADOS DE CREA Y EMPRENDE 2024.pdf
INFORME RESULTADOS DE CREA Y EMPRENDE 2024.pdfINFORME RESULTADOS DE CREA Y EMPRENDE 2024.pdf
INFORME RESULTADOS DE CREA Y EMPRENDE 2024.pdf
Juan Carlos Catura Arapa
 
Presentación sobré la culturas Lima, la cultura Paracas y la cultura Vicús.
Presentación  sobré la culturas Lima,  la  cultura Paracas y la cultura Vicús.Presentación  sobré la culturas Lima,  la  cultura Paracas y la cultura Vicús.
Presentación sobré la culturas Lima, la cultura Paracas y la cultura Vicús.
Juan Luis Cunya Vicente
 
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
Sandra Mariela Ballón Aguedo
 
LABERINTOS DE DISCIPLINAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
LABERINTOS DE DISCIPLINAS OLÍMPICAS.  Por JAVIER SOLIS NOYOLALABERINTOS DE DISCIPLINAS OLÍMPICAS.  Por JAVIER SOLIS NOYOLA
LABERINTOS DE DISCIPLINAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
JAVIER SOLIS NOYOLA
 
fase intensiva taller intensivo de CTE julio
fase intensiva taller intensivo de CTE juliofase intensiva taller intensivo de CTE julio
fase intensiva taller intensivo de CTE julio
leydijazminguevaragu
 
Informe de Evaluacion Diagnostica de Comunicacion 1-5 Ccesa007.pdf
Informe de Evaluacion Diagnostica de Comunicacion 1-5 Ccesa007.pdfInforme de Evaluacion Diagnostica de Comunicacion 1-5 Ccesa007.pdf
Informe de Evaluacion Diagnostica de Comunicacion 1-5 Ccesa007.pdf
Demetrio Ccesa Rayme
 
Taller intensivo de formación continua. Puebla.
Taller intensivo de formación continua. Puebla.Taller intensivo de formación continua. Puebla.
Taller intensivo de formación continua. Puebla.
OscarCruzyCruz
 
Fichero Léxico / Pandemia Lingüística / USCO
Fichero Léxico / Pandemia Lingüística / USCOFichero Léxico / Pandemia Lingüística / USCO
Fichero Léxico / Pandemia Lingüística / USCO
mariahernandez632951
 
Sesión Un día en el ministerio de Jesús.pdf
Sesión Un día en el ministerio de Jesús.pdfSesión Un día en el ministerio de Jesús.pdf
Sesión Un día en el ministerio de Jesús.pdf
https://gramadal.wordpress.com/
 
CULTURA CHIMU CERAMICA UBICACION METALURGIA
CULTURA CHIMU CERAMICA UBICACION METALURGIACULTURA CHIMU CERAMICA UBICACION METALURGIA
CULTURA CHIMU CERAMICA UBICACION METALURGIA
Mariela Vasquez Pelaez
 
Análisis y Evaluación del Impacto Ambiental.pdf
Análisis y Evaluación del Impacto Ambiental.pdfAnálisis y Evaluación del Impacto Ambiental.pdf
Análisis y Evaluación del Impacto Ambiental.pdf
JonathanCovena1
 
🔴 (AC-S18) Semana 18 - Tema 01 - Tarea - Proyecto Final (terminado y revisado...
🔴 (AC-S18) Semana 18 - Tema 01 - Tarea - Proyecto Final (terminado y revisado...🔴 (AC-S18) Semana 18 - Tema 01 - Tarea - Proyecto Final (terminado y revisado...
🔴 (AC-S18) Semana 18 - Tema 01 - Tarea - Proyecto Final (terminado y revisado...
FernandoEstebanLlont
 
Los Formularios de Google: creación, gestión y administración de respuestas (...
Los Formularios de Google: creación, gestión y administración de respuestas (...Los Formularios de Google: creación, gestión y administración de respuestas (...
Los Formularios de Google: creación, gestión y administración de respuestas (...
Cátedra Banco Santander
 
2024 DIA DEL LOGRO IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO IE HONORIO DELGADO ESPINOZA2024 DIA DEL LOGRO IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO IE HONORIO DELGADO ESPINOZA
Sandra Mariela Ballón Aguedo
 
