SlideShare una empresa de Scribd logo
TEMAS:


Movimiento rectilíneo



Movimiento rectilíneo uniforme
   Movimiento rectilíneo
Movimiento rectilíneo

Se denomina movimiento rectilíneo, aquél cuya
trayectoria es una línea recta.



En la recta situamos un origen O, donde estará un
 observador que medirá la posición del móvil x en
 el instante t. Las posiciones serán positivas si el
 móvil está a la derecha del origen y negativas si
 está a la izquierda del origen.
Posición:
 La posición x del móvil se puede relacionar con el
  tiempo t mediante una función x=f(t).



         Desplazamiento:
 Supongamos ahora que en el tiempo t, El móvil se
  encuentra en posición x, más tarde, en el
  instante t' el móvil se encontrará en la posición x'.
  Decimos que móvil se ha desplazado Dx=x'-x en
  el intervalo de tiempo Dt=t'-t, medido desde el
  instante t al instante t'.
Velocidad:
La velocidad media entre los instantes t y t' está
  definida por



Para determinar la velocidad en el
instante t, debemos hacer el intervalo de tiempo Dt tan
  pequeño como sea posible, en el límite
  cuando Dt tiende a cero.



Pero dicho límite, es la definición de derivada de x con
  respecto del tiempo t.
Ejercicio:
 Una partícula se mueve a lo largo del eje X, de manera
  que su posición en cualquier instante t está dada
  por x=5·t2+1, donde x se expresa en metros y t en
  segundos.
 Calcular su velocidad promedio en el intervalo de
  tiempo entre:
 2 y 3 s.
 2 y 2.1 s.
 2 y 2.01 s.
 2 y 2.001 s.
 2 y 2.0001 s.
Aceleración:



 En general, la velocidad de un cuerpo es una función
  del tiempo. Supongamos que en un instante t la
  velocidad del móvil es v, y en el instante t' la
  velocidad del móvil es v'. Se denomina aceleración
  media entre los instantes t y t' al cociente entre el
 cambio de velocidad Dv=v'-v y el intervalo de tiempo
 en el que se ha tardado en efectuar dicho
 cambio, Dt=t'-t.
Ejemplo:
 Un cuerpo se mueve a lo largo de una línea recta x=2t3-
  4t2+5 m. Hallar la expresión de
 La velocidad
 La aceleración del móvil en función del tiempo.
Dada la velocidad del móvil hallar el
 desplazamiento
 Si conocemos un registro de la velocidad podemos
  calcular el desplazamiento x-x0 del móvil entre los
  instantes t0 y t, mediante la integral definida.
 El producto v dt representa el desplazamiento del móvil
  entre los instantes t y t+dt, o en el intervalo dt. El
  desplazamiento total es la suma de los infinitos
  desplazamientos infinitesimales entre los instantes t0 y t.
 En la figura, se muestra una gráfica de la velocidad en función
  del tiempo, el área en color azul mide el desplazamiento total
  del móvil entre los instantes t0 y t, el segmento en color azul
  marcado en la trayectoria recta. Hallamos la posición x del
  móvil en el instante t, sumando la posición inicial x0 al
  desplazamiento, calculado mediante la medida del área bajo la
  curva v-t o mediante cálculo de la integral definida en la
  fórmula anterior.
Ejemplo:
Un cuerpo se mueve a lo largo de una línea recta de
 acuerdo a la ley v=t3-4t2 +5 m/s. Si en el instante t0=2 s.
 está situado en x0=4 m del origen. Calcular la
 posición x del móvil en cualquier instante.
Dada la aceleración del móvil hallar el cambio de
 velocidad

Del mismo modo, que hemos calculado el
 desplazamiento del móvil entre los instantes t0 y t, a
 partir de un registro de la velocidad v en función del
 tiempo t, podemos calcular el cambio de velocidad v-
 v0 que experimenta el móvil entre dichos instantes, a
 partir de un registro de la aceleración en función del
 tiempo.
En la figura, el cambio de velocidad v-v0 es el área bajo
 la curva a-t, o el valor numérico de la integral definida
 en la fórmula anterior. Conociendo el cambio de
 velocidad v-v0, y el valor inicial v0 en el instante t0,
 podemos calcular la velocidad v en el instante t.
Ejemplo:
 La aceleración de un cuerpo que se mueve a lo largo de una
  línea recta viene dada por la expresión. a=4-t2 m/s2. Sabiendo
  que en el instante t0=3 s, la velocidad del móvil vale v0=2 m/s.
  Determinar la expresión de la velocidad del móvil en cualquier
  instante



