SlideShare una empresa de Scribd logo
1 de 14
Descargar para leer sin conexión
Integrantes:
José Ángel Rojo
Emmanuel Suarez
Suma de Expresiones Algebraicas
• Es cuando dos o más valores se añaden entre sí. Pueden ser expresiones algebraicas o
números, y darán un resultado que dependerá de sus signos. En la suma algebraica se
cumple que los términos se agregan entre sí tal cual, respetando los signos.
Requisitos para realizar la operación:
• Los términos tienen que ser semejantes. Es decir, contener las mismas literales (xy, 2xy,
2xy, 4xy).
• Los términos semejantes se agrupan para más facilidad.
• La suma se indica poniendo un signo “más” (+) entre los términos (xy + 2xy + 4xy).
• Si un término tiene signo negativo, se encierra en un paréntesis. El paréntesis se
acompañará con el signo + de la operación [xy + (–2xy) + (–4xy)].
• Respetados los signos según las Leyes de los Signos, los términos semejantes se agregan
(xy – 2xy – 4xy = 1 – 6xy = –5xy).
• Si los términos no son semejantes, la suma se queda sólo señalada (xy + 2m – 4h).
• Ejemplo 1: wx2y + 3x2 + (–7wx2y) + 4x2 =
• Se agrupan los términos semejantes: wx2y + (–7wx2y) + 3x2 + 4x2
• Se respetan signos negativos: wx2y – 7wx2y + 3x2 + 4x2
• Resultado: – 6wx2y + 7x
Ejemplo 2: a2 + (-3a2) + b + (-8a2) =
• Se agrupan los términos semejantes: a2 + (-3a2) + (-8a2) + b
• Se respetan signos negativos: a2 – 3a2 – 8a2 + b
• Resultado: –10a2 + b
Resta de Expresiones Algebraicas
• Es cuando dos valores se añaden entre sí por medio de un signo menos (–). Este
va a afectar al término siguiente, modificando su signo. Si el término es positivo,
el signo lo vuelve negativo. Y viceversa. Este cambio de signo va de acuerdo con
las Leyes de los Signos.
Requisitos para realizar la operación:
• os términos deben ser semejantes. Es decir, contener las mismas literales
y exponentes como 3x2yz, x2yz, 4x2yz.
• Se tiene que poner el signo (–) entre los términos que se van a restar [4x2yz –
3x2yz].
• Si el siguiente término tiene signo negativo, se señalará [3x2yz – (–x2yz)] y se
afectará con él [3x2yz + x2yz].
• Si los términos no son semejantes, sólo se señala la operación después
de afectar el signo del término que le sigue [3x2yz – xyz3]. No se acumulan, por
lo que no hay resta qué realizar.
Ejemplo 1: 5fg – (– 4fg)
= 5fg + 4fg
= 9fg
Son términos semejantes, pues tienen las literales fg.
• El signo – afecta al número negativo y cambia su signo:– (– 4fg) = + 4fg.
• Se acumulan los coeficientes (5 + 4 = 9).
Ejemplo 2: xyz – (– 5xyz)
= –xyz + 5xyz
= 4xyz
Son términos semejantes, pues tienen las literales xyz.
• El signo – afecta al número negativo y cambia su signo: – (– 5xyz) = + 5xyz.
• Se acumulan los coeficientes (–1 + 5 = 4).
Valor Numérico de expresiones Algebraicas
Es el número que se obtiene al sustituir las letras de la expresión por números determinados y
determinados y realizar las operaciones correspondiente que se indican en tal expresión.
Requisitos para realizar la operación:
• 1. se resuelven las operaciones entre paréntesis.
• 2. potencias y radicales
• 3. multiplicaciones y divisiones
• 4. sumas y restas.
Ejemplo 1: Ejemplo 2:
cuando x=2. cuando x=10.
Sustituimos la expresión: Sustituimos la expresión:
• Multiplicación de Expresiones Algebraicas
• es igual que multiplicar números convencionales y, por tanto, las reglas que les
les aplicamos a estos se las aplicaremos también a las expresiones algebraicas.
algebraicas.
• En las expresiones algebraicas que contengan variables o paréntesis no hará
falta escribir el signo de la multiplicación.
• Ejemplo 1:
• 8×X=8X
• X×Y=XY
• 3×(5+6)=−3(5+6)
• 8×(X−5)=8(X−5)
• (5−a)×(3+4)=5−a(3+4)
• División de Expresiones Algebraicas