SEMANAS DE GESTION 2024 para trabajo escolar
SEMANAS DE GESTION 2024 para trabajo escolarSEMANAS DE GESTION 2024 para trabajo escolar
SEMANAS DE GESTION 2024 para trabajo escolar
JuanPabloII10
 
2024 DIA DEL LOGRO-ARTE 3 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 3 - IE HONORIO DELGADO ESPINOZA2024 DIA DEL LOGRO-ARTE 3 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 3 - IE HONORIO DELGADO ESPINOZA
Sandra Mariela Ballón Aguedo
 

Último (20)

diapositivas paco yunque.pptx cartelera literaria
diapositivas paco yunque.pptx cartelera literariadiapositivas paco yunque.pptx cartelera literaria
diapositivas paco yunque.pptx cartelera literaria
 
🔴 (AC-S18) Semana 18 – TRABAJO FINAL (INFORMATICA APLICADA TERMINADO y revisa...
🔴 (AC-S18) Semana 18 – TRABAJO FINAL (INFORMATICA APLICADA TERMINADO y revisa...🔴 (AC-S18) Semana 18 – TRABAJO FINAL (INFORMATICA APLICADA TERMINADO y revisa...
🔴 (AC-S18) Semana 18 – TRABAJO FINAL (INFORMATICA APLICADA TERMINADO y revisa...
 
Revista Universidad de Deusto - Número 155 / Año 2024
Revista Universidad de Deusto - Número 155 / Año 2024Revista Universidad de Deusto - Número 155 / Año 2024
Revista Universidad de Deusto - Número 155 / Año 2024
 
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
 
INFORME RESULTADOS DE CREA Y EMPRENDE 2024.pdf
INFORME RESULTADOS DE CREA Y EMPRENDE 2024.pdfINFORME RESULTADOS DE CREA Y EMPRENDE 2024.pdf
INFORME RESULTADOS DE CREA Y EMPRENDE 2024.pdf
 
Presentación sobré la culturas Lima, la cultura Paracas y la cultura Vicús.
Presentación  sobré la culturas Lima,  la  cultura Paracas y la cultura Vicús.Presentación  sobré la culturas Lima,  la  cultura Paracas y la cultura Vicús.
Presentación sobré la culturas Lima, la cultura Paracas y la cultura Vicús.
 
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 2 - IE HONORIO DELGADO ESPINOZA
 
LABERINTOS DE DISCIPLINAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
LABERINTOS DE DISCIPLINAS OLÍMPICAS.  Por JAVIER SOLIS NOYOLALABERINTOS DE DISCIPLINAS OLÍMPICAS.  Por JAVIER SOLIS NOYOLA
LABERINTOS DE DISCIPLINAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
 
fase intensiva taller intensivo de CTE julio
fase intensiva taller intensivo de CTE juliofase intensiva taller intensivo de CTE julio
fase intensiva taller intensivo de CTE julio
 
Informe de Evaluacion Diagnostica de Comunicacion 1-5 Ccesa007.pdf
Informe de Evaluacion Diagnostica de Comunicacion 1-5 Ccesa007.pdfInforme de Evaluacion Diagnostica de Comunicacion 1-5 Ccesa007.pdf
Informe de Evaluacion Diagnostica de Comunicacion 1-5 Ccesa007.pdf
 
Taller intensivo de formación continua. Puebla.
Taller intensivo de formación continua. Puebla.Taller intensivo de formación continua. Puebla.
Taller intensivo de formación continua. Puebla.
 
Fichero Léxico / Pandemia Lingüística / USCO
Fichero Léxico / Pandemia Lingüística / USCOFichero Léxico / Pandemia Lingüística / USCO
Fichero Léxico / Pandemia Lingüística / USCO
 
Sesión Un día en el ministerio de Jesús.pdf
Sesión Un día en el ministerio de Jesús.pdfSesión Un día en el ministerio de Jesús.pdf
Sesión Un día en el ministerio de Jesús.pdf
 
CULTURA CHIMU CERAMICA UBICACION METALURGIA
CULTURA CHIMU CERAMICA UBICACION METALURGIACULTURA CHIMU CERAMICA UBICACION METALURGIA
CULTURA CHIMU CERAMICA UBICACION METALURGIA
 
Análisis y Evaluación del Impacto Ambiental.pdf
Análisis y Evaluación del Impacto Ambiental.pdfAnálisis y Evaluación del Impacto Ambiental.pdf
Análisis y Evaluación del Impacto Ambiental.pdf
 
🔴 (AC-S18) Semana 18 - Tema 01 - Tarea - Proyecto Final (terminado y revisado...
🔴 (AC-S18) Semana 18 - Tema 01 - Tarea - Proyecto Final (terminado y revisado...🔴 (AC-S18) Semana 18 - Tema 01 - Tarea - Proyecto Final (terminado y revisado...
🔴 (AC-S18) Semana 18 - Tema 01 - Tarea - Proyecto Final (terminado y revisado...
 
