SlideShare una empresa de Scribd logo
1 de 115
1
2
Bloque I. Las características de los materiales
Bloque I. Las características de los materiales
Este bloque inicia con una perspectiva fundamentalmente macroscópica, con el fin de propiciar la
contrastación de las ideas de los alumnos con la visión de la ciencia y la tecnología, y su relación
con la satisfacción de necesidades, el cuidado del ambiente y la promoción de la salud. Se
continúa con un acercamiento a las propiedades físicas y una primera clasificación química: las
mezclas, el contenido que favorece la toma de decisiones responsables e informadas en temas
relacionados con la contaminación.
En la primera revolución de la química se identifica la importancia del trabajo de Antoine Laurent de
Lavoisier en la investigación científica al utilizar la balanza para medir la masa en un sistema
cerrado, condiciones indispensables para la interpretación de resultados que lo llevaron a enunciar
la Ley de conservación de la masa.
Los proyectos que se proponen en el cierre del bloque brindan ideas para que los alumnos elijan
algunos que sean de su interés; las sugerencias apuntan a investigar y/o desarrollar distintos
métodos de separación para purificar y reutilizar el agua, así como conocer cómo funciona una
salinera y sus impactos en el ambiente; además de propiciar la discusión, búsqueda de evidencias,
uso de las tic, medición e interpretación, tanto de experimentos como de resultados, y uso y
análisis de la información.
Competencias que se favorecen:
 Comprensión de fenómenos y procesos naturales desde la perspectiva científica.
 Toma de decisiones informadas para el cuidado del ambiente y la promoción de la salud
orientadas a la cultura de la prevención.
 Comprensión de los alcances y limitaciones de la ciencia y del desarrollo tecnológico en
diversos contextos.
Contenidos
1.1 La ciencia y la tecnología en el mundo actual
1.2 Identificación de las propiedades físicas de los materiales: Cualitativas, Extensivas,
Intensivas
1.3 Experimentación con mezclas
1.4 ¿Cómo saber si la muestra de una mezcla está más contaminada que otra?
1.5 Primera revolución de la química
1.6 Proyectos: ahora tú explora, experimenta y actúa
3
1.1 La ciencia y la tecnología en el mundo actual
Relación de la química y la tecnología con el ser humano, la salud y el ambiente.
Aprendizajes esperados
 Identifica las aportaciones del conocimiento químico y tecnológico en la satisfacción de
necesidades básicas, en la salud y el ambiente.
 Analiza la influencia de los medios de comunicación y las actitudes de las personas hacia
la química y la tecnología.
ACTIVIDAD 1.- En equipo de dos alumnos, realizarán un concentrado con algunos de los aportes
que el conocimiento de la química ha realizado en los siguientes aspectos:
Aspectos donde se
puede aplicar la Química
Producto 1 Producto 2 Producto 3
Alimentación
Medicina
Higiene personal
Limpieza
Agricultura
Construcción
ACTIVIDAD 2.- De manera individual el alumno realizara un escrito que describa la manera en que
la química ha influido en solucionar los problemas de la vida cotidiana.
ACTIVIDAD 3.- Los alumnos realizarán una investigación con sus padres y vecinos sobre el
conocimiento de la química, sus productos y su uso en la comunidad deberán incluir también la
manera como son vistos los productos químicos y la actitud de algunos medios de comunicación
sobre la industria química.
El maestro con alguna dinámica (por ej. “Lluvia de ideas”) analizará la investigación de los alumnos
es de esperarse que no todas las opiniones que consiguieron los alumnos serán favorables a la
química, mediante el contraste de opiniones se dará un panorama de las principales ideas y se
valoren los beneficios que de este conocimiento se ha obtenido, sin olvidar las desventajas y
peligros que se pueden presentar cuando se utilizan los conocimientos de química de una manera
indiscriminada y sin ética.
4
1.2 Identificación de las propiedades físicas de los materiales:
• Cualitativas
• Extensivas
• Intensivas
Aprendizajes esperados
 Clasifica diferentes materiales con base en su estado de agregación e identifica su relación
con las condiciones físicas del medio.
 Identifica las propiedades extensivas (masa y volumen) e intensivas (temperatura de fusión
y de ebullición, viscosidad, densidad, solubilidad) de algunos materiales.
 Explica la importancia de los instrumentos de medición y observación como herramientas
que amplían la capacidad de percepción de nuestros sentidos.
ACTIVIDAD 4.- El profesor pedirá que de manera colegiada se realice una investigación sobre los
estados de agregación, aplicando la estrategia del aprendizaje colaborativo intercambiar las ideas
principales, redactarlas y exponerlas al grupo.
Mediante organizadores gráficos como “los mapas mentales” sistematizaran la información de los
diferentes estados de agregación y con base en la teoría cinética
5
ACTIVIDAD 5.- El profesor pedirá que de manera colegiada se realice una investigación cuya
pregunta generadora será:
“¿Es lo mismo peso que masa?”
¿Qué instrumento se usa para medir el peso de un objeto?________________________
¿Qué unidades del sistema métrico se utilizan para medir una fuerza? ______________
¿Qué instrumento usamos para medir la masa de un objeto? ______________________
¿Qué unidades del sistema métrico se utilizan para medir la masa de un objeto?
_______________________________________________________________________
¿Si pudieras viajar a La Luna con los anteriores instrumentos tendrías las mismas mediciones?
____________ ¿por qué? ________________________________________
________________________________________________________________________
En el sistema métrico decimal ¿se usan las mismas unidades para medir el peso y la masa de un
objeto? ________
Ahora podemos contestar la pregunta que se utiliza como nombre de la actividad
¿Es lo mismo peso que masa?” _______________ ¿por qué? ______________________
________________________________________________________________________
________________________________________________________________________
Puedes consultar la siguiente dirección electrónica:
http://concurso.cnice.mec.es/cnice2005/93_iniciacion_interactiva_materia/curso/materiales/propied
ades/masa.htm donde puedes realizar experimentos con mediciones virtuales.
6
ACTIVIDAD 6.- El profesor pedirá que de manera individual se realice una investigación guiada por
las siguientes instrucciones:
Midiendo el volumen
Muchas de las decisiones que se toman deben de tener un antecedente basado en
un conocimiento, un ejemplo de esto podría ser el tamaño de un objeto para
determinar si lo podemos poner dentro de un coche.
Cuando un objeto tiene formas regulares como un cubo es fácil conocer el volumen
basta con recurrir a las formulas geométricas V= L3, lo mismo podríamos hacer con
diferentes cuerpos con formas geométricas, pero esto se complica con cuerpos con
formas irregulares o complejas, sin embargo esto ya fue resuelto por grandes
científicos en la antigüedad como Arquímedes, veamos como.
Vamos ha realizar diferentes mediciones de objetos pequeños como un sacapuntas, una ficha, un
trozo de pequeño de plastilina, un anillo, etc.
Para ello necesitamos una probeta graduada, puede ser de 100 o 250 ml
Necesitas poner una cantidad de 20 ml agua en la probeta
Sumerge en la probeta el objeto del que deseas conocer el volumen por ejemplo un sacapuntas
Registra el nuevo nivel del agua ___________
Si restamos la cantidad del nuevo nivel y el nivel inicial que tenia 20 ml obtendremos el volumen
del sacapuntas __________.
Un detalle importante el objeto del que deseas conocer el volumen debe estar completamente
sumergido, para ello puedes variar el volumen de agua a una cantidad mayor que permita que todo
el objeto este dentro del agua.
Registrar en la siguiente tabla tres objetos diferentes al sacapuntas y obtén su volumen
Objetos Nivel de agua
en la probeta
Nuevo nivel de agua
en la probeta
Volumen del
Objeto
Por volumen se entiende aquella magnitud física que nos mide la cantidad de espacio que ocupa
un cuerpo y desde el punto de vista de la Física, capacidad, es la posibilidad que tiene
un cuerpo para contener a otro en su interior. Es decir que está hueco; que t iene
espacio libre en su interior.
7
La unidad de volumen es el m3 se trata de una unidad muy grande, se suelen emplear
submúltiplos de ella como: el decímetro cúbico, el centímetro cúbico y el
milímetro cúbico
1 m3 = 1000 dm3
1 dm3 = 1000 cm3
1 cm3 = 1000 mm3
Las mediciones que realizamos con la probeta son en unidades de capacidad no de volumen sin
embargo son fáciles de convertir considerando que:
1 m3 = 1000 l
1 dm3 = 1 l
1 cm3 = 1 ml
Escribe de nuevo los objetos de la tabla que hiciste anteriormente y contesta correctamente la
ultima columna que contiene las medidas de volumen.
Puedes consultar la siguiente dirección electrónica:
http://concurso.cnice.mec.es/cnice2005/93_iniciacion_interactiva_materia/curso/materiales/propied
ades/masa.htm donde puedes realizar experimentos con mediciones virtuales
Objetos Nivel de
agua en la
probeta
Nuevo nivel de
agua en la probeta
Volumen del
objeto en
unidades de
capacidad
Volumen del
objeto
sacapuntas 20 ml 35 ml 15 ml 15 cm3 o 15 cc
8
ACTIVIDAD 7.- El profesor pedirá que de manera colegiada se realice la actividad (puede ser en
equipos de 2 personas)
La Densidad
Consulta y registra el concepto de densidad ____________________________________
________________________________________________________________________
“Más o menos 250 A.C., el matemático griego Arquímedes recibió la tarea de
determinar si un artesano había defraudado al Rey de Siracusa cuando cambió una
medida de oro en la corona del Rey por una de plata. Arquímedes reflexionó sobre el
problema mientras se relajaba en una piscina.
Ahí se dio cuenta que el agua se desparramaba
a los lados de la piscina. Arquímedes tuvo una
epifanía (una relevación). Se dio cuenta que la
cantidad de agua que se desparramaba era igual
en volumen que el espacio que su ocupaba
cuerpo. De repente este hecho le dio el método
para diferenciar una corona de oro y plata de
una corona de puro oro. Ya que la medida de la
plata ocupa más espacio que el equivalente de la
medida de oro, Arquímedes puso la corona del
artesano y una corona equivalente de puro oro
en dos tubos de agua. Encontró que se
desparramaba más agua del tubo cuando la
corona del artesano estaba adentro. Resulta que
el artesano había estado defraudando al Rey. La
leyenda dice que Arquímedes estaba tan entusiasmado con su descubrimiento que
corrió desnudo por las calles de Grecia gritando Eureka! Eureka! (La palabra griega
que significa 'Lo encontré')”.1
Una historia que nos cuenta como como el conocimiento científico nos da
herramientas para conocer la verdad y de que manera se resuelven problemas como
“conocer de que material esta echa la corona sin destruirla” nos lleva a la formula de
Densidad = masa/volumen
La densidad es una propiedad intensiva que relaciona la masa de un objeto dividida
entre el volumen del mismo. Por lo que podemos conocer las medidas de la densidad
A partir de las unidades de masa y volumen (g/cc, g/cm3, en ocasiones se utiliza las
medidas de capacidad como g/ml).
9
Encuentra la densidad de los siguientes materiales:
Puedes realizar los experimentos sobre la densidad en la siguiente dirección elecrtónica
http://phet.colorado.edu/sims/density-and-buoyancy/density_es.html
1http://www.visionlearning.com/library/module_viewer.php?mid=37&l=s
Materiales masa volumen densidad
madera 1,600 g 4,000 cm3
hielo 3,680 g 4,000 cm3
ladrillo 8,000 g 4,000 cm3
aluminio 10, 800g 4,000 cm3
10
1.3 Experimentación con mezclas
 Homogéneas y heterogéneas.
 Métodos de separación de mezclas con base en las propiedades físicas de sus
componentes.
Aprendizajes esperados
 Identifica los componentes de las mezclas y las clasifica en homogéneas y heterogéneas.
 Identifica la relación entre la variación de la concentración de una mezcla (porcentaje en
masa y volumen) y sus propiedades.
 Deduce métodos de separación de mezclas con base en las propiedades físicas de sus
componentes.
ACTIVIDAD 8.- Realiza un mapa conceptual con la clasificación de la materia
11
ACTIVIDAD 9.-
“Concentración en una Mezcla”
En toda disolución cabe distinguir entre disolvente y soluto (o solutos). El disolvente es el medio en
el que se dispersan los solutos y aparece en mayor cantidad que estos. El agua es conocida como
el disolvente universal ya que esta presente en una gran cantidad de mezclas.
Se llama concentración de una disolución a la relación existente entre la cantidad de soluto y la
cantidad de disolvente:
Concentración = cantidad de soluto / cantidad de disolvente
Encuentra los siguientes conceptos:
Disolución _______________________________________________________________
Disolvente _______________________________________________________________
Soluto __________________________________________________________________
Concentración ____________________________________________________________
Existen varias formas de expresar la concentración de una disolución: dependiendo del estado de
agregación del soluto que podría ser en:
Concentración = % en masa donde el soluto y el disolvente se expresan así:
Concentración = (
𝑐𝑎𝑛𝑡𝑖𝑑𝑎𝑑 𝑑𝑒𝑙 𝑠𝑜𝑙𝑢𝑡𝑜 𝑚𝑎𝑠𝑎 (𝑔)
𝑐𝑎𝑛𝑡𝑖𝑑𝑎𝑑 𝑑𝑒𝑙 𝑙𝑎 𝑑𝑖𝑠𝑜𝑙𝑢𝑐𝑖𝑜𝑛 𝑚𝑎𝑠𝑎 ( 𝑔)
) × 100
Concentración = % en volumen donde el soluto y el disolvente se expresan así:
Concentración = (
𝑐𝑎𝑛𝑡𝑖𝑑𝑎𝑑 𝑑𝑒𝑙 𝑠𝑜𝑙𝑢𝑡𝑜 𝑣𝑜𝑙𝑢𝑚𝑒𝑛(𝑙)
𝑐𝑎𝑛𝑡𝑖𝑑𝑎𝑑 𝑑𝑒𝑙 𝑙𝑎 𝑑𝑖𝑠𝑜𝑙𝑢𝑐𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒𝑛 ( 𝑙)
) × 100
Vamos a hacer una mezcla con 40 gr de cloruro de sodio y 160 ml de agua
1- ¿Cuál es el soluto? y ¿cuál es su cantidad? ___________________ y __________
2- ¿Cuál es disolvente? y ¿cual es su cantidad? _________________ y __________
3- ¿Qué cantidad de disolución hay? ______________________________________
Encuentra la concentración en % de masa
Concentración = (
𝑐𝑎𝑛𝑡𝑖𝑑𝑎𝑑 𝑑𝑒𝑙 𝑠𝑜𝑙𝑢𝑡𝑜 ( 𝑔)
𝑐𝑎𝑛𝑡𝑖𝑑𝑎𝑑 𝑑𝑒𝑙 𝑙𝑎 𝑑𝑖𝑠𝑜𝑙𝑢 𝑐𝑖𝑜𝑛 ( 𝑔)
) × 100 = ______________
12
Vamos a hacer una mezcla con 200 cc de alcohol y 50 cc de agua
1- ¿Cuál es el soluto? y ¿cuál es su cantidad? ___________________ y __________
2- ¿Cuál es disolvente? y ¿cual es su cantidad? _________________ y __________
3- ¿Qué cantidad de disolución hay? ______________________________________
Encuentra la concentración en % de volumen
Concentración = (
𝑐𝑎𝑛𝑡𝑖𝑑𝑎𝑑 𝑑𝑒𝑙 𝑠𝑜𝑙𝑢𝑡𝑜 ( 𝑐𝑐)
𝑐𝑎𝑛𝑡𝑖𝑑𝑎𝑑 𝑑𝑒𝑙 𝑙𝑎 𝑑𝑖𝑠𝑜𝑙𝑢 𝑐𝑖𝑜𝑛 ( 𝑐𝑐)
) × 100 = ______________
Las propiedades de algunas mezclas son modificadas dependiendo de la concentración tenemos
de ejemplo la mezcla de aire y combustible de los automóviles cuya proporción ideal de aire y
combustible en un motor de gasolina es de 14,7 kg de aire por 1 kg de combustible, en una alberca
para conservar su pureza y ph debe tener 2 ppm de cloro libre.
ACTIVIDAD 10.-
Métodos de separación de mezclas
Existen diferentes métodos para separar mezclas dependiendo de las faces que tenga el soluto y
el solvente.
Elabora un mapa mental con los procesos para separar sustancias
Separación
de Líquidos
Mezclas
Separación de
Líquido/Sólido
Separación
de Sólidos
Miscibles
Destilación Decantación
No Miscibles Sólidos no
solubles
Sólidos
solubles
Filtración Destilación
Evaporación
Magnetismo
Centrifugación
Cristalización
Diferente
solubilidad
13
1.4 ¿Cómo saber si la muestra de una mezcla está más contaminada que otra?
Toma de decisiones relacionada con:
 Contaminación de una mezcla.
 Concentración y efectos.
Aprendizajes esperados
 Identifica que los componentes de una mezcla pueden ser contaminantes, aunque no sean
perceptibles a simple vista.
 Identifica la funcionalidad de expresar la concentración de una mezcla en unidades de
porcentaje (%) o en partes por millón (ppm).
 Identifica que las diferentes concentraciones de un contaminante, en una mezcla, tienen
distintos efectos en la salud y en el ambiente, con el fin de tomar decisiones informadas.
ACTIVIDAD 11.- Considerando el fragmento de la lectura “Criterios toxicológicos generalespara
los contaminantes químicos” del Doctor en Ciencias Químicas José Bartual Sánchez elabora un
organizador gráfico con las siguientes ideas:
Criterios para considerar una sustancia toxica
Clasificación de las sustancias según la estructura química
Clasificación según exposición y dosis
Tipos de efectos tóxicos
Criterios toxicológicos generales para los contaminantes químicos
Una sustancia es considerada toxica cuando tiene efectos nocivos sobre la salud, debido a su
presencia en el ambiente, en términos amplios, se entiende por acción tóxica o toxicidad a la
capacidad relativa de una sustancia para ocasionar daños mediante efectos biológicos adversos,
una vez que ha alcanzado algún punto susceptible del cuerpo.
Las substancias tóxicas pueden clasificarse de acuerdo con varios criterios. Uno de los criterios de
clasificación es la estructura química responsable de la toxicidad, ya que ésta no siempre es
debida a la composición global, sino que frecuentemente está originada por la presencia de la
molécula de un elemento determinado o de un grupo funcional característico. De este modo los
tóxicos pueden clasificarse según elementos químicos, grupos funcionales o bien
compuestos definidos, tal como se indica a continuación:
Elementos químicos: Compuestos de Arsénico, Bario, Berilio, Cadmio, Cobre, Cromo, Fósforo,
Manganeso, Mercurio, Níquel, Plomo, etc.
Grupos Funcionales: Compuestos con grupos aldehido, amido, amino, carboxilo, ester, éter,
isocianato, nitrilo, nitro, etc.
Compuestos definidos: Ácido nítrico, cloroformo, dióxido de azufre, fenol, fosgeno, monóxido de
carbono, sílice, etc.
Exposición y dosis: La presencia de un contaminante en el medio ambiente en el que se halla un
individuo origina la exposición de éste al contaminante en cuestión. La consecuencia de esta
exposición -exposición externa- es que cierta cantidad determinada del contaminante podrá
alcanzar o incorporarse al organismo del individuo, produciendo determinados efectos sobre el
mismo.
El concepto de exposición, como magnitud, integra dos factores variables diferentes; la
concentración o nivel de presencia del contaminante en el medio y el tiempo o duración de
la propia exposición. No obstante, ambos factores tienen interés propio, por lo cual se dice que la
exposición es más o menos intensa según sea la magnitud de la concentración del contaminante, y
se clasifican las exposiciones en agudas, subagudas y crónicas según su duración y frecuencia.
14
En general suelen distinguirse varios tipos principales de efectos tóxicos:
Corrosivo: Efecto de destrucción de los tejidos sobre los que actua el tóxico.
Irritativo: Efecto de irritación de la piel o las mucosas en los puntos en los que se produce el
contacto con el tóxico.
Neumoconiótico: Efecto de fibrosis pulmonar producido por partículas sólidas de determinadas
substancias insolubles en los fluidos biológicos.
Asfixiante: Efecto de anoxia producido por desplazamiento del oxígeno del aire (asfixiantes
físicos) o por alteración de los mecanismos oxidativos biológicos (asfixiantes químicos).
Sensibilizante: Efecto debido a una reacción de tipo alérgico del organismo ante la presencia del
tóxico, que puede manifestarse de múltiples formas (asma, dermatitis).
Cancerígeno, mutágeno y teratógeno: Efecto de producción de cáncer, modificaciones
hereditarias y malformaciones en la descendencia, respectivamente, debidas básicamente a la
inducción de cambios en los cromosomas de las células.
Sistémico: Alteraciones en órganos y sistemas específicos debidas a la acción sobre los mismos
del tóxico, una vez absorbido y distribuido por el cuerpo; incluye, por tanto, los efectos sobre el
sistema nervioso, sistema hematopoyético, hígado, riñones, etc.
ACTIVIDAD 12.- En determinadas mezclas se expresa la cantidad del soluto en ppm (partes por
millón) ¿qué ventajas tiene? En términos químicos, el café, el aire, o el agua de mar, son
soluciones porque en todos los casos, se trata de mezclas homogéneas de dos o más sustancias.
La sustancia disuelta se denomina soluto y está presente generalmente en pequeña cantidad en
comparación con la sustancia donde se disuelve denominada solvente.
La concentración de una solución puede expresarse en términos empíricos o cualitativos, o en
términos cuantitativos o numéricos. Por ejemplo, tu puedes decir mi limonada está "muy diluida" o
"muy concentrada", pero si quieres ser más específico, tendrías que expresar la concentración del
jugo de limón utilizando una expresión numérica muy precisa y por ende más exacta.
Algunas de estas formas cuantitativas de medir la concentración son las partes por millón (ppm)
que se utilizan como unidad para expresar concentraciones muy pequeñas de una sustancia
presente en una mezcla. Así, ppm es la cantidad de materia contenida en una parte sobre un total
de un millón de partes. Por ejemplo, si tienes una concentración de 10 ppm de jugo de limón en
una limonada, ésta ni siquiera se considera como tal, porque tendrías en promedio una media gota
de jugo de limón por cada mil litros de agua: El uso de las ppm es relativamente frecuente en la
medición de la composición de los gases de la atmósfera terrestre. Así el aumento de dióxido de
carbono en el aire debido al calentamiento global se suele dar en dichas unidades.
En el siguiente experimento vamos a obtener una mezcla con una parte por millón
Necesitas: una gradilla con 7 tubos de ensayo y un liquido con color fuerte (puede se un jugo de
Jamaica) y un agitador.
Debes lavar bien los tubos
Tubo Gotas de jugo Gotas de agua disolución Concentración (ppm)
15
1. En el primer tubo coloca 10 gotas del jugo
2. En el segundo tubo coloca 1 gota del jugo y 9 gotas de agua
3. En el tubo 3 agrega 1 gota del tubo 2 y 9 gotas de agua
4. En el tubo 4 agrega 1 gota del tubo 3 y 9 de agua
5. En el tubo 5 agrega 1 gota del tubo 4 y 9 de agua
6. En el tubo 6 agrega 1 gota del tubo 5 y 9 de agua
7. En el tubo 7 agrega 1 gota del tubo 6 y 9 de agua
En el tubo 2 si se pudiera dividir el liquido que tenemos en 1 millón de partes “veríamos” que la
decima parte de esta muestra o sea 1,000,000 entre 10 son 100,000 partes del jugo estarían
presentes o de otra manera el tubo 2 tiene 100,000 partes por millón de jugo.
El tubo 3 de la misma manera que el anterior “veíamos” que del millón de partes que dividimos la
muestra, la centésima partes es decir 10,000 partes del millón son de jugo y las restantes son de
agua.
Describe como es la concentración en los tubos siguientes:
Tubo 4:__________________________________________________________________
Tubo 5: _________________________________________________________________
Tubo 6: _________________________________________________________________
Tubo 7: _________________________________________________________________
1.5 Primera revolución de la química
Aportaciones de Lavoisier: la Ley de conservación de la masa.
Aprendizajes esperados
 Argumenta la importancia del trabajo de Lavoisier al mejorar los mecanismos de
investigación (medición de masa en un sistema cerrado) para la comprensión de los
fenómenos naturales.
 Identifica el carácter tentativo del conocimiento científico y las limitaciones producidas por
el contexto cultural en el cual se desarrolla.
Actividad 13.- INVESTIGACIÓN La ley de conservación de la masa, También conocido como
principio de conservación de la materia / masa es que el masa de un sistema cerrado (En el
sentido de un sistema completamente aislado) se mantendrá constante en el tiempo. La masa de
un sistema aislado no se puede cambiar como resultado de procesos que actúan dentro del
sistema. Una declaración similar es que la masa no puede ser creado / destruido, aunque se
pueden cambiar en el espacio, y se transforma en diferentes tipos de partículas. Esto implica que
para cualquier proceso químico en un sistema cerrado, la masa de los reactivos debe ser igual a la
masa de los productos.
1 10 0 1/1 1000000
2 1 9 1/10 100000
3 .1 9 1/100 10000
4 .01 9 1/1000 1000
5 .001 9 1/10000 100
6 .0001 9 1/100000 10
7 .00001 9 1/1000000 1
16
Reactivos
1.- Una tableta de alka-seltzer.
2.- Bicarbonato de sodio. Na2CO3 Compuesto formado por carbono, oxígeno y sodio. Polvo
(sólido).
3.- Ácido clorhídrico al 4% (aprox.). Diluido. Líquido.
4.- Agua destilada. H2O No conduce la energía eléctrica. Líquido.
Propósito: Comprobar la ley de la conservación de la materia, las masas permanecen constantes
después de los experimentos.
Coloque en un matraz Erlenmeyer 20 ml de agua destilada y 20 ml de ácido clorhídrico, empleando
la probeta.
En el mortero triture una tableta de alka-seltzer. A continuación vierta el polvo en el interior de un
globo, teniendo cuidado de que no quede en las paredes exteriores del mismo.
Embone la boca del globo con la del matraz Erlenmeyer, asegurándose de que no caiga alka-
seltzer dentro del matraz. Determine la masa de todo el sistema.
Levante el globo para que el alka-seltzer caiga dentro del matraz y espere a que la reacción que se
produce finalice.
Determine nuevamente la masa de todo el sistema.
17
1.6 Proyectos: ahora tú explora, experimenta y actúa (preguntas opcionales)* Integración y
aplicación
• ¿Cómo funciona una salinera y cuál es su impacto en el ambiente?
• ¿Qué podemos hacer para recuperar y reutilizar el agua del ambiente?
Aprendizajes esperados
 A partir de situaciones problemáticas plantea premisas, supuestos y alternativas de
solución, considerando las propiedades de los materiales o la conservación de la masa.
 Identifica, mediante la experimentación, algunos de los fundamentos básicos que se
utilizan en la investigación científica escolar.
 Argumenta y comunica las implicaciones sociales que tienen los resultados de la
investigación científica.
 Evalúa los aciertos y debilidades de los procesos investigativos al utilizar el conocimiento y
la evidencia científicos.
Actividad 14
El profesor Miguel Auge, de la UBA, sostuvo por su parte que sí bien la “desalinización” es una
alternativa para paliar el problema del agua, la salmuera que desecha es otro problema Y esto no
es solamente por las altas concentraciones de sal sino también por las otras sustancias químicas
que se utiliza durante el proceso. Esto implica que de adoptarse, la desalinización deberá contar
con estudios exhaustivos para conocer cada uno de los compuestos utilizados y así identificar y
mitigar sus efectos en el ambiente durante la descarga.
Hoy en día la planta de desalinización más importante encuentra en el Golfo Pérsico, en islas
donde el acceso al recurso es limitado y donde la gente está dispuesta a pagar precios altos por el
mismo. Alrededor de 130 países en todo el mundo están implementando algún proceso de
desalinización. Inclusive en algunas regiones del planeta casi toda el agua que se sume tiene su
18
origen en este sistema. Pero pese a estos avances y al creciente desarrollo tecnológico, la idea de
agua potable ilimitada proveniente de los océanos no deja de ser todavía un sueño. En 2005, el
total de agua producida a través de la desalinización en todo el mundo y a lo largo de todo el año
fue similar al consumo mundial de un par de horas.
Como vimos a lo largo de estas páginas, no se trata de desalinizar sino de utilizar de manera
racional los recursos que tenemos al alcance de nuestras manos. Para evitar que los pronósticos
catastrofistas de distintas organizaciones ambientales sobre el agua se cumplan, es fundamental
no derrochar los recursos que ya tenemos a nuestro alcance. Para eso la educación es un punto
central. En estos últimos años, pueden verse a través de los medios masivos de comunicación
cada vez más campañas en este sentido, además de notas gráficas y televisivas sobre pueblos
que padecen la falta de agua potable. El cambio, para evitar los pronósticos de las Naciones
Unidas, no sólo está en manos de las grandes potencias sino en lo que cada uno de nosotros haga
en su quehacer cotidiano.
MÉTODO DE DESALINIZACIÓN: El ingeniero químico Kamalesh Sirkar, profesor del Instituto
Tecnológico de New Jersey, y experto en la tecnología de separación de productos utilizando
membranas, dirige el grupo de especialistas. Sirkar posee más de 20 patentes en el campo de la
separación de productos utilizando esta técnica.
El nuevo proceso funcionará especialmente bien con aguas que presenten concentraciones de sal
por encima del 5,5 por ciento. Actualmente, este 5,5 por ciento es el porcentaje más alto de sal
contenido en agua que puede ser tratado usando el método de la ósmosis inversa.
Este nuevo proceso también es interesante porque puede activarse con fuentes de calor
alimentadas por desechos. Aunque este calor es muy barato, puede calentar la salmuera
eficazmente.
La ciencia detrás del proceso de Sirkar de destilación por membrana es simple. El calor económico
calienta el agua de la solución salina hasta su evaporación. El vapor limpio pasa entonces a través
de los poros de dimensiones nanométricas de la membrana para terminar condensándose en agua
fría, al otro lado de ella.
Los principios básicos de la separación por medio de membrana han sido conocidos durante
mucho tiempo. Los intestinos de los animales y los humanos son membranas semipermeables. Los
19
primeros experimentos para estudiar el proceso de separación usando membranas fueron
realizados por los químicos usando porciones de membranas animales.
Actualmente los procesos de separación por membranas dependen del diseño y el módulo de la
misma. El tamaño de los poros es a menudo importante para determinar qué componentes
moleculares en un líquido o forma gaseosa atravesarán la membrana. Usualmente las moléculas
fluyen de una región de alta a otra de baja concentración. Las diferencias de presión o
concentración en ambos lados de la membrana hacen que ocurra la separación. A medida que
disminuye el tamaño de los poros, la eficiencia y la selectividad de la membrana aumentan. Los
procesos de separación por membranas se usan en las industrias biomédica, biotecnológica,
química, alimentaria, petroquímica, farmacéutica y de tratamiento de agua para separar, purificar
y/o concentrar soluciones líquidas, suspensiones celulares o mezclas gaseosas.
El investigador prevé muchas aplicaciones futuras para su proceso; sin embargo, la desalinización
del agua de mar para producir agua potable siempre ha tenido un gran interés.
Proveemos de agua purificada bajo las marcas registradas Eutek y
Aquaker que es sometida a los siguientes procesos
Cloración
Filtración por lecho profundo
Filtración por carbón activado (Adsorción)
Desmineralización por Intercambio Iónico
Osmosis Inversa
Luz Ultravioleta
Pulido a 5 micras
Ozonización
Iones de plata
Pulido a 1 Micra con Adsorción por cartucho de carbón activado
Contamos con análisis de laboratorio certificado por SSA
20
AUTOEVALUACIÓN
INSTRUCCIONES: Subraya la respuesta correcta a cada cuestión.
1. Después de un juego de voleibol los integrantes de un equipo hacen los siguientes
comentarios:
María: tengo mucha sed quiero tomar un refresco embotellado.
Tony: estoy deshidratado necesito un refresco energético de los que no tienen azúcar.
Laurita: creo que los dos están equivocados deberían de tomar agua natural o agua de frutas
ya que no tiene nada de químicos, son naturales.
Rubén: creo que están mal, tanto el refresco embotellado, como el refresco energético y el
agua natural son productos químicos que aunque sean naturales, también forman parte del
campo de estudio de la Química.
Desde el marco de estudio de la Química; ¿cuál de las anteriores afirmaciones es la correcta?
A) María
B) Tony
C) Laurita
D) Rubén
2. Seleccione el modelo que representa la evaporación del agua.
A)
B)
C)
D)
3. Constituyen una parte fundamental del conocimiento científico.
A) Diagramas
B) Tablas
C) Modelos
D) Esquemas
4. ¿Cuál de las siguientes justificaciones expresa que es una de las mejores formas de producir
la ciencia?
A) El método experimental, porque a través de él se elaboran hipótesis, teorías y leyes.
B) El lenguaje utilizado por ser la mejor forma para explicar lo que sucede.
C) La clasificación porque permite ordenar sustancias.
21