• En esta operación se vuelve aplicar la regla de los signos, en cuanto a los demás
elementos se aplican las siguientes reglas: se dividen los coeficientes, si esto es
es posible, en cuanto a las literales si hay alguna que este tanto en el numerador
numerador como en el denominador, si el exponente del numerador es el mayor se
mayor se pone la literal en el numerador y al exponente se le resta el exponente de
exponente de la literal del denominador, en caso contrario se pone la literal en el
en el denominador y a su exponente se le resta el del numerador.
• Ejemplo 1:
9x3y2 entre 3x2w
9x3y2 / 3x2w = 3xy2 / w
• Ejemplo 2:
• En esta operación se distribuye el polinomio sobre el monomio, como si fueran
fueran una fracción. Por ejemplo:
32x2+20x-12x3 entre 4xç
Se coloca el monomio como denominador en el polinomio:
32x2+20x-12x3 / 4x
e separa el polinomio en diferentes términos separados por el signo y cada uno
uno dividido por el monomio.
(32x2 / 4x) + (20x / 4x) - (12x3 / 4x)
Se realizan las divisiones correspondientes entre monomios
8x+5-3x2
• Producto Notable de Expresión Algebraica
• Son resultados de ciertas multiplicaciones indicadas que tienen una forma
determinada, las cuales se pueden recordar fácilmente sin necesidad de
efectuar la operación. Reciben también el nombre de Identidades Algebraicas.
Algebraicas.
• Para ello, debemos saber que, al igual que los números reales las expresiones
expresiones algebraicas se pueden expresar como potencia. De este modo, si el
si el exponente es un número natural, la potencia será una expresión algebraica
algebraica entera.
• Ejemplo 1:
• Desarrolle (x+10)2.
• Cuadrado del primer término: x2.
• Dos veces el primero por el segundo: 2(x)(10)=20x.
• Cuadrado del segundo término: 102=100.
• Factorización por Productos Notables
• s el nombre que reciben multiplicaciones con expresiones algebraicas cuyo
resultado se puede escribir mediante simple inspección, sin verificar la
multiplicación que cumplen ciertas reglas fijas. Su aplicación simplifica y
sistematiza la resolución de muchas multiplicaciones habituales.
• Cada producto notable corresponde a una fórmula de factorización. Por ejemplo, la
ejemplo, la factorización de una diferencia de cuadrado perfecto es un producto de
producto de dos binomios conjugados, y recíprocamente.
Factor Común:
• El resultado de multiplicar un binomio a+b por un término c se obtiene
aplicando la la propiedad distributiva:
Para esta operación existe una interpretación geométrica, ilustrada en la figura
adjunta. El área del rectángulo es
(el producto de la base por la altura), que también puede obtenerse
como la suma de las dos áreas coloreadas: ca y cb.
• Ejemplo 1:
• Para elevar un binomio al cuadrado (es decir, multiplicarlo por sí mismo), se
suman los cuadrados de cada término con el doble del producto de ellos. Así:
• Un trinomio de la expresión siguiente: se conoce como trinomio
cuadrado perfecto.
• Cuando el segundo término es negativo, la ecuación que se obtiene es:
• En ambos casos el signo del tercer término es siempre positivo
• Ejemplo 2:
• Simplificando:
• Producto de dos binomios con un término común.
• Bibliografía:
• 1) https://www.ejemplosde.com/5-matematicas/2212-
ejemplos_de_suma_algebraica.html
• 2) http://angelacostav.blogspot.com/p/valor-numerico-de-una-expresion.html
• 3) https://www.tutorela.es/matematicas/multiplicacion-de-expresiones-
algebraicas
• 4)http://cidecame.uaeh.edu.mx/lcc/mapa/PROYECTO/libro1/154_divisin_de
_expresiones_algebraicas.html
• 5) https://sites.google.com/site/lauracecyte26/unidad/productos-notables-y-
factorizacion
• 6) https://ciencias-basicas.com/matematica/elemental/operaciones-
algebraicas/productos-notables/