 Resumiendo, las fórmulas empleadas para resolver problemas
  de movimiento rectilíneo son:
Movimiento rectilíneo
uniforme:
Un movimiento rectilíneo uniforme es aquél cuya velocidad
  es constante, por tanto, la aceleración es cero. La
  posición x del móvil en el instante t lo podemos calcular
  integrando
o gráficamente, en la representación de v en función de t.



 Habitualmente, el instante inicial t0 se toma como cero,
 por lo que las ecuaciones del movimiento uniforme
 resultan
Movimiento rectilíneo uniformemente acelerado:

Un movimiento uniformemente acelerado es aquél cuya
 aceleración es constante. Dada la aceleración podemos obtener
 el cambio de velocidad v-v0 entre los instantest0 y t, mediante
 integración, o gráficamente.
Dada la velocidad en función del tiempo, obtenemos el
 desplazamiento x-x0 del móvil entre los instantes t0 y t,
 gráficamente (área de un rectángulo + área de un triángulo), o
 integrando
Habitualmente, el instante inicial t0 se toma como cero,
 quedando las fórmulas del movimiento rectilíneo
 uniformemente acelerado, las siguientes.




Despejando el tiempo t en la segunda ecuación y sustituyéndola
 en la tercera, relacionamos la velocidad v con el
 desplazamiento x-x0
Interpretación geométrica de la derivada:

El siguiente Apple, nos puede ayudar a entender el concepto de
  derivada y la interpretación geométrica de la derivada.




Se elige la función a representar en el control de selección
  titulado Función, entre las siguientes:
 Se pulsa el botón titulado Nuevo
 Se observa la representación de la función elegida
 Con el puntero del ratón se mueve el cuadrado de color azul,
    para seleccionar una abscisa t0.
   Se elige el aumento, 10, 100, ó 1000 en el control de selección
    titulado Aumento
   Cuando se elige 100 ó 1000, la representación gráfica de la
    función es casi un segmento rectilíneo. Se mide su pendiente
    con ayuda de la rejilla trazada sobre la representación gráfica
   Se calcula la derivada de la función en el punto de
    abscisa t0 elegido
   Se comprueba si coinciden la medida de la pendiente y el valor
    de la derivada en t0.
Ejemplo:
Elegimos la primera función y el punto t0=3.009
Elegimos ampliación 1000. La pendiente de la recta
vale -1, y se muestra en la figura.
La derivada de dicha función es:



            Integral definida:
Dada la velocidad del móvil en función del tiempo, vamos a
 calcular el desplazamiento del móvil entre los
 instantes t0 y t. En los casos en los que la velocidad es
 constante o varía linealmente con el tiempo, el
 desplazamiento se calcula fácilmente
Si v=35 m/s, el desplazamiento del móvil entre los instantes t0=0
  y t=10 s es Δx=35·10=350 m




Si v=6·t, el desplazamiento del móvil entre los instantes t0=0 y t=10 s es el área
   del triángulo de color azul claro Δx=(60·10)/2=300 m
Si v=-8·t+60. el desplazamiento del móvil entre los instantes t0=0
   y t=10 s es la suma de las áreas de dos triángulos: el de la
   izquierda tiene un área de (7.5·60)/2=225
el de la derecha tiene un área de (-20·2.5)/2=-25.
El desplazamiento es el área total Δx=225+(-25)=200 m

Más contenido relacionado

La actualidad más candente

Grupo 2-cinematica-teoria
Grupo 2-cinematica-teoriaGrupo 2-cinematica-teoria
Grupo 2-cinematica-teoria
etubay
 
Capitulo3 movimientounadimension
Capitulo3 movimientounadimensionCapitulo3 movimientounadimension
Capitulo3 movimientounadimension
jaimee91
 