D) La medición porque podemos comparar una magnitud con otra de la misma especie.
5. De las siguientes situaciones, escoge cuál evidencia la utilización del método científico, en la
vida diaria.
A) Este lunes, tienes que presentar dos exámenes, además debes entregar el reporte de la
práctica de laboratorio de la semana pasada, entonces en la computadora, elaboras un
cronograma de tus pendientes y los tiempos necesarios para efectuarlos.
B) Ayer, como todos los miércoles, consultaste tu horóscopo para saber cómo iba a ser tu
semana.
C) La vecina dice que mañana tendrá dinero, pues hoy jugará a la lotería y seguro ganará.
D) Mi amiga llegó hoy con los ojos llorosos y con cara triste. No pude hablar con ella, pero de
seguro murió algún familiar, pues su aspecto así lo denotaba.
6. Selecciona de los siguientes ejemplos el que aplica un conocimiento científico.
A) Anticipar la cantidad de sustancias que se necesita para hacer un guacamole.
B) Anticipar la cantidad de tiempo en el que ocurrirá un accidente.
C) Anticipar la cantidad de tiempo que se necesita para asar carne.
D) Anticipar la cantidad de sustancias que se necesita para elaborar jabón.
7. Seleccione las afirmaciones que expresan los factores que determinan el grado de toxicidad de
una sustancia.
1) La dosis hace el veneno
2) La sensitividad de los seres vivos
3) La excreción del organismo
4) La exposición a los tóxicos
5) El almacenamiento de los tóxicos en el organismo
A) 1, 2, 3,5
B) 1,3, 4,5
C) 1, 2, 3,4
D) 2, 3, 4,5
8. ¿Qué significa la noción de que “la dosis hace al veneno”?
A) Todas las sustancias son tóxicas
B) Las sustancias naturales no son tóxicas
C) Una sustancia puede ser benéfica en bajas cantidades y tóxica en altas
D) Una sustancia es tóxica sólo cuando se ingiere la concentración máxima aceptada.
22
9. ¿Cómo se llama el método para determinar la concentración máxima de sustancias
contaminantes que se encuentran en el agua y el medio ambiente?
A) Partes por millón
B) Porcentaje masa/volumen
C) Partes por mil
D) Normalidad
10. Carlos después de limpiar una alberca, le tiene que agregar cloro para que el agua tenga las
condiciones adecuadas de higiene, conociendo la capacidad que tiene de agua (100,000 l)
leyendo las especificaciones que marcan 2 ppm ¿Qué cantidad de cloro en polvo debe
agregar?
A) 20 g
B) 200 g
C) 20 mg
D) 200 mg
11. Si Carlos tuviera que agregar kilogramos, ¿Cuántos tendría que añadir?
A) 0.2 Kg
B) 20 Kg
C) 2 Kg
D) 200 Kg
12. De acuerdo con las propiedades de las partículas de las sustancias, escoge la respuesta más
adecuada al planteamiento siguiente: “Los líquidos tienen forma definida, pero los gases no”
A) Los líquidos tienen sus partículas más separadas que los gases.
B) Los gases tienen las partículas más separadas que los líquidos.
C) Los líquidos y los gases tienen sus partículas igual de separadas, pero las partículas de los
líquidos pesan más.
D) Los líquidos pueden fluir, pero los gases no.
13. De los siguientes enunciados, determina ¿cuáles representan cambios químicos y cuáles son
sólo cambios físicos?
1. Durante una práctica de laboratorio, Paco corta en pedacitos, una cinta de magnesio.
2. Mamá desmancha mi bata de prácticas con cloro.
3. Pusimos pedacitos de hígado de pollo en una botella y le agregamos agua oxigenada,
después metimos un palillo con un punto de ignición y éste se encendió vivamente.
4. En el comal de la estufa, pusimos sal de cocina humedecida a calentar, hasta que se
desecó toda.
A) 1, 2 y 3 son cambios físicos
23
B) 1 y 4 son cambios físicos
C) 2, 3 y 4 son cambios químicos
D) 1, 2 y 4 son cambios químicos
14. Reconoce la propiedad que hace posible la escena de la fotografía en el Mar Muerto.
A) Masa
B) Volumen
C) Peso
D) Densidad
15. De acuerdo al lenguaje científico, ¿cuál es la expresión correcta para: sus aguas son mucho
más pesadas que el agua de mar ordinaria?
A) Sus aguas son más densas
B) Sus aguas tienen más masa
C) Sus aguas son más duras
D) Sus aguas tienen más volumen
16. Elige la propiedad de la materia que relaciona el peso específico.
A) Masa/volumen
B) Peso/volumen
C) Volumen/masa
D) Masa/peso
17. De los siguientes ejemplos, determina cuál opción incluye una propiedad extensiva y una
intensiva de la materia
A) Densidad, punto de ebullición
B) Masa, volumen
C) Viscosidad, dureza
D) Masa, punto de fusión
18. Revolvemos tres sustancias que no se mezclan entre sí. Cuando se asientan, observamos que
se forman tres capas perfectamente delineadas. De acuerdo a lo que sabes sobre densidad,
escoge la opción correcta.
A) La sustancia A es más densa que la sustancia C, pero menos densa que la sustancia B
B) La sustancia A es la menos densa de todas
C) La sustancia C es la menos densa de todas
D) La sustancia B y la sustancia C tienen iguales densidades
24
A Teresa le piden que realice un experimento para investigar el punto de ebullición del agua,
sin embargo, tiene poco tiempo para realizarlo; sus compañeros le comentan lo siguiente:
A) Paco le dice que utilice poca agua para que el punto de ebullición sea menor y tarde poco.
B) Ana: No, entre más agua menor será el punto de ebullición.
C) Estela: El punto de ebullición no cambia con la cantidad de agua.
D) Pedro: Todos se equivocan, mejor haz el experimento.
19. Considerando las propiedades de la materia. ¿Cuál de las afirmaciones es la correcta?
A) Paco
B) Ana
C) Estela
D) Pedro
20. Lea la siguiente práctica experimental y subraye la respuesta correcta según corresponda.
Llena un globo grande con 5g.de bicarbonato de sodio (NaHCO3).Por otro lado, en un matraz
de 125 ml coloca 30 ml de vinagre (CH3COOH).Coloca el globo en la boca del matraz sin que
el bicarbonato caiga al vinagre y pesa el sistema. Sin quitar el globo vacía su contenido al
matraz, observa que sucede y vuelve a pesarlo sin quitar el globo.
A) Pesan lo mismo todas las sustancias antes y después de la reacción.
B) Pesan más las sustancias producidas.
C) Pesan más las sustancias reactivas.
D) Pesan dos veces más los productos que los reactivos.
21. De los líquidos abajo enlistados, ¿cuáles no son mezclas?
A) Oro, plata, bronce
B) Polietileno, alcohol, mayonesa
C) Sal, azufre, agua
D) Aluminio, acero, mercurio
22. En el laboratorio, ¿qué nombre recibe el método para obtener agua pura?
A) Potabilización
B) Destilación
C) Sedimentación
D) Ozonización
25
BLOQUE II
LAS
PROPIEDADES
DE LOS
MATERIALES Y
SU
CLASIFICACIÓN
QUÍMICA
Bloque II. Las propiedades de los materiales y su clasificación química.
En este bloque se utiliza el modelo corpuscular como herramienta fundamental para avanzar en la
comprensión de las características de los materiales. Con la aplicación de este modelo se
representan los materiales para diferenciar entre mezclas y sustancia puras: compuestos y
elementos.
Asimismo, se avanza en la comprensión de la estructura interna de los materiales al representarlos
e interpretarlos por medio de la construcción de modelos: atómico y enlace químico.
Se plantea la identificación de las propiedades de los metales para favorecer la toma de decisiones
relacionada con las cuatro “R” (rechazar, reducir, reusar y reciclar), lo que repercutirá en acciones
de cuidado ambiental.
26
En la segunda revolución de la química se consideran las aportaciones de Stanislao Cannizzaro y
Dimitri Mendeleiev en la sistematización y organización de los elementos químicos.
También se propone la identificación de regularidades del sistema de clasificación del
conocimiento químico: la Tabla periódica, para relacionarla con las propiedades de los elementos
químicos representativos y su importancia para los seres vivos.
Se presenta una primera aproximación a los modelos de enlace iónico y covalente, así como su
relación con las propiedades de las sustancias.
Los proyectos que se sugieren permiten identificar la importancia de los elementos químicos en el
cuerpo humano, y sus implicaciones en la salud o el ambiente.
Competencias que se favorecen:
 Comprensión de fenómenos y procesos naturales desde la perspectiva científica •
 Toma de decisiones informadas para el cuidado del ambiente y la promoción de la salud
orientadas a la cultura de la prevención
 Comprensión de los alcances y limitaciones de la ciencia y del desarrollo tecnológico en
diversos contextos.
Contenidos:
2.1 Clasificación de los materiales
2.2 Estructura de los materiales
2.3 ¿Cuál es la importancia de rechazar, reducir, reusar y reciclar los metales?
2.4 Segunda revolución de la química
2.5 Tabla periódica: organización y regularidades de los elementos químicos
2.6 Enlace químico
2.7Proyectos: ahora tú explora, experimenta y actúa (preguntas opcionales)* Integración y
aplicación
2.1 Clasificación de los materiales
 Mezclas y sustancias puras: compuestos y elementos.
Aprendizajes esperados:
 Establece criterios para clasificar materiales cotidianos en mezclas, compuestos y
elementos considerando su composición y pureza.
 Representa y diferencia mezclas, compuestos y elementos con base en el modelo
corpuscular.
27
ACTIVIDAD 1. Investiga en tu libro de texto de ciencias III, el tema de mezclas y sustancias puras:
compuestos y elementos. En un cuadro de doble entrada escribe los conceptos de compuesto,
elemento, mezcla homogénea y heterogénea en plenaria presentarlo al grupo. (Uso de Tics)
Concepto Compuesto Elemento
Características
Concepto Mezcla homogénea Mezcla heterogénea
Características
2.2 Estructura de los materiales
 El modelo atómico de Bohr
 El enlace químico.
Aprendizajes esperados:
 Identifica los componentes del modelo atómico de Bohr (protones, neutrones y electrones),
así como la función de los electrones de valencia para comprender la estructura de los
materiales.
 Representa el enlace químico mediante los electrones de valencia a partir de la estructura
de Lewis.
 Representa mediante la simbología química elementos, moléculas, átomos, iones (aniones
y cationes).
ACTIVIDAD 2. Para facilitar el estudio de los elementos químicos se recomiendan las hojas de
trabajo “Modelo atómico y electrones de valencia” (Enseñanza de las ciencias a través de modelos
matemáticos. Química, México, 2000, pp. 74-76.) en donde se muestra que los electrones se sitúan
en diferentes capas.
Analiza el video “El átomo”, de la colección El mundo de la química, vol.III, contiene la explicación
de la constitución del átomo mediante la simulación por computadora.
28
Investiga en tu libro de texto o en alguna otra fuente de información los siguientes conceptos:
Partículas del átomo Concepto
Protón
Neutrón
Electrón
Figura. 2a. Átomo de oxígeno
ACTIVIDAD 3. De acuerdo al modelo atómico de Bohr, dibuja la estructura de los siguientes
elementos y escribe el número de electrones, protones y neutrones correspondientes.
29
Elemento
Modelo atómico
de Bohr
Número de
electrones
Número de
protones
Número de
neutrones
Na
Al
Cl
Ca
ACTIVIDAD 4. Investiga en tu libro de texto, en internet o en cualquier otra fuente de información
los siguientes conceptos.
Concepto
Electrón de valencia
Enlace químico
Estructura de Lewis
30
Los alumnos en forma individual con la ayuda de la tabla periódica, completarán la siguiente tabla.
Elemento Electrones de valencia Estructura de Lewis
Litio
Magnesio
Aluminio
Fósforo
Cloro
Argón
Calcio
Sodio
Hidrógeno
Oxígeno
Carbono
Azufre
Bromo
Fluor
Cs
Las siguientes estructuras del átomo serán de utilidad a los alumnos para contestar algunas de las
actividades aquí planteadas.
Figura 2b. Estructura electrónica de los átomos Figura 2c. El núcleo y los electrones
31
Figura 2d. Estructura electrónica de los átomos Figura 2e. Electrones de
valencia y de core
ACTIVIDAD 5. En binas los alumnos completaran la siguiente tabla, escribiendo el número de
electrones de valencia correspondiente a cada familia de la tabla periódica.
Nº de electrones Familia
IA
IIA
IIIA
IVA
VA
VIA
VIIA
Tabla 2f. Electrones de valencia y capacidad de combinación
ACTIVIDAD 6. Los alumnos en binas consultando la tabla periódica completarán lo siguiente.
Nombre del elemento o compuesto Símbolo o fórmula Modelo molecular
Hidrógeno
Oxígeno
Potasio
32
Nitrógeno
Agua
Ácido clorhídrico
Cloruro de sodio
Bromuro de magnesio
Fluoruro de aluminio
2.3 ¿Cuál es la importancia de rechazar, reducir, reusar y reciclar los metales?
 Propiedades de los metales
 Toma de decisiones relacionada con: rechazo, reducción, reuso y reciclado de metales.
Aprendizajes esperados:
 Identifica algunas propiedades de los metales (maleabilidad, ductilidad, brillo, conductividad
térmica y eléctrica) y las relaciona con diferentes aplicaciones tecnológicas.
 Identifica en su comunidad aquellos productos elaborados con diferentes metales (cobre,
aluminio, plomo, hierro), con el fin de tomar decisiones para promover su rechazo,
reducción, rehúso y reciclado.
Metales como el oro, la plata y el cobre, fueron utilizados desde la prehistoria. Al principio,
sólo se usaron los que se encontraban en estado puro (en forma de elementos nativos),
pero gradualmente se fue desarrollando la tecnología necesaria para obtener nuevos
metales a partir de sus menas, calentándolos en un horno mediante carbón de madera.
El primer gran avance se produjo con el descubrimiento del bronce, producto de la
utilización de mineral de cobre con incursiones de estaño, entre 3500 a. C. y 2000 a. C., en
diferentes regiones del planeta, surgiendo la denominada Edad del Bronce, que sucede a
la Edad de Piedra.
Otro hecho importante en la historia fue la utilización del hierro, hacia 1400 a. C. Los hititas
fueron uno de los primeros pueblos en utilizarlo para elaborar armas, tales como espadas,
y las civilizaciones que todavía estaban en la Edad del Bronce, como los egipcios.
Los metales se diferencian de los elementos, principalmente por el tipo de enlace que
constituyen sus átomos. Se trata de un enlace metálico y en él los electrones forman una
«nube» que se mueve, rodeando todos los núcleos. Este tipo de enlace es el que les
confiere las propiedades conducción eléctrica, brillo,
33
ACTIVIDAD 7. En binas los alumnos investigaran en su libro de texto, internet o en la biblioteca de
aula, las siguientes propiedades de los metales. Al concluir en plenaria los alumnos darán a
conocer su trabajo.
2.4 Segunda revolución de la química
- El orden en la diversidad de las sustancias: aportaciones del trabajo de Cannizzaro y
Mendeleiev.
Mendeleiev pertenece a la nueva generación de químicos que sigue un método de trabajo
científico, que basan sus juicios en la experimentación rigurosa y que se benefician de los
Propiedad metálica Concepto
Maleabilidad
Ductilidad
Brillo
Conductividad térmica
Conductividad eléctrica
34
logros de sus colegas, con los que intercambia conocimientos. En el siglo XIX los
investigadores comienzan a poner en común sus hallazgos en publicaciones
especializadas y en congresos, como el de Karlsruhe de 1860, que sería fundamental para
Mendeléiev a la hora de construir su tabla periódica. De hecho, sin la revisión de los pesos
atómicos de determinados elementos propuesta por Cannizzaro en este congreso,
Mendeléiev no hubiera podido encontrar la pauta que ordena los elementos en su Tabla. El
gran mérito de Mendeléiev, y también de Meyer, fue descubrir que una clasificación de los
elementos según su peso atómico revela la repetición periódica de algunas propiedades
fundamentales. Pero, a diferencia del alemán, el químico ruso se atrevió a pronosticar la
existencia de nuevos elementos en los huecos, aparentemente inexplicables, que dejaba
su tabla, y anticipó las características que tendrían: su peso atómico, su valencia, su peso
específico o su comportamiento ante los ácidos. Mendeléiev bautizó estos elementos como
eka-aluminio, eka-silicio y eka-boro. Eka es un prefijo procedente del sánscrito que significa
«uno».
Extraído desde http://www.exploralaciencia.profes.net/ver_noticia.aspx?id=9728 el 22 de
noviembre de 2009.
ACTIVIDAD 8. Investiga en tu libro de texto o en alguna otra fuente de información las principales
aportaciones de Mendeléiev y Cannizzaro.
Científico Aportación
Mendeléiev
Cannizzaro
2.5 Tabla periódica: organización y regularidades de los elementos químicos
 Regularidades en la Tabla Periódica de los elementos químicos representativos.
 Carácter metálico, valencia, número y masa atómica.
 Importancia de los elementos químicos para los seres vivos.
Aprendizajes esperados:
 Identifica la información de la tabla periódica, analiza sus regularidades y su importancia en
la organización de los elementos químicos.
 Identifica que los átomos de los diferentes elementos se caracterizan por el número de
protones que los forman.
 Relaciona la abundancia de elementos (C, H, O, N, P, S) con su importancia para los seres
vivos.
Se recomienda revisar el video “La Tabla Periódica” de la colección El mundo de la química, vol.4.
En el año 1869 Mendeleiev clasifico todos los elementos conocidos en su época en orden
creciente de sus masas atómicas. La ley periódica de Mendeleiev establece lo siguiente "Las
propiedades químicas y la mayoría de las propiedades físicas de los elementos son función
periódica de sus masas atómicas".
35
Los elementos que componen la tabla periódica están distribuidos en 7 renglones horizontales
llamados periodos, y de 18 columnas verticales llamadas grupos.
Los períodos están formados por un conjunto de elementos que teniendo propiedades químicas y
físicas diferentes varían gradualmente; manteniendo en común el presentar igual número de
niveles con electrones en su alrededor.
Los grupos están formados por elementos que tienen propiedades químicas semejantes, así
tenemos el grupo de los metales alcalinos, metales alcalino-térreos, no metales.
A través de la tabla periódica se facilita el estudio sistemático de los elementos, se conoce la
valencia de un elemento por su ubicación en los grupos.
Figura 2g.
Abundancia de los elementos
químicos en la corteza terrestre
ACTIVIDAD 9. Los alumnos en forma individual, con el apoyo de la Tabla Periódica completarán la
siguiente tabla.
Nombre de los
metales alcalinos
Símbolo
Número de
electrones
Número de
protones
Número de
neutrones
36
ACTIVIDAD 10. En los seres vivos destacan cuatro elementos fundamentales éstos son: carbono
(C), hidrógeno (H), oxígeno (O) y nitrógeno (N). Los cuatro elementos forman el 97.4% del
organismo de los seres vivos.
En equipos de cuatro alumnos investigarán el porcentaje de cada uno de los elementos en los
seres vivos y completarán la siguiente tabla.
Elemento Porcentaje Grupo No. Atómico
Electrones de
valencia
Estructura de
Lewis
Carbono
Hidrógeno
Oxígeno
Nitrógeno
ACTIVIDAD 11. Los alumnos organizados en binas escribirán dos ejemplos de productos
elaborados con los siguientes metales: cobre, aluminio, plomo y hierro
Metales Productos
Cobre
Aluminio
Plomo
Hierro
Plata
Oro
Zinc
Níquel
Platino
2.6 Enlace químico
37
 Modelos de enlace: covalente e iónico.
 Relación entre las propiedades de las sustancias con el modelo de enlace: covalente e iónico.
Aprendizajes esperados:
 Identifica las partículas e interacciones electrostáticas que mantienen unidos a los átomos.
 Explica las características de los enlaces químicos a partir del modelo de compartición
(covalente) y de transferencia de electrones (iónico).
 Identifica que las propiedades de los materiales se explican a través de su estructura
(atómica, molecular).
TIPOS DE ENLACES QUÍMICOS
 Enlace iónico
 Enlace covalente Polar
No polar
 Enlace metálico
Actividad 12. Los alumnos investigarán en su libro de texto, internet o en la biblioteca de aula los
siguientes conceptos: enlace químico, enlace iónico, enlace covalente, enlace covalente polar y no
polar completando la siguiente tabla.
Tipo de enlace Concepto
Enlace químico
Iónico
Covalente
Covalente polar
Covalente no polar
Metálico
Actividad 13. En equipos formados por cuatro alumnos, investigarán en su libro de texto, internet
o en la biblioteca de aula, las características generales de los compuestos iónicos, covalentes y
metálicos completando la siguiente tabla.
38
Compuestos Propiedades generales
Iónicos
Covalentes
Metálicos
Después de las investigaciones realizadas sobre los diferentes tipos de enlaces, completa el
siguiente cuadro.
Nombre del compuesto Fórmula Tipo de enlace Estructura de Lewis
Cloruro de sodio
Bromuro de potasio
Yoduro de litio
Fluoruro de calcio
Cloruro de magnesio
Fluoruro de berilio
Yoduro de aluminio
Óxido de litio
Oxido magnesio
Óxido de boro
Sulfuro de potasio
Dióxido de carbono
Agua
2.7 Proyectos: ahora tú explora, experimenta y actúa (preguntas opcionales)*
Integración y aplicación.
 ¿Cuáles elementos químicos son importantes para el buen funcionamiento de nuestro cuerpo?
 ¿Cuáles son las implicaciones en la salud o el ambiente de algunos metales pesados?
Aprendizajes esperados:
 A partir de situaciones problemáticas, plantea preguntas, actividades a desarrollar y
recursos necesarios, considerando los contenidos estudiados en el bloque.
 Plantea estrategias con el fin de dar seguimiento a su proyecto, reorientando su plan en
caso de ser necesario.
 Argumenta y comunica, por diversos medios, algunas alternativas para evitar los impactos
en la salud o el ambiente de algunos contaminantes.
 Explica y evalúa la importancia de los elementos en la salud y el ambiente.
39
El proyecto estudiantil deberá permitir el desarrollo, integración y aplicación de aprendizajes
esperados y de competencias. Es necesario destacar la importancia de desarrollarlo en cada
cierre de bloque; para ello debe partirse de las inquietudes de los alumnos, con el fin de que
elijan una de las opciones de preguntas para orientarlo o, bien, planteen otras. También es
importante realizar, junto con los alumnos, la planeación del proyecto en el transcurso del bloque,
para desarrollarlo y comunicarlo durante las dos últimas semanas del bimestre. Asimismo, es
fundamental aprovechar la tabla de habilidades, actitudes y valores de la formación científica
básica, que se localiza en el Enfoque, con la intención de identificar la gama de posibilidades que
se pueden promover y evaluar.
AUTOEVALUACIÓN
1. De la siguiente lista de materiales clasifícalos como homogéneos o heterogéneos.
Relaciona las dos columnas.
Mezclas Materiales
1.Homogéneas a) Sopa de verduras
a) Sopa de verduras
2.Heterogéneas b) Bronce
b) Perfume
c) Bronce
d) Madera
e) Gasolina
a) 1a, 1d, 1e, 2b, 2c
b) 2a, 2d, 2b, 2e, 1b
c) 1b, 2d, 2a, 1c, 1e
d) 1b, 1c, 1a, 1e, 1d
2. A continuación se te presenta una relación de mezclas, compuestos y elementos.
Relaciona las dos columnas.
1.Mezcla a) Ladrillo
2. Elemento b) H2O
3. Compuesto c) Agua con aceite
d) NaCl
e) Hg
a) 1a, 1c, 1e, 2b, 3d
b) 2e, 2d, 1a, 3c, 3b
c) 2e, 3d, 1b, 2a, 3c
d) 2e, 3b, 1c, 3d, 1a
40
3. Para clasificar las sustancias se pueden utilizar cualquiera de los criterios que se encuentran
en las opciones. Por ejemplo el Au, la Ag, el Cu se consideran sustancias puras debido a.
a) Composición
b) Toxicidad
c) Conductividad
d) Estado físico
4. De la lista de elementos que se te proporcionan, selecciona los que pertenecen al grupo II A.
1 Mg, 2 Na, 3 Ca, 4 Al, 5 K
a) 1 y 2
b) 1 y 3
c) 4 y 5
d) 1 y 5
5. Tipo de enlace que se define como la fuerza de unión que existe entre dos átomos, debido a
la transferencia total o parcial de electrones para adquirir ambos la configuración electrónica
estable correspondiente a los gases inertes.
a) Químico
b) Covalente
c) Iónico
d) Metálico
6. Son una forma útil de mostrar los electrones de valencia de los átomos, su representación es
el símbolo del elemento, más un punto por cada electrón de valencia.
a) Estructura molecular
b) Estructura atómica
c) Estructura de Lewis
d) Estructura metálica
7. La ductilidad y la maleabilidad son propiedades muy importantes que corresponden a.
a) Los metaloides
b) Los metales
c) No metales
d) Metales de transición
8. ¿Qué establece la ley periódica de Mendeleiev?
a) La capacidad que tienen los elementos para combinarse
b) El orden de los elementos según la cantidad de electrones
c) Las regularidades entre los pesos moleculares
d) La repetición de las propiedades de los elementos conocidos
41
9. Selecciona el conjunto de elementos representativos de la Tabla Periódica.
a) Mn, Cu, Hg
b) Li, Al, F
c) Ca, Zn, Au
d) P, Be, Ag
10. Los alumnos de la profesora Estelita, al estar estudiando el modelo atómico de Bohr
comprendieron la procedencia de los electrones y protones; se plantearon la pregunta de cómo
calcular el número de protones de un átomo. De las siguientes ecuaciones subraya la correcta.
a) A = P(+) + n+-
b) Z = P(+) – A
c) n+- = Z + P(+)
d) n+- = A – P(+)
11. El elemento potasio tiene un numero atómico de 19 y una masa atómica de 39.02, con estos
datos la maestra Estelita les pidió a sus alumnos calcular el número de neutrones. Subraya la
respuesta correcta.
a) 20
b) 21
c) 19
d) 22
12. En el laboratorio de química la maestra Estelita seleccionó un elemento metálico con las
siguientes características: número de neutrones 14 y número de protones 13. ¿Cuál es el
elemento que seleccionó la maestra?
a) Si
b) Mg
c) Al
d) P
13. Los elementos que componen la tabla periódica están distribuidos en 7 renglones
horizontales llamados periodos y 18 columnas llamadas grupos.
¿Qué tienen en común los elementos F, Cl, Br, I, At?
a) Tienen 1 electrón de valencia
b) Tienen 2 electrones de valencia
c) Tienen 6 electrones de valencia
d) Tienen 7 electrones de valencia
42
14. El orden actual de los elementos en la tabla periódica es creciente de acuerdo al número
atómico (Z). ¿Qué dato proporciona este número?
a) Los subniveles de energía
b) La cantidad de protones
c) La masa atómica
d) Número de orbitales
15. ¿Cuáles son las partículas elementales que intervienen en la formación de los enlaces
químicos?
a) Protones
b) Neutrones
c) Electrones
d) Positrones
16. En la tabla periódica se encuentran diferentes tipos de elementos, entre ellos metales, no
metales, metales de transición interna. A los elementos que presentan características de
metales y no metales se les conoce con el siguiente nombre.
a) Metaloides
b) Aleaciones
c) Alcalinos
d) Gases nobles
17. Al reaccionar los elementos de grupo 1 A metales alcalinos, con los elementos del grupo VII A
halógenos, se obtienen compuestos con el siguiente tipo de enlace.
a) Covalente
b) Metálico
c) Covalente polar
d) Iónico
En el estudio de los enlaces químicos, se han manejado los modelos de enlace iónico y covalente,
cada uno presenta diferentes procesos en la transferencia o compartición de los electrones.
De acuerdo a lo anterior contesta las preguntas 18 y 19.
18. Así se le llama al enlace químico que se forma al compartirse un par de electrones.
a) Iónico
b) Metálico
c) Covalente
d) Coordinado
43
19. Tipo de enlace que se forma por transferencia completa de electrones.
a) Iónico
b) Covalente
c) Coordinado
d) Metálico
20. ¿Por qué el oxígeno del agua se enlaza con dos átomos de hidrógeno, y no con tres o más
átomos de ese elemento?
a) El oxígeno tiene valencia 8
b) El oxígeno tiene valencia 4
c) El oxígeno tiene valencia 2
d) El oxígeno tiene valencia 6
21. En toda reacción química se llevan a cabo rupturas y formación de enlaces. Al formarse un
enlace ¿cuántos electrones tienden a tener los elementos en su capa externa para presentar
una configuración estable?
a) 8
b) 4
c) 2
d) 1
22. De los elementos que se te presentan a continuación, ¿cuál presenta una configuración estable?
a) Na
b) N
c) Kr
d) Br
23. El sodio, es un metal blando plateado, reacciona con el cloro, un gas verdoso, para formar el
cloruro de sodio (sal de mesa).
Indica el tipo de enlace que presenta el cloruro de sodio.
a) Covalente
b) Iónico
c) Polar
d) Metálico
44
24. El ácido clorhídrico, también llamado ácido muriático es una disolución acuosa del gas cloruro
de hidrógeno. Es un ácido muy fuerte y muy corrosivo, se disocia completamente en
disolución acuosa.
Indica el tipo de enlace que presenta el ácido clorhídrico.
a) Iónico
b) Metálico
c) Coordinado
d) Covalente
25. Este tipo de elementos de la tabla periódica, no reaccionan con otros elementos, se utilizan en
los anuncios luminosos, en los que están expuestos a altas temperaturas y altos voltajes sin
dificultad alguna.
a) Alcalinotérreos
b) Gases nobles
c) Halógenos
d) Alcalinos
45
BLOQUE III. LA TRANSFORMACIÓN DE LOS
MATERIALES: LA REACCIÓN QUÍMICA
46
En este bloque se aborda la identificación del cambio químico y se orienta al tratamiento de
reacciones químicas sencillas que ocurren en fenómenos cotidianos utilizando, entre otras
habilidades, la interpretación y representación. Asimismo, se destaca que en una reacción química
se absorbe y desprende calor; este tema se vincula con el aporte calórico de los alimentos, para
que se favorezca la toma de decisiones informadas relacionadas con la importancia de mantener
una alimentación correcta.
La tercera revolución de la química destaca la importancia de los trabajos de Gilbert N. Lewis, al
proponer que en el enlace químico los átomos adquieren una estructura estable en la formación de
compuestos, y de Linus Pauling, al identificar el tipo de enlace (covalente o iónico) por medio de la
tabla de electronegatividad.
Respecto a los compuestos químicos, se puntualiza que su transformación se lleva a cabo en una
enorme cantidad de átomos susceptibles de ser contabilizados con una unidad de medida.
Los proyectos sugieren el fortalecimiento de habilidades, como el planteamiento de preguntas,
predicciones y explicaciones cercanas al conocimiento científico; la búsqueda de evidencias; la
identificación de variables; la interpretación de experimentos; el análisis de resultados a partir de la
elaboración de jabones, y la obtención de energía en el cuerpo humano.
Contenidos:
3.1 Identificación de cambios químicos y el lenguaje de la química
 Manifestaciones y representación de reacciones químicas (ecuación química).
3.2 ¿Qué me conviene comer?
 La caloría como unidad de medida de la energía.
 Toma de decisiones relacionada con: Los alimentos y su aporte calórico.
3.3 Tercera revolución de la química
 Tras la pista de la estructura de los materiales: aportaciones de Lewis y Pauling.
 Uso de la tabla de electronegatividad.
3.4 Comparación y representación de escalas de medida
 Escalas y representación.
 Unidad de medida: mol.
3.5 Proyectos: ahora tú explora, experimenta y actúa (preguntas opcionales)
*Integración y aplicación
 ¿Cómo elaborar jabones?
 ¿De dónde obtiene la energía el cuerpo humano?
47
COMPETENCIAS QUE SE FAVORECEN: comprensión de fenómenos y procesos
naturales desde la perspectiva científica. Toma de decisiones informadas para el
cuidado del ambiente y la promoción de la salud orientadas a la cultura de la
prevención. Comprensión de los alcances y limitaciones de la ciencia y del
desarrollo tecnológico en diversos contextos.
CONTENIDO 3.1: IDENTIFICACIÓN DE CAMBIOS QUÍMICOS Y EL LENGUAJE
DE LA QUÍMICA
Actividad:
Propósito: identificar las características de las reacciones químicas en productos
del entorno.
Necesitarás los siguientes materiales que pueden reunir en equipo o en binas.
MATERIALES SUSTANCIAS
 Un plato pequeño * un sobre de bicarbonato de sodio
 Un vaso de vidrio * un limón
 Una cuchara metálica * un poco de azúcar granulada
 Cuchillo * una pastilla efervescente
 Cuchara sopera
 Cuchara grande
 Parrilla de gas o mechero de alcohol sólido
 Trapo para limpiar/servilletas de papel
PROCEDIMIENTO:
a) Coloquen en un plato una cucharada de bicarbonato de sodio y anoten en
la tabla de abajo sus propiedades físicas.
b) Corten el limón con el cuchillo (con cuidado), expriman un poco de jugo en
el vaso y después anoten en el cuadro de abajo, sus propiedades físicas.
c) A continuación, viertan el jugo de limón sobre el bicarbonato que se
encuentra en el plato. Describan lo que sucede.
__________________________________________________________________
__________________________________________________________________
__________________________________________________________________
__________________________________________________________________
____________________________________________________
Propiedades
físicas
Color Olor Sabor Estado de
agregación
Bicarbonato
48
de sodio
Jugo de limón
Agua
Pastilla
efervescente
Cerillo
Lija de la caja