Más contenido relacionado

Similar a Suma resta producto notable expresiones algebraicas

Expresiones algebraicas
Expresiones algebraicasExpresiones algebraicas
Expresiones algebraicasAngel Sánchez
 
Expresiones algebraicas, factorizacion y radicacion
Expresiones algebraicas, factorizacion y radicacionExpresiones algebraicas, factorizacion y radicacion
Expresiones algebraicas, factorizacion y radicacionMaraAlvarado19
 
Unidad 1 - Expresiones Algebraicas - Factorización y Radicación.pptx
Unidad 1 -  Expresiones Algebraicas - Factorización y Radicación.pptxUnidad 1 -  Expresiones Algebraicas - Factorización y Radicación.pptx
Unidad 1 - Expresiones Algebraicas - Factorización y Radicación.pptxHeykerVargasFernande
 
presentación 29.851.439pptx
presentación 29.851.439pptxpresentación 29.851.439pptx
presentación 29.851.439pptxCarlosPerozo10
 
presentacion 31.028.256.pptx
presentacion 31.028.256.pptxpresentacion 31.028.256.pptx
presentacion 31.028.256.pptxRomangarcia58
 
presentacion 30.803.005.pptx
presentacion 30.803.005.pptxpresentacion 30.803.005.pptx
presentacion 30.803.005.pptxAgenteTPMv
 
ALGEBRA GERARDO GOMEZ PRESENTACION..pdf
ALGEBRA GERARDO GOMEZ PRESENTACION..pdfALGEBRA GERARDO GOMEZ PRESENTACION..pdf
ALGEBRA GERARDO GOMEZ PRESENTACION..pdfgerardogomes071
 
Expresiones algebraicas, Radicación y Factorizacion.pdf
Expresiones algebraicas, Radicación y Factorizacion.pdfExpresiones algebraicas, Radicación y Factorizacion.pdf
Expresiones algebraicas, Radicación y Factorizacion.pdfGabrielaYacobucci
 
Expresiones Algebraicas.pptx
Expresiones Algebraicas.pptxExpresiones Algebraicas.pptx
Expresiones Algebraicas.pptxluisurdanetalfur
 
Presentacion de Expresiones Algebraicas.pptx
Presentacion de Expresiones Algebraicas.pptxPresentacion de Expresiones Algebraicas.pptx
Presentacion de Expresiones Algebraicas.pptxMiguelsalasyajre
 
Presentacion de expresiones algebraicas por Carlos Vargas y Daniel Maestr.
Presentacion de expresiones algebraicas por Carlos Vargas y Daniel Maestr.Presentacion de expresiones algebraicas por Carlos Vargas y Daniel Maestr.
Presentacion de expresiones algebraicas por Carlos Vargas y Daniel Maestr.MauricioVargas169
 
Expresiones Algebraicas y Factorización Guille.pptx
Expresiones Algebraicas y Factorización Guille.pptxExpresiones Algebraicas y Factorización Guille.pptx
Expresiones Algebraicas y Factorización Guille.pptxGuillermoCastillo875754
 
Leonardo Peña: Expresiones algebraicas
Leonardo Peña: Expresiones algebraicas Leonardo Peña: Expresiones algebraicas
Leonardo Peña: Expresiones algebraicas leonardosamirpeachav
 
presentación de expresiones algebraicas.
presentación de expresiones algebraicas.presentación de expresiones algebraicas.
presentación de expresiones algebraicas.AdrinRodriguez21
 
Presentación hank. Anderson- Matematicas.pptx
Presentación hank. Anderson- Matematicas.pptxPresentación hank. Anderson- Matematicas.pptx
Presentación hank. Anderson- Matematicas.pptxAleximarjimenez1
 
Expresión algebraica
Expresión algebraicaExpresión algebraica
Expresión algebraicajujosansan
 

