SlideShare una empresa de Scribd logo
Diapositiva 1 <br />DaimlerChrysler (entonces Daimler-Benz) estaba ya delante de la mayoría de las organizaciones industriales y comerciales en la aplicación de la minería de datos en sus operaciones de negocios. <br />SPSS (entonces ISL) había estado proporcionando servicios basados en Minería de datos desde 1990 y había lanzado la primer herramienta de trabajo comercial de Minería de Datos Clementine en 1994. <br />NCR, como parte de su objetivo para entregar valor adicional a su Teradata ® Almacén de datos (data warehouse), habían establecido los equipos consultores de minería de datos y especialistas de tecnología para atender las exigencias de sus clientes.<br />Diapositiva 4<br />En el nivel superior, el proceso de minería de datos es organizado en un número de fases; cada fase consiste de varias tareas genéricas de segundo nivel. <br />Este segundo nivel lo llaman genérico porque esta destinado a ser bastante general para cubrir todas las situaciones posibles de minería de datos. Las tareas genéricas están destinadas a ser tan completas y estables como sea posible. Completo significa que cubre tanto al proceso entero de minería de datos y todas las aplicaciones de minería de datos posibles. Estable significa que el modelo debería ser válido para acontecimientos normales y aún para desarrollos imprevistos como técnicas de modelado nuevo.<br />El tercer nivel, el nivel de tarea especializado, es el lugar para describir como las acciones en las tareas genéricas deberían ser realizadas en ciertas situaciones específicas. Por ejemplo, en el segundo nivel podría haber una tarea genérica llamada limpieza de datos. El tercer nivel describe como esta tarea se diferencia en situaciones diferentes, como la limpieza de valores numéricos contra la limpieza de valores categóricos, o si el tipo de problema es agrupamiento o el modelado predictivo.<br />La descripción de fases y tareas como pasos discretos realizados en un orden específico representa una secuencia idealizada de eventos.<br />En la práctica, muchas de las tareas pueden ser realizadas en una orden diferente, y esto a menudo será necesario volver a hacer tareas anteriores repetidamente y repetir ciertas acciones. Nuestro modelo de proceso no intenta capturar todas estas posibles rutas del proceso de la minería de datos porque esto requeriría un modelo de proceso demasiado complejo.<br />El cuarto nivel, la instancia de proceso, es un registro de las acciones, decisiones, y de los resultados de una minería de datos real contratada.<br />Diapositiva 5<br />Comprensión del negocio<br />Esta fase inicial se enfoca en la comprensión de los objetivos de proyecto y exigencias desde una perspectiva de negocio, luego convirtiendo este conocimiento de los datos en la definición de un problema de minería de datos y en un plan preliminar diseñado para alcanzar los objetivos.<br />Comprensión de los datos<br />La fase de entendimiento de datos comienza con la colección de datos inicial y continua con las actividades que le permiten familiarizar primero con los datos, identificar los problemas de calidad de datos, descubrir los primeros conocimientos en los datos, y/o descubrir subconjuntos interesantes para formar hipótesis en cuanto a la información oculta.<br />Preparación de datos<br />La fase de preparación de datos cubre todas las actividades necesarias para construir el conjunto de datos final [los datos que serán provistos en las herramientas de modelado] de los datos en brutos iniciales. Las tareas de preparación de datos probablemente van a ser realizadas muchas veces y no en cualquier orden prescripto. Las tareas incluyen la selección de tablas, registros, y atributos, así como la transformación y la limpieza de datos para las herramientas que modelan.<br />Modelado<br />En esta fase de CRISP-DM, se seleccionan las técnicas de modelado más apropiadas para el<br />proyecto de Data Mining específico. Las técnicas a utilizar en esta fase se eligen en función de<br />los siguientes criterios:<br />o Ser apropiada al problema.<br />o Disponer de datos adecuados.<br />o Cumplir los requisitos del problema.<br />o Tiempo adecuado para obtener un modelo.<br />o Conocimiento de la técnica.<br />Evaluación<br />En esta etapa en el proyecto, usted ha construido un modelo (o modelos) que parece tener la alta calidad de una perspectiva de análisis de datos.<br />Antes del proceder al despliegue final del modelo, es importante evaluar a fondo ello y la revisión de los pasos ejecutados para crearlo, para comparar el modelo correctamente obtenido con los objetivos de negocio. Un objetivo clave es determinar si hay alguna cuestión importante de negocio que no ha sido suficientemente considerada. En el final de esta fase, una decisión en el uso de los resultados de minería de datos debería ser obtenida.<br />Desarrollo<br />La creación del modelo no es generalmente el final del proyecto. Incluso si el objetivo del modelo es de aumentar el conocimiento de los datos, el conocimiento ganado tendrá que ser organizado y presentado en el modo en el que el cliente pueda usarlo. Ello a menudo implica la aplicación de modelos quot;
vivosquot;
 dentro de un proceso de toma de decisiones de una organización, por ejemplo, en tiempo real la personalización de página Web o la repetida obtención de bases de datos de mercadeo. Dependiendo de los requerimientos, la fase de desarrollo puede ser tan simple como la generación de un informe o tan compleja como la realización repetida de un proceso cruzado de minería de datos a través de la empresa. En muchos casos, es el cliente, no el analista de datos, quien lleva el paso de desarrollo. Sin embargo, incluso si el analista realizara el esfuerzo de despliegue, esto es importante para el cliente para entender de frente que acciones necesita para ser ejecutadas en orden para hacer uso de los modelos creados actualmente.<br />Diapositiva 6 comprension del negocio <br />Determinación de objetivos de negocio<br />El primer objetivo del analista de datos para un contexto es entender, desde una perspectiva de negocio, lo que el cliente realmente quiere lograr. A menudo el cliente tiene muchos objetivos que compiten y restricciones que deben ser correctamente equilibrados. El objetivo del analista debe mostrar (destapar) factores importantes, en el principio, esto puede influir en el resultado del proyecto. Una consecuencia posible de la negligencia de este paso es gastar un gran esfuerzo produciendo respuestas correctas a preguntas incorrectas o erradas.<br />Evaluación de la situación<br />Esta tarea implica la investigación más detallada sobre todos los recursos, restricciones, presunciones, y otros factores que deberían ser considerados en la determinación del objetivo de análisis de datos y el plan de proyecto. En la tarea anterior, su objetivo es para ponerse rápidamente al quid de la situación. Aquí, usted quiere ampliarse sobre los detalles.<br />Determinación de los objetivos de la minería de datos<br />Un objetivo de negocio declara objetivos en la terminología de negocio. Un objetivo de minería de datos declara objetivos de proyecto en términos técnicos. Por ejemplo, el objetivo de negocio podría ser “Aumentar catálogos de ventas a clientes existentes.” Un objetivo de minería de datos podrían ser “Predecir cuantas baratijas un cliente comprará, obteniendo datos de sus compras de tres años pasados, información demográfica (edad, sueldo, ciudad, etc.), y el precio del artículo.<br />Producir el plan del proyecto<br />Describir el plan intencionado para alcanzar los objetivos de minería de datos y así alcanzar los objetivos de negocio.<br />El plan debería especificar los pasos para ser realizados durante el resto del proyecto, incluyendo la selección inicial de herramientas y técnicas.<br />Diapositiva 7 comprension de los datos <br />Recolección de datos iniciales<br />Adquiera en el proyecto los datos (o el acceso a los datos) listados en los recursos del proyecto. Esta colección inicial incluye carga de datos, si es necesario para la comprensión de los datos. Por ejemplo, si usted usa un instrumento específico para la comprensión de los datos, esto perfectamente se entiende para abrir sus datos en esta herramienta. Este esfuerzo posiblemente conduce a los pasos iniciales de preparación de datos.<br />Note: si usted adquiere datos de múltiples fuentes, la integración es una cuestión adicional, aquí o mas tarde en las fases de preparación de datos más.<br />Describir los datos<br />. Después de adquiridos los datos iniciales, estos deben ser descritos.Este proceso involucra establecer volúmenes de datos (número de registros y campos por registro), su identificación, el significado de cada campo y la descripción del formato inicial.