SlideShare una empresa de Scribd logo
TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[
PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA”
Profesor Juan Portal Pizarro Página 1
TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[
PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA”
Profesor Juan Portal Pizarro Página 2
PRESENTACIÓN
Así como en años anteriores, en esta oportunidad recibimos la invitación para trabajar y
desarrollar un taller de enseñanza de la matemática con los docentes del Nivel Primario
del Colegio “Santa Teresita”, lo que significa para nosotros un privilegio y un reto, por ser
una Institución de renombre en la región y además que se nos presenta motivador el
tener que compartir nuestras experiencias sobre la enseñanza de la matemática su
respectiva evaluación y orientando las actividades a las Rutas del Aprendizaje en el
presente años académico 2103, con las maestras de esta Institución Educativa.
Hoy en día la enseñanza de la matemática se ha convertido en una constante búsqueda
de estrategias, formas y maneras para que los alumnos entiendan y sobre todo apliquen
en la vida cotidiana las capacidades y conocimientos adquiridos a través de las sesiones
de aprendizaje ende esta área, porque pareciera que ese nexo cada día se resquebraja
más y más, lo que los niños aprenden en la escuela y lo que se debe aplicar en la vida
diaria, en muchas ocasiones no tiene relación alguna es por eso que para la enseñanza
de la matemática, desde el enfoque de la resolución de problemas, se debe partir de una
situación problemática como eje motivador para el desarrollo de conocimientos y la
adquisición de capacidades, y de esta manera lograr un sin número de capacidades
matemáticas.
En el presente taller denominado “Estrategias creativas para la enseñanza de la
matemática y su evaluación” se desarrollarán de manera general la forma como abordar
la enseñanza de esta área, desde la presentación de una situación problemática,
llegando a desarrollar y aplicar los respectivos instrumentos de evaluación, teniendo en
cuenta que la planificación ejecución y evaluación curricular constituye un todo y unidad
inseparable en la enseñanza de esta importante área en la educación básica regular.
Se abordarán diversas estrategias creativas en donde se evidencia el proceso del logro
de las capacidades y conocimientos matemáticos propuestos en las Rutas del
Aprendizaje por el Ministerio de Educación, con la finalidad de afianzar el logro de
cambios cualitativos y cuantitativos en la enseñanza de la matemática en las niñas del
nivel primario del Colegio “Santa Teresita”, coadyuvando de esta manera a la excelente
labor pedagógica realizada por las maestras de esta prestigiosa Institución Educativa.
Juan Portal Pizarro
TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[
PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA”
Profesor Juan Portal Pizarro Página 3
IMPORTANCIA DE LA ENSEÑANZA DE LA MATEMÁTICA A TRAVÉS DE
ESTRATEGIAS CREATIVAS
La enseñanza de la matemática siempre se ha
considerado muy importante en el currículo escolar.
Una muestra de ello es que se le asigna más tiempo en
el horario. Junto con el área de comunicación, se ha
considerado como un buen referente para evaluar el
rendimiento escolar, aplicándose pruebas
estandarizadas para ello. Si bien ahora se está
desterrando esta práctica, aún seguimos tomando los
logros obtenidos en matemática como criterio para
promocionar de grado a un alumno y sobre todo para
medir el avance y la calidad educativa a nivel nacional.
La mayoría de padres y madres de familia centran sus
preocupaciones en las calificaciones y cualificaciones de matemática. Es frecuente
escuchar que “si está bien en matemática, lo demás no es tan importante”. En el
ambiente familiar y escolar abundan expresiones como “si es bueno en matemática,
es inteligente”; ”si aprendes matemática, tendrás éxito en la vida” o “para aprender
matemática tienes que hacer muchos ejercicios matemáticos”. Estas expresiones
reflejan la valoración que la sociedad asigna al aprendizaje de la matemática.
¿Por qué se le da tanta importancia? ¿Qué razones existen para esta valoración?
Para responder a estas interrogantes, analizaremos algunas expresiones populares
para luego constatarlas en la realidad y con los fundamentos científicos que hoy se
manejan.
“Si no sabes matemática no podrás ser nada en la vida”
Esta sentencia expresa que el conocimiento
matemático que se obtiene en la escuela es
necesario para desenvolverse en la vida cotidiana y
es prerrequisito de otros aprendizajes que se darán
en la formación académica.
¿Tú crees que el conocimiento matemático hace
más fácil el desenvolvimiento de las personas en la
vida cotidiana? ¿Será útil la matemática que niños y
niñas aprendan en la escuela, y que los prepara
para los estudios superiores? ¿Qué pasará con las
personas que no aprendieron la matemática en su
Institución Educativa? ¿Con qué frecuencia usas la
matemática fuera de tu aula?
En la vida cotidiana usamos la matemática, aún sin darnos cuenta. Apenas abrimos
los ojos, en la mañana, vemos la hora en el reloj y calculamos si el tiempo nos
alcanzará para hacer todo lo necesario antes de ir al colegio. Durante el desayuno
seguimos usando la matemática, al poner en nuestras tazas, la leche, el café y el
agua en determinadas proporciones. También la usamos cuando elegimos las
combinaciones entre nuestras blusas, faldas, camisas, pantalones o zapatos.
Como puedes constatar, usamos el pensamiento lógico-matemático a cada
momento en nuestras vidas. Con esta afirmación desterramos la creencia de que
usar la matemática solamente es hacer operaciones sobre un papel. A través de la
historia confirmamos la utilidad de la matemática en la vida del ser humano, que la
TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[
PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA”
Profesor Juan Portal Pizarro Página 4
construyó para resolver los problemas que la realidad le planteaba. Miguel de
Guzmán nos ilustra sobre su utilidad:
“La matemática fue un instrumento para la
elaboración de vaticinios, entre los sacerdotes
de los pueblos mesopotámicos. Se consideró
como un medio de aproximación a una vía
más profundamente humana y como camino a
la divinidad, entre los pitagóricos. Fue
utilizando como un importante elemento
disciplinador del pensamiento del Medioevo.
Ha sido la más versátil e idónea herramienta
para la exploración del universo, a partir del Renacimiento”1
.
El uso de la matemática ha ido variando con el tiempo. En el pasado ayudó a
manejarse mejor en el mundo del comercio. Ahora una persona sin conocimiento
matemático tiene dificultades para desenvolverse en la vida cotidiana, porque el
mundo se ha matematizado. Las evidencias están en la numeración de las calles,
en las noticias del periódico, en las recetas de cocina, en las dosis de medicinas, en
las señales que aparecen en las carreteras marcando el kilometraje, etc. Usamos
cada vez más el lenguaje matemático para comunicar hechos y situaciones de la
vida cotidiana.
Por lo expuesto, creemos en la necesidad de revisar permanentemente nuestra
concepción de la enseñanza – aprendizaje de la matemática, para poder responder
a las nuevas exigencias del mundo contemporáneo. Pensamos que la matemática
es un lenguaje que niños y niñas deben aprender para desenvolverse y
comunicarse con el mundo, lo que resulta diferente a aprender a resolver
operaciones aritméticas. Se trata, pues, de desarrollar el pensamiento lógico-
matemático para llevar a un nivel más alto la actividad humana que llamamos
razonar.
Por otra parte, el avance tecnológico nos exige revisar las capacidades y
competencias que nos planteamos al enseñar la matemática, con la finalidad de
que nuestros alumnos y alumnas logren aprendizajes exitosos. Ello supone ir más
allá de dominio de las cuatro operaciones aritméticas, que ahora se pueden resolver
con una calculadora, cuyo bajo costo las pone al alcance incluso de los sectores
populares.
Entonces, ¿no resulta absurdo invertir esfuerzo y
tiempo para que niños y niñas resuelvan enormes
operaciones aritméticas si el nivel de la tecnología ha
disminuido la necesidad de ser un experto en el
cálculo escrito? ¿Será necesario que enseñemos a
resolver operaciones aritméticas? Claro que sí, pero
con otra visión. Las operaciones matemáticas no son
el objetivo final de la enseñanza; son un medio para
desarrollar el pensamiento lógico matemático y para
construir las nociones matemáticas. Y si la necesidad
de aprender matemática ya no radica en el desarrollo
del cálculo escrito, ¿Qué habilidades tendremos que
desarrollar en las niñas y los niños?
1
MIGUEL DE GUZMÁN, “Didáctica de las Matemáticas para maestros”. Proyecto EDUMAT – MAESTROS.
Granada España 2004
TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[
PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA”
Profesor Juan Portal Pizarro Página 5
Las exigencias del mundo moderno son otras. Por eso planteamos la necesidad de
desarrollar las capacidades para resolver problemas de diversa índole. Para ello se
requiere un pensamiento muy lógico y un
manejo adecuado de los conceptos. Los que
aprendimos matemática a través de la
resolución de largas y monótonas
operaciones en las que desarrollamos sólo la
memoria, tenemos algunas dificultades en
nuestra vida cotidiana para resolver
problemas y manejar esquemas lógicos. Por
eso hay que dar prioridad a los aprendizajes
que estimulen el desarrollo del pensamiento
lógico matemático. Esa debe convertirse en
una consigna para dirigir nuestro trabajo
pedagógico.
La matemática siempre ha desempeñado un rol fundamental en el desarrollo de los
conocimientos científicos y tecnológicos. En ese sentido, reconocemos su función
instrumental y social que nos ha permitido interpretar, comprender y dar soluciones
a los problemas de nuestro entorno.
En efecto, todos los seres humanos, desde que nacemos hasta que morimos,
usamos algún tipo de aprendizaje matemático. Nacemos sin saber matemáticas,
pero el mundo está lleno de experiencias que pueden convertirse en aprendizajes
matemáticos utilizables en diversas circunstancias. Así, el niño que cuenta los
dedos de su mano por primera vez sabrá que en cada mano tiene cinco. Esto no lo
exime de cometer errores al contar una y otra vez sus dedos, sin embargo ayuda a
aprender2
.
Es así que a partir del año 2013 aparecen las herramientas pedagógicas llamadas
“Rutas del Aprendizaje”, que en cuanto a la enseñanza de la matemática
manifiestan “la manera como los docentes entendemos la matemática y como
suponemos que nuestros estudiantes aprenderán mejor, basados en nuestra
experiencia y formación previa, influyen no sólo en nuestra forma de enseñar, sino
también en la forma de enfrentar una situación problemática que exhibirán los
estudiantes. Influyen incluso en los procedimientos que se usarán o se evitarán, en
el tiempo y la intensidad del trabajo que realizarán”3
.
¿CUÁL ES LA UTILIDAD DE LA MATEMÁTICA EN EL
CONTEXTO ACTUAL?
Los retos que la sociedad actual nos plantea a los docentes
son mayores que los de antes. Por eso conviene que nos
hagamos preguntas y busquemos respuestas personales y
grupales entre docentes. Por ejemplo:
 ¿Cuánto sabemos de las nuevas teorías matemáticas?
 ¿Qué rol cumple el aprendizaje de la matemática en
el desarrollo integral de niños y niñas?
2
RUTAS DEL APRENDIZAJE: “hacer uso de saberes matemáticos para afrontar desafíos diversos”. Edit.
MED. Lima Perú 2013
3
RUTAS DEL APRENDIZAJE: “Qué y cómo aprenden nuestros niñas y niños”. Edit. MED. Lima Perú 2013
TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[
PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA”
Profesor Juan Portal Pizarro Página 6
 Nuestros procedimientos y estrategias de enseñanza, ¿responden a las
nuevas demandas sociales y necesidades de niñas y niños?
 ¿Qué capacidades personales y colectivas debemos desarrollar para
elaborar materiales didácticos que ejerciten el pensamiento lógico
matemático que nuestros alumnos y alumnas requerirán para desenvolverse
en el mundo actual?
 ¿Qué habilidades matemáticas son necesarias para enfrentar una sociedad
más tecnificada?
ENTENDER EL MUNDO Y
DESENVOLVERNOS EN ÉL.
¡Muy bien!
COMUNICARNOS
CON LOS DEMÁS
Compraré el de la derecha en
talla 28, Cuál será el precio?
PLANTEAR Y RESOLVER
PROBLEMAS
Si compro 5 helados de S/.
2,00 cada uno y tengo un
billete de S/. 20,00 ¿Cuánto
recibiré de vuelto?
DESARROLLAR UN
PENSAMIENTO LÓGICO Y ÁGIL
Si tomo un solo micro llego en
45 min, ¿pero si tomo 2
micros llegaré en 30 min?
¿Cuál me convienen más?
Porque nos
ayuda a
Es necesario aprender
matemática
TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[
PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA”
Profesor Juan Portal Pizarro Página 7
El pasado nos muestra que la matemática no solo tuvo una función utilitaria, para
resolver problemas, sino que también respondió a la necesidad de entender y
descubrir el mundo, convirtiéndose en una necesidad filosófica. Platón decía que un
motivo para enseñar la matemática era atraer el alma hacia la verdad. Estas
motivación esta presente en los matemáticos que exploran las estructuras de la
realidad, sea la realidad concreta o la construcción mental. ¿Tú crees que la ciencia
matemática sea útil para estimular la búsqueda de la verdad?
Por otro lado, ¿Crees que (así como se disfruta de la literatura o la música) se
puede disfrutar de la matemática? Los testimonios de hombres y culturas que han
ido construyendo la ciencia matemática nos demuestran que si puede producir una
honda sensación estética la solución ingeniosa de problemas y el construir modelos
matemáticos que representen e interpreten el mundo.
A los docentes de hoy nos toca intentar educar a niñas, niños, adolescentes y
jóvenes a través de experiencias imaginativas y placenteras no solo en el campo
artístico, sino en las ciencias y la matemática, introduciendo el goce estético en las
aulas y la escuela, como un fin irrenunciable.
“SOLO LOS INTELIGENTES APRENDEN MATEMATICA”
Si nuestra concepción y práctica concuerda con esta sentencia, estamos negando el
carácter esencial de la matemática: ser un lenguaje, un código para comunicarse
con el mundo.
Hay docentes que siguen creyendo que esta sentencia
expresa una verdad. Tal vez por eso hay quienes
continúan calificando como inteligentes a los que
aprenden más rápido, y sentencian a otros al fracaso.
Para justificar esta creencia. Hacen un despliegue de
números y reglas en la pizarra, de tal modo que solo
algunos alumnos y alumnas logran entender. Pero,
¿Será verdad que la matemática es difícil? ¿O será
que a veces la hacemos difícil?
El docente que descuida su función esencial, ayudar a
estructurar el pensamiento y a manejar el lenguaje
matemático para comprender el mundo y comunicarse, enseña llenando la pizarra
con operaciones que se convierten en jeroglíficos indescifrables. Esta manera de
asumir el rol docente genera en sus alumnos y alumnas inseguridad y desconcierto.
Pero además refuerza un prejuicio con el que chicos y chicas llegan a la escuela: y
piensan que el aprendizaje de la matemática es difícil.
Si la dificultad del aprendizaje de la matemática esta en la forma como la
enseñamos, entonces busquemos métodos que permitan aprendizajes mas
exitosos. También debemos revisar los contenidos, eliminar los que resulten poco
útiles y organizarlos de manera que favorezcan los aprendizajes significativos y
funcionales.
Si buscamos nuevos métodos y damos a niñas tiempo suficiente para disfrutar,
inventando y recreando situaciones problemáticas, ensayando posibles soluciones,
equivocándose a veces e intentando otras vías para encontrar sus soluciones,
desterramos la idea de que “sólo los inteligentes pueden aprender matemática “. La
verdad es que todos podemos aprender matemáticas porque todos somos
inteligentes.
TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[
PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA”
Profesor Juan Portal Pizarro Página 8
LA SESIÓN DE APRENDIZAJE DE MATEMÁTICA
En una sesión de aprendizaje de matemáticas en
Primaría, el maestro presenta una tarea matemática a
sus alumnos para conseguir capacidades. En ese
momento se define un contexto en el que el maestro, el
conocimiento matemático y los alumnos interaccionan
con el fin de que los alumnos desarrollen la competencia
matemática que configura el objeto de enseñanza.
Desde esta perspectiva sistemática, las situaciones de
enseñanza están determinadas por:
 Las características de la tarea matemática
presentada (lo que puede demandar la tarea del
resolutor).
 Lo que el maestro hace y las características de las interacciones que se generan.
 Lo que los alumnos aportan a la situación, hagan en ella y su actitud.
Al conjunto de actividades, ejercicios,
problemas, etc. Que el maestro puede
plantear a sus alumnos para desarrollar la
capacidad matemática, lo podemos llamar
“tarea matemática”.
Algunas veces las características de las
tareas que los maestros plantean a sus
alumnos y las interacciones que se producen
en el aula entre el maestro, los alumnos y el
contenido matemático definen un
determinado nivel de exigencia cognitiva y