Los Formularios de Google: creación, gestión y administración de respuestas (...
Los Formularios de Google: creación, gestión y administración de respuestas (...Los Formularios de Google: creación, gestión y administración de respuestas (...
Los Formularios de Google: creación, gestión y administración de respuestas (...
 
2024 DIA DEL LOGRO IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO IE HONORIO DELGADO ESPINOZA2024 DIA DEL LOGRO IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO IE HONORIO DELGADO ESPINOZA
 
SEMANAS DE GESTION 2024 para trabajo escolar
SEMANAS DE GESTION 2024 para trabajo escolarSEMANAS DE GESTION 2024 para trabajo escolar
SEMANAS DE GESTION 2024 para trabajo escolar
 
2024 DIA DEL LOGRO-ARTE 3 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 3 - IE HONORIO DELGADO ESPINOZA2024 DIA DEL LOGRO-ARTE 3 - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-ARTE 3 - IE HONORIO DELGADO ESPINOZA
 

Cfgs probabilidad-problemas resueltos

  • 1. http://www.cepamarm.es Acceso a CFGS Matemáticas ESG - 05/2011 Pág. 1 de 8 Probabilidad (Problemas resueltos) (Basado en VITUTOR) 1.- Hallar la probabilidad de que al lanzar al aire dos monedas, salgan: a) Dos caras. p(2c) = p(c)*p(c) = 1/2 * 1/2 = 1/4 b) Dos cruces. p(2x) = p(x)*p(x) = 1/2 * 1/2 = 1/4 c) Una cara y una cruz. p(1c&1x) = p(cx) + p(xc) = p(c)*p(x) + p(x)*p(c) = 1/2*1/2 + 1/2*1/2 = 1/4 + 1/4 = 1/2 2.- Hallar la probabilidad de que al levantar una fichas de dominó se obtenga un número de puntos mayor que 9 o que sea múltiplo de 4. Casos posibles: CR 7 2 = (7+2-1)! / [2! * (7-1)!] = 8! / (2*6!) = 8*7/2 = 4*7 = 28 Casos favorables: A(> 9) = {(4|6),(5|5),(5|6),(6|6)} => p(A) = 4/28 Casos favorables: B(m4) = {(b|4),(1|3),(2|2),(2|6),(3|5),(4|4),(6|6)} => => Casos favorables: A(>9) y B(m4) = {(6|6)} p(B) = 7/28 p(A ∩ B) = p(A)*p(B) = 1/28 p(A U B) = p(A) + p(B) - p(A ∩ B) = 4/28 + 7/28 - 1/28 = 10/28 = 5/14 3.- Un dado está trucado, de forma que las probabilidades de obtener las distintas caras son proporcionales a los números de estas. Hallar: a) La probabilidad de obtener el 6 en un lanzamiento. p(1)=p ,, p(2)=2p ,, p(3)=3p ,, p(4)=4p ,, p(5)=5p ,, p(6)=6p p(1) + p(2) + p(3) + p(4) + p(5) + p(6) = 1 p(1) + p(2) + p(3) + p(4) + p(5) + p(6) = p + 2p + 3p + 4p + 5p + 6p = 21p 21p = 1 => p = 1/21 p(6) = 6p = 6*1/21 = 6/21 b) La probabilidad de conseguir un número impar en un lanzamiento.