de cerillos
d) En el vaso de vidrio, coloquen agua hasta la mitad, retiren la envoltura de la
pastilla efervescente. Anoten las propiedades físicas del agua y de la
pastilla. Inicien la reacción depositando la pastilla en el vaso con agua.
Describan sus observaciones detalladamente.
__________________________________________________________________
__________________________________________________________________
__________________________________________________________________
________________________________________.
e) Ahora, saquen un cerillo de la caja, anoten sus propiedades físicas, así
como la parte donde se frota el cerillo. Con cuidado, froten la cabeza del
cerillo contra la lija de la caja para encenderlo. Escriban debajo qué ocurrió,
así como los productos resultantes.
__________________________________________________________________
__________________________________________________________________
__________________________________________________________________
_________________________________________.
f) Coloquen un poco de azúcar en la cuchara metálica. Anoten las
propiedades físicas del azúcar en el cuadro de arriba. Después, llévenlo a
calentamiento a fuego lento. Después de observar cambios en el azúcar,
retírenlo del fuego y comenten lo sucedido.
____________________________________________________________
____________________________________________________________
____________________________________________________________
___________________________________________________________.
49
CONTENIDO 3.1: Identificación de cambios químicos y el lenguaje de la química
Aprendizajes esperados:
Representa el cambio químico mediante una ecuación e identifica la información que contiene.
Verifica la correcta expresión de la ecuación química utilizando el principio de conservación de la
masa y la valencia.
ACTIVIDAD 3.1.1: Modelos de Lewis
Formar equipos de cuatro o cinco integrantes. Con ayuda de la tabla periódica completen la
siguiente tabla.
Tabla 1
Elemento Símbolo Grupo
# de electrones
de valencia
Modelo de Lewis
Boro
Hidrógeno
Nitrógeno
Oxígeno O VI A 16 6
Cloro
Flúor
Carbono
Helio
Magnesio
Aluminio
50
Intercambien sus trabajos con otro equipo. Revisen el que recibieron. Si se presentan dudas,
pregunten a su profesor(a).
ACTIVIDAD 3.1.2.: ¿Qué representa una ecuación química?
Para esta actividad deben contar con material para construir modelos tridimensionales de algunos
compuestos: plastilina de colores, (o bolitas de unicel o dulces o chicles) y palillos de madera.
Es necesario reflexionar en cuanto a los alcances y limitaciones que presenta cada modelo para
explicar ciertos fenómenos químicos.
Las reacciones químicas ocurren porque las moléculas se están moviendo y, cuando ocurren las
colisiones de unas contra otras, los enlaces se rompen y los átomos se unen a otros para formar
nuevas moléculas. Este proceso se representa mediante una ecuación química.
La ecuación química es una forma esquemática y sencilla de expresar, con símbolos y fórmulas,
los cambios que ocurren en el transcurso de una reacción.
Formar equipos de cuatro o cinco integrantes y realizar las siguientes actividades.
Leer el siguiente texto que muestra un ejemplo de reacción química, representada con su
respectiva ecuación, y realizar lo que se indica. Si ustedes usan una estufa de gas para cocinar su
cena es probable que su estufa queme gas natural, compuesto principalmente por metano. El
metano (CH4) es una molécula que contiene cuatro átomos de hidrógeno enlazados a un átomo de
carbono. Cuando ustedes encienden la estufa, están suministrando la energía para empezar la
reacción del metano con el oxígeno del aire. Durante esta reacción, los enlaces químicos se
rompen y se forman nuevos enlaces. En este cambio químico, los productos que se obtienen son
el dióxido de carbono y el vapor de agua (y, por supuesto, el calor y la luz que se ve en la llama).
La ecuación química de la reacción se escribe así:
CH4 (g) + 2O2 (g)  CO2 (g) + 2H2O (g) + calor
metano oxígeno dióxido de agua
molecular carbono
51
En una ecuación química, los elementos o compuestos que reaccionan se llaman reactivos y se
colocan del lado izquierdo. En el ejemplo, el metano y el oxígeno molecular son los reactivos;
enciérralos en un rectángulo azul. Del lado derecho se escribe el o los productos obtenidos cuando
ocurre la reacción. A estos elementos o compuestos se les llama productos. En el ejemplo, el
dióxido de carbono, el agua y el calor son los productos; enciérralos en un rectángulo rojo.
Reactivos y productos se separan con una flecha, que significa “produce” o “transforma”. Las letras
que están entre paréntesis representan el estado de agregación de la sustancia. En el ejemplo
todos son gases. De acuerdo con lo anterior, la ecuación dice o se lee de la siguiente manera: una
molécula de gas metano reacciona con dos moléculas de oxígeno gaseoso, para producir una
molécula de dióxido de carbono en fase gaseosa, dos moléculas de agua en vapor y calor.
La escritura de las reacciones químicas es una forma de “lenguaje químico”; para practicarlo,
realiza las siguientes actividades.
El cambio químico que tiene lugar cuando una reja, ventana o clavo de hierro se oxida, se puede
representar de la siguiente manera. Identifica cada uno de los componentes de la ecuación
química y escribe su significado.
4 Fe (s) + 3 O2 (g)  2 Fe 2O3 (s)
_________ ______________ ________________________________
Representa con modelos tridimensionales, usando plastilina y palillos, los reactivos presentes en la
siguiente reacción y explica con los modelos cómo se forman los productos.
(Para facilitar la actividad, la ecuación no se presenta balanceada)
CH4 (g) + O2 (g )  CO2(g) + H2O (g) + calor
¿Qué enlaces deben romperse para formar los nuevos compuestos?
__________________________________
¿Queda el mismo número de átomos?
_________________________________________________________
¿Qué representa una ecuación química?
________________________________________________________
¿Qué símbolos se utilizan en una ecuación química?
______________________________________________
¿Por qué es importante representar las reacciones con ecuaciones químicas?
_______________________________________________________________________________
____________________________________
52
CONTENIDO 3.2: ¿Qué me conviene comer?
 La caloría como unidad de medida de la energía
APRENDIZAJES ESPERADOS:
 Identifica que la cantidad de energía se mide en calorías y compara el aporte calórico de
los alimentos que ingiere.
 Relaciona la cantidad de energía que una persona requiere, de acuerdo con las
características tanto personales (sexo, actividad física, edad y eficiencia de su organismo,
entre otras) como ambientales, con el fin de tomar decisiones encaminadas a una dieta
correcta.
ACTIVIDAD 3.2.1. En tu escuela vas a realizar una campaña sobre alimentación equilibrada. Por
ello, tienes las siguientes tareas:
1) Identificar el tipo de actividad de alumnos de tu escuela.
2) Estimar sus requerimientos energéticos por día, de acuerdo con el tipo de actividad que
realizan.
3) Definir un menú nutritivo para estas personas, que incluya las tres principales comidas de un
día y que les proporcione la energía necesaria para realizar sus actividades adecuadamente.
Preguntas guía:
1. ¿De dónde proviene la energía que necesita tu organismo?
2. ¿Qué se mide con una caloría?
3. ¿Qué nutrimentos necesita el organismo para su funcionamiento adecuado?
4. De estos nutrimentos, ¿cuáles aportan mayor cantidad de energía?
5. ¿Cuáles nutrimentos necesita consumir el ser humano para realizar sus actividades diarias y
conservar la salud?
6. ¿Cómo se definen la caloría y la kilocaloría?
7. ¿Cuántas kilocalorías consume al día un adolescente de la comunidad con una gran actividad
física?
Las siguientes tablas te ayudarán en la realización de tu trabajo de investigación
Tabla de gasto calórico por
sexo, edad y tipo de
actividad.
53
Tabla de requerimiento calórico en mujeres, según su estilo de vida.
54
Principales alimentos y su valor calórico expresado en kilocalorías.
CONTENIDO 3.3: TERCERA REVOLUCIÓN DE LA QUÍMICA
 Uso de la tabla de electronegatividad.
Aprendizajes esperados:
 Representa la formación de compuestos en una reacción química sencilla, a partir de la
estructura de Lewis, e identifica el tipo de enlace con base en su electronegatividad.
ACTIVIDAD. Lee lo siguiente y realiza la actividad sugerida.
La electronegatividad de un elemento es la tendencia de los átomos de los elementos de atraer
electrones, cuando se combinan químicamente con otro u otros elementos. Los valores de
electronegatividad han sido calculados para cada elemento y consignados en tablas específicas
llamadas Tablas de electronegatividades. La más famosa es la del químico Linus Pauling. Esta
escala está basada en energías de ionización y afinidades electrónicas de los elementos.
Linus Pauling
55
Tabla de valores de electronegatividad, según Pauling.
Contesta:
1. ¿Cuál es el elemento más electronegativo? ____________, ¿cuál es su valor? _________
2. ¿cuál es el elemento menos electronegativo y cuál es su valor? _____________________.
3. Escribe la diferencia numérica entre estos dos elementos: _________________________.
4. ¿Cómo aumenta la electronegatividad en la Tabla Periódica? ______________________.
5. ¿En qué parte de la TP se agrupan los elementos más electronegativos? ____________
_______________________________.
6. ¿Dónde se localizan los elementos con valores más bajos de electronegatividad? ______
______________________________________________________.
7. Escribe en la tabla de abajo, los rangos establecidos para determinar el tipo de enlace
formado, según las diferencias de electronegatividad.
TIPO DE ENLACE RANGO DE VALOR
IÓNICO
COVALENTE PURO
COVALENTE POLAR
56
8. Realiza el siguiente ejercicio, basándote en lo aprendido en tus clases de Química.
ACTIVIDAD3.3.1 USO DE LA TABLA DE ELECTRONEGATIVIDAD
INSTRUCCIONES:Resuelve lasiguiente tabla,anotandoenel espacio correspondiente,loque se te
pide.Consultalatablade rangosrealizadaenel problemaanterior.
FÓRMULA NOMBRE DEL
COMPUESTO
DIBUJO DE LEWIS
DEL ENLACE
DIF.DE
ELECTRONEGAT.
TIPODE ENLACE
FORMADO
H2O Agua H= 2.1 O= 3.5
EnO-EnH=3.5-2.1=1.4
COVALENTE
POLAR
NaCl
N2
H2S
FeO
FÓRMULA COMPUESTO ENLACE DIF.DE
ELECTRONEGAT.
TIPODE ENLACE
LiF
NO
KBr
SO2
CH4
Aportación del Profr. MarcoAntonioSarabia R7Linares.Adaptación: Academia de Ciencias 3 DTES.
CONTENIDO 3.4: Comparación y representación de escalas de medida.
Aprendizajes esperados:
 Compara la escala humana con la astronómica y la microscópica.
 Representa números muy grandes o muy pequeños en términos de potencias de 10 y
reconoce que es más sencillo comparar e imaginar dichas cantidades de esta manera.
 Explica y valora la importancia del concepto de mol como patrón de medida para
determinar la cantidad de sustancia.
57
ACTIVIDAD 3.4.1 Analicen la manera de contar objetos muy numerosos y pequeños.
Materiales:
a) Vaso de 250 ml lleno de lentejas
b) Vaso vacío
c) 5 Corcholata o tapa de refresco
Realicen lo siguiente:
 Estimen el número de lentejas que hay en el vaso lleno. Para ello:
a) Llenen con cuidado una corcholata con lentejas, de tal manera que queden al ras.
b) Cuéntenlas y anoten la cantidad en la tabla.
c) Repitan los pasos a y b cuatro veces, tomando cada vez otras lentejas del vaso lleno y, una vez
contadas, pasándolas al vaso vacío.
d) Anoten sus resultados en una tabla como la que sigue:
Conteo Cantidad de lentejas en cada corcholata
Corcholata 1
Corcholata 2
Corcholata 3
Corcholata 4
Corcholata 5
PROMEDIO
e) Después de obtener el promedio de sus conteos, regresen todas las lentejas al vaso original.
f) Midan la cantidad de corcholatas de lentejas contenidas en el vaso completo.
Contesten:
a) ¿Qué pasaría si en vez de lentejas utilizaran granos de azúcar?
____________________________________ _____________________________________
58
b) ¿Qué unidad usarían en vez de corcholata de azúcar?
__________________________________________
c) ¿Qué propondrían para calcular el número de moléculas de agua contenidas en un vaso lleno
de este líquido?
_______________________________________________________________________________
d) ¿Qué diferencia hay entre una lenteja y una molécula de agua, en el contexto que estamos
considerando?
____________________________________________________________________________
e) ¿Qué unidad usarían para contar las moléculas?
_______________________________________________
ACTIVIDAD 3.4.2 Lectura:
¿Cómo contar partículas en la escala microscópica?
En 1811, el físico y químico italiano Amadeo Avogadro planteó la hipótesis de
que iguales volúmenes de diferentes gases, a la misma temperatura y presión,
contienen el mismo número de moléculas. El número de Avogadro se calculó a
partir de la hipótesis del propio Avogadro, así como de estudios y experimentos
de muchas otras personas dedicadas a la Física y la Química. Este número
corresponde a las partículas que contiene un volumen de 22.4 litros de cualquier
gas a 0 °C y una atmósfera de presión; tiene el fantástico valor de 6.0221367 x 1023 partículas, que
puede redondearse como 6.02 x 1023. Más adelante se estableció una unidad de medida,
denominada mol, que se define como la cantidad de sustancia que contiene tantas partículas
(átomos, moléculas o iones) como átomos hay en 12 g de carbono, donde hay, justamente, 6.02 x
1023 átomos. Como no es posible contar directamente las partículas contenidas en determinada
muestra de una sustancia, para calcular su número se realiza una equivalencia numérica entre el
número de Avogadro y la masa molar de una sustancia. La masa molar de una sustancia es la
cantidad de dicha sustancia cuya masa es exactamente la masa molecular de una de sus
moléculas, expresada en gramos. La masa molecular es la suma de las masas atómicas de los
átomos que componen una molécula. Para calcular la masa molar del elemento hidrógeno,
hacemos lo siguiente:
Masa atómica del hidrógeno:
1 uma
Número de átomos de hidrógeno en 1 mol:
6.02 x 1023 átomos de hidrógeno
Masa de 1 mol de átomos de hidrógeno:
1 g
59
Ahora bien, la molécula del hidrógeno libre (H2)
tiene dos átomos de hidrógeno. Hagamos
ahora el cálculo de la masa molar del hidrógeno
molecular:
Masa molecular del hidrógeno:
(H2) 2 x 1 = 2 uma
Número de moléculas de hidrógeno en 1 mol:
6.02 x 1023 moléculas de hidrógeno
Masa de 1 mol de moléculas de hidrógeno:
2 g
Calculemos ahora la masa molar del elemento
nitrógeno:
Masa atómica del nitrógeno:
14 uma
Número de átomos de nitrógeno en 1 mol:
6.02 x 1023 átomos de nitrógeno
Masa de 1 mol de átomos de nitrógeno:
14 g
Al igual que el hidrógeno, la molécula del
nitrógeno libre (N2) tiene dos átomos de
nitrógeno. ¿Cómo calculamos entonces la
masa molar del nitrógeno molecular? Muy
sencillo:
Masa molecular del nitrógeno (N2): 2 x 14 = 28 uma
Número de moléculas de nitrógeno en 1 mol: 6.02 x 1023 moléculas de nitrógeno
Masa de 1 mol de moléculas de nitrógeno: 28 g
Observen en los ejemplos que la masa molar siempre es igual que la masa atómica, o la masa
molecular, pero expresada en gramos. También adviertan que un mol (de lo que sea) siempre
contiene 6.02 x 1023 objetos.
Un mol, entonces, es equivalente a:
 6.023 × 1023 moléculas de la misma sustancia.
 La masa atómica, en gramos, si se trata de un elemento.
 La masa molecular, en gramos, de una molécula de un elemento o de un compuesto
determinado.
Ejercicios:
Determinen la masa molar del oxígeno libre (O2). Para ello:
60
1) Consulten en su tabla periódica la masa atómica del oxígeno, y anótenla con su unidad.
___________
2) Obtengan la masa molecular del O2 de manera similar como lo hicieron con los “compuestos”
de la anterior actividad.
3) Expresen esta cantidad en gramos para obtener la masa molar. __________ g
4) ¿Cuántas moléculas hay en un mol de O2? ____________ moléculas.
Consulta en la tabla periódica las masas atómicas del hidrógeno y del oxígeno, respectivamente.
H __________ O __________
Determina la masa molecular del agua (H2O). ____________ uma
Obtén la masa molar del agua expresando su masa molecular en gramos. __________ g
(Considera que 1 g de agua pura a 5°C y 1 atm de presión atmosférica corresponde a 1 ml).
Un mol de H2O = ___________ ml
Anota entonces, cuántas moléculas de agua pura a 5 °C hay en 18 ml. _____________
Por último, calcula cuántas moléculas de agua hay en una gota, si en cada mililitro hay 20 gotas de
agua. _______________________.
PROYECTOS DEL BLOQUE 3: AHORA TÚ EXPLORA, EXPERIMENTA Y ACTÚA.
INTEGRACIÓN Y APLICACIÓN
 ¿Cómo elaborar jabones?
 ¿De dónde obtiene la energía el cuerpo humano?
APRENDIZAJES ESPERADOS
 Selecciona hechos y conocimientos para planear la explicación de fenómenos químicos
que respondan a interrogantes o resolver situaciones problemáticas referentes a la
transformación de los materiales.
 Sistematiza la información de su investigación con el fin de que elabore conclusiones, a
partir de gráficas, experimentos y modelos.
 Comunica los resultados de su proyecto de diversas maneras utilizando el lenguaje
químico, y propone alternativas de solución a los problemas planteados.
 Evalúa procesos y productos de su proyecto, y considera la efectividad y el costo de los
procesos químicos investigados. Al plantearse su proyecto, tomen en cuenta los
contenidos estudiados en los bloques anteriores y en este en particular, por ejemplo, para
el proyecto ¿cómo elaborar jabones? existen temas relacionados como la toxicidad de las
sustancias, visto en el bloque I, cómo cuidar el medio ambiente y los efectos nocivos en la
salud que pudieran acarrear la fabricación de sustancias de uso diario. Abajo encontrarás,
una tabla de rúbrica para calificar(te) el proyecto de trabajo. Revísala antes de iniciar y
61
toma bien en cuenta cada aspecto que se tomará en cuenta para la evaluación de tu
trabajo. Recuerda también que el trabajo en equipo es fundamental para poder lograr las
metas planeadas.
62
Equipo ________ Grupo_________ Fecha_________
APORTACIÓN DE LA PROFRA. NORA ILIANA ARELLANO R1 MONTERREY.
TABLA DE RÚBRICA DE UN PROYECTO Puntaje
a) Manejoy organizaciónde la información 1 2 3 4 5
1. La informacióndeja claro de qué se trata el tema.
2. Mostró buenparafraseo yevitóhacer copia directa de la página.
3 .La informaciónes suficiente yestá correctamente ligada al tema.
4. Usó referencias de autores conocidos.
b) Objetivos
1. Han sidocorrectamente diseñados.
2. Se cumplieron los objetivos propuestos.
c) Hipótesis
1. Presenta hipótesis.
2. Comprueba si resulta falsa o verdadera.
d) Presentaciónde power point
1. Buena presentación, suficiente y atractiva.
2. Hizo lectura mínima.
3. Manejo de la información conentusiasmoyseguridad.
4. Vocabulariofluido.
5. Hizo hipervínculos a videoo simuladores.
e) Impacto hacia la comunidad
1. Hayun productodirigidoa la comunidad.
2. Hizo sugerenciasde acciones.
Observaciones
63
Califícate:
APRENDIZAJE ESPERADO Totalmente Casi todo
Más o
menos
Más
menos que
más
Nada o
casi nada
Sé representar el cambio químico mediante
una ecuación e identificar la información
que contiene.
Identifico reactivos y productos que
participan en un cambio químico y se
diferenciar sus propiedades.
Pude construir modelos de compuestos con
base en la representación de Lewis.
Se identificar modelos de compuestos con
diagramas de puntos.
Pude balancear por tanteo ecuaciones
químicas utilizando el principio de
conservación de la masa y la valencia.
Puedo identificar que la cantidad de energía
se mide en calorías y comparar el aporte
calórico de los alimentos que se ingieren.
Se relacionar la cantidad de energía que
una persona requiere, de acuerdo con las
características tanto personales (sexo,
actividad física, edad y eficiencia de su
organismo, entre otras) como ambientales,
con el fin de tomar decisiones encaminadas
a una dieta correcta.
Puedo representar la formación de
compuestos en una reacción química
sencilla, a partir de la estructura de Lewis, e
identificar el tipo de enlace con base en su
electronegatividad.
Se comparar la escala humana con escalas
astronómicas y microscópicas.
64
AUTOEVALUACIÓN:
I. Subraya el enunciado que complete adecuadamente la oración:
1. Un ejemplo de cambio físico ocurre cuando:
a) Horneamos pan dulce
b) Endulzamos el agua de limón
c) Freímos los huevos
d) Tostamos los granos de café
2. Una forma adecuada de evitar la contaminación química del suelo es:
a) Depositar los desechos no biodegradables en tiraderos al aire libre
b) Enterrar los residuos domésticos e industriales
c) Incinerar los desechos biodegradables o esperar a que los microorganismos los degraden
d) Desarrollar tecnologías de reutilización y reciclaje de residuos sólidos
3. La ilustración muestra un modelo del éter etílico, donde el átomo de carbono se representa en
color negro, el de hidrógeno en blanco y el de oxígeno en rojo.
De acuerdo con lo anterior, ¿cuál de las siguientes opciones indica de manera correcta la valencia
de cada átomo en este compuesto?
a) C 4, H 1, O 2
b) C 4, H 2, O 2
c) C 2, H 1, O 3
d) C 3, H 2, O 1
II. Observa la ecuación escrita abajo. Luego contesta los reactivos 1 al 5, escribiendo en el
paréntesis, la letra de la opción correcta.
2Na(s) + 2HCl(l)  2NaCl(s) + H2(g)
1. La ecuación química contiene elementos y compuestos. Escoge la opción que contiene a un
elemento de esta reacción. ( )
a) 2
b) NaCl
c) HCl
d) Na
2. Es uno de los reactivos presentes en esta reacción química ( )
a) NaCl
b) HCl
c) H2
d) O2
65
3. Estos símbolos nos indican los estados de agregación de las sustancias implicadas en esta
reacción. ( )
a) (s), (l), (g)
b) 
c) 2NaCl
d) H2
4. Son los productos obtenidos de esta reacción. ( )
a) NaCl y H2
b) 
c) NaCl y HCl
d) (s), (l), (g)
5. El coeficiente de H2 es ( )
a) 2
b) (g)
c) 1
d) cero
III. Escoge, de las opciones dadas, la letra de la respuesta correcta anotándola en el paréntesis
correspondiente.
6. ¿En cuál de las ecuaciones químicas se representa correctamente el principio de la
conservación de la masa? ( )
a) Na2O + H2O  Na2OH2
b) H2 + Cl2  HCl4
c) NaOH + HCl  NaCl + H2O
d) Mg + O2  2MgO
7. La siguiente ecuación representa una reacción química que NO puede ocurrir porque
2Na + Cl2  2KCl ( )
a) El potasio y el sodio son elementos no metálicos
b) Un elemento no se transforma en otro
c) El cloro no reacciona con el potasio a temperatura ambiente
d) La molécula de KCl debe tener 3 átomos de cloro en lugar de 1
66
9. ¿En cuál de las actividades siguientes se presenta el fenómeno de la efervescencia? ( )
a) en la elaboración del queso
b) en la fabricación del tepache de piña
c) cuando la manteca se vuelve rancia
d) cuando aplicamos agua oxigenada en una herida
10. En el estómago se lleva a cabo la digestión mediante procesos como el movimiento y las
reacciones químicas del ácido clorhídrico con los alimentos; además, se produce una sustancia
llamada pepsina que participa en la digestión de proteínas sin intervenir en la reacción química. La
pepsina, entonces es: ( )
a) Un producto de la reacción del ácido clorhídrico con las proteínas
b) Un inhibidor, porque retarda la reacción entre las proteínas y el agua
c) Una sustancia que reacciona con las proteínas, modificando su estructura química
d) Un catalizador, porque modifica la velocidad de reacción pero no participa en ella
11. En la siguiente ecuación química, ¿cómo se llama el producto obtenido?
( )
4 Al + 3 O2  2 Al2 O3
a) Óxido de aluminio
b) Aluminio de oxígeno
c) Oxígeno de aluminio
d) Hidróxido de aluminio
12. Relaciona las siguientes magnitudes con la escala apropiada: ( )
a. La altura de una canasta de básquetbol =3.05 m 1. HUMANA
b. La distancia media de Urano al Sol =2 870 972 200 Km 2.MICROSCÓPICA
c. El diámetro de un leucocito es de 0.000 012 m 3. ASTRONÓMICA
a) a1, b2, c3
b) a1, b3, c2
c) a2, b3, c1
d) a3, b1, c2
13. El número promedio de neuronas en el cerebro es de 100 000 000 000. Otra forma de expresar
este número es ( )
a) 1 x 1012
b) 1 x 1013
c) 10 x 1012
d) 1 x 10-12
67
14. Un joven de 15 años consume 3 000 kcal diarias aproximadamente, pero su nivel de actividad
es bajo, pues permanece más de 6 horas diarias viendo tv, en la computadora o jugando en su
consola de videojuegos. Dentro de 10 años, ¿qué figura tendrá si continúa con los mismos hábitos
de alimentación y vida sedentaria?
a) alta y atlética
b) sano y de complexión mediana
c) robusto y con problemas de sobrepeso
d) flaco y enfermizo
15. Calcula la masa en gramos de un mol de moléculas de azúcar común (sacarosa) C12H22O11.
(Considera los siguientes valores: H =1, C=12 y O = 16 de masa atómica) ( )
a) 342 g/mol
b) 342 ml/mol
c) 29 g
d) 29g/mol
16. La tabla de electronegatividad de Pauling establece los siguientes parámetros para calcular el
tipo de enlace químico cuando se unen dos o más átomos:
Iónico = igual o mayor que 1.7
Covalente polar = 0.4 hasta 1.7
Covalente no polar = menor de 0.4
En una reacción, la diferencia de electronegatividades es de 2.1, de acuerdo con lo siguiente,
¿cuál de las siguientes afirmaciones es correcta? ( )
a) La sustancia obtenida se derrite fácilmente
b) Es mal conductor de la electricidad
c) Al disolverse en agua, puede conducir la electricidad
d) Hierve a menos de 100º C
17. La siguiente ecuación química está desbalanceada, pues no cumple con la Ley de la
conservación de la masa. ¿qué coeficiente debes agregar al producto para que el balance se
cumpla? 4 Al + 3 O2  Al2 O3 ( )
a) 2 b) 4 c) 1 d) 3
68
18. Pancho entra a una dieta para ganar peso, pues no le gusta su figura delgada y poco atlética.
¿Cuál de los siguientes grupos de alimentos debe consumir para que le ayuden en su propósito?
( )
a) frutas y verduras
b) jugos y bebidas energéticas
c) complementos vitamínicos
d) carbohidratos y proteínas
19. De la siguiente reacción química, ¿cuántos elementos intervienen y cuántas moléculas resultan
de la combinación de éstos? ( )
2 Zn(s) + 2 HCl (ac)  2 ZnCl (ac) + H2 (g)
a) 3 y 1
b) 3 y 2
c) 6 y 5
d) 4 y 3
20. Se llenan cuatro globos del mismo tamaño con diferentes gases. ¿Cuántos átomos contiene
cada globo? ( )
a) 6.02 x 1023 b) 1.0 x 1023 c) 6.02 x 10-23 d) 1.0 x 10-23
69
BLOQUE IV
FORMACION DE NUEVOS MATERIALES
Ácidos y bases utilizados en la vida cotidiana
En este bloque se estudia la obtención de nuevos materiales, y
se introduce a las propiedades de los ácidos y las bases de
acuerdo con el modelo de Svante Arrhenius, enfatizando sus
alcances y limitaciones.
Asimismo, se orienta al tratamiento de alimentos ácidos o que
producen acidez y cuyo consumo puede tener efectos en la
salud; estos efectos se controlan con sustancias químicas, sin
embargo, pueden traer consecuencias negativas. Con ello se promueve la toma de mejores
decisiones respecto a la cantidad y la manera de consumir los alimentos, así como la importancia
de ingerir agua simple potable.
A partir de los dos tipos de reacción química: ácido-base y óxido-reducción, se plantea la
posibilidad de predecir los productos de los cambios químicos.
70
De este modo, con los contenidos propuestos se avanza en el desarrollo de habilidades, como la
representación simbólica; la aplicación, interpretación y diseño de modelos; la interpretación de
experimentos, y el establecimiento de generalizaciones.
En los proyectos se sugieren formas de evitar la corrosión, así como la contrastación de diferentes
combustibles y su impacto en el ambiente, en el marco del desarrollo sustentable. En ambos casos
es importante la realización de experimentos sencillos y la identificación de reacciones químicas.
Contenidos
4.1 Importancia de los ácidos y las bases en la vida cotidiana y en la industria
 Propiedades y representación de ácidos y bases.
4.2 ¿Por qué evitar el consumo frecuente de los “alimentos ácidos”?
 Toma de decisiones relacionadas con:Importancia de una dieta correcta.
4.3 Importancia de las reacciones de óxido y de reducción
 Características y representaciones de las reacciones redox.
 Número de oxidación.
4.4 Proyectos: ahora tú explora, experimenta y actúa (preguntas opcionales)
*Integración y aplicación
 ¿Cómo evitar la corrosión?
 ¿Cuál es el impacto de los combustibles y posibles alternativas de solución?
71
CONTENIDO 4.1 La formación de nuevos materiales
Competencias que se favorecen: comprensión de fenómenos y procesos naturales
desde la perspectiva científica. Toma de decisiones informadas para el cuidado del
ambiente y la promoción de la salud orientadas a la cultura de la prevención.
Comprensión de los alcances y limitaciones de la ciencia y el desarrollo tecnológico
en diversos contextos
APRENDIZAJES ESPERADOS CONTENIDOS
4.1.1.Identifica ácidos y bases en materiales de
uso cotidiano.
4.1.2.Identifica la formación de nuevas sustancias
en reacciones ácido-base sencillas.
4.1.3.Explica las prioridades de los ácidos y las
bases de acuerdo con el modelo de Arrhenius.
IMPORTANCIA DE LOS ÁCIDOS Y LAS
BASES EN LA VIDA COTIDIANA Y EN LA
INDUSTRIA
 Propiedades y representación de ácido
y bases.
El estudio de los ácidos y de las Bases, el investigador Svante Arrhenius detectó
en estas sustancias la propiedad de disociarse cuando se encuentran en agua, y
de esta manera, conducir la electricidad. A esto se le conoce como la teoría de la
disociación electrolítica de Arrhenius.
¿Recuerdas qué tipo de materiales son conductores de electricidad?
Pues bien, además de los metales, Arrhenius descubrió que los electrolitos
también lo son.
La electrólisis es el proceso de separación de una sustancia en sus iones por
medio de la corriente eléctrica.
Para que la corriente eléctrica pueda desplazarse, necesita de conductores que
la lleven a través de los materiales; en el caso de los metales, estos portadores
72
son los electrones y en el caso de las soluciones electrolíticas son los iones, los
cuales pueden ser iones con carga positiva o cationes o iones con carga negativa
o aniones.
Las sustancias, de acuerdo a su capacidad para conducir la corriente eléctrica
pueden clasificarse en:
a) Electrólitos fuertes que son sales iónicas como el cloruro de sodio, ácidos
fuertes como el acido clorhídrico o el ácido sulfúrico y bases fuertes como el
hidróxido de sodio. Estas sustancias se disocian totalmente cuando se
encuentran en solución acuosa.
b) Electrólitos débiles que pueden ser algunos ácidos carboxílicos como el
ácido acético que se disocian en muy bajo porcentaje y conducen muy poco
la corriente eléctrica, y
c) No electrólitos que son sustancias que no se disocian y por lo tanto no
conducen la corriente eléctrica.
73
Actividad 4.1.1 LABORATORIO DE QUIMICA
NOMBRE DEL ALUMNO______________________________
GRUPO_____ No.L._____
Identificación de ácidos y de bases
Objetivo.: Trabajar con diferentes muestras de ácidos y de bases e identificarlas
con el uso de indicadores.
Material
Solución de detergente para
Tiras de papel tornasol rojo trastes
Tiras de papel tornasol azul jugo de limón
Solución de fenolftaleína solución diluida de
hidróxido
Leche de magnesia de sodio o de potasio
(pide a
Vinagre tu maestro que la
prepare)
Solución diluida de ácido Leche
Clorhídrico (pide a tu maestro que la prepare) 7 tubos de ensayo
Precaución. Tanto el ácido clorhídrico como el hidróxido de sodio (o potasio) son
corrosivos. Ten cuidado en su manejo. En caso de tener contacto accidental con
estas sustancias, lava abundantemente con agua sola la zona afectada.
Procedimiento
1. Formen equipos de cuatro o cinco alumnos.
2. Elaboren una hipótesis acerca de lo que esperan comprobar en esta práctica.
3. Con sus conocimientos previos adquiridos hasta ahora, con el material indicado
y la supervisión de
su maestro, diseñen su propia práctica para poder determinar qué sustancias
son ácidas y qué
sustancias son alcalinas.
4. No olviden organizar sus resultados en una tabla y elaborar sus conclusiones.
Nota de seguridad. Tanto el ácido clorhídrico como el hidróxido de sodio o
potasio son sustancias corrosivas. Deben ser preparadas vertiendo poco a poco el
ácido (o la base en su caso) al agua dejando resbalar lentamente por las paredes
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx
Cuadernillo apoyo quimica.docx