<br />Explorar los datos<br />Esta tarea dirige interrogantes de minería de datos usando preguntas, visualización, y técnicas de reporte. Estos incluyen la distribución de atributos claves (por ejemplo, el atributo objetivo de una tarea de predicción) relacionados entre pares o pequeños números de atributos, los resultados de simples agregaciones, las propiedades de las subpoblaciones significativas, y análisis estadísticos simples. Estos análisis directamente pueden dirigir los objetivos de minería de datos; ellos también pueden contribuir o refinar la descripción de datos e informes de calidad, y alimentar en la transformación y otros pasos de preparación de datos necesarios para análisis futuros.<br />Verificación de la calidad de los datos<br />. En esta tarea, se efectúan verificaciones sobre los datos, para determinar la consistencia de los valores individuales de los campos, la cantidad y distribución de los valores nulos, y para encontrar valores fuera de rango, los cuales pueden constituirse en ruido para el proceso. La idea en este punto, es asegurar la completitud y corrección de los datos.<br />Diapositiva 8 preparacion de los datos <br />Selección de datos<br />Decidir que datos serán usados para el análisis. Los criterios incluyen la importancia a los objetivos de la minería de datos, la calidad, y las restricciones técnicas como límites sobre el volumen de datos o los tipos de datos. Note que la selección de datos cubre la selección de atributos (columnas) así como la selección de registros (filas) en una tabla.<br />Limpieza de datos<br />Elevar la calidad de los datos al nivel requerido por las técnicas de análisis seleccionadas. Esto puede implicar la selección de los subconjuntos de datos limpios, la inserción de datos por defectos adecuados, o técnicas más ambiciosas tales como la estimación de datos faltantes mediante modelado.<br />Construir datos<br />Esta tarea incluye la construcción de operaciones de preparación de datos tales como la producción de atributos derivados o el ingreso de nuevos registros, o la transformación de valores para atributos existentes.<br />Integrar datos<br />Estos son los métodos por el cual la información es combinada de múltiples tablas o registros para crear nuevos registros o valores.<br />Formatear datos<br />Formateando transformaciones se refiere a modificaciones principalmente sintácticas hechas a los datos que no cambian su significado, pero podría ser requerido por la herramienta de modelado.<br />Diapositiva 9  modelado <br />Selección de la técnica de modelado<br />Como primer paso en modelado, seleccionar la técnica de modelado real que está por ser usado. Aunque usted haya podido seleccionar una herramienta durante la fase de Comprensión del negocio, esta tarea se refiere a la técnica de modelado específico, por ejemplo, un árbol decisión construido con C4.5, o la generación de red neuronales Back-Propagación. Si múltiples técnicas son aplicadas, se realizan esta tarea separadamente para cada técnica.<br />Generación de la prueba de diseño<br />Antes de que nosotros en realidad construyamos un modelo, tenemos que generar un procedimiento o el mecanismo para probar la calidad y validez del modelo. Por ejemplo, en tareas de minería de datos supervisados como la clasificación, esto es común usar tasas de errores como medida de calidad para modelos de minería de datos. Por lo tanto, típicamente separamos el conjunto de datos en una serie y en un conjunto de prueba, construimos el modelo sobre el conjunto de series, y estimamos su calidad sobre el conjunto de prueba separado.<br />Construcción del modelo<br />Ejecutar la herramienta de modelado sobre el conjunto de datos preparados para crear uno o más modelos.<br />Evaluación del modelo<br />El ingeniero de minería de datos interpreta los modelos según su conocimiento de dominio, los criterios de éxitos de minería de datos, y el diseño de prueba deseado. El ingeniero de minería de datos juzga el éxito de la aplicación del modelado y descubre técnicas mas técnicamente; él se pone en contacto con analistas de negocio y expertos en el dominio luego para hablar de los resultados de la minería de datos en el contexto de negocio. Por favor note que esta tarea sólo se considera modelos, mientras que la fase de evaluación también toma en cuenta todos los otros resultados que fueron producidos en el curso del proyecto.<br />El ingeniero de minería de datos intenta clasificar los modelos. Él evalúa los modelos según los criterios de evaluación. Tanto como es posible, él también tiene en cuenta objetivos del negocio y criterios de éxito de negocio. En los grandes proyectos de minería de datos, el ingeniero de minería de datos aplica una sola técnica más de una vez, o genera resultados de minería de datos con varias técnicas diferentes. En esta tarea, él también compara todos los resultados según los criterios de evaluación.<br />Diapositiva 10  evaluacion <br />Evaluación de los resultados<br />Los pasos de la evaluación anterior trata con factores como la exactitud y la generalidad del modelo. Este paso evalúa el grado al que el modelo responde (encuentra) los objetivos de negocio y procura determinar si hay alguna decisión de negocio por el que este modelo es deficiente. Otra opción de evaluación es probar el/los modelo/s sobre aplicaciones de prueba en la aplicación real, si el tiempo y las restricciones de presupuesto lo permiten.<br />Además, la evaluación también verifica otros resultados generados por la minería de datos. Los resultados de la minería de datos implican modelos que necesariamente son relacionados con los objetivos originales de negocio y todas los otros descubrimientos que no son relacionados necesariamente con los objetivos originales de negocio, pero también podría revelar desafíos adicionales, información, o insinuaciones para futuras direcciones.<br />Proceso de revisión<br />En este punto, los modelos resultantes pasan a ser satisfactorios y a satisfacer las necesidades de negocio. Ahora es apropiado hacer una revisión más cuidadosa de los compromisos de la minería de datos para determinar si hay cualquier factor importante o tarea que de algún modo ha sido pasada por alto. Esta revisión también cubre cuestiones de calidad -por ejemplo: ¿Construimos correctamente el modelo? ¿Usamos sólo los atributos que nos permitieron usar y que están disponibles para análisis futuros?<br />Determinación de los próximos pasos<br />Según los resultados de la evaluación y la revisión de proceso, el equipo de proyecto decide como proceder. El equipo decide si hay que terminar este proyecto y tomar medidas sobre el desarrollo si es apropiado, tanto iniciar más iteraciones, o comenzar nuevos proyectos de minería de datos. Esta tarea incluye los análisis de recursos restantes y del presupuesto, que puede influir en las decisiones.<br />Diapositiva 11 implantacion <br />Desarrollo del plan<br />De acuerdo al desarrollo de los resultados de minería de datos en el negocio, esta tarea toma los resultados de la evaluación y determina una estrategia para el desarrollo. Si un procedimiento general ha sido identificado para crear el/los modelo/s relevante/s, este procedimiento es documentado aquí para el desarrollo posterior.<br />Plan de supervisión y mantenimiento<br />La supervisión y el mantenimiento son cuestiones importantes si los resultados de minería de datos son parte del negocio cotidiano y de su ambiente. La preparación cuidadosa de una estrategia de mantenimiento ayuda evitar largos periodos innecesarios de uso incorrecto de resultados de minería de datos. Para supervisar el desarrollo de los resultados de la minería de datos, el proyecto necesita un plan detallado de proceso de supervisión. Este plan tiene en cuenta el tipo específico de desarrollo.<br />Informe definitivo de producto<br />En el final del proyecto, el líder del proyecto y su equipo sobrescribe un informe final. Según el plan de desarrollo, este informe puede ser sólo un resumen del proyecto y sus experiencias (si estas aún no han sido documentadas como una actividad en curso) o esto puede ser una presentación final y comprensiva de los resultados de minería de datos.<br />Revisión del proyecto<br />Evaluar lo que fue correcto y lo que se equivocó, lo que fue bien hecho y lo que necesita para ser mejorado.<br />
Diapositiva 1
Diapositiva 1
Diapositiva 1
Diapositiva 1
Diapositiva 1
Diapositiva 1
Diapositiva 1
Diapositiva 1
Diapositiva 1
Diapositiva 1
Diapositiva 1
Diapositiva 1
Diapositiva 1
Diapositiva 1

