SlideShare una empresa de Scribd logo
SERVICIO NACIONAL DE APRENDIZAJE SENA
SISTEMA INTEGRADO DE GESTIÓN
Procedimiento Ejecución de la Formación Profesional Integral
GUÍA DE APRENDIZAJE
Versión: 02
Fecha: 30/09/2013
Código: F004-P006-
GFPI
Página 1 de 13
Programa de Formación:
ANÁLISIS Y DESARROLLO DE
SISTEMAS DE INFORMACIÓN
Código:
Versión:
228106
V101
Nombre del Proyecto:
IMPLANTAR SISTEMAS DE
INFORMACIÓN CON
INSTRUMENTACIÓN VIRTUAL,
ROBÓTICA Y DOMÓTICA.
Código: 375959
Fase del proyecto:
Actividad (es) del Proyecto:
APLICAR LOS FUNDAMENTOS
DE PROGRAMACIÓN
Actividad (es) de
Aprendizaje:
Aplicar los
fundamentos en
lógica matemática
Ambiente de
formación:
CENIGRAF
CALLE 69
AMBIENTE 202
MATERIALES DE
FORMACIÓN
DEVOLUTIVO
Computador
Internet
Tablero
Televisor
CONSUMIBLE
N/A
Resultados de Aprendizaje:
436542 - REPRESENTA EL
BOSQUEJO DE LA SOLUCIÓN
AL PROBLEMA PRESENTADO
POR ELCLIENTE, MEDIANTE
LA ELABORACIÓN DE
DIAGRAMAS DE CASOS DE
USO, APOYADOEN EL
ANÁLISIS DEL INFORME DE
REQUERIMIENTOS, AL
CONFRONTAR LA SITUACIÓN
PROBLEMICA CON EL
USUARIO SEGÚN NORMAS Y
PROTOCOLOS DE LA
ORGANIZACIÓN
Competencia:
220501032 -
ANALIZAR LOS
REQUISITOS DEL
CLIENTE PARA
CONSTRUIR EL
SISTEMA DE
INFORMACION.
Duración de la guía ( en
horas): 8 horas
GUÍA DE APRENDIZAJE Nº 001
1. IDENTIFICACIÓN DE LA GUIA DE APRENDIZAJE
SERVICIO NACIONAL DE APRENDIZAJE SENA
GUÍA DE APRENDIZAJE
SISTEMA INTEGRADO DE GESTIÓN
Proceso Gestión de la Formación Profesional Integral
Procedimiento Ejecución de la Formación Profesional Integral
Versión: 02
Fecha: 30/09/2013
Código: F004-P006-GFPI
Página 2 de 13
El ingenio de la persona que crea programas radica en modelar los problemas de la vida cotidiana en
simples sumas y decisiones, ya que la computadora por muy mágica que la veas, solo es una máquina que
sabe contar muy bien y puede decir si un elemento es diferente o igual a otro.
Además de ejercitar la mente, la idea que aprendas matemáticas es para que cuando veas la esencia de las
cosas una vez que se modelan para la computadora puedas entender; y una vez que entiendas, puedas
crear, modificar y/o mejorar algo.
3.1 Actividades de Reflexión inicial.
1. NUMEROS ENTEROS
Resta con negativos. La resta de dos números naturales no es un número natural cuando el sustraendo es
mayor que el minuendo, sino que su valor es negativo: en la imagen, sólo pueden sustraerse 3 plátanos,
por lo que se apunta un plátano «debido» o «negativo» (en rojo).
Los números enteros son un conjunto de números que incluye a los números naturales distintos de cero
(1, 2, 3, ...), los negativos de los números naturales (..., −3, −2, −1) y al 0. Los enteros negativos, como −1 o
−3 (se leen «menos uno», «menos tres», etc.), son menores que todos los enteros positivos (1, 2, ...) y que
el cero. Para resaltar la diferencia entre positivos y negativos, a veces también se escribe un signo «más»
delante de los positivos: +1, +5, etc. Cuando no se le escribe signo al número se asume que es positivo. El
2. INTRODUCCIÓN
3. ESTRUCTURACION DIDACTICA DE LAS ACTIVIDADES DE APRENDIZAJE
SERVICIO NACIONAL DE APRENDIZAJE SENA
GUÍA DE APRENDIZAJE
SISTEMA INTEGRADO DE GESTIÓN
Proceso Gestión de la Formación Profesional Integral
Procedimiento Ejecución de la Formación Profesional Integral
Versión: 02
Fecha: 30/09/2013
Código: F004-P006-GFPI
Página 3 de 13
conjunto de todos los números enteros se representa por la letra = {..., −3, −2, −1, 0, +1, +2, +3, ...}, que
proviene del alemán Zahlen («números», pronunciado [ˈtsaːlən]).
Los números enteros no tienen parte decimal.
 −783 y 154 son números enteros
 45,23 y −34/95 no son números enteros
Al igual que los números naturales, los números enteros pueden sumarse, restarse, multiplicarse y
dividirse, de forma similar a los primeros. Sin embargo, en el caso de los enteros es necesario calcular
también el signo del resultado.
Los números enteros extienden la utilidad de los números naturales para contar cosas. Pueden utilizarse
para contabilizar pérdidas: si en un colegio entran 80 alumnos nuevos de primer curso un cierto año, pero
hay 100 alumnos de último curso que pasaron a educación secundaria, en total habrá 100 − 80 = 20
alumnos menos; pero también puede decirse que dicho número ha aumentado en 80 − 100 = −20
alumnos.