  • 2. http://www.cepamarm.es Acceso a CFGS Matemáticas ESG - 05/2011 Pág. 2 de 8 Probabilidad (Problemas resueltos) (Basado en VITUTOR) p(1 U 3 U 5) = p(1) + p(3) + p(5) = p + 3p + 5p = 9p = 9*1/21 = 9/21 = 3/7 4.- Se lanzan dos dados al aire y se anota la suma de los puntos obtenidos. Se pide: a) La probabilidad de que salga 7. Casos posibles: VR 6 2 = 62 = 36 Casos favorables: A(s7) = {(1|6),(2|5),(3|4),(4|3),(5|2),(6|1)} p(A) = 6/36 = 1/6 b) La probabilidad de que el número obtenido sea par. p(par) = 18/36 = 1/2 c) La probabilidad de que el número obtenido sea múltiplo de tres. A(m3) = {(1|2),(1|5),(2|1),(2|4),(3|3),(3|6),(4|2),(4|5),(5|1),(5|4),(6|3),(6|6)} p(A) = 12/36 = 1/3 5.- Se lanzan tres dados. Encontrar la probabilidad de que: a) Salga 6 en todos. p(6 1 ∩ 6 2 ∩ 6 3 ) = p(6 1 )*p(6 2 )*p(6 3 ) = 1/6*1/6*1/6 = 1/216 b) Los puntos obtenidos sumen 7. Casos posibles: VR 6 3 = 63 = 216 A(s7) = {(1|1|5),(1|2|4),(1|3|3),(1|4|2),(1|5|1), (2|1|4),(2|2|3),(2|3|2),(2|4|1), (3|1|3),(3|2|2),(3|2|1), (4|1|2),(4|2|1), (5|1|1),} p(A) = 15/216 = 5/72 6.- Busca la probabilidad de que al echar un dado al aire, salga : a) Un número par. p(par) = 3/6 = 1/2
  • 3. http://www.cepamarm.es Acceso a CFGS Matemáticas ESG - 05/2011 Pág. 3 de 8 Probabilidad (Problemas resueltos) (Basado en VITUTOR) b) Un múltiplo de tres. p(m3) = 2/6 = 1/3 c) Mayor que cuatro. P(>4) = 2/6 = 1/3 7.- Se sacan dos bolas de una urna que se compone de una bola blanca , otra roja, otra verde y otra negra. Describir el espacio muestral cuando: a) La primera bola se devuelve a la urna antes de sacar la segunda. E = {BB, BR, BV, BN , RB, RR, RV , RN, VB, VR, VV, VN, NB, NR, NV, NN} b) La primera bola no se devuelve. E = {BR, BV, BN , RB, RV, RN, VB, VR, VN, NB, NR, NV} 8.- Una urna tiene ocho bolas rojas, 5 amarillas y siete verdes. Se extrae una al azar de que: a) Sea roja . p(roja) = 8/20 = 0,4 b) Sea verde. p(no roja) = 1-p(roja) = 1-0,4 = 0,6 c) Sea amarilla. p(verde) = 7/20 = 0,35 d) No sea roja. p(amarilla) = 5/20 = 0,25 e) No sea amarilla. p(no amarilla) = 1-p(amarilla) = 1-0,25 = 0,75
  • 4. http://www.cepamarm.es Acceso a CFGS Matemáticas ESG - 05/2011 Pág. 4 de 8 Probabilidad (Problemas resueltos) (Basado en VITUTOR) 9.- Una urna contiene tres bolas rojas y siete blancas. Se extraen dos bolas al azar. Escribir el espacio muestral y hallar la probabilidad de : E = {RR, RB, BR, BB} a) Extraer las dos bolas con reemplazamiento. p(RR) = p(R)*p(R) = 3/10*3/10 = 3/100 p(BB) = p(B)*p(B) = 7/10*7/10 = 49/100 p(RB) = p(BR) = p(R)*p(B) = 3/10*7/10 = 21/100 b) Sin reemplazamiento. p(RR) = p(R)*p(R) = 3/10*2/9 = 6/90 p(BB) = p(B)*p(B) = 7/10*6/9 = 42/90 p(RB) = p(BR) = p(R)*p(B) = 3/10*7/9 = 21/90 10.- Se extrae una bola de una urna que contiene 4 bolas rojas, 5 blancas y 5 negras, ¿cuál es la probabilidad de que la bola sea roja o blanca? ¿Cuál es la probabilidad de que no sea blanca? p(R U B) = p(R) + p(B) = 4/15 + 5/15 = 9/15 = 3/5 p(noB) = 1-p(B) = 1-5/15 = 10/15 = 2/3 11.- En una clase hay 10 alumnas rubias, 20 morenas, cinco alumnos rubios y 10 morenos. Un día asisten 44 alumnos, encontrar la probabilidad de que el alumno que falta: a) Sea hombre. p(hombre) = 15/45 = 1/3 b) Sea mujer morena. p(mujer morena) = 20/45 = 4/9 c) Sea hombre o mujer. p(hombre U mujer) = 15/45 + 30/45 = 45/45 = 1