Más contenido relacionado

Destacado

Schriftenreihe Demokratie: Abgeordnete in Afghanistan
Schriftenreihe Demokratie:  Abgeordnete in AfghanistanSchriftenreihe Demokratie:  Abgeordnete in Afghanistan
Schriftenreihe Demokratie: Abgeordnete in Afghanistan
Heinrich-Böll-Stiftung
 
Una mirada a Miró
Una mirada a MiróUna mirada a Miró
Una mirada a Miró
Ortigal
 
Dienstleistungsangebot 5min De
Dienstleistungsangebot 5min DeDienstleistungsangebot 5min De
Dienstleistungsangebot 5min De
Nageldinger
 
Studie "Die China-Berichterstattung in den deutschen Medien"
Studie "Die China-Berichterstattung in den deutschen Medien"Studie "Die China-Berichterstattung in den deutschen Medien"
Studie "Die China-Berichterstattung in den deutschen Medien"
Heinrich-Böll-Stiftung
 
Oab coordenadoria de processo civil - palestra sustacao de prostesto e sep ...
Oab   coordenadoria de processo civil - palestra sustacao de prostesto e sep ...Oab   coordenadoria de processo civil - palestra sustacao de prostesto e sep ...
Oab coordenadoria de processo civil - palestra sustacao de prostesto e sep ...
Pedro Kurbhi
 
Crisp
CrispCrisp
CRACK: O CRAQUE DO TIME DA MORTE
CRACK: O CRAQUE DO TIME DA MORTECRACK: O CRAQUE DO TIME DA MORTE
CRACK: O CRAQUE DO TIME DA MORTE
Lenildo Silva Ferreira
 
Para ler quando tiver vontade
Para ler quando tiver vontadePara ler quando tiver vontade
Para ler quando tiver vontade
Denise Vilardo
 
das_Wasser_im_Jahr_2070
das_Wasser_im_Jahr_2070das_Wasser_im_Jahr_2070
das_Wasser_im_Jahr_2070
Guido Göbel
 
Oab seminario principais acoes civeis - 110129 - palestra 10
Oab   seminario principais acoes civeis - 110129 - palestra 10Oab   seminario principais acoes civeis - 110129 - palestra 10
Oab seminario principais acoes civeis - 110129 - palestra 10
Pedro Kurbhi
 
Energiewende Nordhessen - technische und ökonomische Verknüpfung des regional...
Energiewende Nordhessen - technische und ökonomische Verknüpfung des regional...Energiewende Nordhessen - technische und ökonomische Verknüpfung des regional...
Energiewende Nordhessen - technische und ökonomische Verknüpfung des regional...
Winkels-Herding Sabine
 
Tema hardware y software tecnologia de la información2
Tema  hardware y software tecnologia de la información2Tema  hardware y software tecnologia de la información2
Tema hardware y software tecnologia de la información2
Alex Alcalde
 
Modificaciones al proyecto educativo
Modificaciones al proyecto educativoModificaciones al proyecto educativo
Modificaciones al proyecto educativo
emitena
 
Apres.fotos evento rodada 10
Apres.fotos evento rodada 10Apres.fotos evento rodada 10
Apres.fotos evento rodada 10
Editora Banas
 
DerRing
DerRingDerRing
DerRing
Guido Göbel
 
Oquma.com para Google Docs como Sistema de Gestión
Oquma.com para Google Docs como Sistema de GestiónOquma.com para Google Docs como Sistema de Gestión
Oquma.com para Google Docs como Sistema de Gestión
Extly Extensions - JoomGap
 
Apresentação1
Apresentação1Apresentação1
Apresentação1
Damisa
 
Catalogo castelatto 2009
Catalogo castelatto 2009Catalogo castelatto 2009
Catalogo castelatto 2009
Espiral Interativa
 
Msp techday appstudio
Msp techday  appstudioMsp techday  appstudio
Msp techday appstudio
Jucinei Pereira Dos Santos
 
Ayuda para el_docente_participante
Ayuda para el_docente_participanteAyuda para el_docente_participante
Ayuda para el_docente_participante
cjcamposale
 

Destacado (20)

Schriftenreihe Demokratie: Abgeordnete in Afghanistan
Schriftenreihe Demokratie:  Abgeordnete in AfghanistanSchriftenreihe Demokratie:  Abgeordnete in Afghanistan
Schriftenreihe Demokratie: Abgeordnete in Afghanistan
 
Una mirada a Miró
Una mirada a MiróUna mirada a Miró
Una mirada a Miró
 
Dienstleistungsangebot 5min De
Dienstleistungsangebot 5min DeDienstleistungsangebot 5min De
Dienstleistungsangebot 5min De
 
Studie "Die China-Berichterstattung in den deutschen Medien"
Studie "Die China-Berichterstattung in den deutschen Medien"Studie "Die China-Berichterstattung in den deutschen Medien"
Studie "Die China-Berichterstattung in den deutschen Medien"
 
Oab coordenadoria de processo civil - palestra sustacao de prostesto e sep ...
Oab   coordenadoria de processo civil - palestra sustacao de prostesto e sep ...Oab   coordenadoria de processo civil - palestra sustacao de prostesto e sep ...
Oab coordenadoria de processo civil - palestra sustacao de prostesto e sep ...
 
Crisp
CrispCrisp
Crisp
 
CRACK: O CRAQUE DO TIME DA MORTE
CRACK: O CRAQUE DO TIME DA MORTECRACK: O CRAQUE DO TIME DA MORTE
CRACK: O CRAQUE DO TIME DA MORTE
 
Para ler quando tiver vontade
Para ler quando tiver vontadePara ler quando tiver vontade
Para ler quando tiver vontade
 
das_Wasser_im_Jahr_2070
das_Wasser_im_Jahr_2070das_Wasser_im_Jahr_2070
das_Wasser_im_Jahr_2070
 
Oab seminario principais acoes civeis - 110129 - palestra 10
Oab   seminario principais acoes civeis - 110129 - palestra 10Oab   seminario principais acoes civeis - 110129 - palestra 10
Oab seminario principais acoes civeis - 110129 - palestra 10
 
Energiewende Nordhessen - technische und ökonomische Verknüpfung des regional...
Energiewende Nordhessen - technische und ökonomische Verknüpfung des regional...Energiewende Nordhessen - technische und ökonomische Verknüpfung des regional...
Energiewende Nordhessen - technische und ökonomische Verknüpfung des regional...
 