Más contenido relacionado

La actualidad más candente

Examen recuperacion quimica
Examen recuperacion quimicaExamen recuperacion quimica
Examen recuperacion quimica
Claudia Sena
 
Examen de ciencias 3 extraordinario 2012
Examen de  ciencias 3 extraordinario 2012Examen de  ciencias 3 extraordinario 2012
Examen de ciencias 3 extraordinario 2012
Alfredo Ochoa
 
EJERCICIOS : ELEMENTOS, COMPUESTOS Y MEZCLAS
EJERCICIOS : ELEMENTOS, COMPUESTOS Y MEZCLASEJERCICIOS : ELEMENTOS, COMPUESTOS Y MEZCLAS
EJERCICIOS : ELEMENTOS, COMPUESTOS Y MEZCLAS
fiorellacicloalfa
 
Configuración electrónica.taller.
Configuración electrónica.taller.Configuración electrónica.taller.
Configuración electrónica.taller.
Wilson Montana
 
Actividades estados de agregacion de la materia
Actividades estados de agregacion de la materiaActividades estados de agregacion de la materia
Actividades estados de agregacion de la materia
Torbi Vecina Romero
 

La actualidad más candente (20)

Actividades reacciones quimicas
Actividades reacciones quimicasActividades reacciones quimicas
Actividades reacciones quimicas
 
Examen de diagnostico quimica
Examen de diagnostico   quimicaExamen de diagnostico   quimica
Examen de diagnostico quimica
 
Quimica cuadernillo completo
Quimica cuadernillo completoQuimica cuadernillo completo
Quimica cuadernillo completo
 
Examen recuperacion quimica
Examen recuperacion quimicaExamen recuperacion quimica
Examen recuperacion quimica
 
Examen extraordinario de quimica
Examen extraordinario de quimicaExamen extraordinario de quimica
Examen extraordinario de quimica
 
CUADERNO DE ACTIVIDADES PARA EL FORTALECIMIENTO DE LOS APRENDIZAJES CIENCIAS III
CUADERNO DE ACTIVIDADES PARA EL FORTALECIMIENTO DE LOS APRENDIZAJES CIENCIAS IIICUADERNO DE ACTIVIDADES PARA EL FORTALECIMIENTO DE LOS APRENDIZAJES CIENCIAS III
CUADERNO DE ACTIVIDADES PARA EL FORTALECIMIENTO DE LOS APRENDIZAJES CIENCIAS III
 
Examen de ciencias 3 extraordinario 2012
Examen de  ciencias 3 extraordinario 2012Examen de  ciencias 3 extraordinario 2012
Examen de ciencias 3 extraordinario 2012
 
63950204 diagnostico-quimica
63950204 diagnostico-quimica63950204 diagnostico-quimica
63950204 diagnostico-quimica
 
EJERCICIOS : ELEMENTOS, COMPUESTOS Y MEZCLAS
EJERCICIOS : ELEMENTOS, COMPUESTOS Y MEZCLASEJERCICIOS : ELEMENTOS, COMPUESTOS Y MEZCLAS
EJERCICIOS : ELEMENTOS, COMPUESTOS Y MEZCLAS
 
Actividad para aplicar los pasos del método científico
Actividad para aplicar los pasos  del método científicoActividad para aplicar los pasos  del método científico
Actividad para aplicar los pasos del método científico
 
Taller 01 - Estructura de la Materia 1: Propiedades de la materia y su clasif...
Taller 01 - Estructura de la Materia 1: Propiedades de la materia y su clasif...Taller 01 - Estructura de la Materia 1: Propiedades de la materia y su clasif...
Taller 01 - Estructura de la Materia 1: Propiedades de la materia y su clasif...
 
Evaluacion enlaces quimicos
Evaluacion enlaces quimicosEvaluacion enlaces quimicos
Evaluacion enlaces quimicos
 
Diagnóstico Ciencias 2 Física
Diagnóstico Ciencias 2 Física Diagnóstico Ciencias 2 Física
Diagnóstico Ciencias 2 Física
 
Configuración electrónica.taller.
Configuración electrónica.taller.Configuración electrónica.taller.
Configuración electrónica.taller.
 
Taller ciclos biogeoquimicos 7°
Taller ciclos biogeoquimicos 7°Taller ciclos biogeoquimicos 7°
Taller ciclos biogeoquimicos 7°
 
Taller estados y cambios de estado
Taller estados y cambios de estadoTaller estados y cambios de estado
Taller estados y cambios de estado
 
Actividades del atomo
Actividades   del atomoActividades   del atomo
Actividades del atomo
 
Actividades estados de agregacion de la materia
Actividades estados de agregacion de la materiaActividades estados de agregacion de la materia
Actividades estados de agregacion de la materia
 
Aplicacion metodo cientifico
Aplicacion metodo  cientificoAplicacion metodo  cientifico
Aplicacion metodo cientifico
 
Exam.diagnostico química 2015 2016
Exam.diagnostico química 2015 2016Exam.diagnostico química 2015 2016
Exam.diagnostico química 2015 2016
 

Similar a Cuadernillo apoyo quimica.docx

Cienciasiiibloque1lascaractersticasdelosmateriales 090905112105-phpapp02
Cienciasiiibloque1lascaractersticasdelosmateriales 090905112105-phpapp02Cienciasiiibloque1lascaractersticasdelosmateriales 090905112105-phpapp02
Cienciasiiibloque1lascaractersticasdelosmateriales 090905112105-phpapp02
ELPRINCIPEDELANORMAL
 
Ciencias III Bloque 1 Las CaracteríSticas De Los Materiales
Ciencias III Bloque 1 Las CaracteríSticas De Los MaterialesCiencias III Bloque 1 Las CaracteríSticas De Los Materiales
Ciencias III Bloque 1 Las CaracteríSticas De Los Materiales
EMMANUEL MENDEZ
 
Analisis de la materia y la energia.pdf
Analisis de la materia y la energia.pdfAnalisis de la materia y la energia.pdf
Analisis de la materia y la energia.pdf
monzejuarez2
 
Planeacion ciencias quimica bloque 1
Planeacion ciencias quimica bloque 1Planeacion ciencias quimica bloque 1
Planeacion ciencias quimica bloque 1
Raymundo Llanes
 
Planificacion bloque 1
Planificacion bloque 1Planificacion bloque 1
Planificacion bloque 1
Victor Padilla
 
Lab ceiii quim_3_gr
Lab ceiii quim_3_grLab ceiii quim_3_gr
Lab ceiii quim_3_gr
SEIEM
 
Ficha autoaprendizajesesion22
Ficha autoaprendizajesesion22Ficha autoaprendizajesesion22
Ficha autoaprendizajesesion22
jesusgutarra1
 
Ficha autoaprendizajesesion22
Ficha autoaprendizajesesion22Ficha autoaprendizajesesion22
Ficha autoaprendizajesesion22
jesusgutarra1
 

Similar a Cuadernillo apoyo quimica.docx (20)

Cienciasiiibloque1lascaractersticasdelosmateriales 090905112105-phpapp02
Cienciasiiibloque1lascaractersticasdelosmateriales 090905112105-phpapp02Cienciasiiibloque1lascaractersticasdelosmateriales 090905112105-phpapp02
Cienciasiiibloque1lascaractersticasdelosmateriales 090905112105-phpapp02
 
U2 T2 Gloria
U2  T2  GloriaU2  T2  Gloria
U2 T2 Gloria
 
Ciencias III Bloque 1 Las CaracteríSticas De Los Materiales
Ciencias III Bloque 1 Las CaracteríSticas De Los MaterialesCiencias III Bloque 1 Las CaracteríSticas De Los Materiales
Ciencias III Bloque 1 Las CaracteríSticas De Los Materiales
 
Analisis de la materia y la energia.pdf
Analisis de la materia y la energia.pdfAnalisis de la materia y la energia.pdf
Analisis de la materia y la energia.pdf
 
ciencias3 grado
ciencias3 gradociencias3 grado
ciencias3 grado
 
Precisiones quimica
Precisiones quimicaPrecisiones quimica
Precisiones quimica
 
Jornadas de laboratorio de fyq 2017 2018
Jornadas de laboratorio de fyq 2017 2018Jornadas de laboratorio de fyq 2017 2018
Jornadas de laboratorio de fyq 2017 2018
 
Planeacion ciencias quimica bloque 1
Planeacion ciencias quimica bloque 1Planeacion ciencias quimica bloque 1
Planeacion ciencias quimica bloque 1
 
Bloque i
Bloque iBloque i
Bloque i
 
Cuaderno_de_Trabajo_de_Quimica_2011_2012.pdf
Cuaderno_de_Trabajo_de_Quimica_2011_2012.pdfCuaderno_de_Trabajo_de_Quimica_2011_2012.pdf
Cuaderno_de_Trabajo_de_Quimica_2011_2012.pdf
 
Planificacion bloque 1
Planificacion bloque 1Planificacion bloque 1
Planificacion bloque 1
 
Lab ceiii quim_3_gr
Lab ceiii quim_3_grLab ceiii quim_3_gr
Lab ceiii quim_3_gr
 
Propiedades de la materia
Propiedades de la materiaPropiedades de la materia
Propiedades de la materia
 
4° SESIÓN DE APRENDIZAJE SESIÓN 3-SEM.2-EXP.6-CYT (1).docx
4° SESIÓN DE APRENDIZAJE SESIÓN 3-SEM.2-EXP.6-CYT (1).docx4° SESIÓN DE APRENDIZAJE SESIÓN 3-SEM.2-EXP.6-CYT (1).docx
4° SESIÓN DE APRENDIZAJE SESIÓN 3-SEM.2-EXP.6-CYT (1).docx
 
Bloque i c iii
Bloque i  c iiiBloque i  c iii
Bloque i c iii
 
Ficha autoaprendizajesesion22
Ficha autoaprendizajesesion22Ficha autoaprendizajesesion22
Ficha autoaprendizajesesion22
 
Ficha autoaprendizajesesion22
Ficha autoaprendizajesesion22Ficha autoaprendizajesesion22
Ficha autoaprendizajesesion22
 
Ficha autoaprendizajesesion22
Ficha autoaprendizajesesion22Ficha autoaprendizajesesion22
Ficha autoaprendizajesesion22
 
Silabo
SilaboSilabo
Silabo
 
DIDACTICA CRITICA
DIDACTICA CRITICADIDACTICA CRITICA
DIDACTICA CRITICA
 

Más de Lizzette Nuñez Popoca

Más de Lizzette Nuñez Popoca (20)

Fasciculo sec. 2do fisica 1er trim.
Fasciculo sec. 2do fisica 1er trim.Fasciculo sec. 2do fisica 1er trim.
Fasciculo sec. 2do fisica 1er trim.
 