  • 5. http://www.cepamarm.es Acceso a CFGS Matemáticas ESG - 05/2011 Pág. 5 de 8 Probabilidad (Problemas resueltos) (Basado en VITUTOR) 12.- En un sobre hay 20 papeletas, ocho llevan dibujado un coche las restantes son blancas. Hallar la probabilidad de extraer al menos una papeleta con el dibujo de un coche: a) Si se saca una papeleta. p(C)= 8/20 = 2/5 b) Si se extraen dos papeletas. p(C-)+p(-C) = p(C U C) = 8/20 + 8/20 - 8/20*7/19 = 8/20 * (2-7/19) = 2/5*31/19 = 62/95 O bien: 1-p(2B) = 1-(12/20*11/19) = 62/95 c) Si se extraen tres papeletas. 1-p(3B) = 1-(12/20*11/19*10/18) = 1-1320/6840 = 1-11/57 = 46/57 13.- Los estudiantes A y B tienen respectivamente probabilidades 1/2 y 1/5 de suspender un examen. La probabilidad de que suspendan el examen simultáneamente es de 1/10 . Determinar la probabilidad de que al menos uno de los dos estudiantes suspenda el examen. p(A U B) = p(A) + p(B) - p(A ∩ B) = 1/2 + 1/5 - 1/10 = 6/10 = 3/5 14.- Dos hermanos salen de caza. El primero mata un promedio de 2 piezas cada 5 disparos y el segundo una pieza cada 2 disparos. Si los dos disparan al mismo tiempo a una misma pieza, ¿cuál es la probabilidad de que la maten? p(A)= 2/5 p(B) = 1/2 p(A ∩ B) = p(A) * p(B) = 2/5*1/2 = 2/10 = 1/5 p(A U B) = p(A) + p(B) - p(A ∩ B) = 2/5 + 1/2 - 1/5 = 7/10 15.- Una clase consta de 10 hombres y 20 mujeres; la mitad de los hombres y la mitad de las mujeres tienen los ojos castaños. Determinar la probabilidad de que una persona elegida al azar sea un hombre o tenga los ojos castaños. A={Hombre} ,, p(A) = 10/30 = 1/3 B={Castaños} ,, p(B) = (5+10)/30 = 15/30 = 1/2 p(A ∩ B) = p(A) * p(B) = 1/3*1/2 = 1/6
  • 6. http://www.cepamarm.es Acceso a CFGS Matemáticas ESG - 05/2011 Pág. 6 de 8 Probabilidad (Problemas resueltos) (Basado en VITUTOR) p(A U B) = p(A) + p(B) - p(A ∩ B) = 1/3 + 1/2 - 1/6 = 4/6 = 2/3 16.- La probabilidad de que un hombre viva 20 años es 1/4, y la de que su mujer viva 20 años es 1/3. Se pide calcular la probabilidad : a) De que ambos vivan 20 años. p(A ∩ B) = p(A) * p(B) = 1/4*1/3 = 1/12 b) De que el hombre viva 20 años y su mujer no. p(A ∩ noB) = p(A) * p(noB) = p(A) * [ 1 - p(B) ] = 1/4*(1-1/3) = 1/4 * 2/3 = 2/12 = 1/6 c) De que ambos mueran antes de los 20 años. p(noA ∩ noB) = p(noA) * p(noB) = [ 1 - p(A) ] * [ 1 - p(B) ] = = (1-1/4)*(1-1/3) = 3/4 * 2/3 = 6/12 = 1/2 17.- Calcular la probabilidad de sacar exactamente dos cruces al tirar una moneda cuatro veces. Casos favorables = { xxcc, xcxc, xccx, cxxc, cxcx, ccxx} = 6 Casos posibles = VR 2 4 = 24 = 16 p(2x) = 6/16 = 3/8 18.- Un grupo de 10 personas se sienta en un banco. ¿cuál es la probabilidad de que dos personas fijadas de antemano se sienten juntas? Si a y b van juntos se pueden considerar como un solo elemento. Así, x+y = 8. Casos favorables = {xaby, xbay} = P 9 + P 9 = 2 * 9! Casos posibles = P 10 = 10! = 10*9! p(xaby) = (2*9!)/(10*9!) = 2/10 = 1/5 19.- Se extraen cinco cartas de una baraja de 52. Hallar la probabilidad de extraer: a) 4 ases. Casos favorables = Cuatro de las cartas son ases * Todas las posibilidades para la quinta carta =