social que puede potenciar un determinado
aprendizaje. Por ejemplo, si la experiencia
de un alumno en el aula de matemática se
reduce a escuchar lo que dice el maestro,
leer lo que pone el libro de texto y repetir ejercicios de cálculo en los que sólo hay
que procurar que el resultado sea correcto, lo que aprende este alumno puede ser
simplemente el memorizar algoritmos de cálculo y generar una idea sobre las
matemáticas escolares reducida a una colección de procedimientos de cálculo.
El significado dado a la actividad matemática por parte del alumno (lo que hace con
la tarea para resolverla, sea individual o en grupo) será diferente si las actividades
son del tipo de formulación, representación, resolución y/o comunicación de
problemas matemáticos a partir de una situación. Esta actividad matemática es la
que permitirá desarrollar en los alumnos una determinada “competencia
matemática” a lo largo del tiempo. En esta situación existen tres elementos que
deben ser caracterizados para poder llegar a maximizar la práctica de enseñar
matemáticas:
 El significado de “matemáticamente competente”.
 Las características de la “tarea matemática” dirigidas a desarrollar la
competencia matemática.
 Las características de la clase que apoyan la generación de la competencia.
Llegar a ser matemáticamente competente está vinculado al desarrollo de la
comprensión del contenido matemático. Cuando se comprenden las nociones y
TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[
PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA”
Profesor Juan Portal Pizarro Página 9
procedimientos matemáticos se pueden utilizar de manera flexible adaptándolos a
situaciones nuevas y permitiendo establecer relaciones entre ellos y ser utilizados
para aprender un nuevo contenido matemático. Así, comprender, está vinculado a
saber cuál es el significado y cómo funcionan los procedimientos, cómo se
relacionan unos con otros y por qué funcionan de la manera en que lo hacen. Por
tanto, debemos determinar características en las sesiones de matemática que
potencien el desarrollo de la competencia matemática como actividades,
problemas, ejercicios, metáforas, historia de la matemática, etc. que el maestro
puede utilizar para conseguir este fin.
Planificación de la sesión de aprendizaje de matemática
Las sesiones de aprendizaje se planifican y se ejecutan de acuerdo con el estilo de
cada docente. No hay fórmulas ni rutas preestablecidas. Sin embargo, esto no quita
que se atienda las siguientes sugerencias.
 Programar la sesión de aprendizaje en función de
las capacidades e indicadores.
 Los conocimientos tienen sentido en la medida
que contribuyan a desarrollar capacidades.
 Considerar estrategias para el desarrollo de
capacidades y competencias.
 Abordar de manera articulada las capacidades,
para garantizar aprendizajes más significativos y
funcionales.
 Activar permanentemente la recuperación de los
saberes previos.
 Generar el conflicto cognitivo que susciten la
reflexión permanente del estudiante.
 Prever estrategias que propicien la reflexión permanente del estudiante
sobre su propio aprendizaje para contribuir al desarrollo de la
metacognición.
 Promover situaciones de participación activa y cooperativa que le permitan
el desarrollo de actitudes y valores.
 Evaluar durante todo el proceso.
Fases de una sesión de aprendizaje de matemática
1. Momento de iniciación (Donde debemos tener en cuenta):
 Motivación
 Recuperación de saberes previos (exploración)
 Conflictos cognitivo (problematización)
2. Momento de Proceso, elaboración o desarrollo:
 Procesamiento
 Aplicación
 Transferencia y
 Reflexión
3. Momento de cierre:
 Sistematización
 Resumen
 Metacognición
PROCESOS PEDAGÓGICOS ESTRATEGIAS / ACTIVIDADES
MOTIVACIÓN
Consiste en atraer la atención y
 Observación de hechos o situaciones.
 Exploración y manipulación de material.
 Evocar anécdotas relacionadas con la actividad.
TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[
PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA”
Profesor Juan Portal Pizarro Página 10
despertar el interés sobre el
tema, creando un clima
favorable durante toda la clase.
 Se plantea una pregunta, un problema, un
juego, una adivinanza, un chiste, un cuento, una
canción, una dinámica relacionados con el tema.
 Mostrar textos sobre la historia de la
matemática.
RECUPERACIÓN DE SABERES
PREVIOS
Consiste en explorar e indagar
sobre cuánto conocen los
alumnos sobre el tema (saberes
formales e informales).
 Lluvia de ideas o discusión guiada mediante el
planeo de preguntas abiertas.
 Resolución de problemas y/o juegos y ejercicios.
 Mapas conceptuales para completar.
 Mapas mentales.
 Organizadores gráficos y visuales.
CONFLICTO COGNITIVO
Consiste en problematizar,
enfrentando al alumno a un
nuevo desempeño que debe
tratar de resolver utilizando
todos sus recursos disponibles.
Una actividad problematizadora
puede funcionar a la vez como
actividad de motivación y
exploración.
 Formulación de preguntas ¿interrogación?
 Presentación de una situación problemática
¿problemas, ejercicio, juego, etc.? Que lleve a
formular hipótesis, conjeturas, preguntas,
procedimientos, recolectar datos, razonar,
procesar información, conceptualizar, utilizar
libros y materiales, ejemplificar, inferir.
 Confrontación de saberes previos y nuevos.
CONSTRUCCIÓN DEL
CONOCIMIENTO
Se refiere a que el alumno
elabore sus propios conceptos,
conclusiones, procedimientos a
través de grupos o solos y
organice la información en
esquemas visuales.
 Integración de saberes previos y nuevos.
 Exposición dialogada y anotación de ideas.
 Introducción de conceptos y procedimientos
 Descubrimiento dirigido: elaboración de
conceptos y definiciones, razonamientos
dirigidos, corrección y complementación de
cálculos, generalizaciones y analogías
(elaboración del conocimiento).
 Evaluación y comprobación de conjeturas.
 Se resuelve casos concretos y/o ejercicios.
 Se formula ejemplos y contraejemplos.
 Representaciones y simbolizaciones.
 Sistematización de la información mediante
elaboración de resúmenes y organizadores
visuales.
APLICACIÓN DE LO
APRENDIDO -
TRANSFERENCIA
Verifica la asimilación del
alumno, permitiéndole realizar
aplicaciones prácticas de lo que
ha aprendido.
Aplicación dirigida: afianza el
nuevo conocimiento repitiendo
la experiencia en condiciones
variables.
Aplicación autónoma o sea la
transferencia, es decir aplicar los
 Resolución de problemas.
 Construcciones de materiales.
 Comunicación de los nuevos aprendizajes
mediante organizadores visuales.
 Discusión plenaria.
 Propuesta de problemas.
 Realización de investigaciones, trabajos de
campo y elaboración de informes.
 Utilización del conocimiento adquirido en otras
áreas y en la vida diaria.
TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[
PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA”
Profesor Juan Portal Pizarro Página 11
Es donde el estudiante a partir de actividades vivenciales, lúdicas y
de experimentación llega a construir conceptos y propiedades
matemáticas partiendo de una situación problemática.
conocimientos cada vez que lo
necesita en su vida.
REFLEXIÓN SOBRE EL
APRENDIZAJE -
METACOGNICIÓN
Es un proceso permanente y
continuo que nos permite
obtener información sobre los
logros de aprendizaje y nuestra
forma de aprender.
 Se destaca los resultados.
 Se aplica instrumentos de evaluación
 Se realiza la co, auto y heteroevaluación.
 Metacognición: ¿Qué aprendí? ¿Cómo aprendí?
 Identifica estrategias de aprendizaje utilizados.
DESARROLLANDO ESCENARIOS DE APRENDIZAJE PARA LA MATEMÁTICA4
I. Laboratorio matemático
LABORATORIO MATEMÁTICO
1. Denominación.
¿Cuánto es el descuento?
1.1. Situación problemática:
Mirssy, acompaña a su mamá al centro comercial y observan los
diferentes productos con sus respectivos precios
y descuentos, motivo por el cual la madre de
Mirssy decide realizar las siguientes compras:
Dos vestidos, un par de zapatos y un terno y le
pregunta a Mirssy. ¿Cuánto debo pagar?
4
RUTAS DEL APRENDIZAJE: “Qué y cómo aprenden nuestros niñas y niños”. Edit. MED. Lima Perú 2013
PRECIO
S/. 190,00
35% dcto
PRECIO
S/. 280,00
28% dcto
PRECIO
S/. 140,00
24% dcto
TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[
PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA”
Profesor Juan Portal Pizarro Página 12
1.1. Contexto:
Situación de indagación y experimentación
1.2. Grado:
Quinto Grado
1.3. Tiempo:
Dos sesiones
1.4. Indicadores:
 Experimenta y describe el significado y uso de las operaciones con
fracciones en situaciones de diversos contextos que implican las
acciones de agregar, quitar, juntar, separar, comparar, igualar,
repetir o repartir una cantidad.
 Explica el proceso de resolución de situaciones problemáticas que
implican el uso de la relación de equivalencia entre unidades de dos
magnitudes.
 Describe cómo varían los valores de una magnitud en relación con la
otra, en una relación de equivalencia
 Propone estrategias heurísticas para encontrar un término
desconocido en igualdades con expresiones aditivas y
multiplicativas.
 Experimenta y describe la relación entre fracción decimal, número
decimal y porcentaje (Razón: Parte-Todo)
1.5. Conocimientos
 Porcentaje de un número
 Relación entre números racionales y fracciones
 Resolución de problemas de porcentajes
1.6. Sirve para:
 Buscar soluciones en problemas cotidianos de compra y venta cuando
interviene descuentos a través de porcentajes de acuerdo al contexto.
 Realizar conexiones entre la matemática y situaciones cotidianas
1.7. Qué necesitas:
 Precios de diferentes productos.
 Tarjetas de fracciones y porcentajes,
 Recortes d e periódicos
 Textos del MED
1.8. Conocimientos previos:
 Noción de fracción
 Noción de porcentaje
 Adición de fracciones
 Cálculo de operaciones aritméticas
2. ACTIVIDAD Nº 01: Exploración e indagación
 Se presenta a los alumnos la situación problemática, y se extraen otras
situaciones problemáticas a partir de la visita al centro comercial de Mirssy y
su madre.
 Se reparte a los alumnos periódicos en donde se evidencia la venta de
productos, para redactar una situación problemática.
TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[
PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA”
Profesor Juan Portal Pizarro Página 13
Consigna: En los periódicos encontrar situaciones de compra y venta y
colocar los precios respectivos de acuerdo al contexto.
3. Actividad Nº 02: Comprenden el problema:
 En parejas, los alumnos se intercambian los problemas construidos y se van
a desarrollar, dichos problemas, teniendo en cuenta la relación entre
fracciones y porcentajes.
 La docente realiza interrogantes, para inducir a los alumnos a interpretar e
entender de qué se trata el problema.
 Los alumnos en los mismos duos de trabajo tratan de entender el problema
propuesto por el docente, extrayendo ideas fuerza para elaborar un plan.
4. Actividad Nº 03: Diseñan y adaptan una estrategia
 A continuación, formula preguntas para propiciar el intercambio de ideas y
estrategias:
 Antes de usar tu lápiz, piensa en la forma como podrías resolver el
problema.
 ¿Has visto alguna vez en algún centro comercial carteles parecidos a los del
problema?, ¿cuáles?
 ¿Qué estrategia podrías usar para saber cuánto debe pagar la mamá de
Mirssy?
 ¿Te puede ayudar la forma como están escritos los carteles?
 ¿Qué estrategia usarías para saber el pago total, sin equivocarte?
5. Actividad Nº 04: Ejecutan la estrategia.
 El docente monitorea el trabajo en el aula promoviendo la aplicación de sus
propias estrategias. Luego, propicia que sean expuestas en la pizarra y, a
partir de ellas, genera un espacio de discusión sobre las estrategias más
eficaces.
 Si no se observa una estrategia eficaz entre los estudiantes, será oportuno
sugerirles las siguientes estrategias:
 Extraen porcentajes de 100 unidades y relacionan con las fracciones.
 Luego, el docente realiza el juego de las tarjetas de fracciones y
porcentajes:
a) Se colocan las tarjetas boca abajo sobre la superficie de juego.
Se hace dos montones diferentes: un montón de fracciones y un
montón de porcentajes, Revolver o barajar las tarjetas de cada
montón. La parte de atrás de las 12 tarjetas de fracciones deben
mostrar la fracción , la parte de atrás de las tarjetas de
porcentajes deben mostrar el símbolo “%” para evitar
confusiones.
b) Los jugadores se turnan. En cada turno, un jugador voltea una
tarjeta de fracción y una de porcentaje. S la fracción y el
porcentaje son equivalentes, el jugador se queda con las
tarjetas. Si las tarjetas no coinciden, el jugador vuelve a
colocarlas boca abajo.
c) Los jugadores pueden usar una calculadora para comprobar las
comparaciones de los otros.
d) El juego termina cuando se hayan tomado todas las tarjetas.
Gana el jugador que tanga la mayor cantidad de tarjetas.
TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[
PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA”
Profesor Juan Portal Pizarro Página 14
Las actividades de
extensión implican la
aplicación o transferencia
del nuevo conocimiento a
situaciones similares y de
igual complejidad
Tarjeta de fracciones y porcentajes
6. Actividad Nº 05: Reflexión.
 Para que reflexionen y evalúen la actividad, el docente puede plantearles lo
siguiente:
 Tu estimación se acercó al resultado y relacionaste las fracciones con
el porcentaje. ¿Por qué no llegas a la respuesta correcta?
 ¿Cuál fue la estrategia de relacionar las fracciones y porcentajes más
eficaz? Explica tus procedimientos.
 ¿Es fácil o difícil relacionar las fracciones con los porcentajes?
 ¿Te es más resolver problemas de porcentajes, relacionándolos con las
fracciones?
7. Actividad Nº 06: Realizan actividades de extensión.
 Los alumnos resuelven diferentes problemas relacionando fracciones con
porcentajes.
 En diferentes documentos como recibo de agua, luz, recibos de compras, los
alumnos encuentran
porcentajes relacionando con
fracciones y proponen
situaciones de contexto en
donde intervenga porcentajes
para solucionar con las
fracciones.
10% 20% 25%
30%
40% 50% 60%
70%
75% 80% 90%
100%
𝟏
𝟐
𝟏
𝟒
𝟑
𝟒
𝟏
𝟏𝟎
𝟏
𝟓
𝟐
𝟓
𝟑
𝟓
𝟒
𝟓
𝟑
𝟏𝟎
𝟕
𝟏𝟎
𝟗
𝟏𝟎
𝟐
𝟐
TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[
PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA”
Profesor Juan Portal Pizarro Página 15
MATRIZ DE EVALUACIÓN
¿QUÉ EVALUAR? ¿CÓMO EVALUAR?
¿CON QUÉ
EVALUAR?
COMPETENCIA CAPACIDAD CONOCIMIENTO INDICADORES
PREGUNTAS
ORALES Y
CONSIGNAS
OBSERVACIÓN INSTRUMENTO
Resuelve
situaciones
problemáticas de
contexto real y
matemático que
implican la
construcción de
significado y uso
de los números y
sus operaciones
empleando
diversas
estrategias de
solución,
justificando y
valorando sus
procedimientos y
resultados.
 Construcción
del significado
y uso de las
operaciones
con fracciones
decimales y
números
decimales en
situaciones
problemáticas
agregar,
quitar, juntar,
separar,
comparar,
igualar repetir
o repartir una
cantidad
 Porcentaje de un
número
 Relación entre
números
racionales y
fracciones
 Resolución de
problemas de
porcentajes
 Experimenta y describe el significado
y uso de las operaciones con
fracciones en situaciones de diversos
contextos que implican las acciones
de agregar, quitar, juntar, separar,
comparar, igualar, repetir o repartir
una cantidad.
 Explica el proceso de resolución de
situaciones problemáticas que
implican el uso de la relación de
equivalencia entre unidades de dos
magnitudes.
 Describe cómo varían los valores de
una magnitud en relación con la otra,
en una relación de equivalencia
 Propone estrategias heurísticas para
encontrar un término desconocido en
igualdades con expresiones aditivas y
multiplicativas.
 Experimenta y describe la relación
entre fracción decimal, número
decimal y porcentaje (Razón: Parte-
Todo)
 ¿Cuál es la
relación que
existe entre
las fracciones
y los
porcentajes?
 Explica la
relación que
existe entre
fracciones y
porcentajes
 Describe el
proceso de
interrelación
entre
fracciones y
porcentajes
 Representa la
relación entre
fracciones y
porcentajes
 Se espera que
los alumnos
desarrollen
consignas en
donde existan
situaciones
problemáticas de
relación entre
fracciones y
porcentajes.
 Ficha de
observación.
 Registro auxiliar
TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[
PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA”
Profesor Juan Portal Pizarro Página 16
FICHA DE OBSERVACIÓN
Nº APELLIDOS Y NOMBRES
INDICADORES
Experimentaydescribeelsignificadoyusodelasoperaciones
confraccionesensituacionesdediversoscontextosque
implicanlasaccionesdeagregar,quitar,juntar,separar,
comparar,igualar,repetirorepartirunacantidad.
Explicaelprocesoderesolucióndesituaciones
problemáticasqueimplicanelusodelarelaciónde
equivalenciaentreunidadesdedosmagnitudes.
Describecómovaríanlosvaloresdeunamagnituden
relaciónconlaotra,enunarelacióndeequivalencia
Proponeestrategiasheurísticasparaencontrarun
términodesconocidoenigualdadesconexpresiones
aditivasymultiplicativas.
Experimentaydescribelarelaciónentrefracción
decimal,númerodecimalyporcentaje(Razón:Parte-
Todo)
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[
PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA”
Profesor Juan Portal Pizarro Página 17
Es donde el estudiante pone en práctica los aprendizajes que ha ido