Electricidad
ElectricidadElectricidad
Electricidad
 
Semana 7 quimica
Semana 7 quimicaSemana 7 quimica
Semana 7 quimica
 
Cuadernodeactividadesbiologia0efdtt 160826204856
Cuadernodeactividadesbiologia0efdtt 160826204856Cuadernodeactividadesbiologia0efdtt 160826204856
Cuadernodeactividadesbiologia0efdtt 160826204856
 
32 cuaderno de practicas quimica (1)
32 cuaderno de practicas quimica (1)32 cuaderno de practicas quimica (1)
32 cuaderno de practicas quimica (1)
 
Secuencia 2 quim
Secuencia 2 quimSecuencia 2 quim
Secuencia 2 quim
 
Bloque ii tema 6. para 10 sesiones.lizz
Bloque ii tema 6. para 10 sesiones.lizzBloque ii tema 6. para 10 sesiones.lizz
Bloque ii tema 6. para 10 sesiones.lizz
 
Secuencia didáctica del cuarto bloque: ácidos y bases
Secuencia didáctica del cuarto bloque: ácidos y basesSecuencia didáctica del cuarto bloque: ácidos y bases
Secuencia didáctica del cuarto bloque: ácidos y bases
 
Examen extrafisica2017 2
Examen extrafisica2017 2Examen extrafisica2017 2
Examen extrafisica2017 2
 
Exmn xtra de recup quimlizzz
Exmn xtra de recup quimlizzzExmn xtra de recup quimlizzz
Exmn xtra de recup quimlizzz
 
Secuencia 15 quimica
Secuencia 15 quimicaSecuencia 15 quimica
Secuencia 15 quimica
 
5 2 multimedia educativo de javier arvalo zamudio
5 2 multimedia educativo de javier arvalo zamudio5 2 multimedia educativo de javier arvalo zamudio
5 2 multimedia educativo de javier arvalo zamudio
 
Los fines de la educación
Los fines de la educaciónLos fines de la educación
Los fines de la educación
 
Proyecto Pedagógico de Aula
Proyecto Pedagógico de AulaProyecto Pedagógico de Aula
Proyecto Pedagógico de Aula
 
Tamiz neonatal
Tamiz neonatalTamiz neonatal
Tamiz neonatal
 
Influenza
InfluenzaInfluenza
Influenza
 
Implantes mastografia
Implantes mastografiaImplantes mastografia
Implantes mastografia
 
Diagnostico molecular ii
Diagnostico molecular iiDiagnostico molecular ii
Diagnostico molecular ii
 
Diagnostico molecular
Diagnostico molecularDiagnostico molecular
Diagnostico molecular
 
Cm 00181 promos 2012
Cm 00181 promos 2012Cm 00181 promos 2012
Cm 00181 promos 2012
 

Último

FICHA DE LA VIRGEN DE FÁTIMA.pdf educación religiosa primaria de menores
FICHA DE LA VIRGEN DE FÁTIMA.pdf educación religiosa primaria de menoresFICHA DE LA VIRGEN DE FÁTIMA.pdf educación religiosa primaria de menores
FICHA DE LA VIRGEN DE FÁTIMA.pdf educación religiosa primaria de menores
Santosprez2
 
Lineamientos de la Escuela de la Confianza SJA Ccesa.pptx
Lineamientos de la Escuela de la Confianza  SJA  Ccesa.pptxLineamientos de la Escuela de la Confianza  SJA  Ccesa.pptx
Lineamientos de la Escuela de la Confianza SJA Ccesa.pptx
Demetrio Ccesa Rayme
 
Escucha tu Cerebro en Nuevos Escenarios PE3 Ccesa007.pdf
Escucha tu Cerebro en Nuevos Escenarios  PE3  Ccesa007.pdfEscucha tu Cerebro en Nuevos Escenarios  PE3  Ccesa007.pdf
Escucha tu Cerebro en Nuevos Escenarios PE3 Ccesa007.pdf
Demetrio Ccesa Rayme
 

Último (20)

sesion de aprendizaje 1 SEC. 13- 17 MAYO 2024 comunicación.pdf
sesion de aprendizaje 1 SEC. 13- 17  MAYO  2024 comunicación.pdfsesion de aprendizaje 1 SEC. 13- 17  MAYO  2024 comunicación.pdf
sesion de aprendizaje 1 SEC. 13- 17 MAYO 2024 comunicación.pdf
 
TAREA_1_GRUPO7_ADMINISTRACIÓN_DE_EMPRESA.pptx
TAREA_1_GRUPO7_ADMINISTRACIÓN_DE_EMPRESA.pptxTAREA_1_GRUPO7_ADMINISTRACIÓN_DE_EMPRESA.pptx
TAREA_1_GRUPO7_ADMINISTRACIÓN_DE_EMPRESA.pptx
 
AEC 2. Aventura en el Antiguo Egipto.pptx
AEC 2. Aventura en el Antiguo Egipto.pptxAEC 2. Aventura en el Antiguo Egipto.pptx
AEC 2. Aventura en el Antiguo Egipto.pptx
 
Programa dia de las madres para la convi
Programa dia de las madres para la conviPrograma dia de las madres para la convi
Programa dia de las madres para la convi
 
FICHA DE LA VIRGEN DE FÁTIMA.pdf educación religiosa primaria de menores
FICHA DE LA VIRGEN DE FÁTIMA.pdf educación religiosa primaria de menoresFICHA DE LA VIRGEN DE FÁTIMA.pdf educación religiosa primaria de menores
FICHA DE LA VIRGEN DE FÁTIMA.pdf educación religiosa primaria de menores
 
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLAACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
ACERTIJO EL NÚMERO PI COLOREA EMBLEMA OLÍMPICO DE PARÍS. Por JAVIER SOLIS NOYOLA
 
Realitat o fake news? – Què causa el canvi climàtic? - La desertització
Realitat o fake news? – Què causa el canvi climàtic? - La desertitzacióRealitat o fake news? – Què causa el canvi climàtic? - La desertització
Realitat o fake news? – Què causa el canvi climàtic? - La desertització
 
Lineamientos de la Escuela de la Confianza SJA Ccesa.pptx
Lineamientos de la Escuela de la Confianza  SJA  Ccesa.pptxLineamientos de la Escuela de la Confianza  SJA  Ccesa.pptx
Lineamientos de la Escuela de la Confianza SJA Ccesa.pptx
 
EFEMERIDES DEL MES DE MAYO PERIODICO MURAL.pdf
EFEMERIDES DEL MES DE MAYO PERIODICO MURAL.pdfEFEMERIDES DEL MES DE MAYO PERIODICO MURAL.pdf
EFEMERIDES DEL MES DE MAYO PERIODICO MURAL.pdf
 
Botiquin del amor - Plantillas digitales.pdf
Botiquin del amor - Plantillas digitales.pdfBotiquin del amor - Plantillas digitales.pdf
Botiquin del amor - Plantillas digitales.pdf
 
ciclos biogeoquimicas y flujo de materia ecosistemas
ciclos biogeoquimicas y flujo de materia ecosistemasciclos biogeoquimicas y flujo de materia ecosistemas
ciclos biogeoquimicas y flujo de materia ecosistemas
 
Realitat o fake news? – Què causa el canvi climàtic? - Modificacions dels pat...
Realitat o fake news? – Què causa el canvi climàtic? - Modificacions dels pat...Realitat o fake news? – Què causa el canvi climàtic? - Modificacions dels pat...
Realitat o fake news? – Què causa el canvi climàtic? - Modificacions dels pat...
 
Salud mental y bullying en adolescentes.
Salud mental y bullying en adolescentes.Salud mental y bullying en adolescentes.
Salud mental y bullying en adolescentes.
 
Power Point : Motivados por la esperanza
Power Point : Motivados por la esperanzaPower Point : Motivados por la esperanza
Power Point : Motivados por la esperanza
 
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN PARÍS. Por JAVIER SOL...
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN  PARÍS. Por JAVIER SOL...ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN  PARÍS. Por JAVIER SOL...
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN PARÍS. Por JAVIER SOL...
 
Diapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanente
Diapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanenteDiapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanente
Diapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanente
 
Escucha tu Cerebro en Nuevos Escenarios PE3 Ccesa007.pdf
Escucha tu Cerebro en Nuevos Escenarios  PE3  Ccesa007.pdfEscucha tu Cerebro en Nuevos Escenarios  PE3  Ccesa007.pdf
Escucha tu Cerebro en Nuevos Escenarios PE3 Ccesa007.pdf
 
DISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdf
DISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdfDISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdf
DISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE.pdf
 
POEMAS ILUSTRADOS DE LUÍSA VILLALTA. Elaborados polos alumnos de 4º PDC do IE...
POEMAS ILUSTRADOS DE LUÍSA VILLALTA. Elaborados polos alumnos de 4º PDC do IE...POEMAS ILUSTRADOS DE LUÍSA VILLALTA. Elaborados polos alumnos de 4º PDC do IE...
POEMAS ILUSTRADOS DE LUÍSA VILLALTA. Elaborados polos alumnos de 4º PDC do IE...
 
TÉCNICAS OBSERVACIONALES Y TEXTUALES.pdf
TÉCNICAS OBSERVACIONALES Y TEXTUALES.pdfTÉCNICAS OBSERVACIONALES Y TEXTUALES.pdf
TÉCNICAS OBSERVACIONALES Y TEXTUALES.pdf
 