Tiro ParabóLico
Tiro ParabóLicoTiro ParabóLico
Tiro ParabóLico
Lourdez Mamani Tudela
 
MRUV
MRUVMRUV
Movimientos Y Sus GráFicas
Movimientos Y Sus GráFicasMovimientos Y Sus GráFicas
Movimientos Y Sus GráFicas
Diana Bolzan
 
Tiro Parabolico
Tiro ParabolicoTiro Parabolico
Tiro Parabolico
Luchitop Campoverde
 
Movimiento uniforme y uniformemente acelerado
Movimiento uniforme y uniformemente aceleradoMovimiento uniforme y uniformemente acelerado
Movimiento uniforme y uniformemente acelerado
juansabogal1
 
MRU-MRUA
MRU-MRUAMRU-MRUA
Movimiento rectilíneo uniforme
Movimiento rectilíneo uniformeMovimiento rectilíneo uniforme
Movimiento rectilíneo uniforme
eclimosis
 
Mru y mruv
Mru y mruv Mru y mruv
Mru y mruv
Heberto Torre
 
M.R.U
M.R.UM.R.U
M.R.U
cirodog
 
Movimiento en dos dimensiones
Movimiento en dos dimensionesMovimiento en dos dimensiones
Movimiento en dos dimensiones
Frankie Paz Larios
 
MRU-Características
MRU-CaracterísticasMRU-Características
MRU-Características
Alberto Quispe
 
Problemas resueltos
Problemas resueltosProblemas resueltos
Problemas resueltos
Luis Hernan Pinto Morales
 
Medina fisica1 cap3
Medina fisica1 cap3Medina fisica1 cap3
Medina fisica1 cap3
enrique canga ylles
 
Tiro parabólico presentación
Tiro parabólico presentaciónTiro parabólico presentación
Tiro parabólico presentación
mariavarey
 
Tiro horizontal y parabolico apuntes abril 2015
Tiro horizontal y parabolico apuntes abril 2015Tiro horizontal y parabolico apuntes abril 2015
Tiro horizontal y parabolico apuntes abril 2015
FERNANDO TOVAR OLIVARES
 

La actualidad más candente (17)

Grupo 2-cinematica-teoria
Grupo 2-cinematica-teoriaGrupo 2-cinematica-teoria
Grupo 2-cinematica-teoria
 
Capitulo3 movimientounadimension
Capitulo3 movimientounadimensionCapitulo3 movimientounadimension
Capitulo3 movimientounadimension
 
Tiro ParabóLico
Tiro ParabóLicoTiro ParabóLico
Tiro ParabóLico
 
MRUV
MRUVMRUV
MRUV
 
Movimientos Y Sus GráFicas
Movimientos Y Sus GráFicasMovimientos Y Sus GráFicas
Movimientos Y Sus GráFicas
 
Tiro Parabolico
Tiro ParabolicoTiro Parabolico
Tiro Parabolico
 
Movimiento uniforme y uniformemente acelerado
Movimiento uniforme y uniformemente aceleradoMovimiento uniforme y uniformemente acelerado
Movimiento uniforme y uniformemente acelerado
 
MRU-MRUA
MRU-MRUAMRU-MRUA
MRU-MRUA
 
Movimiento rectilíneo uniforme
Movimiento rectilíneo uniformeMovimiento rectilíneo uniforme
Movimiento rectilíneo uniforme
 
Mru y mruv
Mru y mruv Mru y mruv
Mru y mruv
 
M.R.U
M.R.UM.R.U
M.R.U
 
Movimiento en dos dimensiones
Movimiento en dos dimensionesMovimiento en dos dimensiones
Movimiento en dos dimensiones
 
MRU-Características
MRU-CaracterísticasMRU-Características
MRU-Características
 
Problemas resueltos
Problemas resueltosProblemas resueltos
Problemas resueltos
 
Medina fisica1 cap3
Medina fisica1 cap3Medina fisica1 cap3
Medina fisica1 cap3
 
Tiro parabólico presentación
Tiro parabólico presentaciónTiro parabólico presentación
Tiro parabólico presentación
 