Similar a Suma resta producto notable expresiones algebraicas (20)

Expresiones algebraicas
Expresiones algebraicasExpresiones algebraicas
Expresiones algebraicas
 
Expresiones agebraicas
Expresiones agebraicasExpresiones agebraicas
Expresiones agebraicas
 
Expresiones algebraicas, factorizacion y radicacion
Expresiones algebraicas, factorizacion y radicacionExpresiones algebraicas, factorizacion y radicacion
Expresiones algebraicas, factorizacion y radicacion
 
Unidad 1 - Expresiones Algebraicas - Factorización y Radicación.pptx
Unidad 1 -  Expresiones Algebraicas - Factorización y Radicación.pptxUnidad 1 -  Expresiones Algebraicas - Factorización y Radicación.pptx
Unidad 1 - Expresiones Algebraicas - Factorización y Radicación.pptx
 
presentación 29.851.439pptx
presentación 29.851.439pptxpresentación 29.851.439pptx
presentación 29.851.439pptx
 
presentacion 31.028.256.pptx
presentacion 31.028.256.pptxpresentacion 31.028.256.pptx
presentacion 31.028.256.pptx
 
presentacion 30.803.005.pptx
presentacion 30.803.005.pptxpresentacion 30.803.005.pptx
presentacion 30.803.005.pptx
 
UNIDAD I.docx
UNIDAD I.docxUNIDAD I.docx
UNIDAD I.docx
 
ALGEBRA GERARDO GOMEZ PRESENTACION..pdf
ALGEBRA GERARDO GOMEZ PRESENTACION..pdfALGEBRA GERARDO GOMEZ PRESENTACION..pdf
ALGEBRA GERARDO GOMEZ PRESENTACION..pdf
 
EXPRESIONES ALGEBRAICAS
EXPRESIONES ALGEBRAICASEXPRESIONES ALGEBRAICAS
EXPRESIONES ALGEBRAICAS
 
Expresiones algebraicas, Radicación y Factorizacion.pdf
Expresiones algebraicas, Radicación y Factorizacion.pdfExpresiones algebraicas, Radicación y Factorizacion.pdf
Expresiones algebraicas, Radicación y Factorizacion.pdf
 
Expresiones Algebraicas.pptx
Expresiones Algebraicas.pptxExpresiones Algebraicas.pptx
Expresiones Algebraicas.pptx
 
Presentacion de Expresiones Algebraicas.pptx
Presentacion de Expresiones Algebraicas.pptxPresentacion de Expresiones Algebraicas.pptx
Presentacion de Expresiones Algebraicas.pptx
 
Expresiones algebraica
Expresiones algebraicaExpresiones algebraica
Expresiones algebraica
 
Presentacion de expresiones algebraicas por Carlos Vargas y Daniel Maestr.
Presentacion de expresiones algebraicas por Carlos Vargas y Daniel Maestr.Presentacion de expresiones algebraicas por Carlos Vargas y Daniel Maestr.
Presentacion de expresiones algebraicas por Carlos Vargas y Daniel Maestr.
 
Expresiones Algebraicas y Factorización Guille.pptx
Expresiones Algebraicas y Factorización Guille.pptxExpresiones Algebraicas y Factorización Guille.pptx
Expresiones Algebraicas y Factorización Guille.pptx
 
Leonardo Peña: Expresiones algebraicas
Leonardo Peña: Expresiones algebraicas Leonardo Peña: Expresiones algebraicas
Leonardo Peña: Expresiones algebraicas
 
presentación de expresiones algebraicas.
presentación de expresiones algebraicas.presentación de expresiones algebraicas.
presentación de expresiones algebraicas.
 