Cuadernillo apoyo quimica.docx

  • 1. 1
  • 2. 2 Bloque I. Las características de los materiales Bloque I. Las características de los materiales Este bloque inicia con una perspectiva fundamentalmente macroscópica, con el fin de propiciar la contrastación de las ideas de los alumnos con la visión de la ciencia y la tecnología, y su relación con la satisfacción de necesidades, el cuidado del ambiente y la promoción de la salud. Se continúa con un acercamiento a las propiedades físicas y una primera clasificación química: las mezclas, el contenido que favorece la toma de decisiones responsables e informadas en temas relacionados con la contaminación. En la primera revolución de la química se identifica la importancia del trabajo de Antoine Laurent de Lavoisier en la investigación científica al utilizar la balanza para medir la masa en un sistema cerrado, condiciones indispensables para la interpretación de resultados que lo llevaron a enunciar la Ley de conservación de la masa. Los proyectos que se proponen en el cierre del bloque brindan ideas para que los alumnos elijan algunos que sean de su interés; las sugerencias apuntan a investigar y/o desarrollar distintos métodos de separación para purificar y reutilizar el agua, así como conocer cómo funciona una salinera y sus impactos en el ambiente; además de propiciar la discusión, búsqueda de evidencias, uso de las tic, medición e interpretación, tanto de experimentos como de resultados, y uso y análisis de la información. Competencias que se favorecen:  Comprensión de fenómenos y procesos naturales desde la perspectiva científica.  Toma de decisiones informadas para el cuidado del ambiente y la promoción de la salud orientadas a la cultura de la prevención.  Comprensión de los alcances y limitaciones de la ciencia y del desarrollo tecnológico en diversos contextos. Contenidos 1.1 La ciencia y la tecnología en el mundo actual 1.2 Identificación de las propiedades físicas de los materiales: Cualitativas, Extensivas, Intensivas 1.3 Experimentación con mezclas 1.4 ¿Cómo saber si la muestra de una mezcla está más contaminada que otra? 1.5 Primera revolución de la química 1.6 Proyectos: ahora tú explora, experimenta y actúa
  • 3. 3 1.1 La ciencia y la tecnología en el mundo actual Relación de la química y la tecnología con el ser humano, la salud y el ambiente. Aprendizajes esperados  Identifica las aportaciones del conocimiento químico y tecnológico en la satisfacción de necesidades básicas, en la salud y el ambiente.  Analiza la influencia de los medios de comunicación y las actitudes de las personas hacia la química y la tecnología. ACTIVIDAD 1.- En equipo de dos alumnos, realizarán un concentrado con algunos de los aportes que el conocimiento de la química ha realizado en los siguientes aspectos: Aspectos donde se puede aplicar la Química Producto 1 Producto 2 Producto 3 Alimentación Medicina Higiene personal Limpieza Agricultura Construcción ACTIVIDAD 2.- De manera individual el alumno realizara un escrito que describa la manera en que la química ha influido en solucionar los problemas de la vida cotidiana. ACTIVIDAD 3.- Los alumnos realizarán una investigación con sus padres y vecinos sobre el conocimiento de la química, sus productos y su uso en la comunidad deberán incluir también la manera como son vistos los productos químicos y la actitud de algunos medios de comunicación sobre la industria química. El maestro con alguna dinámica (por ej. “Lluvia de ideas”) analizará la investigación de los alumnos es de esperarse que no todas las opiniones que consiguieron los alumnos serán favorables a la química, mediante el contraste de opiniones se dará un panorama de las principales ideas y se valoren los beneficios que de este conocimiento se ha obtenido, sin olvidar las desventajas y peligros que se pueden presentar cuando se utilizan los conocimientos de química de una manera indiscriminada y sin ética.
  • 4. 4 1.2 Identificación de las propiedades físicas de los materiales: • Cualitativas • Extensivas • Intensivas Aprendizajes esperados  Clasifica diferentes materiales con base en su estado de agregación e identifica su relación con las condiciones físicas del medio.  Identifica las propiedades extensivas (masa y volumen) e intensivas (temperatura de fusión y de ebullición, viscosidad, densidad, solubilidad) de algunos materiales.  Explica la importancia de los instrumentos de medición y observación como herramientas que amplían la capacidad de percepción de nuestros sentidos. ACTIVIDAD 4.- El profesor pedirá que de manera colegiada se realice una investigación sobre los estados de agregación, aplicando la estrategia del aprendizaje colaborativo intercambiar las ideas principales, redactarlas y exponerlas al grupo. Mediante organizadores gráficos como “los mapas mentales” sistematizaran la información de los diferentes estados de agregación y con base en la teoría cinética
  • 5. 5 ACTIVIDAD 5.- El profesor pedirá que de manera colegiada se realice una investigación cuya pregunta generadora será: “¿Es lo mismo peso que masa?” ¿Qué instrumento se usa para medir el peso de un objeto?________________________ ¿Qué unidades del sistema métrico se utilizan para medir una fuerza? ______________ ¿Qué instrumento usamos para medir la masa de un objeto? ______________________ ¿Qué unidades del sistema métrico se utilizan para medir la masa de un objeto? _______________________________________________________________________ ¿Si pudieras viajar a La Luna con los anteriores instrumentos tendrías las mismas mediciones? ____________ ¿por qué? ________________________________________ ________________________________________________________________________ En el sistema métrico decimal ¿se usan las mismas unidades para medir el peso y la masa de un objeto? ________ Ahora podemos contestar la pregunta que se utiliza como nombre de la actividad ¿Es lo mismo peso que masa?” _______________ ¿por qué? ______________________ ________________________________________________________________________ ________________________________________________________________________ Puedes consultar la siguiente dirección electrónica: http://concurso.cnice.mec.es/cnice2005/93_iniciacion_interactiva_materia/curso/materiales/propied ades/masa.htm donde puedes realizar experimentos con mediciones virtuales.
  • 6. 6 ACTIVIDAD 6.- El profesor pedirá que de manera individual se realice una investigación guiada por las siguientes instrucciones: Midiendo el volumen Muchas de las decisiones que se toman deben de tener un antecedente basado en un conocimiento, un ejemplo de esto podría ser el tamaño de un objeto para determinar si lo podemos poner dentro de un coche. Cuando un objeto tiene formas regulares como un cubo es fácil conocer el volumen basta con recurrir a las formulas geométricas V= L3, lo mismo podríamos hacer con diferentes cuerpos con formas geométricas, pero esto se complica con cuerpos con formas irregulares o complejas, sin embargo esto ya fue resuelto por grandes científicos en la antigüedad como Arquímedes, veamos como. Vamos ha realizar diferentes mediciones de objetos pequeños como un sacapuntas, una ficha, un trozo de pequeño de plastilina, un anillo, etc. Para ello necesitamos una probeta graduada, puede ser de 100 o 250 ml Necesitas poner una cantidad de 20 ml agua en la probeta Sumerge en la probeta el objeto del que deseas conocer el volumen por ejemplo un sacapuntas Registra el nuevo nivel del agua ___________ Si restamos la cantidad del nuevo nivel y el nivel inicial que tenia 20 ml obtendremos el volumen del sacapuntas __________. Un detalle importante el objeto del que deseas conocer el volumen debe estar completamente sumergido, para ello puedes variar el volumen de agua a una cantidad mayor que permita que todo el objeto este dentro del agua. Registrar en la siguiente tabla tres objetos diferentes al sacapuntas y obtén su volumen Objetos Nivel de agua en la probeta Nuevo nivel de agua en la probeta Volumen del Objeto Por volumen se entiende aquella magnitud física que nos mide la cantidad de espacio que ocupa un cuerpo y desde el punto de vista de la Física, capacidad, es la posibilidad que tiene un cuerpo para contener a otro en su interior. Es decir que está hueco; que t iene espacio libre en su interior.
  • 7. 7 La unidad de volumen es el m3 se trata de una unidad muy grande, se suelen emplear submúltiplos de ella como: el decímetro cúbico, el centímetro cúbico y el milímetro cúbico 1 m3 = 1000 dm3 1 dm3 = 1000 cm3 1 cm3 = 1000 mm3 Las mediciones que realizamos con la probeta son en unidades de capacidad no de volumen sin embargo son fáciles de convertir considerando que: 1 m3 = 1000 l 1 dm3 = 1 l 1 cm3 = 1 ml Escribe de nuevo los objetos de la tabla que hiciste anteriormente y contesta correctamente la ultima columna que contiene las medidas de volumen. Puedes consultar la siguiente dirección electrónica: http://concurso.cnice.mec.es/cnice2005/93_iniciacion_interactiva_materia/curso/materiales/propied ades/masa.htm donde puedes realizar experimentos con mediciones virtuales Objetos Nivel de agua en la probeta Nuevo nivel de agua en la probeta Volumen del objeto en unidades de capacidad Volumen del objeto sacapuntas 20 ml 35 ml 15 ml 15 cm3 o 15 cc
  • 8. 8 ACTIVIDAD 7.- El profesor pedirá que de manera colegiada se realice la actividad (puede ser en equipos de 2 personas) La Densidad Consulta y registra el concepto de densidad ____________________________________ ________________________________________________________________________ “Más o menos 250 A.C., el matemático griego Arquímedes recibió la tarea de determinar si un artesano había defraudado al Rey de Siracusa cuando cambió una medida de oro en la corona del Rey por una de plata. Arquímedes reflexionó sobre el problema mientras se relajaba en una piscina. Ahí se dio cuenta que el agua se desparramaba a los lados de la piscina. Arquímedes tuvo una epifanía (una relevación). Se dio cuenta que la cantidad de agua que se desparramaba era igual en volumen que el espacio que su ocupaba cuerpo. De repente este hecho le dio el método para diferenciar una corona de oro y plata de una corona de puro oro. Ya que la medida de la plata ocupa más espacio que el equivalente de la medida de oro, Arquímedes puso la corona del artesano y una corona equivalente de puro oro en dos tubos de agua. Encontró que se desparramaba más agua del tubo cuando la corona del artesano estaba adentro. Resulta que el artesano había estado defraudando al Rey. La leyenda dice que Arquímedes estaba tan entusiasmado con su descubrimiento que corrió desnudo por las calles de Grecia gritando Eureka! Eureka! (La palabra griega que significa 'Lo encontré')”.1 Una historia que nos cuenta como como el conocimiento científico nos da herramientas para conocer la verdad y de que manera se resuelven problemas como “conocer de que material esta echa la corona sin destruirla” nos lleva a la formula de Densidad = masa/volumen La densidad es una propiedad intensiva que relaciona la masa de un objeto dividida entre el volumen del mismo. Por lo que podemos conocer las medidas de la densidad A partir de las unidades de masa y volumen (g/cc, g/cm3, en ocasiones se utiliza las medidas de capacidad como g/ml).
  • 9. 9 Encuentra la densidad de los siguientes materiales: Puedes realizar los experimentos sobre la densidad en la siguiente dirección elecrtónica http://phet.colorado.edu/sims/density-and-buoyancy/density_es.html 1http://www.visionlearning.com/library/module_viewer.php?mid=37&l=s Materiales masa volumen densidad madera 1,600 g 4,000 cm3 hielo 3,680 g 4,000 cm3 ladrillo 8,000 g 4,000 cm3 aluminio 10, 800g 4,000 cm3
  • 10. 10 1.3 Experimentación con mezclas  Homogéneas y heterogéneas.  Métodos de separación de mezclas con base en las propiedades físicas de sus componentes. Aprendizajes esperados  Identifica los componentes de las mezclas y las clasifica en homogéneas y heterogéneas.  Identifica la relación entre la variación de la concentración de una mezcla (porcentaje en masa y volumen) y sus propiedades.  Deduce métodos de separación de mezclas con base en las propiedades físicas de sus componentes. ACTIVIDAD 8.- Realiza un mapa conceptual con la clasificación de la materia
  • 11. 11 ACTIVIDAD 9.- “Concentración en una Mezcla” En toda disolución cabe distinguir entre disolvente y soluto (o solutos). El disolvente es el medio en el que se dispersan los solutos y aparece en mayor cantidad que estos. El agua es conocida como el disolvente universal ya que esta presente en una gran cantidad de mezclas. Se llama concentración de una disolución a la relación existente entre la cantidad de soluto y la cantidad de disolvente: Concentración = cantidad de soluto / cantidad de disolvente Encuentra los siguientes conceptos: Disolución _______________________________________________________________ Disolvente _______________________________________________________________ Soluto __________________________________________________________________ Concentración ____________________________________________________________ Existen varias formas de expresar la concentración de una disolución: dependiendo del estado de agregación del soluto que podría ser en: Concentración = % en masa donde el soluto y el disolvente se expresan así: Concentración = ( 𝑐𝑎𝑛𝑡𝑖𝑑𝑎𝑑 𝑑𝑒𝑙 𝑠𝑜𝑙𝑢𝑡𝑜 𝑚𝑎𝑠𝑎 (𝑔) 𝑐𝑎𝑛𝑡𝑖𝑑𝑎𝑑 𝑑𝑒𝑙 𝑙𝑎 𝑑𝑖𝑠𝑜𝑙𝑢𝑐𝑖𝑜𝑛 𝑚𝑎𝑠𝑎 ( 𝑔) ) × 100 Concentración = % en volumen donde el soluto y el disolvente se expresan así: Concentración = ( 𝑐𝑎𝑛𝑡𝑖𝑑𝑎𝑑 𝑑𝑒𝑙 𝑠𝑜𝑙𝑢𝑡𝑜 𝑣𝑜𝑙𝑢𝑚𝑒𝑛(𝑙) 𝑐𝑎𝑛𝑡𝑖𝑑𝑎𝑑 𝑑𝑒𝑙 𝑙𝑎 𝑑𝑖𝑠𝑜𝑙𝑢𝑐𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒𝑛 ( 𝑙) ) × 100 Vamos a hacer una mezcla con 40 gr de cloruro de sodio y 160 ml de agua 1- ¿Cuál es el soluto? y ¿cuál es su cantidad? ___________________ y __________ 2- ¿Cuál es disolvente? y ¿cual es su cantidad? _________________ y __________ 3- ¿Qué cantidad de disolución hay? ______________________________________ Encuentra la concentración en % de masa Concentración = ( 𝑐𝑎𝑛𝑡𝑖𝑑𝑎𝑑 𝑑𝑒𝑙 𝑠𝑜𝑙𝑢𝑡𝑜 ( 𝑔) 𝑐𝑎𝑛𝑡𝑖𝑑𝑎𝑑 𝑑𝑒𝑙 𝑙𝑎 𝑑𝑖𝑠𝑜𝑙𝑢 𝑐𝑖𝑜𝑛 ( 𝑔) ) × 100 = ______________
  • 12. 12 Vamos a hacer una mezcla con 200 cc de alcohol y 50 cc de agua 1- ¿Cuál es el soluto? y ¿cuál es su cantidad? ___________________ y __________ 2- ¿Cuál es disolvente? y ¿cual es su cantidad? _________________ y __________ 3- ¿Qué cantidad de disolución hay? ______________________________________ Encuentra la concentración en % de volumen Concentración = ( 𝑐𝑎𝑛𝑡𝑖𝑑𝑎𝑑 𝑑𝑒𝑙 𝑠𝑜𝑙𝑢𝑡𝑜 ( 𝑐𝑐) 𝑐𝑎𝑛𝑡𝑖𝑑𝑎𝑑 𝑑𝑒𝑙 𝑙𝑎 𝑑𝑖𝑠𝑜𝑙𝑢 𝑐𝑖𝑜𝑛 ( 𝑐𝑐) ) × 100 = ______________ Las propiedades de algunas mezclas son modificadas dependiendo de la concentración tenemos de ejemplo la mezcla de aire y combustible de los automóviles cuya proporción ideal de aire y combustible en un motor de gasolina es de 14,7 kg de aire por 1 kg de combustible, en una alberca para conservar su pureza y ph debe tener 2 ppm de cloro libre. ACTIVIDAD 10.- Métodos de separación de mezclas Existen diferentes métodos para separar mezclas dependiendo de las faces que tenga el soluto y el solvente. Elabora un mapa mental con los procesos para separar sustancias Separación de Líquidos Mezclas Separación de Líquido/Sólido Separación de Sólidos Miscibles Destilación Decantación No Miscibles Sólidos no solubles Sólidos solubles Filtración Destilación Evaporación Magnetismo Centrifugación Cristalización Diferente solubilidad
  • 13. 13 1.4 ¿Cómo saber si la muestra de una mezcla está más contaminada que otra? Toma de decisiones relacionada con:  Contaminación de una mezcla.  Concentración y efectos. Aprendizajes esperados  Identifica que los componentes de una mezcla pueden ser contaminantes, aunque no sean perceptibles a simple vista.  Identifica la funcionalidad de expresar la concentración de una mezcla en unidades de porcentaje (%) o en partes por millón (ppm).  Identifica que las diferentes concentraciones de un contaminante, en una mezcla, tienen distintos efectos en la salud y en el ambiente, con el fin de tomar decisiones informadas. ACTIVIDAD 11.- Considerando el fragmento de la lectura “Criterios toxicológicos generalespara los contaminantes químicos” del Doctor en Ciencias Químicas José Bartual Sánchez elabora un organizador gráfico con las siguientes ideas: Criterios para considerar una sustancia toxica Clasificación de las sustancias según la estructura química Clasificación según exposición y dosis Tipos de efectos tóxicos Criterios toxicológicos generales para los contaminantes químicos Una sustancia es considerada toxica cuando tiene efectos nocivos sobre la salud, debido a su presencia en el ambiente, en términos amplios, se entiende por acción tóxica o toxicidad a la capacidad relativa de una sustancia para ocasionar daños mediante efectos biológicos adversos, una vez que ha alcanzado algún punto susceptible del cuerpo. Las substancias tóxicas pueden clasificarse de acuerdo con varios criterios. Uno de los criterios de clasificación es la estructura química responsable de la toxicidad, ya que ésta no siempre es debida a la composición global, sino que frecuentemente está originada por la presencia de la molécula de un elemento determinado o de un grupo funcional característico. De este modo los tóxicos pueden clasificarse según elementos químicos, grupos funcionales o bien compuestos definidos, tal como se indica a continuación: Elementos químicos: Compuestos de Arsénico, Bario, Berilio, Cadmio, Cobre, Cromo, Fósforo, Manganeso, Mercurio, Níquel, Plomo, etc. Grupos Funcionales: Compuestos con grupos aldehido, amido, amino, carboxilo, ester, éter, isocianato, nitrilo, nitro, etc. Compuestos definidos: Ácido nítrico, cloroformo, dióxido de azufre, fenol, fosgeno, monóxido de carbono, sílice, etc. Exposición y dosis: La presencia de un contaminante en el medio ambiente en el que se halla un individuo origina la exposición de éste al contaminante en cuestión. La consecuencia de esta exposición -exposición externa- es que cierta cantidad determinada del contaminante podrá alcanzar o incorporarse al organismo del individuo, produciendo determinados efectos sobre el mismo. El concepto de exposición, como magnitud, integra dos factores variables diferentes; la concentración o nivel de presencia del contaminante en el medio y el tiempo o duración de la propia exposición. No obstante, ambos factores tienen interés propio, por lo cual se dice que la exposición es más o menos intensa según sea la magnitud de la concentración del contaminante, y se clasifican las exposiciones en agudas, subagudas y crónicas según su duración y frecuencia.
  • 14. 14 En general suelen distinguirse varios tipos principales de efectos tóxicos: Corrosivo: Efecto de destrucción de los tejidos sobre los que actua el tóxico. Irritativo: Efecto de irritación de la piel o las mucosas en los puntos en los que se produce el contacto con el tóxico. Neumoconiótico: Efecto de fibrosis pulmonar producido por partículas sólidas de determinadas substancias insolubles en los fluidos biológicos. Asfixiante: Efecto de anoxia producido por desplazamiento del oxígeno del aire (asfixiantes físicos) o por alteración de los mecanismos oxidativos biológicos (asfixiantes químicos). Sensibilizante: Efecto debido a una reacción de tipo alérgico del organismo ante la presencia del tóxico, que puede manifestarse de múltiples formas (asma, dermatitis). Cancerígeno, mutágeno y teratógeno: Efecto de producción de cáncer, modificaciones hereditarias y malformaciones en la descendencia, respectivamente, debidas básicamente a la inducción de cambios en los cromosomas de las células. Sistémico: Alteraciones en órganos y sistemas específicos debidas a la acción sobre los mismos del tóxico, una vez absorbido y distribuido por el cuerpo; incluye, por tanto, los efectos sobre el sistema nervioso, sistema hematopoyético, hígado, riñones, etc. ACTIVIDAD 12.- En determinadas mezclas se expresa la cantidad del soluto en ppm (partes por millón) ¿qué ventajas tiene? En términos químicos, el café, el aire, o el agua de mar, son soluciones porque en todos los casos, se trata de mezclas homogéneas de dos o más sustancias. La sustancia disuelta se denomina soluto y está presente generalmente en pequeña cantidad en comparación con la sustancia donde se disuelve denominada solvente. La concentración de una solución puede expresarse en términos empíricos o cualitativos, o en términos cuantitativos o numéricos. Por ejemplo, tu puedes decir mi limonada está "muy diluida" o "muy concentrada", pero si quieres ser más específico, tendrías que expresar la concentración del jugo de limón utilizando una expresión numérica muy precisa y por ende más exacta. Algunas de estas formas cuantitativas de medir la concentración son las partes por millón (ppm) que se utilizan como unidad para expresar concentraciones muy pequeñas de una sustancia presente en una mezcla. Así, ppm es la cantidad de materia contenida en una parte sobre un total de un millón de partes. Por ejemplo, si tienes una concentración de 10 ppm de jugo de limón en una limonada, ésta ni siquiera se considera como tal, porque tendrías en promedio una media gota de jugo de limón por cada mil litros de agua: El uso de las ppm es relativamente frecuente en la medición de la composición de los gases de la atmósfera terrestre. Así el aumento de dióxido de carbono en el aire debido al calentamiento global se suele dar en dichas unidades. En el siguiente experimento vamos a obtener una mezcla con una parte por millón Necesitas: una gradilla con 7 tubos de ensayo y un liquido con color fuerte (puede se un jugo de Jamaica) y un agitador. Debes lavar bien los tubos Tubo Gotas de jugo Gotas de agua disolución Concentración (ppm)
  • 15. 15 1. En el primer tubo coloca 10 gotas del jugo 2. En el segundo tubo coloca 1 gota del jugo y 9 gotas de agua 3. En el tubo 3 agrega 1 gota del tubo 2 y 9 gotas de agua 4. En el tubo 4 agrega 1 gota del tubo 3 y 9 de agua 5. En el tubo 5 agrega 1 gota del tubo 4 y 9 de agua 6. En el tubo 6 agrega 1 gota del tubo 5 y 9 de agua 7. En el tubo 7 agrega 1 gota del tubo 6 y 9 de agua En el tubo 2 si se pudiera dividir el liquido que tenemos en 1 millón de partes “veríamos” que la decima parte de esta muestra o sea 1,000,000 entre 10 son 100,000 partes del jugo estarían presentes o de otra manera el tubo 2 tiene 100,000 partes por millón de jugo. El tubo 3 de la misma manera que el anterior “veíamos” que del millón de partes que dividimos la muestra, la centésima partes es decir 10,000 partes del millón son de jugo y las restantes son de agua. Describe como es la concentración en los tubos siguientes: Tubo 4:__________________________________________________________________ Tubo 5: _________________________________________________________________ Tubo 6: _________________________________________________________________ Tubo 7: _________________________________________________________________ 1.5 Primera revolución de la química Aportaciones de Lavoisier: la Ley de conservación de la masa. Aprendizajes esperados  Argumenta la importancia del trabajo de Lavoisier al mejorar los mecanismos de investigación (medición de masa en un sistema cerrado) para la comprensión de los fenómenos naturales.  Identifica el carácter tentativo del conocimiento científico y las limitaciones producidas por el contexto cultural en el cual se desarrolla. Actividad 13.- INVESTIGACIÓN La ley de conservación de la masa, También conocido como principio de conservación de la materia / masa es que el masa de un sistema cerrado (En el sentido de un sistema completamente aislado) se mantendrá constante en el tiempo. La masa de un sistema aislado no se puede cambiar como resultado de procesos que actúan dentro del sistema. Una declaración similar es que la masa no puede ser creado / destruido, aunque se pueden cambiar en el espacio, y se transforma en diferentes tipos de partículas. Esto implica que para cualquier proceso químico en un sistema cerrado, la masa de los reactivos debe ser igual a la masa de los productos. 1 10 0 1/1 1000000 2 1 9 1/10 100000 3 .1 9 1/100 10000 4 .01 9 1/1000 1000 5 .001 9 1/10000 100 6 .0001 9 1/100000 10 7 .00001 9 1/1000000 1
  • 16. 16 Reactivos 1.- Una tableta de alka-seltzer. 2.- Bicarbonato de sodio. Na2CO3 Compuesto formado por carbono, oxígeno y sodio. Polvo (sólido). 3.- Ácido clorhídrico al 4% (aprox.). Diluido. Líquido. 4.- Agua destilada. H2O No conduce la energía eléctrica. Líquido. Propósito: Comprobar la ley de la conservación de la materia, las masas permanecen constantes después de los experimentos. Coloque en un matraz Erlenmeyer 20 ml de agua destilada y 20 ml de ácido clorhídrico, empleando la probeta. En el mortero triture una tableta de alka-seltzer. A continuación vierta el polvo en el interior de un globo, teniendo cuidado de que no quede en las paredes exteriores del mismo. Embone la boca del globo con la del matraz Erlenmeyer, asegurándose de que no caiga alka- seltzer dentro del matraz. Determine la masa de todo el sistema. Levante el globo para que el alka-seltzer caiga dentro del matraz y espere a que la reacción que se produce finalice. Determine nuevamente la masa de todo el sistema.
  • 17. 17 1.6 Proyectos: ahora tú explora, experimenta y actúa (preguntas opcionales)* Integración y aplicación • ¿Cómo funciona una salinera y cuál es su impacto en el ambiente? • ¿Qué podemos hacer para recuperar y reutilizar el agua del ambiente? Aprendizajes esperados  A partir de situaciones problemáticas plantea premisas, supuestos y alternativas de solución, considerando las propiedades de los materiales o la conservación de la masa.  Identifica, mediante la experimentación, algunos de los fundamentos básicos que se utilizan en la investigación científica escolar.  Argumenta y comunica las implicaciones sociales que tienen los resultados de la investigación científica.  Evalúa los aciertos y debilidades de los procesos investigativos al utilizar el conocimiento y la evidencia científicos. Actividad 14 El profesor Miguel Auge, de la UBA, sostuvo por su parte que sí bien la “desalinización” es una alternativa para paliar el problema del agua, la salmuera que desecha es otro problema Y esto no es solamente por las altas concentraciones de sal sino también por las otras sustancias químicas que se utiliza durante el proceso. Esto implica que de adoptarse, la desalinización deberá contar con estudios exhaustivos para conocer cada uno de los compuestos utilizados y así identificar y mitigar sus efectos en el ambiente durante la descarga. Hoy en día la planta de desalinización más importante encuentra en el Golfo Pérsico, en islas donde el acceso al recurso es limitado y donde la gente está dispuesta a pagar precios altos por el mismo. Alrededor de 130 países en todo el mundo están implementando algún proceso de desalinización. Inclusive en algunas regiones del planeta casi toda el agua que se sume tiene su
  • 18. 18 origen en este sistema. Pero pese a estos avances y al creciente desarrollo tecnológico, la idea de agua potable ilimitada proveniente de los océanos no deja de ser todavía un sueño. En 2005, el total de agua producida a través de la desalinización en todo el mundo y a lo largo de todo el año fue similar al consumo mundial de un par de horas. Como vimos a lo largo de estas páginas, no se trata de desalinizar sino de utilizar de manera racional los recursos que tenemos al alcance de nuestras manos. Para evitar que los pronósticos catastrofistas de distintas organizaciones ambientales sobre el agua se cumplan, es fundamental no derrochar los recursos que ya tenemos a nuestro alcance. Para eso la educación es un punto central. En estos últimos años, pueden verse a través de los medios masivos de comunicación cada vez más campañas en este sentido, además de notas gráficas y televisivas sobre pueblos que padecen la falta de agua potable. El cambio, para evitar los pronósticos de las Naciones Unidas, no sólo está en manos de las grandes potencias sino en lo que cada uno de nosotros haga en su quehacer cotidiano. MÉTODO DE DESALINIZACIÓN: El ingeniero químico Kamalesh Sirkar, profesor del Instituto Tecnológico de New Jersey, y experto en la tecnología de separación de productos utilizando membranas, dirige el grupo de especialistas. Sirkar posee más de 20 patentes en el campo de la separación de productos utilizando esta técnica. El nuevo proceso funcionará especialmente bien con aguas que presenten concentraciones de sal por encima del 5,5 por ciento. Actualmente, este 5,5 por ciento es el porcentaje más alto de sal contenido en agua que puede ser tratado usando el método de la ósmosis inversa. Este nuevo proceso también es interesante porque puede activarse con fuentes de calor alimentadas por desechos. Aunque este calor es muy barato, puede calentar la salmuera eficazmente. La ciencia detrás del proceso de Sirkar de destilación por membrana es simple. El calor económico calienta el agua de la solución salina hasta su evaporación. El vapor limpio pasa entonces a través de los poros de dimensiones nanométricas de la membrana para terminar condensándose en agua fría, al otro lado de ella. Los principios básicos de la separación por medio de membrana han sido conocidos durante mucho tiempo. Los intestinos de los animales y los humanos son membranas semipermeables. Los
  • 19. 19 primeros experimentos para estudiar el proceso de separación usando membranas fueron realizados por los químicos usando porciones de membranas animales. Actualmente los procesos de separación por membranas dependen del diseño y el módulo de la misma. El tamaño de los poros es a menudo importante para determinar qué componentes moleculares en un líquido o forma gaseosa atravesarán la membrana. Usualmente las moléculas fluyen de una región de alta a otra de baja concentración. Las diferencias de presión o concentración en ambos lados de la membrana hacen que ocurra la separación. A medida que disminuye el tamaño de los poros, la eficiencia y la selectividad de la membrana aumentan. Los procesos de separación por membranas se usan en las industrias biomédica, biotecnológica, química, alimentaria, petroquímica, farmacéutica y de tratamiento de agua para separar, purificar y/o concentrar soluciones líquidas, suspensiones celulares o mezclas gaseosas. El investigador prevé muchas aplicaciones futuras para su proceso; sin embargo, la desalinización del agua de mar para producir agua potable siempre ha tenido un gran interés. Proveemos de agua purificada bajo las marcas registradas Eutek y Aquaker que es sometida a los siguientes procesos Cloración Filtración por lecho profundo Filtración por carbón activado (Adsorción) Desmineralización por Intercambio Iónico Osmosis Inversa Luz Ultravioleta Pulido a 5 micras Ozonización Iones de plata Pulido a 1 Micra con Adsorción por cartucho de carbón activado Contamos con análisis de laboratorio certificado por SSA
  • 20. 20 AUTOEVALUACIÓN INSTRUCCIONES: Subraya la respuesta correcta a cada cuestión. 1. Después de un juego de voleibol los integrantes de un equipo hacen los siguientes comentarios: María: tengo mucha sed quiero tomar un refresco embotellado. Tony: estoy deshidratado necesito un refresco energético de los que no tienen azúcar. Laurita: creo que los dos están equivocados deberían de tomar agua natural o agua de frutas ya que no tiene nada de químicos, son naturales. Rubén: creo que están mal, tanto el refresco embotellado, como el refresco energético y el agua natural son productos químicos que aunque sean naturales, también forman parte del campo de estudio de la Química. Desde el marco de estudio de la Química; ¿cuál de las anteriores afirmaciones es la correcta? A) María B) Tony C) Laurita D) Rubén 2. Seleccione el modelo que representa la evaporación del agua. A) B) C) D) 3. Constituyen una parte fundamental del conocimiento científico. A) Diagramas B) Tablas C) Modelos D) Esquemas 4. ¿Cuál de las siguientes justificaciones expresa que es una de las mejores formas de producir la ciencia? A) El método experimental, porque a través de él se elaboran hipótesis, teorías y leyes. B) El lenguaje utilizado por ser la mejor forma para explicar lo que sucede. C) La clasificación porque permite ordenar sustancias.