Tema hardware y software tecnologia de la información2
Tema  hardware y software tecnologia de la información2Tema  hardware y software tecnologia de la información2
Tema hardware y software tecnologia de la información2
 
Modificaciones al proyecto educativo
Modificaciones al proyecto educativoModificaciones al proyecto educativo
Modificaciones al proyecto educativo
 
Apres.fotos evento rodada 10
Apres.fotos evento rodada 10Apres.fotos evento rodada 10
Apres.fotos evento rodada 10
 
DerRing
DerRingDerRing
DerRing
 
Oquma.com para Google Docs como Sistema de Gestión
Oquma.com para Google Docs como Sistema de GestiónOquma.com para Google Docs como Sistema de Gestión
Oquma.com para Google Docs como Sistema de Gestión
 
Apresentação1
Apresentação1Apresentação1
Apresentação1
 
Catalogo castelatto 2009
Catalogo castelatto 2009Catalogo castelatto 2009
Catalogo castelatto 2009
 
Msp techday appstudio
Msp techday  appstudioMsp techday  appstudio
Msp techday appstudio
 
Ayuda para el_docente_participante
Ayuda para el_docente_participanteAyuda para el_docente_participante
Ayuda para el_docente_participante
 

Similar a Diapositiva 1

Documento crisp dm
Documento crisp dmDocumento crisp dm
Documento crisp dm
arturo_cordova
 
Session01.pptx
Session01.pptxSession01.pptx
Session01.pptx
ADPTechnology
 
Metodología de Data Mining CRISP
Metodología de Data Mining CRISPMetodología de Data Mining CRISP
Metodología de Data Mining CRISP
Óscar Alonso
 
Comprendiendo el negocio
Comprendiendo el negocioComprendiendo el negocio
Comprendiendo el negocio
Inversiones Jeg sas
 
Expo metodologia de implementacion BI 01
Expo metodologia de implementacion BI 01Expo metodologia de implementacion BI 01
Expo metodologia de implementacion BI 01
Cristian Quinteros
 
Em bi un repaso por la metodología de implementación
Em bi un repaso por la metodología de implementaciónEm bi un repaso por la metodología de implementación
Em bi un repaso por la metodología de implementación
Edison_Medina
 
Bussiness inteligence
Bussiness inteligenceBussiness inteligence
Bussiness inteligence
Maryy Aqua
 
Semana 3 - Bases de Datos Avanzadas - Big Data - Sesion 3.pdf
Semana 3 - Bases de Datos Avanzadas - Big Data - Sesion 3.pdfSemana 3 - Bases de Datos Avanzadas - Big Data - Sesion 3.pdf
Semana 3 - Bases de Datos Avanzadas - Big Data - Sesion 3.pdf
romaldonolascorojas1
 
Conceptos de minería de datos
Conceptos de minería de datosConceptos de minería de datos
Conceptos de minería de datos
edwin
 
Mineria y modelado de datos
Mineria y modelado de datosMineria y modelado de datos
Mineria y modelado de datos
Sergio Salimbeni
 
Mineria de Datos
Mineria de DatosMineria de Datos
Mineria de Datos
04071977
 
#Metricsday2017 Modelos de datos con sentido sobre Google Analytics. Roberto ...
#Metricsday2017 Modelos de datos con sentido sobre Google Analytics. Roberto ...#Metricsday2017 Modelos de datos con sentido sobre Google Analytics. Roberto ...
#Metricsday2017 Modelos de datos con sentido sobre Google Analytics. Roberto ...
Metriplica
 
SEMANA4_APUNTE_S4.pdf
SEMANA4_APUNTE_S4.pdfSEMANA4_APUNTE_S4.pdf
SEMANA4_APUNTE_S4.pdf
CristianChicuiPrez
 
Data Warehouse
Data WarehouseData Warehouse
Data Warehouse
Kelvin Simon
 
Minería de datos Presentación
Minería de datos PresentaciónMinería de datos Presentación
Minería de datos Presentación
edmaga
 
Minera de-datos-presentacin-1205263710628735-3
Minera de-datos-presentacin-1205263710628735-3Minera de-datos-presentacin-1205263710628735-3
Minera de-datos-presentacin-1205263710628735-3
Climanfef
 
Inteligencia de Negocios – Data Warehouse
Inteligencia de Negocios – Data WarehouseInteligencia de Negocios – Data Warehouse
Inteligencia de Negocios – Data Warehouse
JOSE AHIAS LOPEZ PORTILLO
 
Trabajo grupal flavio cosme eldin junior
Trabajo grupal flavio cosme eldin juniorTrabajo grupal flavio cosme eldin junior
Trabajo grupal flavio cosme eldin junior
Junior Diaz
 
Trabajo grupal flavio cosme eldin junior
Trabajo grupal flavio cosme eldin juniorTrabajo grupal flavio cosme eldin junior
Trabajo grupal flavio cosme eldin junior
Junior Diaz
 
Fases para la creación de una base de datos
Fases para la creación de una base de datosFases para la creación de una base de datos
Fases para la creación de una base de datos
thalia margarita serrano diaz
 

Similar a Diapositiva 1 (20)

Documento crisp dm
Documento crisp dmDocumento crisp dm
Documento crisp dm
 
Session01.pptx
Session01.pptxSession01.pptx
Session01.pptx
 
Metodología de Data Mining CRISP
Metodología de Data Mining CRISPMetodología de Data Mining CRISP
Metodología de Data Mining CRISP
 
Comprendiendo el negocio
Comprendiendo el negocioComprendiendo el negocio
Comprendiendo el negocio
 
Expo metodologia de implementacion BI 01
Expo metodologia de implementacion BI 01Expo metodologia de implementacion BI 01
Expo metodologia de implementacion BI 01
 
Em bi un repaso por la metodología de implementación
Em bi un repaso por la metodología de implementaciónEm bi un repaso por la metodología de implementación
Em bi un repaso por la metodología de implementación
 
Bussiness inteligence
Bussiness inteligenceBussiness inteligence
Bussiness inteligence
 
Semana 3 - Bases de Datos Avanzadas - Big Data - Sesion 3.pdf
Semana 3 - Bases de Datos Avanzadas - Big Data - Sesion 3.pdfSemana 3 - Bases de Datos Avanzadas - Big Data - Sesion 3.pdf
Semana 3 - Bases de Datos Avanzadas - Big Data - Sesion 3.pdf
 
Conceptos de minería de datos
Conceptos de minería de datosConceptos de minería de datos
Conceptos de minería de datos
 
Mineria y modelado de datos
Mineria y modelado de datosMineria y modelado de datos
Mineria y modelado de datos
 
Mineria de Datos
Mineria de DatosMineria de Datos
Mineria de Datos
 
#Metricsday2017 Modelos de datos con sentido sobre Google Analytics. Roberto ...
#Metricsday2017 Modelos de datos con sentido sobre Google Analytics. Roberto ...#Metricsday2017 Modelos de datos con sentido sobre Google Analytics. Roberto ...
#Metricsday2017 Modelos de datos con sentido sobre Google Analytics. Roberto ...
 