Tiro horizontal y parabolico apuntes abril 2015
Tiro horizontal y parabolico apuntes abril 2015Tiro horizontal y parabolico apuntes abril 2015
Tiro horizontal y parabolico apuntes abril 2015
 

Destacado

Sec 04
Sec 04Sec 04
Sec 04
giljjx
 
Exposicion ingles
Exposicion inglesExposicion ingles
Exposicion ingles
jguillermox
 
Geschichte der fotografie
Geschichte der fotografieGeschichte der fotografie
Geschichte der fotografie
teamwaenkaa
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
IJERD Editor
 
Carros Sucios
Carros SuciosCarros Sucios
Asfi
AsfiAsfi
Fotos del recuerdo
Fotos del recuerdoFotos del recuerdo
Fotos del recuerdo
franciscabanda
 
Ghiciti Contextul!
Ghiciti Contextul!Ghiciti Contextul!
Ghiciti Contextul!
bordeanu.anca
 
sistema operativo
sistema operativo sistema operativo
sistema operativo
David GuasPetee
 
Ars i curso de direccion coral y tecnica vocal
Ars   i curso de direccion coral y tecnica vocalArs   i curso de direccion coral y tecnica vocal
Ars i curso de direccion coral y tecnica vocal
cordexativa
 
Concept map retail trade
Concept map retail tradeConcept map retail trade
Concept map retail trade
Sheilalin
 
D.Carlos
D.CarlosD.Carlos
D.Carlos
cab3032
 
Preparacion fisica por Barbara Llull
Preparacion fisica por Barbara LlullPreparacion fisica por Barbara Llull
Preparacion fisica por Barbara Llull
Pedro Apuntesbasket
 
Barra De Dibujos Grupo Martes
Barra De Dibujos Grupo MartesBarra De Dibujos Grupo Martes
Barra De Dibujos Grupo Martes
Elena Esteves
 
Notas mec rac-(01) 2011
Notas mec rac-(01) 2011Notas mec rac-(01) 2011
Notas mec rac-(01) 2011
giljjx
 
Pertemuan 4 Pemuda dan Sosialisasi
Pertemuan 4 Pemuda dan SosialisasiPertemuan 4 Pemuda dan Sosialisasi
Pertemuan 4 Pemuda dan Sosialisasi
Muhammad Ammar Rinjani
 
Presentacion musical
Presentacion musicalPresentacion musical
Presentacion musical
ludopase
 
Isabel ii
Isabel iiIsabel ii

Destacado (20)

Sec 04
Sec 04Sec 04
Sec 04
 
Exposicion ingles
Exposicion inglesExposicion ingles
Exposicion ingles
 
Geschichte der fotografie
Geschichte der fotografieGeschichte der fotografie
Geschichte der fotografie
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Carros Sucios
Carros SuciosCarros Sucios
Carros Sucios
 
Uitgeverij Van Brug
Uitgeverij Van BrugUitgeverij Van Brug
Uitgeverij Van Brug
 
Asfi
AsfiAsfi
Asfi
 
Fotos del recuerdo
Fotos del recuerdoFotos del recuerdo
Fotos del recuerdo
 
Ghiciti Contextul!
Ghiciti Contextul!Ghiciti Contextul!
Ghiciti Contextul!
 
sistema operativo
sistema operativo sistema operativo
sistema operativo
 
Ars i curso de direccion coral y tecnica vocal
Ars   i curso de direccion coral y tecnica vocalArs   i curso de direccion coral y tecnica vocal
Ars i curso de direccion coral y tecnica vocal
 
Concept map retail trade
Concept map retail tradeConcept map retail trade
Concept map retail trade
 
D.Carlos
D.CarlosD.Carlos
D.Carlos
 
Electrohydraulic
ElectrohydraulicElectrohydraulic
Electrohydraulic
 
Preparacion fisica por Barbara Llull
Preparacion fisica por Barbara LlullPreparacion fisica por Barbara Llull
Preparacion fisica por Barbara Llull
 
Barra De Dibujos Grupo Martes
Barra De Dibujos Grupo MartesBarra De Dibujos Grupo Martes
Barra De Dibujos Grupo Martes
 