  • 7. http://www.cepamarm.es Acceso a CFGS Matemáticas ESG - 05/2011 Pág. 7 de 8 Probabilidad (Problemas resueltos) (Basado en VITUTOR) = 1 * (52-4) = 48 Casos posibles = C 52 5 = 52! / [5! * (52-5)!] = 52*51*50*49*48*47! / [5! * 47!] = = 52*51*50*49*48 / 5! p(4A) = 48 / [52*51*50*49*48 / 5!] = 5! / (52*51*50*49) = 1/54.145 b) 4 ases y un rey. Casos favorables = Cuatro de las cartas son ases * La quinta carta es un rey = =1*4=4 Casos posibles = C 52 5 = 52! / [5! * (52-5)!] = 52*51*50*49*48*47! / [5! * 47!] = = 52*51*50*49*48 / 5! p(4A+R) = 4 / [52*51*50*49*48 / 5!] = 4 * 5! / (52*51*50*49*48) = 1/649.740 c) 3 cincos y 2 sotas. Casos favorables = Tres de las cartas son cincos * Las otras dos cartas son sotas = = C 4 3 * C 4 2 = 4!/[3!*1!] * 4!/[2!*2!] = 4 * 6 = 24 Casos posibles = C 52 5 = 52! / [5! * (52-5)!] = 52*51*50*49*48*47! / [5! * 47!] = = 52*51*50*49*48 / 5! p(35+2S) = 24 / [52*51*50*49*48 / 5!] = 24*5! / (52*51*50*49*48) = 1/108.290 d) Un 9, 10, sota, caballo y rey en cualquier orden. Casos favorables = Un 9, un 10, una sota, un caballo y un rey = = 4 * 4 * 4 * 4 * 4 = 1024 Casos posibles = C 52 5 = 52! / [5! * (52-5)!] = 52*51*50*49*48*47! / [5! * 47!] = = 52*51*50*49*48 / 5! p(9,10,S,C,R) = 1024 / [52*51*50*49*48 / 5!] = 1024*5! / (52*51*50*49*48) = 64/162.435 e) 3 de un palo cualquiera y 2 de otro. Casos favorables = Tres de un palo y dos de otro = 4*C 13 3 * 3*C 13 2 = = 4*13!/[3!*10!] * 3*13!/[2!*11!] = 4*13*12*11*10!/[6*10!] * 3*13*12*11!/[2*11!] = =(2*13*12*11/3) * (3*13*12/2) = 13*12*11*13*12
  • 8. http://www.cepamarm.es Acceso a CFGS Matemáticas ESG - 05/2011 Pág. 8 de 8 Probabilidad (Problemas resueltos) (Basado en VITUTOR) Casos posibles = C 52 5 = 52! / [5! * (52-5)!] = 52*51*50*49*48*47! / [5! * 47!] = = 52*51*50*49*48 / 5! p(3x+2y) = 13*12*11*13*12 / [52*51*50*49*48 / 5!] = = 13*12*11*13*12*5! / (52*51*50*49*48) = 13*3*11 / 4.165 = 429 / 4.165 f) Al menos un as. p(al menos 1 as) = 1 - p(ningún as) Casos favorables = Combinaciones de 48 (no ases) en grupos de 5 = C 48 5 = = 48! / [5! * 43!] = 48*47*46*45*44*43! / [5! * 43!] = 48*47*46*45*44 / 5! Casos posibles = C 52 5 = 52! / [5! * (52-5)!] = 52*51*50*49*48*47! / [5! * 47!] = = 52*51*50*49*48 / 5! p(ningún as) = (48*47*46*45*44 / 5!) / (52*51*50*49*48 / 5!) = = (48*47*46*45*44) / (52*51*50*49*48) = (47*46*45*44) / (52*51*50*49) = = (47*46*45*44):120 / (52*51*50*49):120 = 35.673 / 54.145 p(al menos 1 as) = 1 - p(ningún as) = 1 - 35.673 / 54.145 = 18.472/54.145