  • 21. 21 D) La medición porque podemos comparar una magnitud con otra de la misma especie. 5. De las siguientes situaciones, escoge cuál evidencia la utilización del método científico, en la vida diaria. A) Este lunes, tienes que presentar dos exámenes, además debes entregar el reporte de la práctica de laboratorio de la semana pasada, entonces en la computadora, elaboras un cronograma de tus pendientes y los tiempos necesarios para efectuarlos. B) Ayer, como todos los miércoles, consultaste tu horóscopo para saber cómo iba a ser tu semana. C) La vecina dice que mañana tendrá dinero, pues hoy jugará a la lotería y seguro ganará. D) Mi amiga llegó hoy con los ojos llorosos y con cara triste. No pude hablar con ella, pero de seguro murió algún familiar, pues su aspecto así lo denotaba. 6. Selecciona de los siguientes ejemplos el que aplica un conocimiento científico. A) Anticipar la cantidad de sustancias que se necesita para hacer un guacamole. B) Anticipar la cantidad de tiempo en el que ocurrirá un accidente. C) Anticipar la cantidad de tiempo que se necesita para asar carne. D) Anticipar la cantidad de sustancias que se necesita para elaborar jabón. 7. Seleccione las afirmaciones que expresan los factores que determinan el grado de toxicidad de una sustancia. 1) La dosis hace el veneno 2) La sensitividad de los seres vivos 3) La excreción del organismo 4) La exposición a los tóxicos 5) El almacenamiento de los tóxicos en el organismo A) 1, 2, 3,5 B) 1,3, 4,5 C) 1, 2, 3,4 D) 2, 3, 4,5 8. ¿Qué significa la noción de que “la dosis hace al veneno”? A) Todas las sustancias son tóxicas B) Las sustancias naturales no son tóxicas C) Una sustancia puede ser benéfica en bajas cantidades y tóxica en altas D) Una sustancia es tóxica sólo cuando se ingiere la concentración máxima aceptada.
  • 22. 22 9. ¿Cómo se llama el método para determinar la concentración máxima de sustancias contaminantes que se encuentran en el agua y el medio ambiente? A) Partes por millón B) Porcentaje masa/volumen C) Partes por mil D) Normalidad 10. Carlos después de limpiar una alberca, le tiene que agregar cloro para que el agua tenga las condiciones adecuadas de higiene, conociendo la capacidad que tiene de agua (100,000 l) leyendo las especificaciones que marcan 2 ppm ¿Qué cantidad de cloro en polvo debe agregar? A) 20 g B) 200 g C) 20 mg D) 200 mg 11. Si Carlos tuviera que agregar kilogramos, ¿Cuántos tendría que añadir? A) 0.2 Kg B) 20 Kg C) 2 Kg D) 200 Kg 12. De acuerdo con las propiedades de las partículas de las sustancias, escoge la respuesta más adecuada al planteamiento siguiente: “Los líquidos tienen forma definida, pero los gases no” A) Los líquidos tienen sus partículas más separadas que los gases. B) Los gases tienen las partículas más separadas que los líquidos. C) Los líquidos y los gases tienen sus partículas igual de separadas, pero las partículas de los líquidos pesan más. D) Los líquidos pueden fluir, pero los gases no. 13. De los siguientes enunciados, determina ¿cuáles representan cambios químicos y cuáles son sólo cambios físicos? 1. Durante una práctica de laboratorio, Paco corta en pedacitos, una cinta de magnesio. 2. Mamá desmancha mi bata de prácticas con cloro. 3. Pusimos pedacitos de hígado de pollo en una botella y le agregamos agua oxigenada, después metimos un palillo con un punto de ignición y éste se encendió vivamente. 4. En el comal de la estufa, pusimos sal de cocina humedecida a calentar, hasta que se desecó toda. A) 1, 2 y 3 son cambios físicos
  • 23. 23 B) 1 y 4 son cambios físicos C) 2, 3 y 4 son cambios químicos D) 1, 2 y 4 son cambios químicos 14. Reconoce la propiedad que hace posible la escena de la fotografía en el Mar Muerto. A) Masa B) Volumen C) Peso D) Densidad 15. De acuerdo al lenguaje científico, ¿cuál es la expresión correcta para: sus aguas son mucho más pesadas que el agua de mar ordinaria? A) Sus aguas son más densas B) Sus aguas tienen más masa C) Sus aguas son más duras D) Sus aguas tienen más volumen 16. Elige la propiedad de la materia que relaciona el peso específico. A) Masa/volumen B) Peso/volumen C) Volumen/masa D) Masa/peso 17. De los siguientes ejemplos, determina cuál opción incluye una propiedad extensiva y una intensiva de la materia A) Densidad, punto de ebullición B) Masa, volumen C) Viscosidad, dureza D) Masa, punto de fusión 18. Revolvemos tres sustancias que no se mezclan entre sí. Cuando se asientan, observamos que se forman tres capas perfectamente delineadas. De acuerdo a lo que sabes sobre densidad, escoge la opción correcta. A) La sustancia A es más densa que la sustancia C, pero menos densa que la sustancia B B) La sustancia A es la menos densa de todas C) La sustancia C es la menos densa de todas D) La sustancia B y la sustancia C tienen iguales densidades
  • 24. 24 A Teresa le piden que realice un experimento para investigar el punto de ebullición del agua, sin embargo, tiene poco tiempo para realizarlo; sus compañeros le comentan lo siguiente: A) Paco le dice que utilice poca agua para que el punto de ebullición sea menor y tarde poco. B) Ana: No, entre más agua menor será el punto de ebullición. C) Estela: El punto de ebullición no cambia con la cantidad de agua. D) Pedro: Todos se equivocan, mejor haz el experimento. 19. Considerando las propiedades de la materia. ¿Cuál de las afirmaciones es la correcta? A) Paco B) Ana C) Estela D) Pedro 20. Lea la siguiente práctica experimental y subraye la respuesta correcta según corresponda. Llena un globo grande con 5g.de bicarbonato de sodio (NaHCO3).Por otro lado, en un matraz de 125 ml coloca 30 ml de vinagre (CH3COOH).Coloca el globo en la boca del matraz sin que el bicarbonato caiga al vinagre y pesa el sistema. Sin quitar el globo vacía su contenido al matraz, observa que sucede y vuelve a pesarlo sin quitar el globo. A) Pesan lo mismo todas las sustancias antes y después de la reacción. B) Pesan más las sustancias producidas. C) Pesan más las sustancias reactivas. D) Pesan dos veces más los productos que los reactivos. 21. De los líquidos abajo enlistados, ¿cuáles no son mezclas? A) Oro, plata, bronce B) Polietileno, alcohol, mayonesa C) Sal, azufre, agua D) Aluminio, acero, mercurio 22. En el laboratorio, ¿qué nombre recibe el método para obtener agua pura? A) Potabilización B) Destilación C) Sedimentación D) Ozonización
  • 25. 25 BLOQUE II LAS PROPIEDADES DE LOS MATERIALES Y SU CLASIFICACIÓN QUÍMICA Bloque II. Las propiedades de los materiales y su clasificación química. En este bloque se utiliza el modelo corpuscular como herramienta fundamental para avanzar en la comprensión de las características de los materiales. Con la aplicación de este modelo se representan los materiales para diferenciar entre mezclas y sustancia puras: compuestos y elementos. Asimismo, se avanza en la comprensión de la estructura interna de los materiales al representarlos e interpretarlos por medio de la construcción de modelos: atómico y enlace químico. Se plantea la identificación de las propiedades de los metales para favorecer la toma de decisiones relacionada con las cuatro “R” (rechazar, reducir, reusar y reciclar), lo que repercutirá en acciones de cuidado ambiental.
  • 26. 26 En la segunda revolución de la química se consideran las aportaciones de Stanislao Cannizzaro y Dimitri Mendeleiev en la sistematización y organización de los elementos químicos. También se propone la identificación de regularidades del sistema de clasificación del conocimiento químico: la Tabla periódica, para relacionarla con las propiedades de los elementos químicos representativos y su importancia para los seres vivos. Se presenta una primera aproximación a los modelos de enlace iónico y covalente, así como su relación con las propiedades de las sustancias. Los proyectos que se sugieren permiten identificar la importancia de los elementos químicos en el cuerpo humano, y sus implicaciones en la salud o el ambiente. Competencias que se favorecen:  Comprensión de fenómenos y procesos naturales desde la perspectiva científica •  Toma de decisiones informadas para el cuidado del ambiente y la promoción de la salud orientadas a la cultura de la prevención  Comprensión de los alcances y limitaciones de la ciencia y del desarrollo tecnológico en diversos contextos. Contenidos: 2.1 Clasificación de los materiales 2.2 Estructura de los materiales 2.3 ¿Cuál es la importancia de rechazar, reducir, reusar y reciclar los metales? 2.4 Segunda revolución de la química 2.5 Tabla periódica: organización y regularidades de los elementos químicos 2.6 Enlace químico 2.7Proyectos: ahora tú explora, experimenta y actúa (preguntas opcionales)* Integración y aplicación 2.1 Clasificación de los materiales  Mezclas y sustancias puras: compuestos y elementos. Aprendizajes esperados:  Establece criterios para clasificar materiales cotidianos en mezclas, compuestos y elementos considerando su composición y pureza.  Representa y diferencia mezclas, compuestos y elementos con base en el modelo corpuscular.
  • 27. 27 ACTIVIDAD 1. Investiga en tu libro de texto de ciencias III, el tema de mezclas y sustancias puras: compuestos y elementos. En un cuadro de doble entrada escribe los conceptos de compuesto, elemento, mezcla homogénea y heterogénea en plenaria presentarlo al grupo. (Uso de Tics) Concepto Compuesto Elemento Características Concepto Mezcla homogénea Mezcla heterogénea Características 2.2 Estructura de los materiales  El modelo atómico de Bohr  El enlace químico. Aprendizajes esperados:  Identifica los componentes del modelo atómico de Bohr (protones, neutrones y electrones), así como la función de los electrones de valencia para comprender la estructura de los materiales.  Representa el enlace químico mediante los electrones de valencia a partir de la estructura de Lewis.  Representa mediante la simbología química elementos, moléculas, átomos, iones (aniones y cationes). ACTIVIDAD 2. Para facilitar el estudio de los elementos químicos se recomiendan las hojas de trabajo “Modelo atómico y electrones de valencia” (Enseñanza de las ciencias a través de modelos matemáticos. Química, México, 2000, pp. 74-76.) en donde se muestra que los electrones se sitúan en diferentes capas. Analiza el video “El átomo”, de la colección El mundo de la química, vol.III, contiene la explicación de la constitución del átomo mediante la simulación por computadora.
  • 28. 28 Investiga en tu libro de texto o en alguna otra fuente de información los siguientes conceptos: Partículas del átomo Concepto Protón Neutrón Electrón Figura. 2a. Átomo de oxígeno ACTIVIDAD 3. De acuerdo al modelo atómico de Bohr, dibuja la estructura de los siguientes elementos y escribe el número de electrones, protones y neutrones correspondientes.
  • 29. 29 Elemento Modelo atómico de Bohr Número de electrones Número de protones Número de neutrones Na Al Cl Ca ACTIVIDAD 4. Investiga en tu libro de texto, en internet o en cualquier otra fuente de información los siguientes conceptos. Concepto Electrón de valencia Enlace químico Estructura de Lewis
  • 30. 30 Los alumnos en forma individual con la ayuda de la tabla periódica, completarán la siguiente tabla. Elemento Electrones de valencia Estructura de Lewis Litio Magnesio Aluminio Fósforo Cloro Argón Calcio Sodio Hidrógeno Oxígeno Carbono Azufre Bromo Fluor Cs Las siguientes estructuras del átomo serán de utilidad a los alumnos para contestar algunas de las actividades aquí planteadas. Figura 2b. Estructura electrónica de los átomos Figura 2c. El núcleo y los electrones
  • 31. 31 Figura 2d. Estructura electrónica de los átomos Figura 2e. Electrones de valencia y de core ACTIVIDAD 5. En binas los alumnos completaran la siguiente tabla, escribiendo el número de electrones de valencia correspondiente a cada familia de la tabla periódica. Nº de electrones Familia IA IIA IIIA IVA VA VIA VIIA Tabla 2f. Electrones de valencia y capacidad de combinación ACTIVIDAD 6. Los alumnos en binas consultando la tabla periódica completarán lo siguiente. Nombre del elemento o compuesto Símbolo o fórmula Modelo molecular Hidrógeno Oxígeno Potasio
  • 32. 32 Nitrógeno Agua Ácido clorhídrico Cloruro de sodio Bromuro de magnesio Fluoruro de aluminio 2.3 ¿Cuál es la importancia de rechazar, reducir, reusar y reciclar los metales?  Propiedades de los metales  Toma de decisiones relacionada con: rechazo, reducción, reuso y reciclado de metales. Aprendizajes esperados:  Identifica algunas propiedades de los metales (maleabilidad, ductilidad, brillo, conductividad térmica y eléctrica) y las relaciona con diferentes aplicaciones tecnológicas.  Identifica en su comunidad aquellos productos elaborados con diferentes metales (cobre, aluminio, plomo, hierro), con el fin de tomar decisiones para promover su rechazo, reducción, rehúso y reciclado. Metales como el oro, la plata y el cobre, fueron utilizados desde la prehistoria. Al principio, sólo se usaron los que se encontraban en estado puro (en forma de elementos nativos), pero gradualmente se fue desarrollando la tecnología necesaria para obtener nuevos metales a partir de sus menas, calentándolos en un horno mediante carbón de madera. El primer gran avance se produjo con el descubrimiento del bronce, producto de la utilización de mineral de cobre con incursiones de estaño, entre 3500 a. C. y 2000 a. C., en diferentes regiones del planeta, surgiendo la denominada Edad del Bronce, que sucede a la Edad de Piedra. Otro hecho importante en la historia fue la utilización del hierro, hacia 1400 a. C. Los hititas fueron uno de los primeros pueblos en utilizarlo para elaborar armas, tales como espadas, y las civilizaciones que todavía estaban en la Edad del Bronce, como los egipcios. Los metales se diferencian de los elementos, principalmente por el tipo de enlace que constituyen sus átomos. Se trata de un enlace metálico y en él los electrones forman una «nube» que se mueve, rodeando todos los núcleos. Este tipo de enlace es el que les confiere las propiedades conducción eléctrica, brillo,
  • 33. 33 ACTIVIDAD 7. En binas los alumnos investigaran en su libro de texto, internet o en la biblioteca de aula, las siguientes propiedades de los metales. Al concluir en plenaria los alumnos darán a conocer su trabajo. 2.4 Segunda revolución de la química - El orden en la diversidad de las sustancias: aportaciones del trabajo de Cannizzaro y Mendeleiev. Mendeleiev pertenece a la nueva generación de químicos que sigue un método de trabajo científico, que basan sus juicios en la experimentación rigurosa y que se benefician de los Propiedad metálica Concepto Maleabilidad Ductilidad Brillo Conductividad térmica Conductividad eléctrica
  • 34. 34 logros de sus colegas, con los que intercambia conocimientos. En el siglo XIX los investigadores comienzan a poner en común sus hallazgos en publicaciones especializadas y en congresos, como el de Karlsruhe de 1860, que sería fundamental para Mendeléiev a la hora de construir su tabla periódica. De hecho, sin la revisión de los pesos atómicos de determinados elementos propuesta por Cannizzaro en este congreso, Mendeléiev no hubiera podido encontrar la pauta que ordena los elementos en su Tabla. El gran mérito de Mendeléiev, y también de Meyer, fue descubrir que una clasificación de los elementos según su peso atómico revela la repetición periódica de algunas propiedades fundamentales. Pero, a diferencia del alemán, el químico ruso se atrevió a pronosticar la existencia de nuevos elementos en los huecos, aparentemente inexplicables, que dejaba su tabla, y anticipó las características que tendrían: su peso atómico, su valencia, su peso específico o su comportamiento ante los ácidos. Mendeléiev bautizó estos elementos como eka-aluminio, eka-silicio y eka-boro. Eka es un prefijo procedente del sánscrito que significa «uno». Extraído desde http://www.exploralaciencia.profes.net/ver_noticia.aspx?id=9728 el 22 de noviembre de 2009. ACTIVIDAD 8. Investiga en tu libro de texto o en alguna otra fuente de información las principales aportaciones de Mendeléiev y Cannizzaro. Científico Aportación Mendeléiev Cannizzaro 2.5 Tabla periódica: organización y regularidades de los elementos químicos  Regularidades en la Tabla Periódica de los elementos químicos representativos.  Carácter metálico, valencia, número y masa atómica.  Importancia de los elementos químicos para los seres vivos. Aprendizajes esperados:  Identifica la información de la tabla periódica, analiza sus regularidades y su importancia en la organización de los elementos químicos.  Identifica que los átomos de los diferentes elementos se caracterizan por el número de protones que los forman.  Relaciona la abundancia de elementos (C, H, O, N, P, S) con su importancia para los seres vivos. Se recomienda revisar el video “La Tabla Periódica” de la colección El mundo de la química, vol.4. En el año 1869 Mendeleiev clasifico todos los elementos conocidos en su época en orden creciente de sus masas atómicas. La ley periódica de Mendeleiev establece lo siguiente "Las propiedades químicas y la mayoría de las propiedades físicas de los elementos son función periódica de sus masas atómicas".
  • 35. 35 Los elementos que componen la tabla periódica están distribuidos en 7 renglones horizontales llamados periodos, y de 18 columnas verticales llamadas grupos. Los períodos están formados por un conjunto de elementos que teniendo propiedades químicas y físicas diferentes varían gradualmente; manteniendo en común el presentar igual número de niveles con electrones en su alrededor. Los grupos están formados por elementos que tienen propiedades químicas semejantes, así tenemos el grupo de los metales alcalinos, metales alcalino-térreos, no metales. A través de la tabla periódica se facilita el estudio sistemático de los elementos, se conoce la valencia de un elemento por su ubicación en los grupos. Figura 2g. Abundancia de los elementos químicos en la corteza terrestre ACTIVIDAD 9. Los alumnos en forma individual, con el apoyo de la Tabla Periódica completarán la siguiente tabla. Nombre de los metales alcalinos Símbolo Número de electrones Número de protones Número de neutrones
  • 36. 36 ACTIVIDAD 10. En los seres vivos destacan cuatro elementos fundamentales éstos son: carbono (C), hidrógeno (H), oxígeno (O) y nitrógeno (N). Los cuatro elementos forman el 97.4% del organismo de los seres vivos. En equipos de cuatro alumnos investigarán el porcentaje de cada uno de los elementos en los seres vivos y completarán la siguiente tabla. Elemento Porcentaje Grupo No. Atómico Electrones de valencia Estructura de Lewis Carbono Hidrógeno Oxígeno Nitrógeno ACTIVIDAD 11. Los alumnos organizados en binas escribirán dos ejemplos de productos elaborados con los siguientes metales: cobre, aluminio, plomo y hierro Metales Productos Cobre Aluminio Plomo Hierro Plata Oro Zinc Níquel Platino 2.6 Enlace químico
  • 37. 37  Modelos de enlace: covalente e iónico.  Relación entre las propiedades de las sustancias con el modelo de enlace: covalente e iónico. Aprendizajes esperados:  Identifica las partículas e interacciones electrostáticas que mantienen unidos a los átomos.  Explica las características de los enlaces químicos a partir del modelo de compartición (covalente) y de transferencia de electrones (iónico).  Identifica que las propiedades de los materiales se explican a través de su estructura (atómica, molecular). TIPOS DE ENLACES QUÍMICOS  Enlace iónico  Enlace covalente Polar No polar  Enlace metálico Actividad 12. Los alumnos investigarán en su libro de texto, internet o en la biblioteca de aula los siguientes conceptos: enlace químico, enlace iónico, enlace covalente, enlace covalente polar y no polar completando la siguiente tabla. Tipo de enlace Concepto Enlace químico Iónico Covalente Covalente polar Covalente no polar Metálico Actividad 13. En equipos formados por cuatro alumnos, investigarán en su libro de texto, internet o en la biblioteca de aula, las características generales de los compuestos iónicos, covalentes y metálicos completando la siguiente tabla.
  • 38. 38 Compuestos Propiedades generales Iónicos Covalentes Metálicos Después de las investigaciones realizadas sobre los diferentes tipos de enlaces, completa el siguiente cuadro. Nombre del compuesto Fórmula Tipo de enlace Estructura de Lewis Cloruro de sodio Bromuro de potasio Yoduro de litio Fluoruro de calcio Cloruro de magnesio Fluoruro de berilio Yoduro de aluminio Óxido de litio Oxido magnesio Óxido de boro Sulfuro de potasio Dióxido de carbono Agua 2.7 Proyectos: ahora tú explora, experimenta y actúa (preguntas opcionales)* Integración y aplicación.  ¿Cuáles elementos químicos son importantes para el buen funcionamiento de nuestro cuerpo?  ¿Cuáles son las implicaciones en la salud o el ambiente de algunos metales pesados? Aprendizajes esperados:  A partir de situaciones problemáticas, plantea preguntas, actividades a desarrollar y recursos necesarios, considerando los contenidos estudiados en el bloque.  Plantea estrategias con el fin de dar seguimiento a su proyecto, reorientando su plan en caso de ser necesario.  Argumenta y comunica, por diversos medios, algunas alternativas para evitar los impactos en la salud o el ambiente de algunos contaminantes.  Explica y evalúa la importancia de los elementos en la salud y el ambiente.
  • 39. 39 El proyecto estudiantil deberá permitir el desarrollo, integración y aplicación de aprendizajes esperados y de competencias. Es necesario destacar la importancia de desarrollarlo en cada cierre de bloque; para ello debe partirse de las inquietudes de los alumnos, con el fin de que elijan una de las opciones de preguntas para orientarlo o, bien, planteen otras. También es importante realizar, junto con los alumnos, la planeación del proyecto en el transcurso del bloque, para desarrollarlo y comunicarlo durante las dos últimas semanas del bimestre. Asimismo, es fundamental aprovechar la tabla de habilidades, actitudes y valores de la formación científica básica, que se localiza en el Enfoque, con la intención de identificar la gama de posibilidades que se pueden promover y evaluar. AUTOEVALUACIÓN 1. De la siguiente lista de materiales clasifícalos como homogéneos o heterogéneos. Relaciona las dos columnas. Mezclas Materiales 1.Homogéneas a) Sopa de verduras a) Sopa de verduras 2.Heterogéneas b) Bronce b) Perfume c) Bronce d) Madera e) Gasolina a) 1a, 1d, 1e, 2b, 2c b) 2a, 2d, 2b, 2e, 1b c) 1b, 2d, 2a, 1c, 1e d) 1b, 1c, 1a, 1e, 1d 2. A continuación se te presenta una relación de mezclas, compuestos y elementos. Relaciona las dos columnas. 1.Mezcla a) Ladrillo 2. Elemento b) H2O 3. Compuesto c) Agua con aceite d) NaCl e) Hg a) 1a, 1c, 1e, 2b, 3d b) 2e, 2d, 1a, 3c, 3b c) 2e, 3d, 1b, 2a, 3c d) 2e, 3b, 1c, 3d, 1a
  • 40. 40 3. Para clasificar las sustancias se pueden utilizar cualquiera de los criterios que se encuentran en las opciones. Por ejemplo el Au, la Ag, el Cu se consideran sustancias puras debido a. a) Composición b) Toxicidad c) Conductividad d) Estado físico 4. De la lista de elementos que se te proporcionan, selecciona los que pertenecen al grupo II A. 1 Mg, 2 Na, 3 Ca, 4 Al, 5 K a) 1 y 2 b) 1 y 3 c) 4 y 5 d) 1 y 5 5. Tipo de enlace que se define como la fuerza de unión que existe entre dos átomos, debido a la transferencia total o parcial de electrones para adquirir ambos la configuración electrónica estable correspondiente a los gases inertes. a) Químico b) Covalente c) Iónico d) Metálico 6. Son una forma útil de mostrar los electrones de valencia de los átomos, su representación es el símbolo del elemento, más un punto por cada electrón de valencia. a) Estructura molecular b) Estructura atómica c) Estructura de Lewis d) Estructura metálica 7. La ductilidad y la maleabilidad son propiedades muy importantes que corresponden a. a) Los metaloides b) Los metales c) No metales d) Metales de transición 8. ¿Qué establece la ley periódica de Mendeleiev? a) La capacidad que tienen los elementos para combinarse b) El orden de los elementos según la cantidad de electrones c) Las regularidades entre los pesos moleculares d) La repetición de las propiedades de los elementos conocidos
  • 41. 41 9. Selecciona el conjunto de elementos representativos de la Tabla Periódica. a) Mn, Cu, Hg b) Li, Al, F c) Ca, Zn, Au d) P, Be, Ag 10. Los alumnos de la profesora Estelita, al estar estudiando el modelo atómico de Bohr comprendieron la procedencia de los electrones y protones; se plantearon la pregunta de cómo calcular el número de protones de un átomo. De las siguientes ecuaciones subraya la correcta. a) A = P(+) + n+- b) Z = P(+) – A c) n+- = Z + P(+) d) n+- = A – P(+) 11. El elemento potasio tiene un numero atómico de 19 y una masa atómica de 39.02, con estos datos la maestra Estelita les pidió a sus alumnos calcular el número de neutrones. Subraya la respuesta correcta. a) 20 b) 21 c) 19 d) 22 12. En el laboratorio de química la maestra Estelita seleccionó un elemento metálico con las siguientes características: número de neutrones 14 y número de protones 13. ¿Cuál es el elemento que seleccionó la maestra? a) Si b) Mg c) Al d) P 13. Los elementos que componen la tabla periódica están distribuidos en 7 renglones horizontales llamados periodos y 18 columnas llamadas grupos. ¿Qué tienen en común los elementos F, Cl, Br, I, At? a) Tienen 1 electrón de valencia b) Tienen 2 electrones de valencia c) Tienen 6 electrones de valencia d) Tienen 7 electrones de valencia
  • 42. 42 14. El orden actual de los elementos en la tabla periódica es creciente de acuerdo al número atómico (Z). ¿Qué dato proporciona este número? a) Los subniveles de energía b) La cantidad de protones c) La masa atómica d) Número de orbitales 15. ¿Cuáles son las partículas elementales que intervienen en la formación de los enlaces químicos? a) Protones b) Neutrones c) Electrones d) Positrones 16. En la tabla periódica se encuentran diferentes tipos de elementos, entre ellos metales, no metales, metales de transición interna. A los elementos que presentan características de metales y no metales se les conoce con el siguiente nombre. a) Metaloides b) Aleaciones c) Alcalinos d) Gases nobles 17. Al reaccionar los elementos de grupo 1 A metales alcalinos, con los elementos del grupo VII A halógenos, se obtienen compuestos con el siguiente tipo de enlace. a) Covalente b) Metálico c) Covalente polar d) Iónico En el estudio de los enlaces químicos, se han manejado los modelos de enlace iónico y covalente, cada uno presenta diferentes procesos en la transferencia o compartición de los electrones. De acuerdo a lo anterior contesta las preguntas 18 y 19. 18. Así se le llama al enlace químico que se forma al compartirse un par de electrones. a) Iónico b) Metálico c) Covalente d) Coordinado
  • 43. 43 19. Tipo de enlace que se forma por transferencia completa de electrones. a) Iónico b) Covalente c) Coordinado d) Metálico 20. ¿Por qué el oxígeno del agua se enlaza con dos átomos de hidrógeno, y no con tres o más átomos de ese elemento? a) El oxígeno tiene valencia 8 b) El oxígeno tiene valencia 4 c) El oxígeno tiene valencia 2 d) El oxígeno tiene valencia 6 21. En toda reacción química se llevan a cabo rupturas y formación de enlaces. Al formarse un enlace ¿cuántos electrones tienden a tener los elementos en su capa externa para presentar una configuración estable? a) 8 b) 4 c) 2 d) 1 22. De los elementos que se te presentan a continuación, ¿cuál presenta una configuración estable? a) Na b) N c) Kr d) Br 23. El sodio, es un metal blando plateado, reacciona con el cloro, un gas verdoso, para formar el cloruro de sodio (sal de mesa). Indica el tipo de enlace que presenta el cloruro de sodio. a) Covalente b) Iónico c) Polar d) Metálico
  • 44. 44 24. El ácido clorhídrico, también llamado ácido muriático es una disolución acuosa del gas cloruro de hidrógeno. Es un ácido muy fuerte y muy corrosivo, se disocia completamente en disolución acuosa. Indica el tipo de enlace que presenta el ácido clorhídrico. a) Iónico b) Metálico c) Coordinado d) Covalente 25. Este tipo de elementos de la tabla periódica, no reaccionan con otros elementos, se utilizan en los anuncios luminosos, en los que están expuestos a altas temperaturas y altos voltajes sin dificultad alguna. a) Alcalinotérreos b) Gases nobles c) Halógenos d) Alcalinos
  • 45. 45 BLOQUE III. LA TRANSFORMACIÓN DE LOS MATERIALES: LA REACCIÓN QUÍMICA
  • 46. 46 En este bloque se aborda la identificación del cambio químico y se orienta al tratamiento de reacciones químicas sencillas que ocurren en fenómenos cotidianos utilizando, entre otras habilidades, la interpretación y representación. Asimismo, se destaca que en una reacción química se absorbe y desprende calor; este tema se vincula con el aporte calórico de los alimentos, para que se favorezca la toma de decisiones informadas relacionadas con la importancia de mantener una alimentación correcta. La tercera revolución de la química destaca la importancia de los trabajos de Gilbert N. Lewis, al proponer que en el enlace químico los átomos adquieren una estructura estable en la formación de compuestos, y de Linus Pauling, al identificar el tipo de enlace (covalente o iónico) por medio de la tabla de electronegatividad. Respecto a los compuestos químicos, se puntualiza que su transformación se lleva a cabo en una enorme cantidad de átomos susceptibles de ser contabilizados con una unidad de medida. Los proyectos sugieren el fortalecimiento de habilidades, como el planteamiento de preguntas, predicciones y explicaciones cercanas al conocimiento científico; la búsqueda de evidencias; la identificación de variables; la interpretación de experimentos; el análisis de resultados a partir de la elaboración de jabones, y la obtención de energía en el cuerpo humano. Contenidos: 3.1 Identificación de cambios químicos y el lenguaje de la química  Manifestaciones y representación de reacciones químicas (ecuación química). 3.2 ¿Qué me conviene comer?  La caloría como unidad de medida de la energía.  Toma de decisiones relacionada con: Los alimentos y su aporte calórico. 3.3 Tercera revolución de la química  Tras la pista de la estructura de los materiales: aportaciones de Lewis y Pauling.  Uso de la tabla de electronegatividad. 3.4 Comparación y representación de escalas de medida  Escalas y representación.  Unidad de medida: mol. 3.5 Proyectos: ahora tú explora, experimenta y actúa (preguntas opcionales) *Integración y aplicación  ¿Cómo elaborar jabones?  ¿De dónde obtiene la energía el cuerpo humano?
  • 47. 47 COMPETENCIAS QUE SE FAVORECEN: comprensión de fenómenos y procesos naturales desde la perspectiva científica. Toma de decisiones informadas para el cuidado del ambiente y la promoción de la salud orientadas a la cultura de la prevención. Comprensión de los alcances y limitaciones de la ciencia y del desarrollo tecnológico en diversos contextos. CONTENIDO 3.1: IDENTIFICACIÓN DE CAMBIOS QUÍMICOS Y EL LENGUAJE DE LA QUÍMICA Actividad: Propósito: identificar las características de las reacciones químicas en productos del entorno. Necesitarás los siguientes materiales que pueden reunir en equipo o en binas. MATERIALES SUSTANCIAS  Un plato pequeño * un sobre de bicarbonato de sodio  Un vaso de vidrio * un limón  Una cuchara metálica * un poco de azúcar granulada  Cuchillo * una pastilla efervescente  Cuchara sopera  Cuchara grande  Parrilla de gas o mechero de alcohol sólido  Trapo para limpiar/servilletas de papel PROCEDIMIENTO: a) Coloquen en un plato una cucharada de bicarbonato de sodio y anoten en la tabla de abajo sus propiedades físicas. b) Corten el limón con el cuchillo (con cuidado), expriman un poco de jugo en el vaso y después anoten en el cuadro de abajo, sus propiedades físicas. c) A continuación, viertan el jugo de limón sobre el bicarbonato que se encuentra en el plato. Describan lo que sucede. __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ ____________________________________________________ Propiedades físicas Color Olor Sabor Estado de agregación Bicarbonato