Notas mec rac-(01) 2011
Notas mec rac-(01) 2011Notas mec rac-(01) 2011
Notas mec rac-(01) 2011
 
Pertemuan 4 Pemuda dan Sosialisasi
Pertemuan 4 Pemuda dan SosialisasiPertemuan 4 Pemuda dan Sosialisasi
Pertemuan 4 Pemuda dan Sosialisasi
 
Presentacion musical
Presentacion musicalPresentacion musical
Presentacion musical
 
Isabel ii
Isabel iiIsabel ii
Isabel ii
 

Similar a Diapositivas

movimiento rectilineo
movimiento rectilineomovimiento rectilineo
movimiento rectilineo
itzellichiss95
 
Exposicion cinematica
Exposicion cinematicaExposicion cinematica
Exposicion cinematica
Rodolfo Alcantara Rosales
 
Cinemática de una partícula
Cinemática de una partículaCinemática de una partícula
Cinemática de una partícula
Marco Polo Villanueva
 
Aplicaciones De La FuncióN AfíN A La FíSica
Aplicaciones De La FuncióN AfíN A La FíSicaAplicaciones De La FuncióN AfíN A La FíSica
Aplicaciones De La FuncióN AfíN A La FíSica
Diana Bolzan
 
Movimiento Rectilineo 10
Movimiento Rectilineo 10Movimiento Rectilineo 10
Movimiento Rectilineo 10
jorge camargo
 
Ppp
PppPpp
Cinemática
CinemáticaCinemática
Cinemática
jc_elprofe
 
Cinematica 2022 I.pdf
Cinematica 2022 I.pdfCinematica 2022 I.pdf
Cinematica 2022 I.pdf
Daniel Alonso Carrillo Carvajalino
 
Movimiento rectilíneo uniforme
Movimiento rectilíneo uniformeMovimiento rectilíneo uniforme
Movimiento rectilíneo uniforme
eclimosis
 
Presentacion 1
Presentacion 1Presentacion 1
Presentacion 1
AntoniaBabikian
 
PDV: Física Guía N°8 [4° Medio] (2012)
PDV: Física Guía N°8 [4° Medio] (2012)PDV: Física Guía N°8 [4° Medio] (2012)
PDV: Física Guía N°8 [4° Medio] (2012)
PSU Informator
 
Aplicación de ecuaciones vectoriales paramétricas para la determinación de la...
Aplicación de ecuaciones vectoriales paramétricas para la determinación de la...Aplicación de ecuaciones vectoriales paramétricas para la determinación de la...
Aplicación de ecuaciones vectoriales paramétricas para la determinación de la...
daisy_hernandez
 
Modulo1cinematica
Modulo1cinematicaModulo1cinematica
Modulo1cinematica
FISICAGORETTI
 
Cinematica
CinematicaCinematica
Cinematica
Ramses CF
 
Cinematica
CinematicaCinematica
Cinematica
Joseph Raul
 
Cinematica. ejercicios resueltos
Cinematica. ejercicios resueltosCinematica. ejercicios resueltos
Cinematica. ejercicios resueltos
Gogole
 
Cinematica3
Cinematica3Cinematica3
Cinematica
CinematicaCinematica
Cinematica
Joseph Raul
 
Interpretacioncinematica
InterpretacioncinematicaInterpretacioncinematica
Interpretacioncinematica
uneve
 
Cinemática. Movimiento rectilíneo uniforme
Cinemática. Movimiento rectilíneo uniformeCinemática. Movimiento rectilíneo uniforme
Cinemática. Movimiento rectilíneo uniforme
Yuri Milachay
 

Similar a Diapositivas (20)

movimiento rectilineo
movimiento rectilineomovimiento rectilineo
movimiento rectilineo
 
Exposicion cinematica
Exposicion cinematicaExposicion cinematica
Exposicion cinematica
 
Cinemática de una partícula
Cinemática de una partículaCinemática de una partícula
Cinemática de una partícula
 
Aplicaciones De La FuncióN AfíN A La FíSica
Aplicaciones De La FuncióN AfíN A La FíSicaAplicaciones De La FuncióN AfíN A La FíSica
Aplicaciones De La FuncióN AfíN A La FíSica
 