SEMANA4_APUNTE_S4.pdf
SEMANA4_APUNTE_S4.pdfSEMANA4_APUNTE_S4.pdf
SEMANA4_APUNTE_S4.pdf
 
Data Warehouse
Data WarehouseData Warehouse
Data Warehouse
 
Minería de datos Presentación
Minería de datos PresentaciónMinería de datos Presentación
Minería de datos Presentación
 
Minera de-datos-presentacin-1205263710628735-3
Minera de-datos-presentacin-1205263710628735-3Minera de-datos-presentacin-1205263710628735-3
Minera de-datos-presentacin-1205263710628735-3
 
Inteligencia de Negocios – Data Warehouse
Inteligencia de Negocios – Data WarehouseInteligencia de Negocios – Data Warehouse
Inteligencia de Negocios – Data Warehouse
 
Trabajo grupal flavio cosme eldin junior
Trabajo grupal flavio cosme eldin juniorTrabajo grupal flavio cosme eldin junior
Trabajo grupal flavio cosme eldin junior
 
Trabajo grupal flavio cosme eldin junior
Trabajo grupal flavio cosme eldin juniorTrabajo grupal flavio cosme eldin junior
Trabajo grupal flavio cosme eldin junior
 
Fases para la creación de una base de datos
Fases para la creación de una base de datosFases para la creación de una base de datos
Fases para la creación de una base de datos
 

Último

EJEMPLOS DE FLORA Y FAUNA DE LA COSTA PERUANA
EJEMPLOS DE FLORA Y FAUNA DE LA COSTA PERUANAEJEMPLOS DE FLORA Y FAUNA DE LA COSTA PERUANA
EJEMPLOS DE FLORA Y FAUNA DE LA COSTA PERUANA
dairatuctocastro
 
Recursos digitales para trabajar la educación literaria en el aula: abriendo ...
Recursos digitales para trabajar la educación literaria en el aula: abriendo ...Recursos digitales para trabajar la educación literaria en el aula: abriendo ...
Recursos digitales para trabajar la educación literaria en el aula: abriendo ...
IGNACIO BALLESTER PARDO
 
PPT: Un día en el ministerio de Jesús.pptx
PPT: Un día en el ministerio de Jesús.pptxPPT: Un día en el ministerio de Jesús.pptx
PPT: Un día en el ministerio de Jesús.pptx
https://gramadal.wordpress.com/
 
fichas descriptivas para primaria 2023-2024
fichas descriptivas para primaria 2023-2024fichas descriptivas para primaria 2023-2024
fichas descriptivas para primaria 2023-2024
Verito51
 
Introducción a la seguridad básica (3 de julio de 2024)
Introducción a la seguridad básica (3 de julio de 2024)Introducción a la seguridad básica (3 de julio de 2024)
Introducción a la seguridad básica (3 de julio de 2024)
Cátedra Banco Santander
 
Los Formularios de Google: creación, gestión y administración de respuestas (...
Los Formularios de Google: creación, gestión y administración de respuestas (...Los Formularios de Google: creación, gestión y administración de respuestas (...
Los Formularios de Google: creación, gestión y administración de respuestas (...
Cátedra Banco Santander
 
SEP. Presentación. Taller Intensivo FCD. Julio 2024.pdf
SEP. Presentación. Taller Intensivo FCD. Julio 2024.pdfSEP. Presentación. Taller Intensivo FCD. Julio 2024.pdf
SEP. Presentación. Taller Intensivo FCD. Julio 2024.pdf
GavieLitiumGarcia
 
PLAN DE TRABAJO DIA DEL LOGRO 2024 URP.docx
PLAN DE TRABAJO DIA DEL LOGRO 2024 URP.docxPLAN DE TRABAJO DIA DEL LOGRO 2024 URP.docx
PLAN DE TRABAJO DIA DEL LOGRO 2024 URP.docx
william antonio Chacon Robles
 
Taller intensivo de formación continua. Puebla.
Taller intensivo de formación continua. Puebla.Taller intensivo de formación continua. Puebla.
Taller intensivo de formación continua. Puebla.
OscarCruzyCruz
 
03. SESION PERSONAL-PRIMEROS POBLADORES DEL PERÚ.docx
03. SESION PERSONAL-PRIMEROS POBLADORES  DEL PERÚ.docx03. SESION PERSONAL-PRIMEROS POBLADORES  DEL PERÚ.docx
03. SESION PERSONAL-PRIMEROS POBLADORES DEL PERÚ.docx
Giuliana500489
 
CUESTIONARIO.METROLOGIA GRADOSANTA TERERSA DE JESUS11pptx
CUESTIONARIO.METROLOGIA GRADOSANTA TERERSA DE JESUS11pptxCUESTIONARIO.METROLOGIA GRADOSANTA TERERSA DE JESUS11pptx
CUESTIONARIO.METROLOGIA GRADOSANTA TERERSA DE JESUS11pptx
nelsontobontrujillo
 
Semana 1 Derecho a interponer recursos y reparación.
Semana 1 Derecho a interponer recursos y reparación.Semana 1 Derecho a interponer recursos y reparación.
Semana 1 Derecho a interponer recursos y reparación.
SergioAlfrediMontoya
 
Sesión Un día en el ministerio de Jesús.pdf
Sesión Un día en el ministerio de Jesús.pdfSesión Un día en el ministerio de Jesús.pdf
Sesión Un día en el ministerio de Jesús.pdf
https://gramadal.wordpress.com/
 
Fundamentos del diseño audiovisual para presentaciones y vídeos (2 de julio d...
Fundamentos del diseño audiovisual para presentaciones y vídeos (2 de julio d...Fundamentos del diseño audiovisual para presentaciones y vídeos (2 de julio d...
Fundamentos del diseño audiovisual para presentaciones y vídeos (2 de julio d...
Cátedra Banco Santander
 
Licencias de contenidos y propiedad intelectual (1 de julio de 2024)
Licencias de contenidos y propiedad intelectual (1 de julio de 2024)Licencias de contenidos y propiedad intelectual (1 de julio de 2024)
Licencias de contenidos y propiedad intelectual (1 de julio de 2024)
Cátedra Banco Santander
 
Reglamento del salón - Intensa-mente.pdf
Reglamento del salón - Intensa-mente.pdfReglamento del salón - Intensa-mente.pdf
Reglamento del salón - Intensa-mente.pdf
Adri G Ch
 
Fichero Léxico / Pandemia Lingüística / USCO
Fichero Léxico / Pandemia Lingüística / USCOFichero Léxico / Pandemia Lingüística / USCO
Fichero Léxico / Pandemia Lingüística / USCO
mariahernandez632951
 
SEMANAS DE GESTION 2024 para trabajo escolar
SEMANAS DE GESTION 2024 para trabajo escolarSEMANAS DE GESTION 2024 para trabajo escolar
SEMANAS DE GESTION 2024 para trabajo escolar
JuanPabloII10
 