desarrollando en un periodo curricular. En el taller despliegan diversos
recursos (técnicos, procedimentales y cognitivos) en la intención de
resolver situaciones problemáticas haciendo uso de diversas estrategias
de resolución.
II. Taller de matemática
TALLER DE MATEMÁTICA
1. DENOMINACIÓN: “La Geometría nuestra de cada día”
1.1. Situación problemática:
Utilizando el geoplano, resolver las siguientes situaciones problemáticas
TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[
PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA”
Profesor Juan Portal Pizarro Página 18
1.2. Indicadores:
 Elabora y aplica diversas estrategias para resolver situaciones
problemáticas aditivas de cambio y combinación que implican el uso
de material concreto, gráfico (dibujos, cuadros, esquemas, gráficos,
recta numérica, etc.)
 Explica sus procedimientos al resolver diversas situaciones
problemáticas.
 Usa estrategias que implican el uso de la representación concreta y
gráfica (dibujos, cuadros, esquemas, gráficos, etc.), para resolver
situaciones problemáticas aditivas de cambio, combinación,
comparación 1, 2 y situaciones multiplicativas de repetición de una
medida.
 Experimenta y describe patrones geométricos (traslación, simetría y
giros) en situaciones donde se presentan regularidades, para el
desarrollo del significado y uso de los patrones.
 Expresa patrones geométricos (traslación, simetría y giros), con
material concreto, en forma gráfica y simbólica, para el desarrollo
del significado de los patrones.
 Propone secuencias gráficas con patrones geométricos usando
instrumentos de dibujo para construir mosaicos, frisos, guardillas,
etc.
 Usa estrategias inductivas y de representación, para hallar los
elementos desconocidos o que no pertenecen a secuencias gráficas
con patrones geométricos (traslación y giros, simetrías)
 Predice un elemento desconocido a partir de su posición en una
secuencia de gráficos con patrón numérico.
 Explica por qué y comprueba si un elemento pertenece o no a una
secuencia gráfica con patrón geométrico (traslación, giros y
simetría).
1.3. Conocimientos:
 Par ordenado
 Plano cartesiano
 Elementos geométricos.
 Polígonos, clasificación.
 Triángulos, clasificación, área
 Cuadriláteros, clasificación, área
 Área de polígonos regulares.
 Ejes de simetría.
1.4. Contexto.
Situación lúdica, espacio de relación contexto
1.5. Grado:
Sexto grado
1.6. Áreas afines.
Comunicación, Personal social.
1.7. Tiempo
Dos sesiones
TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[
PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA”
Profesor Juan Portal Pizarro Página 19
1.8. Sirve para
Resolver problemas de la vida cotidiana, relacionado con elementos
geométricos y áreas de figuras geométricas planas.
1.9. Qué necesitas
o Tablero de maratón matemático.
o Cartas de consignas sobre geometría
o Geoplano
o Dados.
o Fichas de colores.
o Textos del MED matemática
1.10. Conocimientos previos
o Operaciones aritméticas.
o Rectas: tipos.
o Ángulos: Clasificación
2. ACTIVIDAD Nº 01: Comprenden el problema:
 El docente presenta el material que consiste en:
o Tablero de “Maratón Matemático”
o Tarjetas con consignas
o Par de dados
o Fichas para cada alumno
3. ACTIVIDAD Nº 02: Piensan en un plan:
 Los alumnos forman grupos de cinco integrantes.
 Luego de leer las consignas respectivas, empieza el juego en cada
grupo, y los alumnos irán resolviendo los diferentes problemas
presentados en las tarjetas de consignas y si tienen dificultad
pedirán apoyo al docente.
 Los alumnos responden a las siguientes interrogantes:
o ¿Qué es lo que se te solicitan?
o ¿Qué observas en el tablero de maratón matemático?
o ¿Crees que podrás desarrollarlo sin la necesidad de utilizar hoja y
lápiz?
o En cada tarjeta que se te solicite las consignas que estrategias
utilizarías para su resolución.
4. ACTIVIDAD Nº 03: Aplican las estrategias resolviendo consignas:
 En grupo van resolviendo las consignas de acuerdo al tablero
matemático, y resolviendo en sus cuadernos las consignas de las
tarjetas y los demás alumnos también resuelven en sus cuadernos,
para ir verificando las respuestas del que está resolviendo según
consigna.
 En caso existe algún inconveniente en la resolución de alguna
situación problemática de las consignas, el docente refuerza los
conocimientos matemáticos de cada uno de los alumnos.
TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[
PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA”
Profesor Juan Portal Pizarro Página 20
 El profesor permite que los niños descubran que este tipo de
problemas tiene varias respuestas. Selecciona dos o más respuestas
y abre el espacio para que los niños expliquen cómo lo hicieron.
a) ¿Qué estrategia usaron los niños para descubrir la respuesta de
cada tarjeta?
b) ¿Existirán varias formas de realizar la consigna para cada tarjeta?
c) Los niños escriben en una tabla sus respuestas.
d) Podrían usar fórmulas para resolver algunas consignas? ¿Qué
fórmulas?
MARATÓNMATEMÁTICO
INSTRUCCIONES:
1.Losparticipanteslanzanlosdadosporturnosyeljugadorquesacaelmásaltopuntajeiniciaeljuego
2.Cuandolafichadeljugadorcaeenuncasillerodecolorextraeunatarjetadelcolordelcasilleroy
resuelvelaconsignamatemática,paralocualtienenuntiempolimitadoconsensuadocontodoslos
participantes.Denorealizarlaoperaciónoequivocarsecumplirloquelatarjetaordena.
3.Cuandolafichadeljugadorcaeneencasilleroconalgunaindicaciónrealizaloquemandaelcasillero
4.Ganaeljugadorquellegaprimeroalameta
12345789
11
131415161817202122
24
2627282930323334
35
37
36
38394041424445
6
46
48
50
AVANZAHASTA
DONDE
INDICA
LAFLECHA
AVANZAHASTA
DONDE
INDICA
LAFLECHA
RETROCEDE
HASTADONDE
INDICA
LAFLECHA
PIERDE
UN
TURNO
LANZADE
NUEVOLOS
DADOS
REGRESA
AL
CASILLERO32
REGRESA
AL
CASILLERO20
AVANZAAL
CASILLERO
N°39
PARTIDA
TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[
PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA”
Profesor Juan Portal Pizarro Página 21
Hoy se demanda que la matemática se vuelva una práctica social.
Por eso se necesita promover espacios donde se propicie el
acercamiento a aspectos de la realidad en diversos contextos. Esto
supone diseñar un conjunto de actividades para indagar y resolver
una situación problemática real, con implicancias sociales,
económicas, productivas y científicas
5. ACTIVIDAD Nº 04: Reflexión sobre las actividades.
 El docente propicia que los niños comprueben sus respuestas,
mediante la relectura del problema, verificando que cumplan cada
una de las condiciones.
 Para ello, les podemos preguntar:
¿Cómo estás seguro de tu respuesta? Si alguno de los niños no
puede responder, el profesor lo alienta o propone a otro compañero
para que lo ayude a resolver y explicar el desarrollo de la consigna.
 Finalmente, propone a los niños que creen otro juego para resolver
problemas geométricos.
El docente propone la resolución de problemas de los textos del
MED del área de matemática.
III. Proyecto matemático
SUGERENCIAS DE ALGUNAS ACTIVIDADES PARA DESARROLLAR EN LOS
ESCENARIOS DE APRENDIZAJE DE ACUERDO A LA PLANIFICACIÓN DE SU
GRADO
CARRERAS CON COMPRAS
Materiales:
 Un juego de billetes y monedas
 Juegan 2 alumnos
Indicador:
Usa diversas estrategias de cálculo escrito y mental, para resolver situaciones
problemáticas, aditivas y multiplicativas de doble, mitad triple, tercia, cuádruple
con números naturales de hasta tres cifras.
Instrucciones:
1. Dos jugadores A y B compiten en una carrera para llegar primero a la meta.
2. Inicialmente la carrera es a pie, pero en el camino pueden decidir comprar
vehículos. Para avanzar, en cada turno cada jugador lanza una moneda. Si sale
cara avanza un casillero y si sale sello avanza dos casilleros.
3. Cada jugador parte con 39 soles repartidos en:
• 3 billetes de a 10 soles,
• 1 moneda de 5 soles y
• 4 de a 1 sol.
4. En diferentes lugares se puede pasar a comprar un vehículo (simbólicamente).
TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[
PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA”
Profesor Juan Portal Pizarro Página 22
• La bicicleta cuesta 6 soles,
• La motoneta cuesta 14 soles,
• La moto cuesta 20 soles,
• El auto cuesta 26 soles y
• El súper auto cuesta auto 30 soles.
5. Si un jugador compra un vehículo, éste ya no puede ser comprado por otros a
menos que en algún momento el jugador decida venderlo y lo deje entonces en una
de las estaciones de venta. El jugador con un vehículo lo puede vender para
cambiarlo por otro mejor. En ese caso, el precio a que vende su vehículo es la
mitad de lo que pagó por él.
6. Por otra parte:
• Una bicicleta avanza el doble más rápido que a pie,
• La motoneta es tres veces más rápida que a pie,
• La moto es cuatro veces más rápido que a pie,
• El auto es cinco veces más rápido que a pie y
• El súper auto seis veces más rápido que a pie.
Así por ejemplo, si se está en una bicicleta y la moneda sale cara entonces avanza
2 casilleros y si sale sello avanza 4 casilleros.
TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[
PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA”
Profesor Juan Portal Pizarro Página 23
ACTIVIDADES CON POLIMINÓS
Materiales:
 Cuadraditos de cartulina de 3 x 3 cm
 Juegan todos los alumnos del aula
Indicador:
Expresa y representa con material concreto problemas de contexto cotidiano
Descripción y uso del material.
Jugar con poliominós es como jugar con rompecabezas o puzzles componiendo
diversas figuras. Este juego puede convertirse en una fuente de problemas de
ingenio con gran sabor matemático. Algunos de ellos rápidos de resolver y otros tan
complejos qua hasta el día de hoy no se les ha encontrado la respuesta.
Manipulando y descubriendo los poliominós.
Con la finalidad de que los alumnos se familiaricen con los pentaminós, la siguiente
actividad se trata de manipulación y descubrimiento del material
A los alumnos se les pedirá que construyan con seis cuadraditos todos los
hexaminós que crean existen, en primer lugar lo forman y lo dibujan en una hoja
así, evitan repeticiones.
UNIMINÓS
Formados por un solo
cuadrado.
Sólo existe 1
DOMINÓS
Formados por dos
cuadrados.
TRIMINÓS
Formados por tres
cuadrados.
TETRAMINÓS
Formados por cuatro
cuadrados.
PENTAMINÓS
Formados por cinco
cuadrados.
HEXAMINÓS
Formados por seis
cuadrados.
TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[
PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA”
Profesor Juan Portal Pizarro Página 24
A continuación les presento los 35 hexaminós que existen.
1 2 3 54
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35
TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[
PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA”
Profesor Juan Portal Pizarro Página 25
Los hexaminós “A” y “B” que aparecen en la figura tienen sus cuadrados
sombreados alternativamente como en el tablero de ajedrez: El hexaminó “A”
presenta tres cuadrados negros y tres cuadrados blancos, mientras que el “B” tiene
cuatro negros y dos blancos. Por este motivo, diremos que “A” es un hexaminó
IMPAR y “B” es PAR.
Actividades con poliominós
 Con tus alumnos sombrea y encuentra hexaminós PARES e IMPARES de los
35 que existen.
 A los alumnos pedirles que realice la actividad anterior para todos los
triminós, tatraminós y pentaminós que existen.
 Los alumnos, utilizando sus cuadritos de construcción de poliominós y una
hoja cuadriculada deberán construir y dibujar todos los posibles tetraminós y
pentaminós. ¿cuántos encontrará?
Para ayudarte, a continuación te presento los doce pentaminós que existen.
 Intenta formar o cubrir con los doce pentaminós cada uno de los
siguientes rectángulos.
A
B
20 x 3
15 x 4
10 x 5
6 x 10
Observa que el área de cada uno de
estos rectángulos es de 60
cuadraditos, ¿por qué es así?
TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[
PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA”
Profesor Juan Portal Pizarro Página 26
FIGURAS MÁGICAS
Cotidianamente, encontramos este tipo de juegos, que consiste en completar
algunas operaciones, dados algunas figuras y cuyo resultado es el mismo, a los
alumnos les ayudará a encontrar patrones de formación a través del ensayo y
error.
Encuentra la posición de los números mencionados y sin repetir, para que las
sumas dadas se cumplan.
5.- Utiliza los números del 1
al 6
12
=12
12
7.- Utiliza los números
del 1 al 7
14
14=
14
4.- Utiliza los números del
1 al 6
9
9=
9
1.- Utiliza los números
del 1 al 5
=
8
8=
2.- Utiliza los números
del 1 al 5
=
10
10=
3.- Utiliza los números
del 1 al 5
=
9
9=
6.- Utiliza los números del
1 al 7
12
12=
12
8.- Utiliza los números del 1
al 8
15=
15
=
15
=
15
TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[
PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA”
Profesor Juan Portal Pizarro Página 27
LA EVALUACIÓN EN UN ENFOQUE POR COMPETENCIAS
La evaluación de los aprendizajes demanda asumir una práctica evaluativa desde
una perspectiva integral y coherente con el enfoque por competencias, además de
desarrollar una cultura evaluativa en la escuela y el aula que recupere su sentido
formativo. En la medida en que se asuma que su finalidad no tiene por qué
enfocarse solamente en verificar resultados o calificar, la misma evaluación puede y
debería servir para que el estudiante siga aprendiendo.
¿Qué entendemos por evaluación en un enfoque por competencias?
La evaluación es una herramienta pedagógica que forma parte intrínseca de los
procesos de enseñanza y aprendizaje, que nos permite valorar los procesos y los
resultados alcanzados por los estudiantes en términos de aprendizajes, para
orientar la toma de decisiones que posibiliten el mejoramiento continuo.
Por lo tanto, la evaluación aporta información cuyo uso es relevante para saber qué
y cómo mejorar los aprendizajes, en tanto consideremos que la evaluación permite:
a) Revisar las fortalezas y debilidades, a fin de mejorar la calidad de las acciones
de enseñanza, en beneficio de los aprendizajes de los estudiantes.
b) Tomar decisiones sobre la calificación y la promoción de los alumnos.
c) Informar a los estudiantes o a sus familias sobre su desempeño en la escuela.
Asimismo, pensar la evaluación como parte del proceso de enseñanza-aprendizaje,
implica:
 Usar criterios preestablecidos para evaluar a los estudiantes, elaborados por
los mismos profesores.
 Diseñar situaciones e instrumentos de evaluación, que se caractericen por su
variedad y calidad.
 Invertir más tiempo en la retroalimentación, es decir, en ofrecer al
estudiante información descriptiva para que mejore sus aprendizajes.
¿Qué significa evaluar los aprendizajes desde un enfoque por
competencias?
Para evaluar los desempeños de los estudiantes, en coherencia con el
planteamiento curricular de las “Rutas del aprendizaje”, debemos reconocer que las
metas de aprendizaje están orientadas la adquisición y desarrollo de competencias
matemáticas, que se expresan, a su vez, en un conjunto de indicadores.
Es necesario comprender el sentido y las implicancias que tienen las competencias
en términos evaluativos, asumiendo que la competencia la definimos como un saber actuar
de manera integral y pertinente en un contexto particular, en función de un objetivo o de la
solución de un problema, en la cual se desarrolla, selecciona y moviliza una diversidad de
saberes (saber ser, saber hacer, saber conocer) aprendidos en la escuela, demostrando
idoneidad en el actuar.
A continuación, presentamos como ejemplo la competencia del dominio número y operaciones:
Evaluación no es equivalente a calificación; pero
tampoco existe evaluación sin calificación.
Resuelve situaciones problemáticas de contexto real y matemático que
implican la construcción del significado y uso de los números y sus
operaciones, empleando diversas estrategias de solución, justificando
y valorando sus procedimientos y resultados.
TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[
PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA”
Profesor Juan Portal Pizarro Página 28
La pregunta que ayudaría al docente a comprender el sentido de la evaluación de esta
competencia sería:
¿Cuándo puedo decir que un estudiante es competente en resolver situaciones
problemáticas?
En este caso, cuando evidencia un desempeño o actuación integral y pertinente, en la medida
en que resuelve situaciones problemáticas, para lo cual desarrolla, selecciona y moviliza:
actitudes (querer abordar los problemas aplicando sus saberes matemáticos y demostrar
responsabilidad), conocimientos (saberes sobre los números y operaciones) y capacidades
(saber cómo representar, elaborar, utilizar, argumentar y comunicar las situaciones
problemáticas de la vida real).
Observando esta situación, se puede decir que evaluar los aprendizajes, en términos de
competencias, significa identificar los logros y aspectos por mejorar en la actuación de las
personas respecto a la resolución de problemas del contexto.
Implica tener en cuenta los criterios e indicadores de una determinada competencia y brindar
retroalimentación oportuna de carácter descriptivo, más allá de poner un calificativo a los
estudiantes.
La enseñanza de la matemática se debe
considerar como una pasión y de
esta manera estar innovando
estrategias para hacer de
nuestros alumnos
competentes
matemáticamente