Movimiento Rectilineo 10
Movimiento Rectilineo 10Movimiento Rectilineo 10
Movimiento Rectilineo 10
 
Ppp
PppPpp
Ppp
 
Cinemática
CinemáticaCinemática
Cinemática
 
Cinematica 2022 I.pdf
Cinematica 2022 I.pdfCinematica 2022 I.pdf
Cinematica 2022 I.pdf
 
Movimiento rectilíneo uniforme
Movimiento rectilíneo uniformeMovimiento rectilíneo uniforme
Movimiento rectilíneo uniforme
 
Presentacion 1
Presentacion 1Presentacion 1
Presentacion 1
 
PDV: Física Guía N°8 [4° Medio] (2012)
PDV: Física Guía N°8 [4° Medio] (2012)PDV: Física Guía N°8 [4° Medio] (2012)
PDV: Física Guía N°8 [4° Medio] (2012)
 
Aplicación de ecuaciones vectoriales paramétricas para la determinación de la...
Aplicación de ecuaciones vectoriales paramétricas para la determinación de la...Aplicación de ecuaciones vectoriales paramétricas para la determinación de la...
Aplicación de ecuaciones vectoriales paramétricas para la determinación de la...
 
Modulo1cinematica
Modulo1cinematicaModulo1cinematica
Modulo1cinematica
 
Cinematica
CinematicaCinematica
Cinematica
 
Cinematica
CinematicaCinematica
Cinematica
 
Cinematica. ejercicios resueltos
Cinematica. ejercicios resueltosCinematica. ejercicios resueltos
Cinematica. ejercicios resueltos
 
Cinematica3
Cinematica3Cinematica3
Cinematica3
 
Cinematica
CinematicaCinematica
Cinematica
 
Interpretacioncinematica
InterpretacioncinematicaInterpretacioncinematica
Interpretacioncinematica
 
Cinemática. Movimiento rectilíneo uniforme
Cinemática. Movimiento rectilíneo uniformeCinemática. Movimiento rectilíneo uniforme
Cinemática. Movimiento rectilíneo uniforme
 

Más de Iiameliitho' Arvizuu

Corriente eléctrica
Corriente eléctricaCorriente eléctrica
Corriente eléctrica
Iiameliitho' Arvizuu
 
Capacitancia
CapacitanciaCapacitancia
Capacitancia
Iiameliitho' Arvizuu
 
Capacitancia
CapacitanciaCapacitancia
Capacitancia
Iiameliitho' Arvizuu
 
Fisica
FisicaFisica
Gases ideales
Gases ideales Gases ideales
Gases ideales
Iiameliitho' Arvizuu
 
El noticiario
El noticiarioEl noticiario
El noticiario
Iiameliitho' Arvizuu
 
Lichizzzzzzzzzzzzhehjeje
LichizzzzzzzzzzzzhehjejeLichizzzzzzzzzzzzhehjeje
Lichizzzzzzzzzzzzhehjeje
Iiameliitho' Arvizuu
 
Lichizzzzzzzzzzzzhehjeje
LichizzzzzzzzzzzzhehjejeLichizzzzzzzzzzzzhehjeje
Lichizzzzzzzzzzzzhehjeje
Iiameliitho' Arvizuu
 
N.n
N.nN.n
Diapositivas
DiapositivasDiapositivas
Diapositivas
Iiameliitho' Arvizuu
 
Diapositivas
DiapositivasDiapositivas
Diapositivas
Iiameliitho' Arvizuu
 
Diapositivas
DiapositivasDiapositivas
Diapositivas
Iiameliitho' Arvizuu
 
Diapositivas
DiapositivasDiapositivas
Diapositivas
Iiameliitho' Arvizuu
 

Más de Iiameliitho' Arvizuu (13)

Corriente eléctrica
Corriente eléctricaCorriente eléctrica
Corriente eléctrica
 
Capacitancia
CapacitanciaCapacitancia
Capacitancia
 
Capacitancia
CapacitanciaCapacitancia
Capacitancia
 
Fisica
FisicaFisica
Fisica
 
Gases ideales
Gases ideales Gases ideales
Gases ideales
 
El noticiario
El noticiarioEl noticiario
El noticiario
 
Lichizzzzzzzzzzzzhehjeje
LichizzzzzzzzzzzzhehjejeLichizzzzzzzzzzzzhehjeje
Lichizzzzzzzzzzzzhehjeje
 