LABERINTOS DE DISCIPLINAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
LABERINTOS DE DISCIPLINAS OLÍMPICAS.  Por JAVIER SOLIS NOYOLALABERINTOS DE DISCIPLINAS OLÍMPICAS.  Por JAVIER SOLIS NOYOLA
LABERINTOS DE DISCIPLINAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
JAVIER SOLIS NOYOLA
 
Recursos Educativos en Abierto (1 de julio de 2024)
Recursos Educativos en Abierto (1 de julio de 2024)Recursos Educativos en Abierto (1 de julio de 2024)
Recursos Educativos en Abierto (1 de julio de 2024)
Cátedra Banco Santander
 

Último (20)

EJEMPLOS DE FLORA Y FAUNA DE LA COSTA PERUANA
EJEMPLOS DE FLORA Y FAUNA DE LA COSTA PERUANAEJEMPLOS DE FLORA Y FAUNA DE LA COSTA PERUANA
EJEMPLOS DE FLORA Y FAUNA DE LA COSTA PERUANA
 
Recursos digitales para trabajar la educación literaria en el aula: abriendo ...
Recursos digitales para trabajar la educación literaria en el aula: abriendo ...Recursos digitales para trabajar la educación literaria en el aula: abriendo ...
Recursos digitales para trabajar la educación literaria en el aula: abriendo ...
 
PPT: Un día en el ministerio de Jesús.pptx
PPT: Un día en el ministerio de Jesús.pptxPPT: Un día en el ministerio de Jesús.pptx
PPT: Un día en el ministerio de Jesús.pptx
 
fichas descriptivas para primaria 2023-2024
fichas descriptivas para primaria 2023-2024fichas descriptivas para primaria 2023-2024
fichas descriptivas para primaria 2023-2024
 
Introducción a la seguridad básica (3 de julio de 2024)
Introducción a la seguridad básica (3 de julio de 2024)Introducción a la seguridad básica (3 de julio de 2024)
Introducción a la seguridad básica (3 de julio de 2024)
 
Los Formularios de Google: creación, gestión y administración de respuestas (...
Los Formularios de Google: creación, gestión y administración de respuestas (...Los Formularios de Google: creación, gestión y administración de respuestas (...
Los Formularios de Google: creación, gestión y administración de respuestas (...
 
SEP. Presentación. Taller Intensivo FCD. Julio 2024.pdf
SEP. Presentación. Taller Intensivo FCD. Julio 2024.pdfSEP. Presentación. Taller Intensivo FCD. Julio 2024.pdf
SEP. Presentación. Taller Intensivo FCD. Julio 2024.pdf
 
PLAN DE TRABAJO DIA DEL LOGRO 2024 URP.docx
PLAN DE TRABAJO DIA DEL LOGRO 2024 URP.docxPLAN DE TRABAJO DIA DEL LOGRO 2024 URP.docx
PLAN DE TRABAJO DIA DEL LOGRO 2024 URP.docx
 
Taller intensivo de formación continua. Puebla.
Taller intensivo de formación continua. Puebla.Taller intensivo de formación continua. Puebla.
Taller intensivo de formación continua. Puebla.
 
03. SESION PERSONAL-PRIMEROS POBLADORES DEL PERÚ.docx
03. SESION PERSONAL-PRIMEROS POBLADORES  DEL PERÚ.docx03. SESION PERSONAL-PRIMEROS POBLADORES  DEL PERÚ.docx
03. SESION PERSONAL-PRIMEROS POBLADORES DEL PERÚ.docx
 
CUESTIONARIO.METROLOGIA GRADOSANTA TERERSA DE JESUS11pptx
CUESTIONARIO.METROLOGIA GRADOSANTA TERERSA DE JESUS11pptxCUESTIONARIO.METROLOGIA GRADOSANTA TERERSA DE JESUS11pptx
CUESTIONARIO.METROLOGIA GRADOSANTA TERERSA DE JESUS11pptx
 
Semana 1 Derecho a interponer recursos y reparación.
Semana 1 Derecho a interponer recursos y reparación.Semana 1 Derecho a interponer recursos y reparación.
Semana 1 Derecho a interponer recursos y reparación.
 
Sesión Un día en el ministerio de Jesús.pdf
Sesión Un día en el ministerio de Jesús.pdfSesión Un día en el ministerio de Jesús.pdf
Sesión Un día en el ministerio de Jesús.pdf
 
Fundamentos del diseño audiovisual para presentaciones y vídeos (2 de julio d...
Fundamentos del diseño audiovisual para presentaciones y vídeos (2 de julio d...Fundamentos del diseño audiovisual para presentaciones y vídeos (2 de julio d...
Fundamentos del diseño audiovisual para presentaciones y vídeos (2 de julio d...
 
Licencias de contenidos y propiedad intelectual (1 de julio de 2024)
Licencias de contenidos y propiedad intelectual (1 de julio de 2024)Licencias de contenidos y propiedad intelectual (1 de julio de 2024)
Licencias de contenidos y propiedad intelectual (1 de julio de 2024)
 
Reglamento del salón - Intensa-mente.pdf
Reglamento del salón - Intensa-mente.pdfReglamento del salón - Intensa-mente.pdf
Reglamento del salón - Intensa-mente.pdf
 
Fichero Léxico / Pandemia Lingüística / USCO
Fichero Léxico / Pandemia Lingüística / USCOFichero Léxico / Pandemia Lingüística / USCO
Fichero Léxico / Pandemia Lingüística / USCO
 
SEMANAS DE GESTION 2024 para trabajo escolar
SEMANAS DE GESTION 2024 para trabajo escolarSEMANAS DE GESTION 2024 para trabajo escolar
SEMANAS DE GESTION 2024 para trabajo escolar
 
LABERINTOS DE DISCIPLINAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
LABERINTOS DE DISCIPLINAS OLÍMPICAS.  Por JAVIER SOLIS NOYOLALABERINTOS DE DISCIPLINAS OLÍMPICAS.  Por JAVIER SOLIS NOYOLA
LABERINTOS DE DISCIPLINAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
 
Recursos Educativos en Abierto (1 de julio de 2024)
Recursos Educativos en Abierto (1 de julio de 2024)Recursos Educativos en Abierto (1 de julio de 2024)
Recursos Educativos en Abierto (1 de julio de 2024)
 