Más contenido relacionado

La actualidad más candente

I Competencias curriculares Matemáticas Primaria
I Competencias curriculares Matemáticas PrimariaI Competencias curriculares Matemáticas Primaria
I Competencias curriculares Matemáticas Primaria
Programa TIC B03
 
Estándares básicos de competencias de matematicas
Estándares básicos de competencias de matematicasEstándares básicos de competencias de matematicas
Estándares básicos de competencias de matematicas
mjcastellanos
 
Matematica realista: conceptos básicos
Matematica realista: conceptos básicosMatematica realista: conceptos básicos
Matematica realista: conceptos básicos
mem1959
 
Competencias matemáticas y resolucion de problemas
Competencias matemáticas y resolucion de problemasCompetencias matemáticas y resolucion de problemas
Competencias matemáticas y resolucion de problemas
Ariel Córdova
 
Proyectos pedagógicos de aula con tic las matematicas me divierten
Proyectos pedagógicos de aula con tic   las matematicas me diviertenProyectos pedagógicos de aula con tic   las matematicas me divierten
Proyectos pedagógicos de aula con tic las matematicas me divierten
manuelamadero
 
lineamientos curriculares de matematicas
lineamientos curriculares de  matematicaslineamientos curriculares de  matematicas
lineamientos curriculares de matematicas
edyef
 
Plan de clase mcm y mcd
Plan de clase mcm y mcdPlan de clase mcm y mcd
Plan de clase mcm y mcd
Lilia White
 
Como trabajar el cálculo mental
Como trabajar el cálculo mentalComo trabajar el cálculo mental
Como trabajar el cálculo mental
Alfons
 
Pensamientos numérico y variacional
Pensamientos  numérico y variacionalPensamientos  numérico y variacional
Pensamientos numérico y variacional
YADIRA OSPINA
 
Rubrica numeros enteros
Rubrica numeros enterosRubrica numeros enteros
Rubrica numeros enteros
carloscuesta
 
Fundamentos de la didactica de las matematicas ccesa007
Fundamentos de la didactica de las matematicas ccesa007Fundamentos de la didactica de las matematicas ccesa007
Fundamentos de la didactica de las matematicas ccesa007
Demetrio Ccesa Rayme
 
EVALUAR COMPETENCIAS MATEMÁTICAS
EVALUAR COMPETENCIAS MATEMÁTICASEVALUAR COMPETENCIAS MATEMÁTICAS
EVALUAR COMPETENCIAS MATEMÁTICAS
Programa TIC B03
 
Dificultades matematicas primaria manuela jimeno
Dificultades matematicas primaria manuela jimenoDificultades matematicas primaria manuela jimeno
Dificultades matematicas primaria manuela jimeno
claudiapatricialozano
 
Estrategias para la enseñanza de las matemáticas
Estrategias para la enseñanza de las matemáticasEstrategias para la enseñanza de las matemáticas
Estrategias para la enseñanza de las matemáticas
Francisco Salazar
 
Plan de recuperacion matematicas
Plan de recuperacion matematicasPlan de recuperacion matematicas
Plan de recuperacion matematicas
Carlys Pgm
 
Plan de clase para quinto
Plan de clase para quintoPlan de clase para quinto
Plan de clase para quinto
javier pedroza
 
Niveles matemática
Niveles matemáticaNiveles matemática
Niveles matemática
aridad
 
Presentación y Actividades Pensamiento Aleatorio
Presentación y Actividades Pensamiento AleatorioPresentación y Actividades Pensamiento Aleatorio
Presentación y Actividades Pensamiento Aleatorio
PTAaTLANTICO
 
Indicadores segundo-ciclo
Indicadores segundo-cicloIndicadores segundo-ciclo
Indicadores segundo-ciclo
Julio Cesar Silverio
 
Secuencia didáctica alejandra guzmán
Secuencia didáctica alejandra guzmánSecuencia didáctica alejandra guzmán
Secuencia didáctica alejandra guzmán
comercio 1
 

La actualidad más candente (20)

I Competencias curriculares Matemáticas Primaria
I Competencias curriculares Matemáticas PrimariaI Competencias curriculares Matemáticas Primaria
I Competencias curriculares Matemáticas Primaria
 
Estándares básicos de competencias de matematicas
Estándares básicos de competencias de matematicasEstándares básicos de competencias de matematicas
Estándares básicos de competencias de matematicas
 
Matematica realista: conceptos básicos
Matematica realista: conceptos básicosMatematica realista: conceptos básicos
Matematica realista: conceptos básicos
 
Competencias matemáticas y resolucion de problemas
Competencias matemáticas y resolucion de problemasCompetencias matemáticas y resolucion de problemas
Competencias matemáticas y resolucion de problemas
 
Proyectos pedagógicos de aula con tic las matematicas me divierten
Proyectos pedagógicos de aula con tic   las matematicas me diviertenProyectos pedagógicos de aula con tic   las matematicas me divierten
Proyectos pedagógicos de aula con tic las matematicas me divierten
 
lineamientos curriculares de matematicas
lineamientos curriculares de  matematicaslineamientos curriculares de  matematicas
lineamientos curriculares de matematicas
 
Plan de clase mcm y mcd
Plan de clase mcm y mcdPlan de clase mcm y mcd
Plan de clase mcm y mcd
 
Como trabajar el cálculo mental
Como trabajar el cálculo mentalComo trabajar el cálculo mental
Como trabajar el cálculo mental
 
Pensamientos numérico y variacional
Pensamientos  numérico y variacionalPensamientos  numérico y variacional
Pensamientos numérico y variacional
 
Rubrica numeros enteros
Rubrica numeros enterosRubrica numeros enteros
Rubrica numeros enteros
 
Fundamentos de la didactica de las matematicas ccesa007
Fundamentos de la didactica de las matematicas ccesa007Fundamentos de la didactica de las matematicas ccesa007
Fundamentos de la didactica de las matematicas ccesa007
 
EVALUAR COMPETENCIAS MATEMÁTICAS
EVALUAR COMPETENCIAS MATEMÁTICASEVALUAR COMPETENCIAS MATEMÁTICAS
EVALUAR COMPETENCIAS MATEMÁTICAS
 
Dificultades matematicas primaria manuela jimeno
Dificultades matematicas primaria manuela jimenoDificultades matematicas primaria manuela jimeno
Dificultades matematicas primaria manuela jimeno
 
Estrategias para la enseñanza de las matemáticas
Estrategias para la enseñanza de las matemáticasEstrategias para la enseñanza de las matemáticas
Estrategias para la enseñanza de las matemáticas
 
Plan de recuperacion matematicas
Plan de recuperacion matematicasPlan de recuperacion matematicas
Plan de recuperacion matematicas
 
Plan de clase para quinto
Plan de clase para quintoPlan de clase para quinto
Plan de clase para quinto
 
Niveles matemática
Niveles matemáticaNiveles matemática
Niveles matemática
 
Presentación y Actividades Pensamiento Aleatorio
Presentación y Actividades Pensamiento AleatorioPresentación y Actividades Pensamiento Aleatorio
Presentación y Actividades Pensamiento Aleatorio
 
Indicadores segundo-ciclo
Indicadores segundo-cicloIndicadores segundo-ciclo
Indicadores segundo-ciclo
 
Secuencia didáctica alejandra guzmán
Secuencia didáctica alejandra guzmánSecuencia didáctica alejandra guzmán
Secuencia didáctica alejandra guzmán
 

Destacado

PPT TALLER ESTRATEGIAS
PPT TALLER ESTRATEGIASPPT TALLER ESTRATEGIAS
PPT TALLER ESTRATEGIAS
Meryanlo Meryanlo
 
8 reglas de_los_emprendedores_exitosos
8 reglas de_los_emprendedores_exitosos8 reglas de_los_emprendedores_exitosos
8 reglas de_los_emprendedores_exitosos
SEGUNDO JUAN PORTAL PIZARRO
 
SIMULACRO DE EXAMEN PARA REUBICACIÓN EN ESCALA MAGISTERIAL
SIMULACRO DE EXAMEN PARA REUBICACIÓN EN ESCALA MAGISTERIALSIMULACRO DE EXAMEN PARA REUBICACIÓN EN ESCALA MAGISTERIAL
SIMULACRO DE EXAMEN PARA REUBICACIÓN EN ESCALA MAGISTERIAL
SEGUNDO JUAN PORTAL PIZARRO
 
Power point educación en finlandia
Power point educación en finlandiaPower point educación en finlandia
Power point educación en finlandia
Doloresbalseca
 
LOS CINCO COMPROMISOS DE GESTIÓN 2017
LOS CINCO COMPROMISOS DE GESTIÓN 2017LOS CINCO COMPROMISOS DE GESTIÓN 2017
LOS CINCO COMPROMISOS DE GESTIÓN 2017
SEGUNDO JUAN PORTAL PIZARRO
 
La educacion en finlandia diapositivas
La educacion en finlandia diapositivasLa educacion en finlandia diapositivas
La educacion en finlandia diapositivas
carmieliza
 
Simulacro de preparación docente nombramiento 2017
Simulacro de preparación docente nombramiento 2017Simulacro de preparación docente nombramiento 2017
Simulacro de preparación docente nombramiento 2017
hogar
 
El Sistema Educativo en Finlandia
El Sistema Educativo en FinlandiaEl Sistema Educativo en Finlandia
El Sistema Educativo en Finlandia
Karenmedinav
 
CARPETA PEDAGÓGICA 2017 "Ntra. Sra. de la Merced"
CARPETA PEDAGÓGICA 2017 "Ntra. Sra. de la Merced"CARPETA PEDAGÓGICA 2017 "Ntra. Sra. de la Merced"
CARPETA PEDAGÓGICA 2017 "Ntra. Sra. de la Merced"
SEGUNDO JUAN PORTAL PIZARRO
 
La DidáCtica De Las MatemáTicas
La DidáCtica De Las MatemáTicasLa DidáCtica De Las MatemáTicas
La DidáCtica De Las MatemáTicas
Universidad del Cauca
 
Simulacro de examen para nombramiento docente 2017
Simulacro de examen para nombramiento docente 2017Simulacro de examen para nombramiento docente 2017
Simulacro de examen para nombramiento docente 2017
hogar
 
600 problemas de casuística
600 problemas de casuística600 problemas de casuística
600 problemas de casuística
Colegio
 
ESTRATEGIAS CREATIVAS Y HEURÍSTICAS PARA LE ENSEÑANZA DE LA MATEMATICA
ESTRATEGIAS  CREATIVAS Y HEURÍSTICAS PARA LE ENSEÑANZA DE LA MATEMATICAESTRATEGIAS  CREATIVAS Y HEURÍSTICAS PARA LE ENSEÑANZA DE LA MATEMATICA
ESTRATEGIAS CREATIVAS Y HEURÍSTICAS PARA LE ENSEÑANZA DE LA MATEMATICA
hogar
 
PROCESOS PEDAGOGICOS DE UNA SESION DE APRENDIZAJE
PROCESOS PEDAGOGICOS DE UNA SESION DE APRENDIZAJEPROCESOS PEDAGOGICOS DE UNA SESION DE APRENDIZAJE
PROCESOS PEDAGOGICOS DE UNA SESION DE APRENDIZAJE
Edgard Gonzales Gutierrez
 
SIMULACRO DE EXAMEN PARA DOCENTES POSTULANTES A LA CARRERA PUBLICA MAGISTERIAL
SIMULACRO DE EXAMEN PARA DOCENTES POSTULANTES A LA CARRERA PUBLICA MAGISTERIALSIMULACRO DE EXAMEN PARA DOCENTES POSTULANTES A LA CARRERA PUBLICA MAGISTERIAL
SIMULACRO DE EXAMEN PARA DOCENTES POSTULANTES A LA CARRERA PUBLICA MAGISTERIAL
hogar
 
SlideShare 101
SlideShare 101SlideShare 101
SlideShare 101
Amit Ranjan
 

Destacado (16)

PPT TALLER ESTRATEGIAS
PPT TALLER ESTRATEGIASPPT TALLER ESTRATEGIAS
PPT TALLER ESTRATEGIAS
 
8 reglas de_los_emprendedores_exitosos
8 reglas de_los_emprendedores_exitosos8 reglas de_los_emprendedores_exitosos
8 reglas de_los_emprendedores_exitosos
 
SIMULACRO DE EXAMEN PARA REUBICACIÓN EN ESCALA MAGISTERIAL
SIMULACRO DE EXAMEN PARA REUBICACIÓN EN ESCALA MAGISTERIALSIMULACRO DE EXAMEN PARA REUBICACIÓN EN ESCALA MAGISTERIAL
SIMULACRO DE EXAMEN PARA REUBICACIÓN EN ESCALA MAGISTERIAL
 
Power point educación en finlandia
Power point educación en finlandiaPower point educación en finlandia
Power point educación en finlandia
 
LOS CINCO COMPROMISOS DE GESTIÓN 2017
LOS CINCO COMPROMISOS DE GESTIÓN 2017LOS CINCO COMPROMISOS DE GESTIÓN 2017
LOS CINCO COMPROMISOS DE GESTIÓN 2017
 
La educacion en finlandia diapositivas
La educacion en finlandia diapositivasLa educacion en finlandia diapositivas
La educacion en finlandia diapositivas
 
Simulacro de preparación docente nombramiento 2017
Simulacro de preparación docente nombramiento 2017Simulacro de preparación docente nombramiento 2017
Simulacro de preparación docente nombramiento 2017
 
El Sistema Educativo en Finlandia
El Sistema Educativo en FinlandiaEl Sistema Educativo en Finlandia
El Sistema Educativo en Finlandia
 
CARPETA PEDAGÓGICA 2017 "Ntra. Sra. de la Merced"
CARPETA PEDAGÓGICA 2017 "Ntra. Sra. de la Merced"CARPETA PEDAGÓGICA 2017 "Ntra. Sra. de la Merced"
CARPETA PEDAGÓGICA 2017 "Ntra. Sra. de la Merced"
 
La DidáCtica De Las MatemáTicas
La DidáCtica De Las MatemáTicasLa DidáCtica De Las MatemáTicas
La DidáCtica De Las MatemáTicas
 
Simulacro de examen para nombramiento docente 2017
Simulacro de examen para nombramiento docente 2017Simulacro de examen para nombramiento docente 2017
Simulacro de examen para nombramiento docente 2017
 
600 problemas de casuística
600 problemas de casuística600 problemas de casuística
600 problemas de casuística
 
ESTRATEGIAS CREATIVAS Y HEURÍSTICAS PARA LE ENSEÑANZA DE LA MATEMATICA
ESTRATEGIAS  CREATIVAS Y HEURÍSTICAS PARA LE ENSEÑANZA DE LA MATEMATICAESTRATEGIAS  CREATIVAS Y HEURÍSTICAS PARA LE ENSEÑANZA DE LA MATEMATICA
ESTRATEGIAS CREATIVAS Y HEURÍSTICAS PARA LE ENSEÑANZA DE LA MATEMATICA
 
PROCESOS PEDAGOGICOS DE UNA SESION DE APRENDIZAJE
PROCESOS PEDAGOGICOS DE UNA SESION DE APRENDIZAJEPROCESOS PEDAGOGICOS DE UNA SESION DE APRENDIZAJE
PROCESOS PEDAGOGICOS DE UNA SESION DE APRENDIZAJE
 
SIMULACRO DE EXAMEN PARA DOCENTES POSTULANTES A LA CARRERA PUBLICA MAGISTERIAL
SIMULACRO DE EXAMEN PARA DOCENTES POSTULANTES A LA CARRERA PUBLICA MAGISTERIALSIMULACRO DE EXAMEN PARA DOCENTES POSTULANTES A LA CARRERA PUBLICA MAGISTERIAL
SIMULACRO DE EXAMEN PARA DOCENTES POSTULANTES A LA CARRERA PUBLICA MAGISTERIAL
 
SlideShare 101
SlideShare 101SlideShare 101
SlideShare 101
 

Similar a ESTRATEGIAS CREATIVAS Y HEURÍSTICAS PARA LA ENSEÑANZA DE LA MATEMATICA

Fasciculo general-matematica (1)
Fasciculo general-matematica (1)Fasciculo general-matematica (1)
Fasciculo general-matematica (1)
reny_so
 
Fasciculo general-matematica
Fasciculo general-matematicaFasciculo general-matematica
Fasciculo general-matematica
anacj9
 
Fasciculo general-matematica
Fasciculo general-matematicaFasciculo general-matematica
Fasciculo general-matematica
david oquendo
 
Fasciculo general-matematica
Fasciculo general-matematicaFasciculo general-matematica
Fasciculo general-matematica
Recursos Educativos .Net
 
Fasciculo general matematica
Fasciculo general matematicaFasciculo general matematica
Fasciculo general matematica
Anibal bravo
 
Fasciculo general-matematica
Fasciculo general-matematicaFasciculo general-matematica
Fasciculo general-matematica
Enrique Osorio Orellana
 
Fasciculo general-matematica
Fasciculo general-matematicaFasciculo general-matematica
Fasciculo general-matematica
349juan
 
FASCICULO GENERAL MATEMÁTICA 2
FASCICULO GENERAL  MATEMÁTICA  2FASCICULO GENERAL  MATEMÁTICA  2
FASCICULO GENERAL MATEMÁTICA 2
María Julia Bravo
 