Lichizzzzzzzzzzzzhehjeje
LichizzzzzzzzzzzzhehjejeLichizzzzzzzzzzzzhehjeje
Lichizzzzzzzzzzzzhehjeje
 
N.n
N.nN.n
N.n
 
Diapositivas
DiapositivasDiapositivas
Diapositivas
 
Diapositivas
DiapositivasDiapositivas
Diapositivas
 
Diapositivas
DiapositivasDiapositivas
Diapositivas
 
Diapositivas
DiapositivasDiapositivas
Diapositivas
 

Diapositivas

  • 2. Movimiento rectilíneo
  • 3. Movimiento rectilíneo Se denomina movimiento rectilíneo, aquél cuya trayectoria es una línea recta. En la recta situamos un origen O, donde estará un observador que medirá la posición del móvil x en el instante t. Las posiciones serán positivas si el móvil está a la derecha del origen y negativas si está a la izquierda del origen.
  • 4. Posición:  La posición x del móvil se puede relacionar con el tiempo t mediante una función x=f(t). Desplazamiento: Supongamos ahora que en el tiempo t, El móvil se encuentra en posición x, más tarde, en el instante t' el móvil se encontrará en la posición x'. Decimos que móvil se ha desplazado Dx=x'-x en el intervalo de tiempo Dt=t'-t, medido desde el instante t al instante t'.
  • 5. Velocidad: La velocidad media entre los instantes t y t' está definida por Para determinar la velocidad en el instante t, debemos hacer el intervalo de tiempo Dt tan pequeño como sea posible, en el límite cuando Dt tiende a cero. Pero dicho límite, es la definición de derivada de x con respecto del tiempo t.
  • 6. Ejercicio:  Una partícula se mueve a lo largo del eje X, de manera que su posición en cualquier instante t está dada por x=5·t2+1, donde x se expresa en metros y t en segundos.  Calcular su velocidad promedio en el intervalo de tiempo entre:  2 y 3 s.  2 y 2.1 s.  2 y 2.01 s.  2 y 2.001 s.  2 y 2.0001 s.
  • 7. Aceleración:  En general, la velocidad de un cuerpo es una función del tiempo. Supongamos que en un instante t la velocidad del móvil es v, y en el instante t' la velocidad del móvil es v'. Se denomina aceleración media entre los instantes t y t' al cociente entre el cambio de velocidad Dv=v'-v y el intervalo de tiempo en el que se ha tardado en efectuar dicho cambio, Dt=t'-t.
  • 8. Ejemplo:  Un cuerpo se mueve a lo largo de una línea recta x=2t3- 4t2+5 m. Hallar la expresión de  La velocidad  La aceleración del móvil en función del tiempo.
  • 9. Dada la velocidad del móvil hallar el desplazamiento  Si conocemos un registro de la velocidad podemos calcular el desplazamiento x-x0 del móvil entre los instantes t0 y t, mediante la integral definida.  El producto v dt representa el desplazamiento del móvil entre los instantes t y t+dt, o en el intervalo dt. El desplazamiento total es la suma de los infinitos desplazamientos infinitesimales entre los instantes t0 y t.
  • 10.  En la figura, se muestra una gráfica de la velocidad en función del tiempo, el área en color azul mide el desplazamiento total del móvil entre los instantes t0 y t, el segmento en color azul marcado en la trayectoria recta. Hallamos la posición x del móvil en el instante t, sumando la posición inicial x0 al desplazamiento, calculado mediante la medida del área bajo la curva v-t o mediante cálculo de la integral definida en la fórmula anterior.
  • 11. Ejemplo: Un cuerpo se mueve a lo largo de una línea recta de acuerdo a la ley v=t3-4t2 +5 m/s. Si en el instante t0=2 s. está situado en x0=4 m del origen. Calcular la posición x del móvil en cualquier instante.
  • 12. Dada la aceleración del móvil hallar el cambio de velocidad Del mismo modo, que hemos calculado el desplazamiento del móvil entre los instantes t0 y t, a partir de un registro de la velocidad v en función del tiempo t, podemos calcular el cambio de velocidad v- v0 que experimenta el móvil entre dichos instantes, a partir de un registro de la aceleración en función del tiempo.