Diapositiva 1

  • 1. Diapositiva 1 <br />DaimlerChrysler (entonces Daimler-Benz) estaba ya delante de la mayoría de las organizaciones industriales y comerciales en la aplicación de la minería de datos en sus operaciones de negocios. <br />SPSS (entonces ISL) había estado proporcionando servicios basados en Minería de datos desde 1990 y había lanzado la primer herramienta de trabajo comercial de Minería de Datos Clementine en 1994. <br />NCR, como parte de su objetivo para entregar valor adicional a su Teradata ® Almacén de datos (data warehouse), habían establecido los equipos consultores de minería de datos y especialistas de tecnología para atender las exigencias de sus clientes.<br />Diapositiva 4<br />En el nivel superior, el proceso de minería de datos es organizado en un número de fases; cada fase consiste de varias tareas genéricas de segundo nivel. <br />Este segundo nivel lo llaman genérico porque esta destinado a ser bastante general para cubrir todas las situaciones posibles de minería de datos. Las tareas genéricas están destinadas a ser tan completas y estables como sea posible. Completo significa que cubre tanto al proceso entero de minería de datos y todas las aplicaciones de minería de datos posibles. Estable significa que el modelo debería ser válido para acontecimientos normales y aún para desarrollos imprevistos como técnicas de modelado nuevo.<br />El tercer nivel, el nivel de tarea especializado, es el lugar para describir como las acciones en las tareas genéricas deberían ser realizadas en ciertas situaciones específicas. Por ejemplo, en el segundo nivel podría haber una tarea genérica llamada limpieza de datos. El tercer nivel describe como esta tarea se diferencia en situaciones diferentes, como la limpieza de valores numéricos contra la limpieza de valores categóricos, o si el tipo de problema es agrupamiento o el modelado predictivo.<br />La descripción de fases y tareas como pasos discretos realizados en un orden específico representa una secuencia idealizada de eventos.<br />En la práctica, muchas de las tareas pueden ser realizadas en una orden diferente, y esto a menudo será necesario volver a hacer tareas anteriores repetidamente y repetir ciertas acciones. Nuestro modelo de proceso no intenta capturar todas estas posibles rutas del proceso de la minería de datos porque esto requeriría un modelo de proceso demasiado complejo.<br />El cuarto nivel, la instancia de proceso, es un registro de las acciones, decisiones, y de los resultados de una minería de datos real contratada.<br />Diapositiva 5<br />Comprensión del negocio<br />Esta fase inicial se enfoca en la comprensión de los objetivos de proyecto y exigencias desde una perspectiva de negocio, luego convirtiendo este conocimiento de los datos en la definición de un problema de minería de datos y en un plan preliminar diseñado para alcanzar los objetivos.<br />Comprensión de los datos<br />La fase de entendimiento de datos comienza con la colección de datos inicial y continua con las actividades que le permiten familiarizar primero con los datos, identificar los problemas de calidad de datos, descubrir los primeros conocimientos en los datos, y/o descubrir subconjuntos interesantes para formar hipótesis en cuanto a la información oculta.<br />Preparación de datos<br />La fase de preparación de datos cubre todas las actividades necesarias para construir el conjunto de datos final [los datos que serán provistos en las herramientas de modelado] de los datos en brutos iniciales. Las tareas de preparación de datos probablemente van a ser realizadas muchas veces y no en cualquier orden prescripto. Las tareas incluyen la selección de tablas, registros, y atributos, así como la transformación y la limpieza de datos para las herramientas que modelan.<br />Modelado<br />En esta fase de CRISP-DM, se seleccionan las técnicas de modelado más apropiadas para el<br />proyecto de Data Mining específico. Las técnicas a utilizar en esta fase se eligen en función de<br />los siguientes criterios:<br />o Ser apropiada al problema.<br />o Disponer de datos adecuados.<br />o Cumplir los requisitos del problema.<br />o Tiempo adecuado para obtener un modelo.<br />o Conocimiento de la técnica.<br />Evaluación<br />En esta etapa en el proyecto, usted ha construido un modelo (o modelos) que parece tener la alta calidad de una perspectiva de análisis de datos.<br />Antes del proceder al despliegue final del modelo, es importante evaluar a fondo ello y la revisión de los pasos ejecutados para crearlo, para comparar el modelo correctamente obtenido con los objetivos de negocio. Un objetivo clave es determinar si hay alguna cuestión importante de negocio que no ha sido suficientemente considerada. En el final de esta fase, una decisión en el uso de los resultados de minería de datos debería ser obtenida.<br />Desarrollo<br />La creación del modelo no es generalmente el final del proyecto. Incluso si el objetivo del modelo es de aumentar el conocimiento de los datos, el conocimiento ganado tendrá que ser organizado y presentado en el modo en el que el cliente pueda usarlo. Ello a menudo implica la aplicación de modelos quot; vivosquot; dentro de un proceso de toma de decisiones de una organización, por ejemplo, en tiempo real la personalización de página Web o la repetida obtención de bases de datos de mercadeo. Dependiendo de los requerimientos, la fase de desarrollo puede ser tan simple como la generación de un informe o tan compleja como la realización repetida de un proceso cruzado de minería de datos a través de la empresa. En muchos casos, es el cliente, no el analista de datos, quien lleva el paso de desarrollo. Sin embargo, incluso si el analista realizara el esfuerzo de despliegue, esto es importante para el cliente para entender de frente que acciones necesita para ser ejecutadas en orden para hacer uso de los modelos creados actualmente.<br />Diapositiva 6 comprension del negocio <br />Determinación de objetivos de negocio<br />El primer objetivo del analista de datos para un contexto es entender, desde una perspectiva de negocio, lo que el cliente realmente quiere lograr. A menudo el cliente tiene muchos objetivos que compiten y restricciones que deben ser correctamente equilibrados. El objetivo del analista debe mostrar (destapar) factores importantes, en el principio, esto puede influir en el resultado del proyecto. Una consecuencia posible de la negligencia de este paso es gastar un gran esfuerzo produciendo respuestas correctas a preguntas incorrectas o erradas.<br />Evaluación de la situación<br />Esta tarea implica la investigación más detallada sobre todos los recursos, restricciones, presunciones, y otros factores que deberían ser considerados en la determinación del objetivo de análisis de datos y el plan de proyecto. En la tarea anterior, su objetivo es para ponerse rápidamente al quid de la situación. Aquí, usted quiere ampliarse sobre los detalles.<br />Determinación de los objetivos de la minería de datos<br />Un objetivo de negocio declara objetivos en la terminología de negocio. Un objetivo de minería de datos declara objetivos de proyecto en términos técnicos. Por ejemplo, el objetivo de negocio podría ser “Aumentar catálogos de ventas a clientes existentes.” Un objetivo de minería de datos podrían ser “Predecir cuantas baratijas un cliente comprará, obteniendo datos de sus compras de tres años pasados, información demográfica (edad, sueldo, ciudad, etc.), y el precio del artículo.<br />Producir el plan del proyecto<br />Describir el plan intencionado para alcanzar los objetivos de minería de datos y así alcanzar los objetivos de negocio.<br />El plan debería especificar los pasos para ser realizados durante el resto del proyecto, incluyendo la selección inicial de herramientas y técnicas.<br />Diapositiva 7 comprension de los datos <br />Recolección de datos iniciales<br />Adquiera en el proyecto los datos (o el acceso a los datos) listados en los recursos del proyecto. Esta colección inicial incluye carga de datos, si es necesario para la comprensión de los datos. Por ejemplo, si usted usa un instrumento específico para la comprensión de los datos, esto perfectamente se entiende para abrir sus datos en esta herramienta. Este esfuerzo posiblemente conduce a los pasos iniciales de preparación de datos.<br />Note: si usted adquiere datos de múltiples fuentes, la integración es una cuestión adicional, aquí o mas tarde en las fases de preparación de datos más.