HACER USO DE SABERES MATEMÁTICOS PARA AFRONTAR DESAFIOS DIVERSOS
HACER USO DE SABERES MATEMÁTICOS PARA AFRONTAR DESAFIOS DIVERSOSHACER USO DE SABERES MATEMÁTICOS PARA AFRONTAR DESAFIOS DIVERSOS
HACER USO DE SABERES MATEMÁTICOS PARA AFRONTAR DESAFIOS DIVERSOS
AIP I.E."J. M. Arguedas"
 
Didactica de las matematicas en Educacio.pdf
Didactica de las matematicas en Educacio.pdfDidactica de las matematicas en Educacio.pdf
Didactica de las matematicas en Educacio.pdf
BritoSay3
 
Uso de saberes matemáticos para resolver problemas
Uso de saberes matemáticos para resolver problemasUso de saberes matemáticos para resolver problemas
Uso de saberes matemáticos para resolver problemas
Anselmo Bedon Chavez
 
Trabajo de investigación
Trabajo de investigaciónTrabajo de investigación
Trabajo de investigación
David Dela
 
Fasciculo general matematica
Fasciculo general matematicaFasciculo general matematica
Fasciculo general matematica
Jorge Alburqueque Cordova
 
Didactica de las Matematicas en Educacion Infantil UNIR Ccesa007.pdf
Didactica de las Matematicas en Educacion Infantil UNIR  Ccesa007.pdfDidactica de las Matematicas en Educacion Infantil UNIR  Ccesa007.pdf
Didactica de las Matematicas en Educacion Infantil UNIR Ccesa007.pdf
Demetrio Ccesa Rayme
 
Fasciculo primaria-matematica-iv-y-v UN APORTE DEL MINISTERIO DE EDUCACION
Fasciculo primaria-matematica-iv-y-v  UN APORTE DEL MINISTERIO DE EDUCACIONFasciculo primaria-matematica-iv-y-v  UN APORTE DEL MINISTERIO DE EDUCACION
Fasciculo primaria-matematica-iv-y-v UN APORTE DEL MINISTERIO DE EDUCACION
bernalalvarado-25
 
Manual Rutas de Aprendizaje de Matemática del IV Ciclo (3er y 4to grado)
Manual Rutas de Aprendizaje de Matemática del IV Ciclo (3er y 4to grado)Manual Rutas de Aprendizaje de Matemática del IV Ciclo (3er y 4to grado)
Manual Rutas de Aprendizaje de Matemática del IV Ciclo (3er y 4to grado)
juan miguel peralta astorayme
 
Fasciculo de matematica - GENERAL
Fasciculo de matematica - GENERALFasciculo de matematica - GENERAL
Fasciculo de matematica - GENERAL
Yoèl Zamora
 
F rutas sec_mat_1_6c
F rutas sec_mat_1_6cF rutas sec_mat_1_6c
F rutas sec_mat_1_6c
I.E San Juan de la virgen
 
Fasciculo secundaria-matematica-vi
Fasciculo secundaria-matematica-viFasciculo secundaria-matematica-vi
Fasciculo secundaria-matematica-vi
349juan
 
Fasciculo secundaria-matematica-vi
Fasciculo secundaria-matematica-viFasciculo secundaria-matematica-vi
Fasciculo secundaria-matematica-vi
Jorge Luis Aragon Trujillo
 

Similar a ESTRATEGIAS CREATIVAS Y HEURÍSTICAS PARA LA ENSEÑANZA DE LA MATEMATICA (20)

Fasciculo general-matematica (1)
Fasciculo general-matematica (1)Fasciculo general-matematica (1)
Fasciculo general-matematica (1)
 
Fasciculo general-matematica
Fasciculo general-matematicaFasciculo general-matematica
Fasciculo general-matematica
 
Fasciculo general-matematica
Fasciculo general-matematicaFasciculo general-matematica
Fasciculo general-matematica
 
Fasciculo general-matematica
Fasciculo general-matematicaFasciculo general-matematica
Fasciculo general-matematica
 
Fasciculo general matematica
Fasciculo general matematicaFasciculo general matematica
Fasciculo general matematica
 
Fasciculo general-matematica
Fasciculo general-matematicaFasciculo general-matematica
Fasciculo general-matematica
 
Fasciculo general-matematica
Fasciculo general-matematicaFasciculo general-matematica
Fasciculo general-matematica
 
FASCICULO GENERAL MATEMÁTICA 2
FASCICULO GENERAL  MATEMÁTICA  2FASCICULO GENERAL  MATEMÁTICA  2
FASCICULO GENERAL MATEMÁTICA 2
 
HACER USO DE SABERES MATEMÁTICOS PARA AFRONTAR DESAFIOS DIVERSOS
HACER USO DE SABERES MATEMÁTICOS PARA AFRONTAR DESAFIOS DIVERSOSHACER USO DE SABERES MATEMÁTICOS PARA AFRONTAR DESAFIOS DIVERSOS
HACER USO DE SABERES MATEMÁTICOS PARA AFRONTAR DESAFIOS DIVERSOS
 
Didactica de las matematicas en Educacio.pdf
Didactica de las matematicas en Educacio.pdfDidactica de las matematicas en Educacio.pdf
Didactica de las matematicas en Educacio.pdf
 
Uso de saberes matemáticos para resolver problemas
Uso de saberes matemáticos para resolver problemasUso de saberes matemáticos para resolver problemas
Uso de saberes matemáticos para resolver problemas
 
Trabajo de investigación
Trabajo de investigaciónTrabajo de investigación
Trabajo de investigación
 
Fasciculo general matematica
Fasciculo general matematicaFasciculo general matematica
Fasciculo general matematica
 
Didactica de las Matematicas en Educacion Infantil UNIR Ccesa007.pdf
Didactica de las Matematicas en Educacion Infantil UNIR  Ccesa007.pdfDidactica de las Matematicas en Educacion Infantil UNIR  Ccesa007.pdf
Didactica de las Matematicas en Educacion Infantil UNIR Ccesa007.pdf
 
Fasciculo primaria-matematica-iv-y-v UN APORTE DEL MINISTERIO DE EDUCACION
Fasciculo primaria-matematica-iv-y-v  UN APORTE DEL MINISTERIO DE EDUCACIONFasciculo primaria-matematica-iv-y-v  UN APORTE DEL MINISTERIO DE EDUCACION
Fasciculo primaria-matematica-iv-y-v UN APORTE DEL MINISTERIO DE EDUCACION
 
Manual Rutas de Aprendizaje de Matemática del IV Ciclo (3er y 4to grado)
Manual Rutas de Aprendizaje de Matemática del IV Ciclo (3er y 4to grado)Manual Rutas de Aprendizaje de Matemática del IV Ciclo (3er y 4to grado)
Manual Rutas de Aprendizaje de Matemática del IV Ciclo (3er y 4to grado)
 
Fasciculo de matematica - GENERAL
Fasciculo de matematica - GENERALFasciculo de matematica - GENERAL
Fasciculo de matematica - GENERAL
 
F rutas sec_mat_1_6c
F rutas sec_mat_1_6cF rutas sec_mat_1_6c
F rutas sec_mat_1_6c
 
Fasciculo secundaria-matematica-vi
Fasciculo secundaria-matematica-viFasciculo secundaria-matematica-vi
Fasciculo secundaria-matematica-vi
 
Fasciculo secundaria-matematica-vi
Fasciculo secundaria-matematica-viFasciculo secundaria-matematica-vi
Fasciculo secundaria-matematica-vi
 

Último

IMAGENES SUBLIMINALES EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁ
IMAGENES SUBLIMINALES EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁIMAGENES SUBLIMINALES EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁ
IMAGENES SUBLIMINALES EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁ
Claude LaCombe
 
DIBUJANDO CON MATEMÁTICA LA GIMNASIA OLÍMPICA. Por JAVIER SOLIS NOYOLA
DIBUJANDO CON MATEMÁTICA LA GIMNASIA OLÍMPICA. Por JAVIER SOLIS NOYOLADIBUJANDO CON MATEMÁTICA LA GIMNASIA OLÍMPICA. Por JAVIER SOLIS NOYOLA
DIBUJANDO CON MATEMÁTICA LA GIMNASIA OLÍMPICA. Por JAVIER SOLIS NOYOLA
JAVIER SOLIS NOYOLA
 
Revista Universidad de Deusto - Número 155 / Año 2024
Revista Universidad de Deusto - Número 155 / Año 2024Revista Universidad de Deusto - Número 155 / Año 2024
Revista Universidad de Deusto - Número 155 / Año 2024
Universidad de Deusto - Deustuko Unibertsitatea - University of Deusto
 
Crear infografías: Iniciación a Canva (1 de julio de 2024)
Crear infografías: Iniciación a Canva (1 de julio de 2024)Crear infografías: Iniciación a Canva (1 de julio de 2024)
Crear infografías: Iniciación a Canva (1 de julio de 2024)
Cátedra Banco Santander
 
Enseñar a Nativos Digitales MP2 Ccesa007.pdf
Enseñar a Nativos Digitales MP2 Ccesa007.pdfEnseñar a Nativos Digitales MP2 Ccesa007.pdf
Enseñar a Nativos Digitales MP2 Ccesa007.pdf
Demetrio Ccesa Rayme
 
Reglamento del salón - Intensa-mente.pdf
Reglamento del salón - Intensa-mente.pdfReglamento del salón - Intensa-mente.pdf
Reglamento del salón - Intensa-mente.pdf
Adri G Ch
 
PLAN ANUAL DE TRABAJO (PAT) 2024 MINEDU PERÚ
PLAN ANUAL DE TRABAJO (PAT) 2024 MINEDU PERÚPLAN ANUAL DE TRABAJO (PAT) 2024 MINEDU PERÚ
PLAN ANUAL DE TRABAJO (PAT) 2024 MINEDU PERÚ
Ferrer17
 
TOMO I - HISTORIA primer exsamen 2025 de la unsa arequipa
TOMO I - HISTORIA primer exsamen 2025 de la unsa arequipaTOMO I - HISTORIA primer exsamen 2025 de la unsa arequipa
TOMO I - HISTORIA primer exsamen 2025 de la unsa arequipa
alexandrachura18255
 
ACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLA
ACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLAACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLA
ACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLA
JAVIER SOLIS NOYOLA
 
Fundamentos del diseño audiovisual para presentaciones y vídeos (2 de julio d...
Fundamentos del diseño audiovisual para presentaciones y vídeos (2 de julio d...Fundamentos del diseño audiovisual para presentaciones y vídeos (2 de julio d...
Fundamentos del diseño audiovisual para presentaciones y vídeos (2 de julio d...
Cátedra Banco Santander
 
Introducción a las herramientas de Google Apps (3 de julio de 2024)
Introducción a las herramientas de Google Apps (3 de julio de 2024)Introducción a las herramientas de Google Apps (3 de julio de 2024)
Introducción a las herramientas de Google Apps (3 de julio de 2024)
Cátedra Banco Santander
 
Recursos Educativos en Abierto (1 de julio de 2024)
Recursos Educativos en Abierto (1 de julio de 2024)Recursos Educativos en Abierto (1 de julio de 2024)
Recursos Educativos en Abierto (1 de julio de 2024)
Cátedra Banco Santander
 
El mensaje en la psicopedagogía.........
El mensaje en la psicopedagogía.........El mensaje en la psicopedagogía.........
El mensaje en la psicopedagogía.........
DenisseGonzalez805225
 
04. ESTADÍSTICA (comunicación) (J.C) 3.pptx
04. ESTADÍSTICA (comunicación) (J.C) 3.pptx04. ESTADÍSTICA (comunicación) (J.C) 3.pptx
04. ESTADÍSTICA (comunicación) (J.C) 3.pptx
jvcar1815
 
Aplicaciones móviles de grabación (2 de julio de 2024)
Aplicaciones móviles de grabación (2 de julio de 2024)Aplicaciones móviles de grabación (2 de julio de 2024)
Aplicaciones móviles de grabación (2 de julio de 2024)
Cátedra Banco Santander
 
Soluciones Examen de Selectividad. Geografía julio 2024 (Convocatoria Extraor...
Soluciones Examen de Selectividad. Geografía julio 2024 (Convocatoria Extraor...Soluciones Examen de Selectividad. Geografía julio 2024 (Convocatoria Extraor...
Soluciones Examen de Selectividad. Geografía julio 2024 (Convocatoria Extraor...
Juan Martín Martín
 
fichas descriptivas para primaria 2023-2024
fichas descriptivas para primaria 2023-2024fichas descriptivas para primaria 2023-2024
fichas descriptivas para primaria 2023-2024
Verito51
 
Tu, Tu Hijo y la Escuela Ken Robinson Ccesa007.pdf
Tu,  Tu Hijo y la  Escuela  Ken Robinson  Ccesa007.pdfTu,  Tu Hijo y la  Escuela  Ken Robinson  Ccesa007.pdf
Tu, Tu Hijo y la Escuela Ken Robinson Ccesa007.pdf
Demetrio Ccesa Rayme
 
PLANIFICACION PARA NIVEL INICIAL FEBRERO 2023
PLANIFICACION PARA NIVEL INICIAL FEBRERO 2023PLANIFICACION PARA NIVEL INICIAL FEBRERO 2023
PLANIFICACION PARA NIVEL INICIAL FEBRERO 2023
MariaAngelicaMachica
 
Taller Intensivo de Formación Continua 2024
Taller Intensivo de Formación Continua 2024Taller Intensivo de Formación Continua 2024
Taller Intensivo de Formación Continua 2024
maria larios
 

Último (20)

IMAGENES SUBLIMINALES EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁ
IMAGENES SUBLIMINALES EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁIMAGENES SUBLIMINALES EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁ
IMAGENES SUBLIMINALES EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁ
 
DIBUJANDO CON MATEMÁTICA LA GIMNASIA OLÍMPICA. Por JAVIER SOLIS NOYOLA
DIBUJANDO CON MATEMÁTICA LA GIMNASIA OLÍMPICA. Por JAVIER SOLIS NOYOLADIBUJANDO CON MATEMÁTICA LA GIMNASIA OLÍMPICA. Por JAVIER SOLIS NOYOLA
DIBUJANDO CON MATEMÁTICA LA GIMNASIA OLÍMPICA. Por JAVIER SOLIS NOYOLA
 
Revista Universidad de Deusto - Número 155 / Año 2024
Revista Universidad de Deusto - Número 155 / Año 2024Revista Universidad de Deusto - Número 155 / Año 2024
Revista Universidad de Deusto - Número 155 / Año 2024
 
Crear infografías: Iniciación a Canva (1 de julio de 2024)
Crear infografías: Iniciación a Canva (1 de julio de 2024)Crear infografías: Iniciación a Canva (1 de julio de 2024)
Crear infografías: Iniciación a Canva (1 de julio de 2024)
 
Enseñar a Nativos Digitales MP2 Ccesa007.pdf
Enseñar a Nativos Digitales MP2 Ccesa007.pdfEnseñar a Nativos Digitales MP2 Ccesa007.pdf
Enseñar a Nativos Digitales MP2 Ccesa007.pdf
 
Reglamento del salón - Intensa-mente.pdf
Reglamento del salón - Intensa-mente.pdfReglamento del salón - Intensa-mente.pdf
Reglamento del salón - Intensa-mente.pdf
 
PLAN ANUAL DE TRABAJO (PAT) 2024 MINEDU PERÚ
PLAN ANUAL DE TRABAJO (PAT) 2024 MINEDU PERÚPLAN ANUAL DE TRABAJO (PAT) 2024 MINEDU PERÚ
PLAN ANUAL DE TRABAJO (PAT) 2024 MINEDU PERÚ
 
TOMO I - HISTORIA primer exsamen 2025 de la unsa arequipa
TOMO I - HISTORIA primer exsamen 2025 de la unsa arequipaTOMO I - HISTORIA primer exsamen 2025 de la unsa arequipa
TOMO I - HISTORIA primer exsamen 2025 de la unsa arequipa
 
ACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLA
ACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLAACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLA
ACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLA
 
Fundamentos del diseño audiovisual para presentaciones y vídeos (2 de julio d...
Fundamentos del diseño audiovisual para presentaciones y vídeos (2 de julio d...Fundamentos del diseño audiovisual para presentaciones y vídeos (2 de julio d...
Fundamentos del diseño audiovisual para presentaciones y vídeos (2 de julio d...
 
Introducción a las herramientas de Google Apps (3 de julio de 2024)
Introducción a las herramientas de Google Apps (3 de julio de 2024)Introducción a las herramientas de Google Apps (3 de julio de 2024)
Introducción a las herramientas de Google Apps (3 de julio de 2024)
 
Recursos Educativos en Abierto (1 de julio de 2024)
Recursos Educativos en Abierto (1 de julio de 2024)Recursos Educativos en Abierto (1 de julio de 2024)
Recursos Educativos en Abierto (1 de julio de 2024)
 
El mensaje en la psicopedagogía.........
El mensaje en la psicopedagogía.........El mensaje en la psicopedagogía.........
El mensaje en la psicopedagogía.........
 