  • 13. En la figura, el cambio de velocidad v-v0 es el área bajo la curva a-t, o el valor numérico de la integral definida en la fórmula anterior. Conociendo el cambio de velocidad v-v0, y el valor inicial v0 en el instante t0, podemos calcular la velocidad v en el instante t.
  • 14. Ejemplo:  La aceleración de un cuerpo que se mueve a lo largo de una línea recta viene dada por la expresión. a=4-t2 m/s2. Sabiendo que en el instante t0=3 s, la velocidad del móvil vale v0=2 m/s. Determinar la expresión de la velocidad del móvil en cualquier instante  Resumiendo, las fórmulas empleadas para resolver problemas de movimiento rectilíneo son:
  • 16. Un movimiento rectilíneo uniforme es aquél cuya velocidad es constante, por tanto, la aceleración es cero. La posición x del móvil en el instante t lo podemos calcular integrando o gráficamente, en la representación de v en función de t. Habitualmente, el instante inicial t0 se toma como cero, por lo que las ecuaciones del movimiento uniforme resultan
  • 17. Movimiento rectilíneo uniformemente acelerado: Un movimiento uniformemente acelerado es aquél cuya aceleración es constante. Dada la aceleración podemos obtener el cambio de velocidad v-v0 entre los instantest0 y t, mediante integración, o gráficamente.
  • 18. Dada la velocidad en función del tiempo, obtenemos el desplazamiento x-x0 del móvil entre los instantes t0 y t, gráficamente (área de un rectángulo + área de un triángulo), o integrando
  • 19. Habitualmente, el instante inicial t0 se toma como cero, quedando las fórmulas del movimiento rectilíneo uniformemente acelerado, las siguientes. Despejando el tiempo t en la segunda ecuación y sustituyéndola en la tercera, relacionamos la velocidad v con el desplazamiento x-x0
  • 20. Interpretación geométrica de la derivada: El siguiente Apple, nos puede ayudar a entender el concepto de derivada y la interpretación geométrica de la derivada. Se elige la función a representar en el control de selección titulado Función, entre las siguientes:
  • 21.  Se pulsa el botón titulado Nuevo  Se observa la representación de la función elegida  Con el puntero del ratón se mueve el cuadrado de color azul, para seleccionar una abscisa t0.  Se elige el aumento, 10, 100, ó 1000 en el control de selección titulado Aumento  Cuando se elige 100 ó 1000, la representación gráfica de la función es casi un segmento rectilíneo. Se mide su pendiente con ayuda de la rejilla trazada sobre la representación gráfica  Se calcula la derivada de la función en el punto de abscisa t0 elegido  Se comprueba si coinciden la medida de la pendiente y el valor de la derivada en t0.
  • 22. Ejemplo: Elegimos la primera función y el punto t0=3.009 Elegimos ampliación 1000. La pendiente de la recta vale -1, y se muestra en la figura.
  • 23. La derivada de dicha función es: Integral definida: Dada la velocidad del móvil en función del tiempo, vamos a calcular el desplazamiento del móvil entre los instantes t0 y t. En los casos en los que la velocidad es constante o varía linealmente con el tiempo, el desplazamiento se calcula fácilmente
  • 24. Si v=35 m/s, el desplazamiento del móvil entre los instantes t0=0 y t=10 s es Δx=35·10=350 m Si v=6·t, el desplazamiento del móvil entre los instantes t0=0 y t=10 s es el área del triángulo de color azul claro Δx=(60·10)/2=300 m
  • 25. Si v=-8·t+60. el desplazamiento del móvil entre los instantes t0=0 y t=10 s es la suma de las áreas de dos triángulos: el de la izquierda tiene un área de (7.5·60)/2=225 el de la derecha tiene un área de (-20·2.5)/2=-25. El desplazamiento es el área total Δx=225+(-25)=200 m