Presentación hank. Anderson- Matematicas.pptx
Presentación hank. Anderson- Matematicas.pptxPresentación hank. Anderson- Matematicas.pptx
Presentación hank. Anderson- Matematicas.pptx
 
Expresión algebraica
Expresión algebraicaExpresión algebraica
Expresión algebraica
 

Último

Presentación MF 1445 EVALUACION COMO Y QUE
Presentación MF 1445 EVALUACION COMO Y QUEPresentación MF 1445 EVALUACION COMO Y QUE
Presentación MF 1445 EVALUACION COMO Y QUEJosé Hecht
 
4° SEM23 ANEXOS DEL DOCENTE 2023-2024.pptx
4° SEM23 ANEXOS DEL DOCENTE 2023-2024.pptx4° SEM23 ANEXOS DEL DOCENTE 2023-2024.pptx
4° SEM23 ANEXOS DEL DOCENTE 2023-2024.pptxfotofamilia008
 
Presentacionde Prueba 2024 dsdasdasdsadsadsadsadasdasdsadsa
Presentacionde Prueba 2024 dsdasdasdsadsadsadsadasdasdsadsaPresentacionde Prueba 2024 dsdasdasdsadsadsadsadasdasdsadsa
Presentacionde Prueba 2024 dsdasdasdsadsadsadsadasdasdsadsaFarid Abud
 
BOCA Y NARIZ (2).pdf....................
BOCA Y NARIZ (2).pdf....................BOCA Y NARIZ (2).pdf....................
BOCA Y NARIZ (2).pdf....................ScarletMedina4
 
Docencia en la Era de la Inteligencia Artificial UB4 Ccesa007.pdf
Docencia en la Era de la Inteligencia Artificial UB4  Ccesa007.pdfDocencia en la Era de la Inteligencia Artificial UB4  Ccesa007.pdf
Docencia en la Era de la Inteligencia Artificial UB4 Ccesa007.pdfDemetrio Ccesa Rayme
 
Biografía del General Eloy Alfaro Delgado
Biografía del General Eloy Alfaro DelgadoBiografía del General Eloy Alfaro Delgado
Biografía del General Eloy Alfaro DelgadoJosé Luis Palma
 
Presentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptxPresentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptxRosabel UA
 
Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...
Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...
Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...Carol Andrea Eraso Guerrero
 
4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...
4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...
4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...MagalyDacostaPea
 
LOS AMBIENTALISTAS todo por un mundo mejor
LOS AMBIENTALISTAS todo por un mundo mejorLOS AMBIENTALISTAS todo por un mundo mejor
LOS AMBIENTALISTAS todo por un mundo mejormrcrmnrojasgarcia
 
Programa sintetico fase 2 - Preescolar.pdf
Programa sintetico fase 2 - Preescolar.pdfPrograma sintetico fase 2 - Preescolar.pdf
Programa sintetico fase 2 - Preescolar.pdfHannyDenissePinedaOr
 
HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).
HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).
HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).hebegris04
 
Buenas Practicas de Manufactura para Industria Farmaceutica
Buenas Practicas de Manufactura para Industria FarmaceuticaBuenas Practicas de Manufactura para Industria Farmaceutica
Buenas Practicas de Manufactura para Industria FarmaceuticaMarco Camacho
 
Apunte de clase Pisos y Revestimientos 2
Apunte de clase Pisos y Revestimientos 2Apunte de clase Pisos y Revestimientos 2
Apunte de clase Pisos y Revestimientos 2Gonella
 
Campaña Verano 2024 en Bergara - Colonias 2024
Campaña Verano 2024 en Bergara - Colonias 2024Campaña Verano 2024 en Bergara - Colonias 2024
Campaña Verano 2024 en Bergara - Colonias 2024Bergarako Udala
 
Filosofía del gobierno del general Alfaro
Filosofía del gobierno del general AlfaroFilosofía del gobierno del general Alfaro
Filosofía del gobierno del general AlfaroJosé Luis Palma
 
Cuadernillo de actividades eclipse solar.pdf
Cuadernillo de actividades eclipse solar.pdfCuadernillo de actividades eclipse solar.pdf
Cuadernillo de actividades eclipse solar.pdflizcortes48
 
Libro Ecuador Realidad Nacional ECUADOR.
Libro Ecuador Realidad Nacional ECUADOR.Libro Ecuador Realidad Nacional ECUADOR.
Libro Ecuador Realidad Nacional ECUADOR.Edith Liccioni
 
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdfMEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdfJosé Hecht
 

Último (20)