04. ESTADÍSTICA (comunicación) (J.C) 3.pptx
04. ESTADÍSTICA (comunicación) (J.C) 3.pptx04. ESTADÍSTICA (comunicación) (J.C) 3.pptx
04. ESTADÍSTICA (comunicación) (J.C) 3.pptx
 
Aplicaciones móviles de grabación (2 de julio de 2024)
Aplicaciones móviles de grabación (2 de julio de 2024)Aplicaciones móviles de grabación (2 de julio de 2024)
Aplicaciones móviles de grabación (2 de julio de 2024)
 
Soluciones Examen de Selectividad. Geografía julio 2024 (Convocatoria Extraor...
Soluciones Examen de Selectividad. Geografía julio 2024 (Convocatoria Extraor...Soluciones Examen de Selectividad. Geografía julio 2024 (Convocatoria Extraor...
Soluciones Examen de Selectividad. Geografía julio 2024 (Convocatoria Extraor...
 
fichas descriptivas para primaria 2023-2024
fichas descriptivas para primaria 2023-2024fichas descriptivas para primaria 2023-2024
fichas descriptivas para primaria 2023-2024
 
Tu, Tu Hijo y la Escuela Ken Robinson Ccesa007.pdf
Tu,  Tu Hijo y la  Escuela  Ken Robinson  Ccesa007.pdfTu,  Tu Hijo y la  Escuela  Ken Robinson  Ccesa007.pdf
Tu, Tu Hijo y la Escuela Ken Robinson Ccesa007.pdf
 
PLANIFICACION PARA NIVEL INICIAL FEBRERO 2023
PLANIFICACION PARA NIVEL INICIAL FEBRERO 2023PLANIFICACION PARA NIVEL INICIAL FEBRERO 2023
PLANIFICACION PARA NIVEL INICIAL FEBRERO 2023
 
Taller Intensivo de Formación Continua 2024
Taller Intensivo de Formación Continua 2024Taller Intensivo de Formación Continua 2024
Taller Intensivo de Formación Continua 2024
 