  • 48. 48 de sodio Jugo de limón Agua Pastilla efervescente Cerillo Lija de la caja de cerillos d) En el vaso de vidrio, coloquen agua hasta la mitad, retiren la envoltura de la pastilla efervescente. Anoten las propiedades físicas del agua y de la pastilla. Inicien la reacción depositando la pastilla en el vaso con agua. Describan sus observaciones detalladamente. __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ ________________________________________. e) Ahora, saquen un cerillo de la caja, anoten sus propiedades físicas, así como la parte donde se frota el cerillo. Con cuidado, froten la cabeza del cerillo contra la lija de la caja para encenderlo. Escriban debajo qué ocurrió, así como los productos resultantes. __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ _________________________________________. f) Coloquen un poco de azúcar en la cuchara metálica. Anoten las propiedades físicas del azúcar en el cuadro de arriba. Después, llévenlo a calentamiento a fuego lento. Después de observar cambios en el azúcar, retírenlo del fuego y comenten lo sucedido. ____________________________________________________________ ____________________________________________________________ ____________________________________________________________ ___________________________________________________________.
  • 49. 49 CONTENIDO 3.1: Identificación de cambios químicos y el lenguaje de la química Aprendizajes esperados: Representa el cambio químico mediante una ecuación e identifica la información que contiene. Verifica la correcta expresión de la ecuación química utilizando el principio de conservación de la masa y la valencia. ACTIVIDAD 3.1.1: Modelos de Lewis Formar equipos de cuatro o cinco integrantes. Con ayuda de la tabla periódica completen la siguiente tabla. Tabla 1 Elemento Símbolo Grupo # de electrones de valencia Modelo de Lewis Boro Hidrógeno Nitrógeno Oxígeno O VI A 16 6 Cloro Flúor Carbono Helio Magnesio Aluminio
  • 50. 50 Intercambien sus trabajos con otro equipo. Revisen el que recibieron. Si se presentan dudas, pregunten a su profesor(a). ACTIVIDAD 3.1.2.: ¿Qué representa una ecuación química? Para esta actividad deben contar con material para construir modelos tridimensionales de algunos compuestos: plastilina de colores, (o bolitas de unicel o dulces o chicles) y palillos de madera. Es necesario reflexionar en cuanto a los alcances y limitaciones que presenta cada modelo para explicar ciertos fenómenos químicos. Las reacciones químicas ocurren porque las moléculas se están moviendo y, cuando ocurren las colisiones de unas contra otras, los enlaces se rompen y los átomos se unen a otros para formar nuevas moléculas. Este proceso se representa mediante una ecuación química. La ecuación química es una forma esquemática y sencilla de expresar, con símbolos y fórmulas, los cambios que ocurren en el transcurso de una reacción. Formar equipos de cuatro o cinco integrantes y realizar las siguientes actividades. Leer el siguiente texto que muestra un ejemplo de reacción química, representada con su respectiva ecuación, y realizar lo que se indica. Si ustedes usan una estufa de gas para cocinar su cena es probable que su estufa queme gas natural, compuesto principalmente por metano. El metano (CH4) es una molécula que contiene cuatro átomos de hidrógeno enlazados a un átomo de carbono. Cuando ustedes encienden la estufa, están suministrando la energía para empezar la reacción del metano con el oxígeno del aire. Durante esta reacción, los enlaces químicos se rompen y se forman nuevos enlaces. En este cambio químico, los productos que se obtienen son el dióxido de carbono y el vapor de agua (y, por supuesto, el calor y la luz que se ve en la llama). La ecuación química de la reacción se escribe así: CH4 (g) + 2O2 (g)  CO2 (g) + 2H2O (g) + calor metano oxígeno dióxido de agua molecular carbono
  • 51. 51 En una ecuación química, los elementos o compuestos que reaccionan se llaman reactivos y se colocan del lado izquierdo. En el ejemplo, el metano y el oxígeno molecular son los reactivos; enciérralos en un rectángulo azul. Del lado derecho se escribe el o los productos obtenidos cuando ocurre la reacción. A estos elementos o compuestos se les llama productos. En el ejemplo, el dióxido de carbono, el agua y el calor son los productos; enciérralos en un rectángulo rojo. Reactivos y productos se separan con una flecha, que significa “produce” o “transforma”. Las letras que están entre paréntesis representan el estado de agregación de la sustancia. En el ejemplo todos son gases. De acuerdo con lo anterior, la ecuación dice o se lee de la siguiente manera: una molécula de gas metano reacciona con dos moléculas de oxígeno gaseoso, para producir una molécula de dióxido de carbono en fase gaseosa, dos moléculas de agua en vapor y calor. La escritura de las reacciones químicas es una forma de “lenguaje químico”; para practicarlo, realiza las siguientes actividades. El cambio químico que tiene lugar cuando una reja, ventana o clavo de hierro se oxida, se puede representar de la siguiente manera. Identifica cada uno de los componentes de la ecuación química y escribe su significado. 4 Fe (s) + 3 O2 (g)  2 Fe 2O3 (s) _________ ______________ ________________________________ Representa con modelos tridimensionales, usando plastilina y palillos, los reactivos presentes en la siguiente reacción y explica con los modelos cómo se forman los productos. (Para facilitar la actividad, la ecuación no se presenta balanceada) CH4 (g) + O2 (g )  CO2(g) + H2O (g) + calor ¿Qué enlaces deben romperse para formar los nuevos compuestos? __________________________________ ¿Queda el mismo número de átomos? _________________________________________________________ ¿Qué representa una ecuación química? ________________________________________________________ ¿Qué símbolos se utilizan en una ecuación química? ______________________________________________ ¿Por qué es importante representar las reacciones con ecuaciones químicas? _______________________________________________________________________________ ____________________________________
  • 52. 52 CONTENIDO 3.2: ¿Qué me conviene comer?  La caloría como unidad de medida de la energía APRENDIZAJES ESPERADOS:  Identifica que la cantidad de energía se mide en calorías y compara el aporte calórico de los alimentos que ingiere.  Relaciona la cantidad de energía que una persona requiere, de acuerdo con las características tanto personales (sexo, actividad física, edad y eficiencia de su organismo, entre otras) como ambientales, con el fin de tomar decisiones encaminadas a una dieta correcta. ACTIVIDAD 3.2.1. En tu escuela vas a realizar una campaña sobre alimentación equilibrada. Por ello, tienes las siguientes tareas: 1) Identificar el tipo de actividad de alumnos de tu escuela. 2) Estimar sus requerimientos energéticos por día, de acuerdo con el tipo de actividad que realizan. 3) Definir un menú nutritivo para estas personas, que incluya las tres principales comidas de un día y que les proporcione la energía necesaria para realizar sus actividades adecuadamente. Preguntas guía: 1. ¿De dónde proviene la energía que necesita tu organismo? 2. ¿Qué se mide con una caloría? 3. ¿Qué nutrimentos necesita el organismo para su funcionamiento adecuado? 4. De estos nutrimentos, ¿cuáles aportan mayor cantidad de energía? 5. ¿Cuáles nutrimentos necesita consumir el ser humano para realizar sus actividades diarias y conservar la salud? 6. ¿Cómo se definen la caloría y la kilocaloría? 7. ¿Cuántas kilocalorías consume al día un adolescente de la comunidad con una gran actividad física? Las siguientes tablas te ayudarán en la realización de tu trabajo de investigación Tabla de gasto calórico por sexo, edad y tipo de actividad.
  • 53. 53 Tabla de requerimiento calórico en mujeres, según su estilo de vida.
  • 54. 54 Principales alimentos y su valor calórico expresado en kilocalorías. CONTENIDO 3.3: TERCERA REVOLUCIÓN DE LA QUÍMICA  Uso de la tabla de electronegatividad. Aprendizajes esperados:  Representa la formación de compuestos en una reacción química sencilla, a partir de la estructura de Lewis, e identifica el tipo de enlace con base en su electronegatividad. ACTIVIDAD. Lee lo siguiente y realiza la actividad sugerida. La electronegatividad de un elemento es la tendencia de los átomos de los elementos de atraer electrones, cuando se combinan químicamente con otro u otros elementos. Los valores de electronegatividad han sido calculados para cada elemento y consignados en tablas específicas llamadas Tablas de electronegatividades. La más famosa es la del químico Linus Pauling. Esta escala está basada en energías de ionización y afinidades electrónicas de los elementos. Linus Pauling
  • 55. 55 Tabla de valores de electronegatividad, según Pauling. Contesta: 1. ¿Cuál es el elemento más electronegativo? ____________, ¿cuál es su valor? _________ 2. ¿cuál es el elemento menos electronegativo y cuál es su valor? _____________________. 3. Escribe la diferencia numérica entre estos dos elementos: _________________________. 4. ¿Cómo aumenta la electronegatividad en la Tabla Periódica? ______________________. 5. ¿En qué parte de la TP se agrupan los elementos más electronegativos? ____________ _______________________________. 6. ¿Dónde se localizan los elementos con valores más bajos de electronegatividad? ______ ______________________________________________________. 7. Escribe en la tabla de abajo, los rangos establecidos para determinar el tipo de enlace formado, según las diferencias de electronegatividad. TIPO DE ENLACE RANGO DE VALOR IÓNICO COVALENTE PURO COVALENTE POLAR
  • 56. 56 8. Realiza el siguiente ejercicio, basándote en lo aprendido en tus clases de Química. ACTIVIDAD3.3.1 USO DE LA TABLA DE ELECTRONEGATIVIDAD INSTRUCCIONES:Resuelve lasiguiente tabla,anotandoenel espacio correspondiente,loque se te pide.Consultalatablade rangosrealizadaenel problemaanterior. FÓRMULA NOMBRE DEL COMPUESTO DIBUJO DE LEWIS DEL ENLACE DIF.DE ELECTRONEGAT. TIPODE ENLACE FORMADO H2O Agua H= 2.1 O= 3.5 EnO-EnH=3.5-2.1=1.4 COVALENTE POLAR NaCl N2 H2S FeO FÓRMULA COMPUESTO ENLACE DIF.DE ELECTRONEGAT. TIPODE ENLACE LiF NO KBr SO2 CH4 Aportación del Profr. MarcoAntonioSarabia R7Linares.Adaptación: Academia de Ciencias 3 DTES. CONTENIDO 3.4: Comparación y representación de escalas de medida. Aprendizajes esperados:  Compara la escala humana con la astronómica y la microscópica.  Representa números muy grandes o muy pequeños en términos de potencias de 10 y reconoce que es más sencillo comparar e imaginar dichas cantidades de esta manera.  Explica y valora la importancia del concepto de mol como patrón de medida para determinar la cantidad de sustancia.
  • 57. 57 ACTIVIDAD 3.4.1 Analicen la manera de contar objetos muy numerosos y pequeños. Materiales: a) Vaso de 250 ml lleno de lentejas b) Vaso vacío c) 5 Corcholata o tapa de refresco Realicen lo siguiente:  Estimen el número de lentejas que hay en el vaso lleno. Para ello: a) Llenen con cuidado una corcholata con lentejas, de tal manera que queden al ras. b) Cuéntenlas y anoten la cantidad en la tabla. c) Repitan los pasos a y b cuatro veces, tomando cada vez otras lentejas del vaso lleno y, una vez contadas, pasándolas al vaso vacío. d) Anoten sus resultados en una tabla como la que sigue: Conteo Cantidad de lentejas en cada corcholata Corcholata 1 Corcholata 2 Corcholata 3 Corcholata 4 Corcholata 5 PROMEDIO e) Después de obtener el promedio de sus conteos, regresen todas las lentejas al vaso original. f) Midan la cantidad de corcholatas de lentejas contenidas en el vaso completo. Contesten: a) ¿Qué pasaría si en vez de lentejas utilizaran granos de azúcar? ____________________________________ _____________________________________
  • 58. 58 b) ¿Qué unidad usarían en vez de corcholata de azúcar? __________________________________________ c) ¿Qué propondrían para calcular el número de moléculas de agua contenidas en un vaso lleno de este líquido? _______________________________________________________________________________ d) ¿Qué diferencia hay entre una lenteja y una molécula de agua, en el contexto que estamos considerando? ____________________________________________________________________________ e) ¿Qué unidad usarían para contar las moléculas? _______________________________________________ ACTIVIDAD 3.4.2 Lectura: ¿Cómo contar partículas en la escala microscópica? En 1811, el físico y químico italiano Amadeo Avogadro planteó la hipótesis de que iguales volúmenes de diferentes gases, a la misma temperatura y presión, contienen el mismo número de moléculas. El número de Avogadro se calculó a partir de la hipótesis del propio Avogadro, así como de estudios y experimentos de muchas otras personas dedicadas a la Física y la Química. Este número corresponde a las partículas que contiene un volumen de 22.4 litros de cualquier gas a 0 °C y una atmósfera de presión; tiene el fantástico valor de 6.0221367 x 1023 partículas, que puede redondearse como 6.02 x 1023. Más adelante se estableció una unidad de medida, denominada mol, que se define como la cantidad de sustancia que contiene tantas partículas (átomos, moléculas o iones) como átomos hay en 12 g de carbono, donde hay, justamente, 6.02 x 1023 átomos. Como no es posible contar directamente las partículas contenidas en determinada muestra de una sustancia, para calcular su número se realiza una equivalencia numérica entre el número de Avogadro y la masa molar de una sustancia. La masa molar de una sustancia es la cantidad de dicha sustancia cuya masa es exactamente la masa molecular de una de sus moléculas, expresada en gramos. La masa molecular es la suma de las masas atómicas de los átomos que componen una molécula. Para calcular la masa molar del elemento hidrógeno, hacemos lo siguiente: Masa atómica del hidrógeno: 1 uma Número de átomos de hidrógeno en 1 mol: 6.02 x 1023 átomos de hidrógeno Masa de 1 mol de átomos de hidrógeno: 1 g
  • 59. 59 Ahora bien, la molécula del hidrógeno libre (H2) tiene dos átomos de hidrógeno. Hagamos ahora el cálculo de la masa molar del hidrógeno molecular: Masa molecular del hidrógeno: (H2) 2 x 1 = 2 uma Número de moléculas de hidrógeno en 1 mol: 6.02 x 1023 moléculas de hidrógeno Masa de 1 mol de moléculas de hidrógeno: 2 g Calculemos ahora la masa molar del elemento nitrógeno: Masa atómica del nitrógeno: 14 uma Número de átomos de nitrógeno en 1 mol: 6.02 x 1023 átomos de nitrógeno Masa de 1 mol de átomos de nitrógeno: 14 g Al igual que el hidrógeno, la molécula del nitrógeno libre (N2) tiene dos átomos de nitrógeno. ¿Cómo calculamos entonces la masa molar del nitrógeno molecular? Muy sencillo: Masa molecular del nitrógeno (N2): 2 x 14 = 28 uma Número de moléculas de nitrógeno en 1 mol: 6.02 x 1023 moléculas de nitrógeno Masa de 1 mol de moléculas de nitrógeno: 28 g Observen en los ejemplos que la masa molar siempre es igual que la masa atómica, o la masa molecular, pero expresada en gramos. También adviertan que un mol (de lo que sea) siempre contiene 6.02 x 1023 objetos. Un mol, entonces, es equivalente a:  6.023 × 1023 moléculas de la misma sustancia.  La masa atómica, en gramos, si se trata de un elemento.  La masa molecular, en gramos, de una molécula de un elemento o de un compuesto determinado. Ejercicios: Determinen la masa molar del oxígeno libre (O2). Para ello:
  • 60. 60 1) Consulten en su tabla periódica la masa atómica del oxígeno, y anótenla con su unidad. ___________ 2) Obtengan la masa molecular del O2 de manera similar como lo hicieron con los “compuestos” de la anterior actividad. 3) Expresen esta cantidad en gramos para obtener la masa molar. __________ g 4) ¿Cuántas moléculas hay en un mol de O2? ____________ moléculas. Consulta en la tabla periódica las masas atómicas del hidrógeno y del oxígeno, respectivamente. H __________ O __________ Determina la masa molecular del agua (H2O). ____________ uma Obtén la masa molar del agua expresando su masa molecular en gramos. __________ g (Considera que 1 g de agua pura a 5°C y 1 atm de presión atmosférica corresponde a 1 ml). Un mol de H2O = ___________ ml Anota entonces, cuántas moléculas de agua pura a 5 °C hay en 18 ml. _____________ Por último, calcula cuántas moléculas de agua hay en una gota, si en cada mililitro hay 20 gotas de agua. _______________________. PROYECTOS DEL BLOQUE 3: AHORA TÚ EXPLORA, EXPERIMENTA Y ACTÚA. INTEGRACIÓN Y APLICACIÓN  ¿Cómo elaborar jabones?  ¿De dónde obtiene la energía el cuerpo humano? APRENDIZAJES ESPERADOS  Selecciona hechos y conocimientos para planear la explicación de fenómenos químicos que respondan a interrogantes o resolver situaciones problemáticas referentes a la transformación de los materiales.  Sistematiza la información de su investigación con el fin de que elabore conclusiones, a partir de gráficas, experimentos y modelos.  Comunica los resultados de su proyecto de diversas maneras utilizando el lenguaje químico, y propone alternativas de solución a los problemas planteados.  Evalúa procesos y productos de su proyecto, y considera la efectividad y el costo de los procesos químicos investigados. Al plantearse su proyecto, tomen en cuenta los contenidos estudiados en los bloques anteriores y en este en particular, por ejemplo, para el proyecto ¿cómo elaborar jabones? existen temas relacionados como la toxicidad de las sustancias, visto en el bloque I, cómo cuidar el medio ambiente y los efectos nocivos en la salud que pudieran acarrear la fabricación de sustancias de uso diario. Abajo encontrarás, una tabla de rúbrica para calificar(te) el proyecto de trabajo. Revísala antes de iniciar y
  • 61. 61 toma bien en cuenta cada aspecto que se tomará en cuenta para la evaluación de tu trabajo. Recuerda también que el trabajo en equipo es fundamental para poder lograr las metas planeadas.
  • 62. 62 Equipo ________ Grupo_________ Fecha_________ APORTACIÓN DE LA PROFRA. NORA ILIANA ARELLANO R1 MONTERREY. TABLA DE RÚBRICA DE UN PROYECTO Puntaje a) Manejoy organizaciónde la información 1 2 3 4 5 1. La informacióndeja claro de qué se trata el tema. 2. Mostró buenparafraseo yevitóhacer copia directa de la página. 3 .La informaciónes suficiente yestá correctamente ligada al tema. 4. Usó referencias de autores conocidos. b) Objetivos 1. Han sidocorrectamente diseñados. 2. Se cumplieron los objetivos propuestos. c) Hipótesis 1. Presenta hipótesis. 2. Comprueba si resulta falsa o verdadera. d) Presentaciónde power point 1. Buena presentación, suficiente y atractiva. 2. Hizo lectura mínima. 3. Manejo de la información conentusiasmoyseguridad. 4. Vocabulariofluido. 5. Hizo hipervínculos a videoo simuladores. e) Impacto hacia la comunidad 1. Hayun productodirigidoa la comunidad. 2. Hizo sugerenciasde acciones. Observaciones
  • 63. 63 Califícate: APRENDIZAJE ESPERADO Totalmente Casi todo Más o menos Más menos que más Nada o casi nada Sé representar el cambio químico mediante una ecuación e identificar la información que contiene. Identifico reactivos y productos que participan en un cambio químico y se diferenciar sus propiedades. Pude construir modelos de compuestos con base en la representación de Lewis. Se identificar modelos de compuestos con diagramas de puntos. Pude balancear por tanteo ecuaciones químicas utilizando el principio de conservación de la masa y la valencia. Puedo identificar que la cantidad de energía se mide en calorías y comparar el aporte calórico de los alimentos que se ingieren. Se relacionar la cantidad de energía que una persona requiere, de acuerdo con las características tanto personales (sexo, actividad física, edad y eficiencia de su organismo, entre otras) como ambientales, con el fin de tomar decisiones encaminadas a una dieta correcta. Puedo representar la formación de compuestos en una reacción química sencilla, a partir de la estructura de Lewis, e identificar el tipo de enlace con base en su electronegatividad. Se comparar la escala humana con escalas astronómicas y microscópicas.
  • 64. 64 AUTOEVALUACIÓN: I. Subraya el enunciado que complete adecuadamente la oración: 1. Un ejemplo de cambio físico ocurre cuando: a) Horneamos pan dulce b) Endulzamos el agua de limón c) Freímos los huevos d) Tostamos los granos de café 2. Una forma adecuada de evitar la contaminación química del suelo es: a) Depositar los desechos no biodegradables en tiraderos al aire libre b) Enterrar los residuos domésticos e industriales c) Incinerar los desechos biodegradables o esperar a que los microorganismos los degraden d) Desarrollar tecnologías de reutilización y reciclaje de residuos sólidos 3. La ilustración muestra un modelo del éter etílico, donde el átomo de carbono se representa en color negro, el de hidrógeno en blanco y el de oxígeno en rojo. De acuerdo con lo anterior, ¿cuál de las siguientes opciones indica de manera correcta la valencia de cada átomo en este compuesto? a) C 4, H 1, O 2 b) C 4, H 2, O 2 c) C 2, H 1, O 3 d) C 3, H 2, O 1 II. Observa la ecuación escrita abajo. Luego contesta los reactivos 1 al 5, escribiendo en el paréntesis, la letra de la opción correcta. 2Na(s) + 2HCl(l)  2NaCl(s) + H2(g) 1. La ecuación química contiene elementos y compuestos. Escoge la opción que contiene a un elemento de esta reacción. ( ) a) 2 b) NaCl c) HCl d) Na 2. Es uno de los reactivos presentes en esta reacción química ( ) a) NaCl b) HCl c) H2 d) O2
  • 65. 65 3. Estos símbolos nos indican los estados de agregación de las sustancias implicadas en esta reacción. ( ) a) (s), (l), (g) b)  c) 2NaCl d) H2 4. Son los productos obtenidos de esta reacción. ( ) a) NaCl y H2 b)  c) NaCl y HCl d) (s), (l), (g) 5. El coeficiente de H2 es ( ) a) 2 b) (g) c) 1 d) cero III. Escoge, de las opciones dadas, la letra de la respuesta correcta anotándola en el paréntesis correspondiente. 6. ¿En cuál de las ecuaciones químicas se representa correctamente el principio de la conservación de la masa? ( ) a) Na2O + H2O  Na2OH2 b) H2 + Cl2  HCl4 c) NaOH + HCl  NaCl + H2O d) Mg + O2  2MgO 7. La siguiente ecuación representa una reacción química que NO puede ocurrir porque 2Na + Cl2  2KCl ( ) a) El potasio y el sodio son elementos no metálicos b) Un elemento no se transforma en otro c) El cloro no reacciona con el potasio a temperatura ambiente d) La molécula de KCl debe tener 3 átomos de cloro en lugar de 1
  • 66. 66 9. ¿En cuál de las actividades siguientes se presenta el fenómeno de la efervescencia? ( ) a) en la elaboración del queso b) en la fabricación del tepache de piña c) cuando la manteca se vuelve rancia d) cuando aplicamos agua oxigenada en una herida 10. En el estómago se lleva a cabo la digestión mediante procesos como el movimiento y las reacciones químicas del ácido clorhídrico con los alimentos; además, se produce una sustancia llamada pepsina que participa en la digestión de proteínas sin intervenir en la reacción química. La pepsina, entonces es: ( ) a) Un producto de la reacción del ácido clorhídrico con las proteínas b) Un inhibidor, porque retarda la reacción entre las proteínas y el agua c) Una sustancia que reacciona con las proteínas, modificando su estructura química d) Un catalizador, porque modifica la velocidad de reacción pero no participa en ella 11. En la siguiente ecuación química, ¿cómo se llama el producto obtenido? ( ) 4 Al + 3 O2  2 Al2 O3 a) Óxido de aluminio b) Aluminio de oxígeno c) Oxígeno de aluminio d) Hidróxido de aluminio 12. Relaciona las siguientes magnitudes con la escala apropiada: ( ) a. La altura de una canasta de básquetbol =3.05 m 1. HUMANA b. La distancia media de Urano al Sol =2 870 972 200 Km 2.MICROSCÓPICA c. El diámetro de un leucocito es de 0.000 012 m 3. ASTRONÓMICA a) a1, b2, c3 b) a1, b3, c2 c) a2, b3, c1 d) a3, b1, c2 13. El número promedio de neuronas en el cerebro es de 100 000 000 000. Otra forma de expresar este número es ( ) a) 1 x 1012 b) 1 x 1013 c) 10 x 1012 d) 1 x 10-12
  • 67. 67 14. Un joven de 15 años consume 3 000 kcal diarias aproximadamente, pero su nivel de actividad es bajo, pues permanece más de 6 horas diarias viendo tv, en la computadora o jugando en su consola de videojuegos. Dentro de 10 años, ¿qué figura tendrá si continúa con los mismos hábitos de alimentación y vida sedentaria? a) alta y atlética b) sano y de complexión mediana c) robusto y con problemas de sobrepeso d) flaco y enfermizo 15. Calcula la masa en gramos de un mol de moléculas de azúcar común (sacarosa) C12H22O11. (Considera los siguientes valores: H =1, C=12 y O = 16 de masa atómica) ( ) a) 342 g/mol b) 342 ml/mol c) 29 g d) 29g/mol 16. La tabla de electronegatividad de Pauling establece los siguientes parámetros para calcular el tipo de enlace químico cuando se unen dos o más átomos: Iónico = igual o mayor que 1.7 Covalente polar = 0.4 hasta 1.7 Covalente no polar = menor de 0.4 En una reacción, la diferencia de electronegatividades es de 2.1, de acuerdo con lo siguiente, ¿cuál de las siguientes afirmaciones es correcta? ( ) a) La sustancia obtenida se derrite fácilmente b) Es mal conductor de la electricidad c) Al disolverse en agua, puede conducir la electricidad d) Hierve a menos de 100º C 17. La siguiente ecuación química está desbalanceada, pues no cumple con la Ley de la conservación de la masa. ¿qué coeficiente debes agregar al producto para que el balance se cumpla? 4 Al + 3 O2  Al2 O3 ( ) a) 2 b) 4 c) 1 d) 3
  • 68. 68 18. Pancho entra a una dieta para ganar peso, pues no le gusta su figura delgada y poco atlética. ¿Cuál de los siguientes grupos de alimentos debe consumir para que le ayuden en su propósito? ( ) a) frutas y verduras b) jugos y bebidas energéticas c) complementos vitamínicos d) carbohidratos y proteínas 19. De la siguiente reacción química, ¿cuántos elementos intervienen y cuántas moléculas resultan de la combinación de éstos? ( ) 2 Zn(s) + 2 HCl (ac)  2 ZnCl (ac) + H2 (g) a) 3 y 1 b) 3 y 2 c) 6 y 5 d) 4 y 3 20. Se llenan cuatro globos del mismo tamaño con diferentes gases. ¿Cuántos átomos contiene cada globo? ( ) a) 6.02 x 1023 b) 1.0 x 1023 c) 6.02 x 10-23 d) 1.0 x 10-23
  • 69. 69 BLOQUE IV FORMACION DE NUEVOS MATERIALES Ácidos y bases utilizados en la vida cotidiana En este bloque se estudia la obtención de nuevos materiales, y se introduce a las propiedades de los ácidos y las bases de acuerdo con el modelo de Svante Arrhenius, enfatizando sus alcances y limitaciones. Asimismo, se orienta al tratamiento de alimentos ácidos o que producen acidez y cuyo consumo puede tener efectos en la salud; estos efectos se controlan con sustancias químicas, sin embargo, pueden traer consecuencias negativas. Con ello se promueve la toma de mejores decisiones respecto a la cantidad y la manera de consumir los alimentos, así como la importancia de ingerir agua simple potable. A partir de los dos tipos de reacción química: ácido-base y óxido-reducción, se plantea la posibilidad de predecir los productos de los cambios químicos.
  • 70. 70 De este modo, con los contenidos propuestos se avanza en el desarrollo de habilidades, como la representación simbólica; la aplicación, interpretación y diseño de modelos; la interpretación de experimentos, y el establecimiento de generalizaciones. En los proyectos se sugieren formas de evitar la corrosión, así como la contrastación de diferentes combustibles y su impacto en el ambiente, en el marco del desarrollo sustentable. En ambos casos es importante la realización de experimentos sencillos y la identificación de reacciones químicas. Contenidos 4.1 Importancia de los ácidos y las bases en la vida cotidiana y en la industria  Propiedades y representación de ácidos y bases. 4.2 ¿Por qué evitar el consumo frecuente de los “alimentos ácidos”?  Toma de decisiones relacionadas con:Importancia de una dieta correcta. 4.3 Importancia de las reacciones de óxido y de reducción  Características y representaciones de las reacciones redox.  Número de oxidación. 4.4 Proyectos: ahora tú explora, experimenta y actúa (preguntas opcionales) *Integración y aplicación  ¿Cómo evitar la corrosión?  ¿Cuál es el impacto de los combustibles y posibles alternativas de solución?
  • 71. 71 CONTENIDO 4.1 La formación de nuevos materiales Competencias que se favorecen: comprensión de fenómenos y procesos naturales desde la perspectiva científica. Toma de decisiones informadas para el cuidado del ambiente y la promoción de la salud orientadas a la cultura de la prevención. Comprensión de los alcances y limitaciones de la ciencia y el desarrollo tecnológico en diversos contextos APRENDIZAJES ESPERADOS CONTENIDOS 4.1.1.Identifica ácidos y bases en materiales de uso cotidiano. 4.1.2.Identifica la formación de nuevas sustancias en reacciones ácido-base sencillas. 4.1.3.Explica las prioridades de los ácidos y las bases de acuerdo con el modelo de Arrhenius. IMPORTANCIA DE LOS ÁCIDOS Y LAS BASES EN LA VIDA COTIDIANA Y EN LA INDUSTRIA  Propiedades y representación de ácido y bases. El estudio de los ácidos y de las Bases, el investigador Svante Arrhenius detectó en estas sustancias la propiedad de disociarse cuando se encuentran en agua, y de esta manera, conducir la electricidad. A esto se le conoce como la teoría de la disociación electrolítica de Arrhenius. ¿Recuerdas qué tipo de materiales son conductores de electricidad? Pues bien, además de los metales, Arrhenius descubrió que los electrolitos también lo son. La electrólisis es el proceso de separación de una sustancia en sus iones por medio de la corriente eléctrica. Para que la corriente eléctrica pueda desplazarse, necesita de conductores que la lleven a través de los materiales; en el caso de los metales, estos portadores
  • 72. 72 son los electrones y en el caso de las soluciones electrolíticas son los iones, los cuales pueden ser iones con carga positiva o cationes o iones con carga negativa o aniones. Las sustancias, de acuerdo a su capacidad para conducir la corriente eléctrica pueden clasificarse en: a) Electrólitos fuertes que son sales iónicas como el cloruro de sodio, ácidos fuertes como el acido clorhídrico o el ácido sulfúrico y bases fuertes como el hidróxido de sodio. Estas sustancias se disocian totalmente cuando se encuentran en solución acuosa. b) Electrólitos débiles que pueden ser algunos ácidos carboxílicos como el ácido acético que se disocian en muy bajo porcentaje y conducen muy poco la corriente eléctrica, y c) No electrólitos que son sustancias que no se disocian y por lo tanto no conducen la corriente eléctrica.
  • 73. 73 Actividad 4.1.1 LABORATORIO DE QUIMICA NOMBRE DEL ALUMNO______________________________ GRUPO_____ No.L._____ Identificación de ácidos y de bases Objetivo.: Trabajar con diferentes muestras de ácidos y de bases e identificarlas con el uso de indicadores. Material Solución de detergente para Tiras de papel tornasol rojo trastes Tiras de papel tornasol azul jugo de limón Solución de fenolftaleína solución diluida de hidróxido Leche de magnesia de sodio o de potasio (pide a Vinagre tu maestro que la prepare) Solución diluida de ácido Leche Clorhídrico (pide a tu maestro que la prepare) 7 tubos de ensayo Precaución. Tanto el ácido clorhídrico como el hidróxido de sodio (o potasio) son corrosivos. Ten cuidado en su manejo. En caso de tener contacto accidental con estas sustancias, lava abundantemente con agua sola la zona afectada. Procedimiento 1. Formen equipos de cuatro o cinco alumnos. 2. Elaboren una hipótesis acerca de lo que esperan comprobar en esta práctica. 3. Con sus conocimientos previos adquiridos hasta ahora, con el material indicado y la supervisión de su maestro, diseñen su propia práctica para poder determinar qué sustancias son ácidas y qué sustancias son alcalinas. 4. No olviden organizar sus resultados en una tabla y elaborar sus conclusiones. Nota de seguridad. Tanto el ácido clorhídrico como el hidróxido de sodio o potasio son sustancias corrosivas. Deben ser preparadas vertiendo poco a poco el ácido (o la base en su caso) al agua dejando resbalar lentamente por las paredes