Presentación MF 1445 EVALUACION COMO Y QUE
Presentación MF 1445 EVALUACION COMO Y QUEPresentación MF 1445 EVALUACION COMO Y QUE
Presentación MF 1445 EVALUACION COMO Y QUE
 
4° SEM23 ANEXOS DEL DOCENTE 2023-2024.pptx
4° SEM23 ANEXOS DEL DOCENTE 2023-2024.pptx4° SEM23 ANEXOS DEL DOCENTE 2023-2024.pptx
4° SEM23 ANEXOS DEL DOCENTE 2023-2024.pptx
 
Presentacionde Prueba 2024 dsdasdasdsadsadsadsadasdasdsadsa
Presentacionde Prueba 2024 dsdasdasdsadsadsadsadasdasdsadsaPresentacionde Prueba 2024 dsdasdasdsadsadsadsadasdasdsadsa
Presentacionde Prueba 2024 dsdasdasdsadsadsadsadasdasdsadsa
 
BOCA Y NARIZ (2).pdf....................
BOCA Y NARIZ (2).pdf....................BOCA Y NARIZ (2).pdf....................
BOCA Y NARIZ (2).pdf....................
 
Docencia en la Era de la Inteligencia Artificial UB4 Ccesa007.pdf
Docencia en la Era de la Inteligencia Artificial UB4  Ccesa007.pdfDocencia en la Era de la Inteligencia Artificial UB4  Ccesa007.pdf
Docencia en la Era de la Inteligencia Artificial UB4 Ccesa007.pdf
 
Biografía del General Eloy Alfaro Delgado
Biografía del General Eloy Alfaro DelgadoBiografía del General Eloy Alfaro Delgado
Biografía del General Eloy Alfaro Delgado
 
Sesión ¿Amor o egoísmo? Esa es la cuestión
Sesión  ¿Amor o egoísmo? Esa es la cuestiónSesión  ¿Amor o egoísmo? Esa es la cuestión
Sesión ¿Amor o egoísmo? Esa es la cuestión
 
Presentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptxPresentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptx
 
Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...
Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...
Desarrollo de habilidades del siglo XXI - Práctica Educativa en una Unidad-Ca...
 
4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...
4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...
4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...
 
LOS AMBIENTALISTAS todo por un mundo mejor
LOS AMBIENTALISTAS todo por un mundo mejorLOS AMBIENTALISTAS todo por un mundo mejor
LOS AMBIENTALISTAS todo por un mundo mejor
 
Programa sintetico fase 2 - Preescolar.pdf
Programa sintetico fase 2 - Preescolar.pdfPrograma sintetico fase 2 - Preescolar.pdf
Programa sintetico fase 2 - Preescolar.pdf
 
HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).
HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).
HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).
 
Buenas Practicas de Manufactura para Industria Farmaceutica
Buenas Practicas de Manufactura para Industria FarmaceuticaBuenas Practicas de Manufactura para Industria Farmaceutica
Buenas Practicas de Manufactura para Industria Farmaceutica
 
Apunte de clase Pisos y Revestimientos 2
Apunte de clase Pisos y Revestimientos 2Apunte de clase Pisos y Revestimientos 2
Apunte de clase Pisos y Revestimientos 2
 
Campaña Verano 2024 en Bergara - Colonias 2024
Campaña Verano 2024 en Bergara - Colonias 2024Campaña Verano 2024 en Bergara - Colonias 2024
Campaña Verano 2024 en Bergara - Colonias 2024
 
Filosofía del gobierno del general Alfaro
Filosofía del gobierno del general AlfaroFilosofía del gobierno del general Alfaro
Filosofía del gobierno del general Alfaro
 
Cuadernillo de actividades eclipse solar.pdf
Cuadernillo de actividades eclipse solar.pdfCuadernillo de actividades eclipse solar.pdf
Cuadernillo de actividades eclipse solar.pdf
 
Libro Ecuador Realidad Nacional ECUADOR.
Libro Ecuador Realidad Nacional ECUADOR.Libro Ecuador Realidad Nacional ECUADOR.
Libro Ecuador Realidad Nacional ECUADOR.
 