ESTRATEGIAS CREATIVAS Y HEURÍSTICAS PARA LA ENSEÑANZA DE LA MATEMATICA

  • 1. TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[ PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA” Profesor Juan Portal Pizarro Página 1
  • 2. TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[ PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA” Profesor Juan Portal Pizarro Página 2 PRESENTACIÓN Así como en años anteriores, en esta oportunidad recibimos la invitación para trabajar y desarrollar un taller de enseñanza de la matemática con los docentes del Nivel Primario del Colegio “Santa Teresita”, lo que significa para nosotros un privilegio y un reto, por ser una Institución de renombre en la región y además que se nos presenta motivador el tener que compartir nuestras experiencias sobre la enseñanza de la matemática su respectiva evaluación y orientando las actividades a las Rutas del Aprendizaje en el presente años académico 2103, con las maestras de esta Institución Educativa. Hoy en día la enseñanza de la matemática se ha convertido en una constante búsqueda de estrategias, formas y maneras para que los alumnos entiendan y sobre todo apliquen en la vida cotidiana las capacidades y conocimientos adquiridos a través de las sesiones de aprendizaje ende esta área, porque pareciera que ese nexo cada día se resquebraja más y más, lo que los niños aprenden en la escuela y lo que se debe aplicar en la vida diaria, en muchas ocasiones no tiene relación alguna es por eso que para la enseñanza de la matemática, desde el enfoque de la resolución de problemas, se debe partir de una situación problemática como eje motivador para el desarrollo de conocimientos y la adquisición de capacidades, y de esta manera lograr un sin número de capacidades matemáticas. En el presente taller denominado “Estrategias creativas para la enseñanza de la matemática y su evaluación” se desarrollarán de manera general la forma como abordar la enseñanza de esta área, desde la presentación de una situación problemática, llegando a desarrollar y aplicar los respectivos instrumentos de evaluación, teniendo en cuenta que la planificación ejecución y evaluación curricular constituye un todo y unidad inseparable en la enseñanza de esta importante área en la educación básica regular. Se abordarán diversas estrategias creativas en donde se evidencia el proceso del logro de las capacidades y conocimientos matemáticos propuestos en las Rutas del Aprendizaje por el Ministerio de Educación, con la finalidad de afianzar el logro de cambios cualitativos y cuantitativos en la enseñanza de la matemática en las niñas del nivel primario del Colegio “Santa Teresita”, coadyuvando de esta manera a la excelente labor pedagógica realizada por las maestras de esta prestigiosa Institución Educativa. Juan Portal Pizarro
  • 3. TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[ PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA” Profesor Juan Portal Pizarro Página 3 IMPORTANCIA DE LA ENSEÑANZA DE LA MATEMÁTICA A TRAVÉS DE ESTRATEGIAS CREATIVAS La enseñanza de la matemática siempre se ha considerado muy importante en el currículo escolar. Una muestra de ello es que se le asigna más tiempo en el horario. Junto con el área de comunicación, se ha considerado como un buen referente para evaluar el rendimiento escolar, aplicándose pruebas estandarizadas para ello. Si bien ahora se está desterrando esta práctica, aún seguimos tomando los logros obtenidos en matemática como criterio para promocionar de grado a un alumno y sobre todo para medir el avance y la calidad educativa a nivel nacional. La mayoría de padres y madres de familia centran sus preocupaciones en las calificaciones y cualificaciones de matemática. Es frecuente escuchar que “si está bien en matemática, lo demás no es tan importante”. En el ambiente familiar y escolar abundan expresiones como “si es bueno en matemática, es inteligente”; ”si aprendes matemática, tendrás éxito en la vida” o “para aprender matemática tienes que hacer muchos ejercicios matemáticos”. Estas expresiones reflejan la valoración que la sociedad asigna al aprendizaje de la matemática. ¿Por qué se le da tanta importancia? ¿Qué razones existen para esta valoración? Para responder a estas interrogantes, analizaremos algunas expresiones populares para luego constatarlas en la realidad y con los fundamentos científicos que hoy se manejan. “Si no sabes matemática no podrás ser nada en la vida” Esta sentencia expresa que el conocimiento matemático que se obtiene en la escuela es necesario para desenvolverse en la vida cotidiana y es prerrequisito de otros aprendizajes que se darán en la formación académica. ¿Tú crees que el conocimiento matemático hace más fácil el desenvolvimiento de las personas en la vida cotidiana? ¿Será útil la matemática que niños y niñas aprendan en la escuela, y que los prepara para los estudios superiores? ¿Qué pasará con las personas que no aprendieron la matemática en su Institución Educativa? ¿Con qué frecuencia usas la matemática fuera de tu aula? En la vida cotidiana usamos la matemática, aún sin darnos cuenta. Apenas abrimos los ojos, en la mañana, vemos la hora en el reloj y calculamos si el tiempo nos alcanzará para hacer todo lo necesario antes de ir al colegio. Durante el desayuno seguimos usando la matemática, al poner en nuestras tazas, la leche, el café y el agua en determinadas proporciones. También la usamos cuando elegimos las combinaciones entre nuestras blusas, faldas, camisas, pantalones o zapatos. Como puedes constatar, usamos el pensamiento lógico-matemático a cada momento en nuestras vidas. Con esta afirmación desterramos la creencia de que usar la matemática solamente es hacer operaciones sobre un papel. A través de la historia confirmamos la utilidad de la matemática en la vida del ser humano, que la
  • 4. TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[ PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA” Profesor Juan Portal Pizarro Página 4 construyó para resolver los problemas que la realidad le planteaba. Miguel de Guzmán nos ilustra sobre su utilidad: “La matemática fue un instrumento para la elaboración de vaticinios, entre los sacerdotes de los pueblos mesopotámicos. Se consideró como un medio de aproximación a una vía más profundamente humana y como camino a la divinidad, entre los pitagóricos. Fue utilizando como un importante elemento disciplinador del pensamiento del Medioevo. Ha sido la más versátil e idónea herramienta para la exploración del universo, a partir del Renacimiento”1 . El uso de la matemática ha ido variando con el tiempo. En el pasado ayudó a manejarse mejor en el mundo del comercio. Ahora una persona sin conocimiento matemático tiene dificultades para desenvolverse en la vida cotidiana, porque el mundo se ha matematizado. Las evidencias están en la numeración de las calles, en las noticias del periódico, en las recetas de cocina, en las dosis de medicinas, en las señales que aparecen en las carreteras marcando el kilometraje, etc. Usamos cada vez más el lenguaje matemático para comunicar hechos y situaciones de la vida cotidiana. Por lo expuesto, creemos en la necesidad de revisar permanentemente nuestra concepción de la enseñanza – aprendizaje de la matemática, para poder responder a las nuevas exigencias del mundo contemporáneo. Pensamos que la matemática es un lenguaje que niños y niñas deben aprender para desenvolverse y comunicarse con el mundo, lo que resulta diferente a aprender a resolver operaciones aritméticas. Se trata, pues, de desarrollar el pensamiento lógico- matemático para llevar a un nivel más alto la actividad humana que llamamos razonar. Por otra parte, el avance tecnológico nos exige revisar las capacidades y competencias que nos planteamos al enseñar la matemática, con la finalidad de que nuestros alumnos y alumnas logren aprendizajes exitosos. Ello supone ir más allá de dominio de las cuatro operaciones aritméticas, que ahora se pueden resolver con una calculadora, cuyo bajo costo las pone al alcance incluso de los sectores populares. Entonces, ¿no resulta absurdo invertir esfuerzo y tiempo para que niños y niñas resuelvan enormes operaciones aritméticas si el nivel de la tecnología ha disminuido la necesidad de ser un experto en el cálculo escrito? ¿Será necesario que enseñemos a resolver operaciones aritméticas? Claro que sí, pero con otra visión. Las operaciones matemáticas no son el objetivo final de la enseñanza; son un medio para desarrollar el pensamiento lógico matemático y para construir las nociones matemáticas. Y si la necesidad de aprender matemática ya no radica en el desarrollo del cálculo escrito, ¿Qué habilidades tendremos que desarrollar en las niñas y los niños? 1 MIGUEL DE GUZMÁN, “Didáctica de las Matemáticas para maestros”. Proyecto EDUMAT – MAESTROS. Granada España 2004
  • 5. TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[ PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA” Profesor Juan Portal Pizarro Página 5 Las exigencias del mundo moderno son otras. Por eso planteamos la necesidad de desarrollar las capacidades para resolver problemas de diversa índole. Para ello se requiere un pensamiento muy lógico y un manejo adecuado de los conceptos. Los que aprendimos matemática a través de la resolución de largas y monótonas operaciones en las que desarrollamos sólo la memoria, tenemos algunas dificultades en nuestra vida cotidiana para resolver problemas y manejar esquemas lógicos. Por eso hay que dar prioridad a los aprendizajes que estimulen el desarrollo del pensamiento lógico matemático. Esa debe convertirse en una consigna para dirigir nuestro trabajo pedagógico. La matemática siempre ha desempeñado un rol fundamental en el desarrollo de los conocimientos científicos y tecnológicos. En ese sentido, reconocemos su función instrumental y social que nos ha permitido interpretar, comprender y dar soluciones a los problemas de nuestro entorno. En efecto, todos los seres humanos, desde que nacemos hasta que morimos, usamos algún tipo de aprendizaje matemático. Nacemos sin saber matemáticas, pero el mundo está lleno de experiencias que pueden convertirse en aprendizajes matemáticos utilizables en diversas circunstancias. Así, el niño que cuenta los dedos de su mano por primera vez sabrá que en cada mano tiene cinco. Esto no lo exime de cometer errores al contar una y otra vez sus dedos, sin embargo ayuda a aprender2 . Es así que a partir del año 2013 aparecen las herramientas pedagógicas llamadas “Rutas del Aprendizaje”, que en cuanto a la enseñanza de la matemática manifiestan “la manera como los docentes entendemos la matemática y como suponemos que nuestros estudiantes aprenderán mejor, basados en nuestra experiencia y formación previa, influyen no sólo en nuestra forma de enseñar, sino también en la forma de enfrentar una situación problemática que exhibirán los estudiantes. Influyen incluso en los procedimientos que se usarán o se evitarán, en el tiempo y la intensidad del trabajo que realizarán”3 . ¿CUÁL ES LA UTILIDAD DE LA MATEMÁTICA EN EL CONTEXTO ACTUAL? Los retos que la sociedad actual nos plantea a los docentes son mayores que los de antes. Por eso conviene que nos hagamos preguntas y busquemos respuestas personales y grupales entre docentes. Por ejemplo:  ¿Cuánto sabemos de las nuevas teorías matemáticas?  ¿Qué rol cumple el aprendizaje de la matemática en el desarrollo integral de niños y niñas? 2 RUTAS DEL APRENDIZAJE: “hacer uso de saberes matemáticos para afrontar desafíos diversos”. Edit. MED. Lima Perú 2013 3 RUTAS DEL APRENDIZAJE: “Qué y cómo aprenden nuestros niñas y niños”. Edit. MED. Lima Perú 2013
  • 6. TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[ PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA” Profesor Juan Portal Pizarro Página 6  Nuestros procedimientos y estrategias de enseñanza, ¿responden a las nuevas demandas sociales y necesidades de niñas y niños?  ¿Qué capacidades personales y colectivas debemos desarrollar para elaborar materiales didácticos que ejerciten el pensamiento lógico matemático que nuestros alumnos y alumnas requerirán para desenvolverse en el mundo actual?  ¿Qué habilidades matemáticas son necesarias para enfrentar una sociedad más tecnificada? ENTENDER EL MUNDO Y DESENVOLVERNOS EN ÉL. ¡Muy bien! COMUNICARNOS CON LOS DEMÁS Compraré el de la derecha en talla 28, Cuál será el precio? PLANTEAR Y RESOLVER PROBLEMAS Si compro 5 helados de S/. 2,00 cada uno y tengo un billete de S/. 20,00 ¿Cuánto recibiré de vuelto? DESARROLLAR UN PENSAMIENTO LÓGICO Y ÁGIL Si tomo un solo micro llego en 45 min, ¿pero si tomo 2 micros llegaré en 30 min? ¿Cuál me convienen más? Porque nos ayuda a Es necesario aprender matemática
  • 7. TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[ PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA” Profesor Juan Portal Pizarro Página 7 El pasado nos muestra que la matemática no solo tuvo una función utilitaria, para resolver problemas, sino que también respondió a la necesidad de entender y descubrir el mundo, convirtiéndose en una necesidad filosófica. Platón decía que un motivo para enseñar la matemática era atraer el alma hacia la verdad. Estas motivación esta presente en los matemáticos que exploran las estructuras de la realidad, sea la realidad concreta o la construcción mental. ¿Tú crees que la ciencia matemática sea útil para estimular la búsqueda de la verdad? Por otro lado, ¿Crees que (así como se disfruta de la literatura o la música) se puede disfrutar de la matemática? Los testimonios de hombres y culturas que han ido construyendo la ciencia matemática nos demuestran que si puede producir una honda sensación estética la solución ingeniosa de problemas y el construir modelos matemáticos que representen e interpreten el mundo. A los docentes de hoy nos toca intentar educar a niñas, niños, adolescentes y jóvenes a través de experiencias imaginativas y placenteras no solo en el campo artístico, sino en las ciencias y la matemática, introduciendo el goce estético en las aulas y la escuela, como un fin irrenunciable. “SOLO LOS INTELIGENTES APRENDEN MATEMATICA” Si nuestra concepción y práctica concuerda con esta sentencia, estamos negando el carácter esencial de la matemática: ser un lenguaje, un código para comunicarse con el mundo. Hay docentes que siguen creyendo que esta sentencia expresa una verdad. Tal vez por eso hay quienes continúan calificando como inteligentes a los que aprenden más rápido, y sentencian a otros al fracaso. Para justificar esta creencia. Hacen un despliegue de números y reglas en la pizarra, de tal modo que solo algunos alumnos y alumnas logran entender. Pero, ¿Será verdad que la matemática es difícil? ¿O será que a veces la hacemos difícil? El docente que descuida su función esencial, ayudar a estructurar el pensamiento y a manejar el lenguaje matemático para comprender el mundo y comunicarse, enseña llenando la pizarra con operaciones que se convierten en jeroglíficos indescifrables. Esta manera de asumir el rol docente genera en sus alumnos y alumnas inseguridad y desconcierto. Pero además refuerza un prejuicio con el que chicos y chicas llegan a la escuela: y piensan que el aprendizaje de la matemática es difícil. Si la dificultad del aprendizaje de la matemática esta en la forma como la enseñamos, entonces busquemos métodos que permitan aprendizajes mas exitosos. También debemos revisar los contenidos, eliminar los que resulten poco útiles y organizarlos de manera que favorezcan los aprendizajes significativos y funcionales. Si buscamos nuevos métodos y damos a niñas tiempo suficiente para disfrutar, inventando y recreando situaciones problemáticas, ensayando posibles soluciones, equivocándose a veces e intentando otras vías para encontrar sus soluciones, desterramos la idea de que “sólo los inteligentes pueden aprender matemática “. La verdad es que todos podemos aprender matemáticas porque todos somos inteligentes.
  • 8. TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[ PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA” Profesor Juan Portal Pizarro Página 8 LA SESIÓN DE APRENDIZAJE DE MATEMÁTICA En una sesión de aprendizaje de matemáticas en Primaría, el maestro presenta una tarea matemática a sus alumnos para conseguir capacidades. En ese momento se define un contexto en el que el maestro, el conocimiento matemático y los alumnos interaccionan con el fin de que los alumnos desarrollen la competencia matemática que configura el objeto de enseñanza. Desde esta perspectiva sistemática, las situaciones de enseñanza están determinadas por:  Las características de la tarea matemática presentada (lo que puede demandar la tarea del resolutor).  Lo que el maestro hace y las características de las interacciones que se generan.  Lo que los alumnos aportan a la situación, hagan en ella y su actitud. Al conjunto de actividades, ejercicios, problemas, etc. Que el maestro puede plantear a sus alumnos para desarrollar la capacidad matemática, lo podemos llamar “tarea matemática”. Algunas veces las características de las tareas que los maestros plantean a sus alumnos y las interacciones que se producen en el aula entre el maestro, los alumnos y el contenido matemático definen un determinado nivel de exigencia cognitiva y social que puede potenciar un determinado aprendizaje. Por ejemplo, si la experiencia de un alumno en el aula de matemática se reduce a escuchar lo que dice el maestro, leer lo que pone el libro de texto y repetir ejercicios de cálculo en los que sólo hay que procurar que el resultado sea correcto, lo que aprende este alumno puede ser simplemente el memorizar algoritmos de cálculo y generar una idea sobre las matemáticas escolares reducida a una colección de procedimientos de cálculo. El significado dado a la actividad matemática por parte del alumno (lo que hace con la tarea para resolverla, sea individual o en grupo) será diferente si las actividades son del tipo de formulación, representación, resolución y/o comunicación de problemas matemáticos a partir de una situación. Esta actividad matemática es la que permitirá desarrollar en los alumnos una determinada “competencia matemática” a lo largo del tiempo. En esta situación existen tres elementos que deben ser caracterizados para poder llegar a maximizar la práctica de enseñar matemáticas:  El significado de “matemáticamente competente”.  Las características de la “tarea matemática” dirigidas a desarrollar la competencia matemática.  Las características de la clase que apoyan la generación de la competencia. Llegar a ser matemáticamente competente está vinculado al desarrollo de la comprensión del contenido matemático. Cuando se comprenden las nociones y
  • 9. TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[ PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA” Profesor Juan Portal Pizarro Página 9 procedimientos matemáticos se pueden utilizar de manera flexible adaptándolos a situaciones nuevas y permitiendo establecer relaciones entre ellos y ser utilizados para aprender un nuevo contenido matemático. Así, comprender, está vinculado a saber cuál es el significado y cómo funcionan los procedimientos, cómo se relacionan unos con otros y por qué funcionan de la manera en que lo hacen. Por tanto, debemos determinar características en las sesiones de matemática que potencien el desarrollo de la competencia matemática como actividades, problemas, ejercicios, metáforas, historia de la matemática, etc. que el maestro puede utilizar para conseguir este fin. Planificación de la sesión de aprendizaje de matemática Las sesiones de aprendizaje se planifican y se ejecutan de acuerdo con el estilo de cada docente. No hay fórmulas ni rutas preestablecidas. Sin embargo, esto no quita que se atienda las siguientes sugerencias.  Programar la sesión de aprendizaje en función de las capacidades e indicadores.  Los conocimientos tienen sentido en la medida que contribuyan a desarrollar capacidades.  Considerar estrategias para el desarrollo de capacidades y competencias.  Abordar de manera articulada las capacidades, para garantizar aprendizajes más significativos y funcionales.  Activar permanentemente la recuperación de los saberes previos.  Generar el conflicto cognitivo que susciten la reflexión permanente del estudiante.  Prever estrategias que propicien la reflexión permanente del estudiante sobre su propio aprendizaje para contribuir al desarrollo de la metacognición.  Promover situaciones de participación activa y cooperativa que le permitan el desarrollo de actitudes y valores.  Evaluar durante todo el proceso. Fases de una sesión de aprendizaje de matemática 1. Momento de iniciación (Donde debemos tener en cuenta):  Motivación  Recuperación de saberes previos (exploración)  Conflictos cognitivo (problematización) 2. Momento de Proceso, elaboración o desarrollo:  Procesamiento  Aplicación  Transferencia y  Reflexión 3. Momento de cierre:  Sistematización  Resumen  Metacognición PROCESOS PEDAGÓGICOS ESTRATEGIAS / ACTIVIDADES MOTIVACIÓN Consiste en atraer la atención y  Observación de hechos o situaciones.  Exploración y manipulación de material.  Evocar anécdotas relacionadas con la actividad.
  • 10. TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[ PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA” Profesor Juan Portal Pizarro Página 10 despertar el interés sobre el tema, creando un clima favorable durante toda la clase.  Se plantea una pregunta, un problema, un juego, una adivinanza, un chiste, un cuento, una canción, una dinámica relacionados con el tema.  Mostrar textos sobre la historia de la matemática. RECUPERACIÓN DE SABERES PREVIOS Consiste en explorar e indagar sobre cuánto conocen los alumnos sobre el tema (saberes formales e informales).  Lluvia de ideas o discusión guiada mediante el planeo de preguntas abiertas.  Resolución de problemas y/o juegos y ejercicios.  Mapas conceptuales para completar.  Mapas mentales.  Organizadores gráficos y visuales. CONFLICTO COGNITIVO Consiste en problematizar, enfrentando al alumno a un nuevo desempeño que debe tratar de resolver utilizando todos sus recursos disponibles. Una actividad problematizadora puede funcionar a la vez como actividad de motivación y exploración.  Formulación de preguntas ¿interrogación?  Presentación de una situación problemática ¿problemas, ejercicio, juego, etc.? Que lleve a formular hipótesis, conjeturas, preguntas, procedimientos, recolectar datos, razonar, procesar información, conceptualizar, utilizar libros y materiales, ejemplificar, inferir.  Confrontación de saberes previos y nuevos. CONSTRUCCIÓN DEL CONOCIMIENTO Se refiere a que el alumno elabore sus propios conceptos, conclusiones, procedimientos a través de grupos o solos y organice la información en esquemas visuales.  Integración de saberes previos y nuevos.  Exposición dialogada y anotación de ideas.  Introducción de conceptos y procedimientos  Descubrimiento dirigido: elaboración de conceptos y definiciones, razonamientos dirigidos, corrección y complementación de cálculos, generalizaciones y analogías (elaboración del conocimiento).  Evaluación y comprobación de conjeturas.  Se resuelve casos concretos y/o ejercicios.  Se formula ejemplos y contraejemplos.  Representaciones y simbolizaciones.  Sistematización de la información mediante elaboración de resúmenes y organizadores visuales. APLICACIÓN DE LO APRENDIDO - TRANSFERENCIA Verifica la asimilación del alumno, permitiéndole realizar aplicaciones prácticas de lo que ha aprendido. Aplicación dirigida: afianza el nuevo conocimiento repitiendo la experiencia en condiciones variables. Aplicación autónoma o sea la transferencia, es decir aplicar los  Resolución de problemas.  Construcciones de materiales.  Comunicación de los nuevos aprendizajes mediante organizadores visuales.  Discusión plenaria.  Propuesta de problemas.  Realización de investigaciones, trabajos de campo y elaboración de informes.  Utilización del conocimiento adquirido en otras áreas y en la vida diaria.
  • 11. TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[ PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA” Profesor Juan Portal Pizarro Página 11 Es donde el estudiante a partir de actividades vivenciales, lúdicas y de experimentación llega a construir conceptos y propiedades matemáticas partiendo de una situación problemática. conocimientos cada vez que lo necesita en su vida. REFLEXIÓN SOBRE EL APRENDIZAJE - METACOGNICIÓN Es un proceso permanente y continuo que nos permite obtener información sobre los logros de aprendizaje y nuestra forma de aprender.  Se destaca los resultados.  Se aplica instrumentos de evaluación  Se realiza la co, auto y heteroevaluación.  Metacognición: ¿Qué aprendí? ¿Cómo aprendí?  Identifica estrategias de aprendizaje utilizados. DESARROLLANDO ESCENARIOS DE APRENDIZAJE PARA LA MATEMÁTICA4 I. Laboratorio matemático LABORATORIO MATEMÁTICO 1. Denominación. ¿Cuánto es el descuento? 1.1. Situación problemática: Mirssy, acompaña a su mamá al centro comercial y observan los diferentes productos con sus respectivos precios y descuentos, motivo por el cual la madre de Mirssy decide realizar las siguientes compras: Dos vestidos, un par de zapatos y un terno y le pregunta a Mirssy. ¿Cuánto debo pagar? 4 RUTAS DEL APRENDIZAJE: “Qué y cómo aprenden nuestros niñas y niños”. Edit. MED. Lima Perú 2013 PRECIO S/. 190,00 35% dcto PRECIO S/. 280,00 28% dcto PRECIO S/. 140,00 24% dcto