<br />Describir los datos<br />. Después de adquiridos los datos iniciales, estos deben ser descritos.Este proceso involucra establecer volúmenes de datos (número de registros y campos por registro), su identificación, el significado de cada campo y la descripción del formato inicial.<br />Explorar los datos<br />Esta tarea dirige interrogantes de minería de datos usando preguntas, visualización, y técnicas de reporte. Estos incluyen la distribución de atributos claves (por ejemplo, el atributo objetivo de una tarea de predicción) relacionados entre pares o pequeños números de atributos, los resultados de simples agregaciones, las propiedades de las subpoblaciones significativas, y análisis estadísticos simples. Estos análisis directamente pueden dirigir los objetivos de minería de datos; ellos también pueden contribuir o refinar la descripción de datos e informes de calidad, y alimentar en la transformación y otros pasos de preparación de datos necesarios para análisis futuros.<br />Verificación de la calidad de los datos<br />. En esta tarea, se efectúan verificaciones sobre los datos, para determinar la consistencia de los valores individuales de los campos, la cantidad y distribución de los valores nulos, y para encontrar valores fuera de rango, los cuales pueden constituirse en ruido para el proceso. La idea en este punto, es asegurar la completitud y corrección de los datos.<br />Diapositiva 8 preparacion de los datos <br />Selección de datos<br />Decidir que datos serán usados para el análisis. Los criterios incluyen la importancia a los objetivos de la minería de datos, la calidad, y las restricciones técnicas como límites sobre el volumen de datos o los tipos de datos. Note que la selección de datos cubre la selección de atributos (columnas) así como la selección de registros (filas) en una tabla.<br />Limpieza de datos<br />Elevar la calidad de los datos al nivel requerido por las técnicas de análisis seleccionadas. Esto puede implicar la selección de los subconjuntos de datos limpios, la inserción de datos por defectos adecuados, o técnicas más ambiciosas tales como la estimación de datos faltantes mediante modelado.<br />Construir datos<br />Esta tarea incluye la construcción de operaciones de preparación de datos tales como la producción de atributos derivados o el ingreso de nuevos registros, o la transformación de valores para atributos existentes.<br />Integrar datos<br />Estos son los métodos por el cual la información es combinada de múltiples tablas o registros para crear nuevos registros o valores.<br />Formatear datos<br />Formateando transformaciones se refiere a modificaciones principalmente sintácticas hechas a los datos que no cambian su significado, pero podría ser requerido por la herramienta de modelado.<br />Diapositiva 9 modelado <br />Selección de la técnica de modelado<br />Como primer paso en modelado, seleccionar la técnica de modelado real que está por ser usado. Aunque usted haya podido seleccionar una herramienta durante la fase de Comprensión del negocio, esta tarea se refiere a la técnica de modelado específico, por ejemplo, un árbol decisión construido con C4.5, o la generación de red neuronales Back-Propagación. Si múltiples técnicas son aplicadas, se realizan esta tarea separadamente para cada técnica.<br />Generación de la prueba de diseño<br />Antes de que nosotros en realidad construyamos un modelo, tenemos que generar un procedimiento o el mecanismo para probar la calidad y validez del modelo. Por ejemplo, en tareas de minería de datos supervisados como la clasificación, esto es común usar tasas de errores como medida de calidad para modelos de minería de datos. Por lo tanto, típicamente separamos el conjunto de datos en una serie y en un conjunto de prueba, construimos el modelo sobre el conjunto de series, y estimamos su calidad sobre el conjunto de prueba separado.<br />Construcción del modelo<br />Ejecutar la herramienta de modelado sobre el conjunto de datos preparados para crear uno o más modelos.<br />Evaluación del modelo<br />El ingeniero de minería de datos interpreta los modelos según su conocimiento de dominio, los criterios de éxitos de minería de datos, y el diseño de prueba deseado. El ingeniero de minería de datos juzga el éxito de la aplicación del modelado y descubre técnicas mas técnicamente; él se pone en contacto con analistas de negocio y expertos en el dominio luego para hablar de los resultados de la minería de datos en el contexto de negocio. Por favor note que esta tarea sólo se considera modelos, mientras que la fase de evaluación también toma en cuenta todos los otros resultados que fueron producidos en el curso del proyecto.<br />El ingeniero de minería de datos intenta clasificar los modelos. Él evalúa los modelos según los criterios de evaluación. Tanto como es posible, él también tiene en cuenta objetivos del negocio y criterios de éxito de negocio. En los grandes proyectos de minería de datos, el ingeniero de minería de datos aplica una sola técnica más de una vez, o genera resultados de minería de datos con varias técnicas diferentes. En esta tarea, él también compara todos los resultados según los criterios de evaluación.<br />Diapositiva 10 evaluacion <br />Evaluación de los resultados<br />Los pasos de la evaluación anterior trata con factores como la exactitud y la generalidad del modelo. Este paso evalúa el grado al que el modelo responde (encuentra) los objetivos de negocio y procura determinar si hay alguna decisión de negocio por el que este modelo es deficiente. Otra opción de evaluación es probar el/los modelo/s sobre aplicaciones de prueba en la aplicación real, si el tiempo y las restricciones de presupuesto lo permiten.<br />Además, la evaluación también verifica otros resultados generados por la minería de datos. Los resultados de la minería de datos implican modelos que necesariamente son relacionados con los objetivos originales de negocio y todas los otros descubrimientos que no son relacionados necesariamente con los objetivos originales de negocio, pero también podría revelar desafíos adicionales, información, o insinuaciones para futuras direcciones.<br />Proceso de revisión<br />En este punto, los modelos resultantes pasan a ser satisfactorios y a satisfacer las necesidades de negocio. Ahora es apropiado hacer una revisión más cuidadosa de los compromisos de la minería de datos para determinar si hay cualquier factor importante o tarea que de algún modo ha sido pasada por alto. Esta revisión también cubre cuestiones de calidad -por ejemplo: ¿Construimos correctamente el modelo? ¿Usamos sólo los atributos que nos permitieron usar y que están disponibles para análisis futuros?<br />Determinación de los próximos pasos<br />Según los resultados de la evaluación y la revisión de proceso, el equipo de proyecto decide como proceder. El equipo decide si hay que terminar este proyecto y tomar medidas sobre el desarrollo si es apropiado, tanto iniciar más iteraciones, o comenzar nuevos proyectos de minería de datos. Esta tarea incluye los análisis de recursos restantes y del presupuesto, que puede influir en las decisiones.<br />Diapositiva 11 implantacion <br />Desarrollo del plan<br />De acuerdo al desarrollo de los resultados de minería de datos en el negocio, esta tarea toma los resultados de la evaluación y determina una estrategia para el desarrollo. Si un procedimiento general ha sido identificado para crear el/los modelo/s relevante/s, este procedimiento es documentado aquí para el desarrollo posterior.<br />Plan de supervisión y mantenimiento<br />La supervisión y el mantenimiento son cuestiones importantes si los resultados de minería de datos son parte del negocio cotidiano y de su ambiente. La preparación cuidadosa de una estrategia de mantenimiento ayuda evitar largos periodos innecesarios de uso incorrecto de resultados de minería de datos. Para supervisar el desarrollo de los resultados de la minería de datos, el proyecto necesita un plan detallado de proceso de supervisión. Este plan tiene en cuenta el tipo específico de desarrollo.<br />Informe definitivo de producto<br />En el final del proyecto, el líder del proyecto y su equipo sobrescribe un informe final. Según el plan de desarrollo, este informe puede ser sólo un resumen del proyecto y sus experiencias (si estas aún no han sido documentadas como una actividad en curso) o esto puede ser una presentación final y comprensiva de los resultados de minería de datos.<br />Revisión del proyecto<br />Evaluar lo que fue correcto y lo que se equivocó, lo que fue bien hecho y lo que necesita para ser mejorado.<br />