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdfMEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
 

Suma resta producto notable expresiones algebraicas

  • 2. Suma de Expresiones Algebraicas • Es cuando dos o más valores se añaden entre sí. Pueden ser expresiones algebraicas o números, y darán un resultado que dependerá de sus signos. En la suma algebraica se cumple que los términos se agregan entre sí tal cual, respetando los signos. Requisitos para realizar la operación: • Los términos tienen que ser semejantes. Es decir, contener las mismas literales (xy, 2xy, 2xy, 4xy). • Los términos semejantes se agrupan para más facilidad. • La suma se indica poniendo un signo “más” (+) entre los términos (xy + 2xy + 4xy). • Si un término tiene signo negativo, se encierra en un paréntesis. El paréntesis se acompañará con el signo + de la operación [xy + (–2xy) + (–4xy)]. • Respetados los signos según las Leyes de los Signos, los términos semejantes se agregan (xy – 2xy – 4xy = 1 – 6xy = –5xy). • Si los términos no son semejantes, la suma se queda sólo señalada (xy + 2m – 4h).
  • 3. • Ejemplo 1: wx2y + 3x2 + (–7wx2y) + 4x2 = • Se agrupan los términos semejantes: wx2y + (–7wx2y) + 3x2 + 4x2 • Se respetan signos negativos: wx2y – 7wx2y + 3x2 + 4x2 • Resultado: – 6wx2y + 7x Ejemplo 2: a2 + (-3a2) + b + (-8a2) = • Se agrupan los términos semejantes: a2 + (-3a2) + (-8a2) + b • Se respetan signos negativos: a2 – 3a2 – 8a2 + b • Resultado: –10a2 + b
  • 4. Resta de Expresiones Algebraicas • Es cuando dos valores se añaden entre sí por medio de un signo menos (–). Este va a afectar al término siguiente, modificando su signo. Si el término es positivo, el signo lo vuelve negativo. Y viceversa. Este cambio de signo va de acuerdo con las Leyes de los Signos. Requisitos para realizar la operación: • os términos deben ser semejantes. Es decir, contener las mismas literales y exponentes como 3x2yz, x2yz, 4x2yz. • Se tiene que poner el signo (–) entre los términos que se van a restar [4x2yz – 3x2yz]. • Si el siguiente término tiene signo negativo, se señalará [3x2yz – (–x2yz)] y se afectará con él [3x2yz + x2yz]. • Si los términos no son semejantes, sólo se señala la operación después de afectar el signo del término que le sigue [3x2yz – xyz3]. No se acumulan, por lo que no hay resta qué realizar.
  • 5. Ejemplo 1: 5fg – (– 4fg) = 5fg + 4fg = 9fg Son términos semejantes, pues tienen las literales fg. • El signo – afecta al número negativo y cambia su signo:– (– 4fg) = + 4fg. • Se acumulan los coeficientes (5 + 4 = 9). Ejemplo 2: xyz – (– 5xyz) = –xyz + 5xyz = 4xyz Son términos semejantes, pues tienen las literales xyz. • El signo – afecta al número negativo y cambia su signo: – (– 5xyz) = + 5xyz. • Se acumulan los coeficientes (–1 + 5 = 4).
  • 6. Valor Numérico de expresiones Algebraicas Es el número que se obtiene al sustituir las letras de la expresión por números determinados y determinados y realizar las operaciones correspondiente que se indican en tal expresión. Requisitos para realizar la operación: • 1. se resuelven las operaciones entre paréntesis. • 2. potencias y radicales • 3. multiplicaciones y divisiones • 4. sumas y restas. Ejemplo 1: Ejemplo 2: cuando x=2. cuando x=10. Sustituimos la expresión: Sustituimos la expresión:
  • 7. • Multiplicación de Expresiones Algebraicas • es igual que multiplicar números convencionales y, por tanto, las reglas que les les aplicamos a estos se las aplicaremos también a las expresiones algebraicas. algebraicas. • En las expresiones algebraicas que contengan variables o paréntesis no hará falta escribir el signo de la multiplicación. • Ejemplo 1: • 8×X=8X • X×Y=XY • 3×(5+6)=−3(5+6) • 8×(X−5)=8(X−5) • (5−a)×(3+4)=5−a(3+4)