  • 12. TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[ PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA” Profesor Juan Portal Pizarro Página 12 1.1. Contexto: Situación de indagación y experimentación 1.2. Grado: Quinto Grado 1.3. Tiempo: Dos sesiones 1.4. Indicadores:  Experimenta y describe el significado y uso de las operaciones con fracciones en situaciones de diversos contextos que implican las acciones de agregar, quitar, juntar, separar, comparar, igualar, repetir o repartir una cantidad.  Explica el proceso de resolución de situaciones problemáticas que implican el uso de la relación de equivalencia entre unidades de dos magnitudes.  Describe cómo varían los valores de una magnitud en relación con la otra, en una relación de equivalencia  Propone estrategias heurísticas para encontrar un término desconocido en igualdades con expresiones aditivas y multiplicativas.  Experimenta y describe la relación entre fracción decimal, número decimal y porcentaje (Razón: Parte-Todo) 1.5. Conocimientos  Porcentaje de un número  Relación entre números racionales y fracciones  Resolución de problemas de porcentajes 1.6. Sirve para:  Buscar soluciones en problemas cotidianos de compra y venta cuando interviene descuentos a través de porcentajes de acuerdo al contexto.  Realizar conexiones entre la matemática y situaciones cotidianas 1.7. Qué necesitas:  Precios de diferentes productos.  Tarjetas de fracciones y porcentajes,  Recortes d e periódicos  Textos del MED 1.8. Conocimientos previos:  Noción de fracción  Noción de porcentaje  Adición de fracciones  Cálculo de operaciones aritméticas 2. ACTIVIDAD Nº 01: Exploración e indagación  Se presenta a los alumnos la situación problemática, y se extraen otras situaciones problemáticas a partir de la visita al centro comercial de Mirssy y su madre.  Se reparte a los alumnos periódicos en donde se evidencia la venta de productos, para redactar una situación problemática.
  • 13. TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[ PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA” Profesor Juan Portal Pizarro Página 13 Consigna: En los periódicos encontrar situaciones de compra y venta y colocar los precios respectivos de acuerdo al contexto. 3. Actividad Nº 02: Comprenden el problema:  En parejas, los alumnos se intercambian los problemas construidos y se van a desarrollar, dichos problemas, teniendo en cuenta la relación entre fracciones y porcentajes.  La docente realiza interrogantes, para inducir a los alumnos a interpretar e entender de qué se trata el problema.  Los alumnos en los mismos duos de trabajo tratan de entender el problema propuesto por el docente, extrayendo ideas fuerza para elaborar un plan. 4. Actividad Nº 03: Diseñan y adaptan una estrategia  A continuación, formula preguntas para propiciar el intercambio de ideas y estrategias:  Antes de usar tu lápiz, piensa en la forma como podrías resolver el problema.  ¿Has visto alguna vez en algún centro comercial carteles parecidos a los del problema?, ¿cuáles?  ¿Qué estrategia podrías usar para saber cuánto debe pagar la mamá de Mirssy?  ¿Te puede ayudar la forma como están escritos los carteles?  ¿Qué estrategia usarías para saber el pago total, sin equivocarte? 5. Actividad Nº 04: Ejecutan la estrategia.  El docente monitorea el trabajo en el aula promoviendo la aplicación de sus propias estrategias. Luego, propicia que sean expuestas en la pizarra y, a partir de ellas, genera un espacio de discusión sobre las estrategias más eficaces.  Si no se observa una estrategia eficaz entre los estudiantes, será oportuno sugerirles las siguientes estrategias:  Extraen porcentajes de 100 unidades y relacionan con las fracciones.  Luego, el docente realiza el juego de las tarjetas de fracciones y porcentajes: a) Se colocan las tarjetas boca abajo sobre la superficie de juego. Se hace dos montones diferentes: un montón de fracciones y un montón de porcentajes, Revolver o barajar las tarjetas de cada montón. La parte de atrás de las 12 tarjetas de fracciones deben mostrar la fracción , la parte de atrás de las tarjetas de porcentajes deben mostrar el símbolo “%” para evitar confusiones. b) Los jugadores se turnan. En cada turno, un jugador voltea una tarjeta de fracción y una de porcentaje. S la fracción y el porcentaje son equivalentes, el jugador se queda con las tarjetas. Si las tarjetas no coinciden, el jugador vuelve a colocarlas boca abajo. c) Los jugadores pueden usar una calculadora para comprobar las comparaciones de los otros. d) El juego termina cuando se hayan tomado todas las tarjetas. Gana el jugador que tanga la mayor cantidad de tarjetas.
  • 14. TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[ PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA” Profesor Juan Portal Pizarro Página 14 Las actividades de extensión implican la aplicación o transferencia del nuevo conocimiento a situaciones similares y de igual complejidad Tarjeta de fracciones y porcentajes 6. Actividad Nº 05: Reflexión.  Para que reflexionen y evalúen la actividad, el docente puede plantearles lo siguiente:  Tu estimación se acercó al resultado y relacionaste las fracciones con el porcentaje. ¿Por qué no llegas a la respuesta correcta?  ¿Cuál fue la estrategia de relacionar las fracciones y porcentajes más eficaz? Explica tus procedimientos.  ¿Es fácil o difícil relacionar las fracciones con los porcentajes?  ¿Te es más resolver problemas de porcentajes, relacionándolos con las fracciones? 7. Actividad Nº 06: Realizan actividades de extensión.  Los alumnos resuelven diferentes problemas relacionando fracciones con porcentajes.  En diferentes documentos como recibo de agua, luz, recibos de compras, los alumnos encuentran porcentajes relacionando con fracciones y proponen situaciones de contexto en donde intervenga porcentajes para solucionar con las fracciones. 10% 20% 25% 30% 40% 50% 60% 70% 75% 80% 90% 100% 𝟏 𝟐 𝟏 𝟒 𝟑 𝟒 𝟏 𝟏𝟎 𝟏 𝟓 𝟐 𝟓 𝟑 𝟓 𝟒 𝟓 𝟑 𝟏𝟎 𝟕 𝟏𝟎 𝟗 𝟏𝟎 𝟐 𝟐
  • 15. TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[ PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA” Profesor Juan Portal Pizarro Página 15 MATRIZ DE EVALUACIÓN ¿QUÉ EVALUAR? ¿CÓMO EVALUAR? ¿CON QUÉ EVALUAR? COMPETENCIA CAPACIDAD CONOCIMIENTO INDICADORES PREGUNTAS ORALES Y CONSIGNAS OBSERVACIÓN INSTRUMENTO Resuelve situaciones problemáticas de contexto real y matemático que implican la construcción de significado y uso de los números y sus operaciones empleando diversas estrategias de solución, justificando y valorando sus procedimientos y resultados.  Construcción del significado y uso de las operaciones con fracciones decimales y números decimales en situaciones problemáticas agregar, quitar, juntar, separar, comparar, igualar repetir o repartir una cantidad  Porcentaje de un número  Relación entre números racionales y fracciones  Resolución de problemas de porcentajes  Experimenta y describe el significado y uso de las operaciones con fracciones en situaciones de diversos contextos que implican las acciones de agregar, quitar, juntar, separar, comparar, igualar, repetir o repartir una cantidad.  Explica el proceso de resolución de situaciones problemáticas que implican el uso de la relación de equivalencia entre unidades de dos magnitudes.  Describe cómo varían los valores de una magnitud en relación con la otra, en una relación de equivalencia  Propone estrategias heurísticas para encontrar un término desconocido en igualdades con expresiones aditivas y multiplicativas.  Experimenta y describe la relación entre fracción decimal, número decimal y porcentaje (Razón: Parte- Todo)  ¿Cuál es la relación que existe entre las fracciones y los porcentajes?  Explica la relación que existe entre fracciones y porcentajes  Describe el proceso de interrelación entre fracciones y porcentajes  Representa la relación entre fracciones y porcentajes  Se espera que los alumnos desarrollen consignas en donde existan situaciones problemáticas de relación entre fracciones y porcentajes.  Ficha de observación.  Registro auxiliar
  • 16. TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[ PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA” Profesor Juan Portal Pizarro Página 16 FICHA DE OBSERVACIÓN Nº APELLIDOS Y NOMBRES INDICADORES Experimentaydescribeelsignificadoyusodelasoperaciones confraccionesensituacionesdediversoscontextosque implicanlasaccionesdeagregar,quitar,juntar,separar, comparar,igualar,repetirorepartirunacantidad. Explicaelprocesoderesolucióndesituaciones problemáticasqueimplicanelusodelarelaciónde equivalenciaentreunidadesdedosmagnitudes. Describecómovaríanlosvaloresdeunamagnituden relaciónconlaotra,enunarelacióndeequivalencia Proponeestrategiasheurísticasparaencontrarun términodesconocidoenigualdadesconexpresiones aditivasymultiplicativas. Experimentaydescribelarelaciónentrefracción decimal,númerodecimalyporcentaje(Razón:Parte- Todo) 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17
  • 17. TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[ PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA” Profesor Juan Portal Pizarro Página 17 Es donde el estudiante pone en práctica los aprendizajes que ha ido desarrollando en un periodo curricular. En el taller despliegan diversos recursos (técnicos, procedimentales y cognitivos) en la intención de resolver situaciones problemáticas haciendo uso de diversas estrategias de resolución. II. Taller de matemática TALLER DE MATEMÁTICA 1. DENOMINACIÓN: “La Geometría nuestra de cada día” 1.1. Situación problemática: Utilizando el geoplano, resolver las siguientes situaciones problemáticas
  • 18. TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[ PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA” Profesor Juan Portal Pizarro Página 18 1.2. Indicadores:  Elabora y aplica diversas estrategias para resolver situaciones problemáticas aditivas de cambio y combinación que implican el uso de material concreto, gráfico (dibujos, cuadros, esquemas, gráficos, recta numérica, etc.)  Explica sus procedimientos al resolver diversas situaciones problemáticas.  Usa estrategias que implican el uso de la representación concreta y gráfica (dibujos, cuadros, esquemas, gráficos, etc.), para resolver situaciones problemáticas aditivas de cambio, combinación, comparación 1, 2 y situaciones multiplicativas de repetición de una medida.  Experimenta y describe patrones geométricos (traslación, simetría y giros) en situaciones donde se presentan regularidades, para el desarrollo del significado y uso de los patrones.  Expresa patrones geométricos (traslación, simetría y giros), con material concreto, en forma gráfica y simbólica, para el desarrollo del significado de los patrones.  Propone secuencias gráficas con patrones geométricos usando instrumentos de dibujo para construir mosaicos, frisos, guardillas, etc.  Usa estrategias inductivas y de representación, para hallar los elementos desconocidos o que no pertenecen a secuencias gráficas con patrones geométricos (traslación y giros, simetrías)  Predice un elemento desconocido a partir de su posición en una secuencia de gráficos con patrón numérico.  Explica por qué y comprueba si un elemento pertenece o no a una secuencia gráfica con patrón geométrico (traslación, giros y simetría). 1.3. Conocimientos:  Par ordenado  Plano cartesiano  Elementos geométricos.  Polígonos, clasificación.  Triángulos, clasificación, área  Cuadriláteros, clasificación, área  Área de polígonos regulares.  Ejes de simetría. 1.4. Contexto. Situación lúdica, espacio de relación contexto 1.5. Grado: Sexto grado 1.6. Áreas afines. Comunicación, Personal social. 1.7. Tiempo Dos sesiones
  • 19. TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[ PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA” Profesor Juan Portal Pizarro Página 19 1.8. Sirve para Resolver problemas de la vida cotidiana, relacionado con elementos geométricos y áreas de figuras geométricas planas. 1.9. Qué necesitas o Tablero de maratón matemático. o Cartas de consignas sobre geometría o Geoplano o Dados. o Fichas de colores. o Textos del MED matemática 1.10. Conocimientos previos o Operaciones aritméticas. o Rectas: tipos. o Ángulos: Clasificación 2. ACTIVIDAD Nº 01: Comprenden el problema:  El docente presenta el material que consiste en: o Tablero de “Maratón Matemático” o Tarjetas con consignas o Par de dados o Fichas para cada alumno 3. ACTIVIDAD Nº 02: Piensan en un plan:  Los alumnos forman grupos de cinco integrantes.  Luego de leer las consignas respectivas, empieza el juego en cada grupo, y los alumnos irán resolviendo los diferentes problemas presentados en las tarjetas de consignas y si tienen dificultad pedirán apoyo al docente.  Los alumnos responden a las siguientes interrogantes: o ¿Qué es lo que se te solicitan? o ¿Qué observas en el tablero de maratón matemático? o ¿Crees que podrás desarrollarlo sin la necesidad de utilizar hoja y lápiz? o En cada tarjeta que se te solicite las consignas que estrategias utilizarías para su resolución. 4. ACTIVIDAD Nº 03: Aplican las estrategias resolviendo consignas:  En grupo van resolviendo las consignas de acuerdo al tablero matemático, y resolviendo en sus cuadernos las consignas de las tarjetas y los demás alumnos también resuelven en sus cuadernos, para ir verificando las respuestas del que está resolviendo según consigna.  En caso existe algún inconveniente en la resolución de alguna situación problemática de las consignas, el docente refuerza los conocimientos matemáticos de cada uno de los alumnos.
  • 20. TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[ PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA” Profesor Juan Portal Pizarro Página 20  El profesor permite que los niños descubran que este tipo de problemas tiene varias respuestas. Selecciona dos o más respuestas y abre el espacio para que los niños expliquen cómo lo hicieron. a) ¿Qué estrategia usaron los niños para descubrir la respuesta de cada tarjeta? b) ¿Existirán varias formas de realizar la consigna para cada tarjeta? c) Los niños escriben en una tabla sus respuestas. d) Podrían usar fórmulas para resolver algunas consignas? ¿Qué fórmulas? MARATÓNMATEMÁTICO INSTRUCCIONES: 1.Losparticipanteslanzanlosdadosporturnosyeljugadorquesacaelmásaltopuntajeiniciaeljuego 2.Cuandolafichadeljugadorcaeenuncasillerodecolorextraeunatarjetadelcolordelcasilleroy resuelvelaconsignamatemática,paralocualtienenuntiempolimitadoconsensuadocontodoslos participantes.Denorealizarlaoperaciónoequivocarsecumplirloquelatarjetaordena. 3.Cuandolafichadeljugadorcaeneencasilleroconalgunaindicaciónrealizaloquemandaelcasillero 4.Ganaeljugadorquellegaprimeroalameta 12345789 11 131415161817202122 24 2627282930323334 35 37 36 38394041424445 6 46 48 50 AVANZAHASTA DONDE INDICA LAFLECHA AVANZAHASTA DONDE INDICA LAFLECHA RETROCEDE HASTADONDE INDICA LAFLECHA PIERDE UN TURNO LANZADE NUEVOLOS DADOS REGRESA AL CASILLERO32 REGRESA AL CASILLERO20 AVANZAAL CASILLERO N°39 PARTIDA
  • 21. TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[ PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA” Profesor Juan Portal Pizarro Página 21 Hoy se demanda que la matemática se vuelva una práctica social. Por eso se necesita promover espacios donde se propicie el acercamiento a aspectos de la realidad en diversos contextos. Esto supone diseñar un conjunto de actividades para indagar y resolver una situación problemática real, con implicancias sociales, económicas, productivas y científicas 5. ACTIVIDAD Nº 04: Reflexión sobre las actividades.  El docente propicia que los niños comprueben sus respuestas, mediante la relectura del problema, verificando que cumplan cada una de las condiciones.  Para ello, les podemos preguntar: ¿Cómo estás seguro de tu respuesta? Si alguno de los niños no puede responder, el profesor lo alienta o propone a otro compañero para que lo ayude a resolver y explicar el desarrollo de la consigna.  Finalmente, propone a los niños que creen otro juego para resolver problemas geométricos. El docente propone la resolución de problemas de los textos del MED del área de matemática. III. Proyecto matemático SUGERENCIAS DE ALGUNAS ACTIVIDADES PARA DESARROLLAR EN LOS ESCENARIOS DE APRENDIZAJE DE ACUERDO A LA PLANIFICACIÓN DE SU GRADO CARRERAS CON COMPRAS Materiales:  Un juego de billetes y monedas  Juegan 2 alumnos Indicador: Usa diversas estrategias de cálculo escrito y mental, para resolver situaciones problemáticas, aditivas y multiplicativas de doble, mitad triple, tercia, cuádruple con números naturales de hasta tres cifras. Instrucciones: 1. Dos jugadores A y B compiten en una carrera para llegar primero a la meta. 2. Inicialmente la carrera es a pie, pero en el camino pueden decidir comprar vehículos. Para avanzar, en cada turno cada jugador lanza una moneda. Si sale cara avanza un casillero y si sale sello avanza dos casilleros. 3. Cada jugador parte con 39 soles repartidos en: • 3 billetes de a 10 soles, • 1 moneda de 5 soles y • 4 de a 1 sol. 4. En diferentes lugares se puede pasar a comprar un vehículo (simbólicamente).
  • 22. TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[ PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA” Profesor Juan Portal Pizarro Página 22 • La bicicleta cuesta 6 soles, • La motoneta cuesta 14 soles, • La moto cuesta 20 soles, • El auto cuesta 26 soles y • El súper auto cuesta auto 30 soles. 5. Si un jugador compra un vehículo, éste ya no puede ser comprado por otros a menos que en algún momento el jugador decida venderlo y lo deje entonces en una de las estaciones de venta. El jugador con un vehículo lo puede vender para cambiarlo por otro mejor. En ese caso, el precio a que vende su vehículo es la mitad de lo que pagó por él. 6. Por otra parte: • Una bicicleta avanza el doble más rápido que a pie, • La motoneta es tres veces más rápida que a pie, • La moto es cuatro veces más rápido que a pie, • El auto es cinco veces más rápido que a pie y • El súper auto seis veces más rápido que a pie. Así por ejemplo, si se está en una bicicleta y la moneda sale cara entonces avanza 2 casilleros y si sale sello avanza 4 casilleros.
  • 23. TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[ PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA” Profesor Juan Portal Pizarro Página 23 ACTIVIDADES CON POLIMINÓS Materiales:  Cuadraditos de cartulina de 3 x 3 cm  Juegan todos los alumnos del aula Indicador: Expresa y representa con material concreto problemas de contexto cotidiano Descripción y uso del material. Jugar con poliominós es como jugar con rompecabezas o puzzles componiendo diversas figuras. Este juego puede convertirse en una fuente de problemas de ingenio con gran sabor matemático. Algunos de ellos rápidos de resolver y otros tan complejos qua hasta el día de hoy no se les ha encontrado la respuesta. Manipulando y descubriendo los poliominós. Con la finalidad de que los alumnos se familiaricen con los pentaminós, la siguiente actividad se trata de manipulación y descubrimiento del material A los alumnos se les pedirá que construyan con seis cuadraditos todos los hexaminós que crean existen, en primer lugar lo forman y lo dibujan en una hoja así, evitan repeticiones. UNIMINÓS Formados por un solo cuadrado. Sólo existe 1 DOMINÓS Formados por dos cuadrados. TRIMINÓS Formados por tres cuadrados. TETRAMINÓS Formados por cuatro cuadrados. PENTAMINÓS Formados por cinco cuadrados. HEXAMINÓS Formados por seis cuadrados.
  • 24. TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[ PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA” Profesor Juan Portal Pizarro Página 24 A continuación les presento los 35 hexaminós que existen. 1 2 3 54 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
  • 25. TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[ PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA” Profesor Juan Portal Pizarro Página 25 Los hexaminós “A” y “B” que aparecen en la figura tienen sus cuadrados sombreados alternativamente como en el tablero de ajedrez: El hexaminó “A” presenta tres cuadrados negros y tres cuadrados blancos, mientras que el “B” tiene cuatro negros y dos blancos. Por este motivo, diremos que “A” es un hexaminó IMPAR y “B” es PAR. Actividades con poliominós  Con tus alumnos sombrea y encuentra hexaminós PARES e IMPARES de los 35 que existen.  A los alumnos pedirles que realice la actividad anterior para todos los triminós, tatraminós y pentaminós que existen.  Los alumnos, utilizando sus cuadritos de construcción de poliominós y una hoja cuadriculada deberán construir y dibujar todos los posibles tetraminós y pentaminós. ¿cuántos encontrará? Para ayudarte, a continuación te presento los doce pentaminós que existen.  Intenta formar o cubrir con los doce pentaminós cada uno de los siguientes rectángulos. A B 20 x 3 15 x 4 10 x 5 6 x 10 Observa que el área de cada uno de estos rectángulos es de 60 cuadraditos, ¿por qué es así?
  • 26. TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[ PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA” Profesor Juan Portal Pizarro Página 26 FIGURAS MÁGICAS Cotidianamente, encontramos este tipo de juegos, que consiste en completar algunas operaciones, dados algunas figuras y cuyo resultado es el mismo, a los alumnos les ayudará a encontrar patrones de formación a través del ensayo y error. Encuentra la posición de los números mencionados y sin repetir, para que las sumas dadas se cumplan. 5.- Utiliza los números del 1 al 6 12 =12 12 7.- Utiliza los números del 1 al 7 14 14= 14 4.- Utiliza los números del 1 al 6 9 9= 9 1.- Utiliza los números del 1 al 5 = 8 8= 2.- Utiliza los números del 1 al 5 = 10 10= 3.- Utiliza los números del 1 al 5 = 9 9= 6.- Utiliza los números del 1 al 7 12 12= 12 8.- Utiliza los números del 1 al 8 15= 15 = 15 = 15
  • 27. TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[ PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA” Profesor Juan Portal Pizarro Página 27 LA EVALUACIÓN EN UN ENFOQUE POR COMPETENCIAS La evaluación de los aprendizajes demanda asumir una práctica evaluativa desde una perspectiva integral y coherente con el enfoque por competencias, además de desarrollar una cultura evaluativa en la escuela y el aula que recupere su sentido formativo. En la medida en que se asuma que su finalidad no tiene por qué enfocarse solamente en verificar resultados o calificar, la misma evaluación puede y debería servir para que el estudiante siga aprendiendo. ¿Qué entendemos por evaluación en un enfoque por competencias? La evaluación es una herramienta pedagógica que forma parte intrínseca de los procesos de enseñanza y aprendizaje, que nos permite valorar los procesos y los resultados alcanzados por los estudiantes en términos de aprendizajes, para orientar la toma de decisiones que posibiliten el mejoramiento continuo. Por lo tanto, la evaluación aporta información cuyo uso es relevante para saber qué y cómo mejorar los aprendizajes, en tanto consideremos que la evaluación permite: a) Revisar las fortalezas y debilidades, a fin de mejorar la calidad de las acciones de enseñanza, en beneficio de los aprendizajes de los estudiantes. b) Tomar decisiones sobre la calificación y la promoción de los alumnos. c) Informar a los estudiantes o a sus familias sobre su desempeño en la escuela. Asimismo, pensar la evaluación como parte del proceso de enseñanza-aprendizaje, implica:  Usar criterios preestablecidos para evaluar a los estudiantes, elaborados por los mismos profesores.  Diseñar situaciones e instrumentos de evaluación, que se caractericen por su variedad y calidad.  Invertir más tiempo en la retroalimentación, es decir, en ofrecer al estudiante información descriptiva para que mejore sus aprendizajes. ¿Qué significa evaluar los aprendizajes desde un enfoque por competencias? Para evaluar los desempeños de los estudiantes, en coherencia con el planteamiento curricular de las “Rutas del aprendizaje”, debemos reconocer que las metas de aprendizaje están orientadas la adquisición y desarrollo de competencias matemáticas, que se expresan, a su vez, en un conjunto de indicadores. Es necesario comprender el sentido y las implicancias que tienen las competencias en términos evaluativos, asumiendo que la competencia la definimos como un saber actuar de manera integral y pertinente en un contexto particular, en función de un objetivo o de la solución de un problema, en la cual se desarrolla, selecciona y moviliza una diversidad de saberes (saber ser, saber hacer, saber conocer) aprendidos en la escuela, demostrando idoneidad en el actuar. A continuación, presentamos como ejemplo la competencia del dominio número y operaciones: Evaluación no es equivalente a calificación; pero tampoco existe evaluación sin calificación. Resuelve situaciones problemáticas de contexto real y matemático que implican la construcción del significado y uso de los números y sus operaciones, empleando diversas estrategias de solución, justificando y valorando sus procedimientos y resultados.
  • 28. TALLER DE INTERAPRENDIZAJE: “ESTRATEGIAS CREATIVAS[ PARA LA ENSEÑANZA DE LA MATEMÁTICA Y SU EVALUACIÓN”] I.E. “SANTA TERESITA” Profesor Juan Portal Pizarro Página 28 La pregunta que ayudaría al docente a comprender el sentido de la evaluación de esta competencia sería: ¿Cuándo puedo decir que un estudiante es competente en resolver situaciones problemáticas? En este caso, cuando evidencia un desempeño o actuación integral y pertinente, en la medida en que resuelve situaciones problemáticas, para lo cual desarrolla, selecciona y moviliza: actitudes (querer abordar los problemas aplicando sus saberes matemáticos y demostrar responsabilidad), conocimientos (saberes sobre los números y operaciones) y capacidades (saber cómo representar, elaborar, utilizar, argumentar y comunicar las situaciones problemáticas de la vida real). Observando esta situación, se puede decir que evaluar los aprendizajes, en términos de competencias, significa identificar los logros y aspectos por mejorar en la actuación de las personas respecto a la resolución de problemas del contexto. Implica tener en cuenta los criterios e indicadores de una determinada competencia y brindar retroalimentación oportuna de carácter descriptivo, más allá de poner un calificativo a los estudiantes. La enseñanza de la matemática se debe considerar como una pasión y de esta manera estar innovando estrategias para hacer de nuestros alumnos competentes matemáticamente