  • 8. • División de Expresiones Algebraicas • En esta operación se vuelve aplicar la regla de los signos, en cuanto a los demás elementos se aplican las siguientes reglas: se dividen los coeficientes, si esto es es posible, en cuanto a las literales si hay alguna que este tanto en el numerador numerador como en el denominador, si el exponente del numerador es el mayor se mayor se pone la literal en el numerador y al exponente se le resta el exponente de exponente de la literal del denominador, en caso contrario se pone la literal en el en el denominador y a su exponente se le resta el del numerador. • Ejemplo 1: 9x3y2 entre 3x2w 9x3y2 / 3x2w = 3xy2 / w
  • 9. • Ejemplo 2: • En esta operación se distribuye el polinomio sobre el monomio, como si fueran fueran una fracción. Por ejemplo: 32x2+20x-12x3 entre 4xç Se coloca el monomio como denominador en el polinomio: 32x2+20x-12x3 / 4x e separa el polinomio en diferentes términos separados por el signo y cada uno uno dividido por el monomio. (32x2 / 4x) + (20x / 4x) - (12x3 / 4x) Se realizan las divisiones correspondientes entre monomios 8x+5-3x2
  • 10. • Producto Notable de Expresión Algebraica • Son resultados de ciertas multiplicaciones indicadas que tienen una forma determinada, las cuales se pueden recordar fácilmente sin necesidad de efectuar la operación. Reciben también el nombre de Identidades Algebraicas. Algebraicas. • Para ello, debemos saber que, al igual que los números reales las expresiones expresiones algebraicas se pueden expresar como potencia. De este modo, si el si el exponente es un número natural, la potencia será una expresión algebraica algebraica entera. • Ejemplo 1: • Desarrolle (x+10)2. • Cuadrado del primer término: x2. • Dos veces el primero por el segundo: 2(x)(10)=20x. • Cuadrado del segundo término: 102=100.
  • 11. • Factorización por Productos Notables • s el nombre que reciben multiplicaciones con expresiones algebraicas cuyo resultado se puede escribir mediante simple inspección, sin verificar la multiplicación que cumplen ciertas reglas fijas. Su aplicación simplifica y sistematiza la resolución de muchas multiplicaciones habituales. • Cada producto notable corresponde a una fórmula de factorización. Por ejemplo, la ejemplo, la factorización de una diferencia de cuadrado perfecto es un producto de producto de dos binomios conjugados, y recíprocamente. Factor Común:
  • 12. • El resultado de multiplicar un binomio a+b por un término c se obtiene aplicando la la propiedad distributiva: Para esta operación existe una interpretación geométrica, ilustrada en la figura adjunta. El área del rectángulo es (el producto de la base por la altura), que también puede obtenerse como la suma de las dos áreas coloreadas: ca y cb. • Ejemplo 1: • Para elevar un binomio al cuadrado (es decir, multiplicarlo por sí mismo), se suman los cuadrados de cada término con el doble del producto de ellos. Así:
  • 13. • Un trinomio de la expresión siguiente: se conoce como trinomio cuadrado perfecto. • Cuando el segundo término es negativo, la ecuación que se obtiene es: • En ambos casos el signo del tercer término es siempre positivo • Ejemplo 2: • Simplificando: • Producto de dos binomios con un término común.
  • 14. • Bibliografía: • 1) https://www.ejemplosde.com/5-matematicas/2212- ejemplos_de_suma_algebraica.html • 2) http://angelacostav.blogspot.com/p/valor-numerico-de-una-expresion.html • 3) https://www.tutorela.es/matematicas/multiplicacion-de-expresiones- algebraicas • 4)http://cidecame.uaeh.edu.mx/lcc/mapa/PROYECTO/libro1/154_divisin_de _expresiones_algebraicas.html • 5) https://sites.google.com/site/lauracecyte26/unidad/productos-notables-y- factorizacion • 6) https://ciencias-basicas.com/matematica/elemental/operaciones- algebraicas/productos-notables/