También hay ciertas magnitudes, como la temperatura o la altura toman valores por debajo del cero. La
altura del Everest es 8848 metros por encima del nivel del mar, y por el contrario, la orilla del Mar Muerto
está 423 metros por debajo del nivel del mar; es decir, su altura se puede expresar como −423 m.
La recta numérica
Los números enteros negativos son más pequeños que todos los positivos y que el cero. Para entender
como están ordenados se utiliza la recta numérica:
Se ve con esta representación que los números negativos son más pequeños cuanto más a la izquierda, es
decir, cuanto mayor es el número tras el signo. A este número se le llama el valor absoluto:
Ejemplo. |+5| = 5, |−2| = 2, |0| = 0.
El valor absoluto de un número entero es el número natural que resulta de
quitarle el signo. El valor absoluto de 0 es simplemente 0. Se representa por
dos barras verticales «| |».
SERVICIO NACIONAL DE APRENDIZAJE SENA
GUÍA DE APRENDIZAJE
SISTEMA INTEGRADO DE GESTIÓN
Proceso Gestión de la Formación Profesional Integral
Procedimiento Ejecución de la Formación Profesional Integral
Versión: 02
Fecha: 30/09/2013
Código: F004-P006-GFPI
Página 4 de 13
El orden de los números enteros se define como:
• Dados dos números enteros de signos distintos, +a y −b, el negativo es menor que el positivo:
−b < +a.
• Dados dos números enteros con el mismo signo, el menor de los dos números es:
 El de menor valor absoluto, si el signo común es «+».
 El de mayor valor absoluto, si el signo común es «−».
• El cero, 0, es menor que todos los positivos y mayor que todos los negativos.
Ejemplo. +23 > −56 , +31 < +47 , −15 < −9 , 0 > −36
Operaciones con números enteros
Los números enteros pueden sumarse, restarse, multiplicarse y dividirse, igual que puede hacerse con los
números naturales.
Suma
En la suma de dos números enteros, se determina por separado el signo y el valor absoluto del resultado.
Para sumar dos números enteros, se determina el signo y el valor absoluto del resultado del siguiente
modo:
 Si ambos sumandos tienen el mismo signo: ese es también el signo del resultado, y su valor absoluto
es la suma de los valores absolutos de los sumandos.
 Si ambos sumandos tienen distinto signo:
 El signo del resultado es el signo del sumando con mayor valor absoluto.
 El valor absoluto del resultado es la diferencia entre el mayor valor absoluto y el menor
valor absoluto, de entre los dos sumandos.
Ejemplo. (+21) + (−13) = +8 , (+17) + (+26) = +43 , (−41) + (+19) = −22 , (−33) + (−28) = −61
SERVICIO NACIONAL DE APRENDIZAJE SENA
GUÍA DE APRENDIZAJE
SISTEMA INTEGRADO DE GESTIÓN
Proceso Gestión de la Formación Profesional Integral
Procedimiento Ejecución de la Formación Profesional Integral
Versión: 02
Fecha: 30/09/2013
Código: F004-P006-GFPI
Página 5 de 13
La suma de números enteros se comporta de manera similar a la suma de números naturales:
La suma de números enteros cumple las siguientes propiedades:
• Propiedad asociativa. Dados tres números enteros a, b y c, las sumas (a + b) + c y a + (b + c) son
iguales.
• Propiedad conmutativa. Dados dos números enteros a y b, las sumas a + b y b + a son iguales.
• Elemento neutro. Todos los números enteros a quedan inalterados al sumarles 0: a + 0 = a.
Ejemplo.
1. Propiedad asociativa:
[ (−13) + (+25) ] + (+32) = (+12) + (+32) = (+44)
(−13) + [ (+25) + (+32) ] = (−13) + (+57) = (+44)
2. Propiedad conmutativa:
(+9) + (−17) = −8
(−17) + (+9) = −8
Además, la suma de números enteros posee una propiedad adicional que no tienen los números naturales:
Resta
La resta de números enteros es muy sencilla, ya que ahora es un caso particular de la suma.
Ejemplos
(+10) − (−5) = (+10) + (+5) = +15
(−7) − (+6) = (−7) + (−6) = −13
(−4) − (−8) = (−4) + (+8) = +4
(+2) − (+9) = (+2) + (−9) = −7
Elemento opuesto o simétrico. Para cada número entero a, existe otro entero
−a, que sumado al primero resulta en cero: a + (−a) = 0.
La resta de dos números enteros (minuendo menos sustraendo) se realiza
sumando el minuendo más el sustraendo cambiado de signo.
SERVICIO NACIONAL DE APRENDIZAJE SENA
GUÍA DE APRENDIZAJE
SISTEMA INTEGRADO DE GESTIÓN
Proceso Gestión de la Formación Profesional Integral
Procedimiento Ejecución de la Formación Profesional Integral
Versión: 02
Fecha: 30/09/2013
Código: F004-P006-GFPI
Página 6 de 13
Multiplicación
La multiplicación de números enteros, al igual que la suma, requiere determinar por separado el signo y
valor absoluto del resultado.
En la multiplicación (o división) de dos números enteros se determinan el valor absoluto y el signo del
resultado de la siguiente manera:
• El valor absoluto es el producto de los valores absolutos de los factores.
• El signo es «+» si los signos de los factores son iguales, y «−» si son distintos.
Para recordar el signo del resultado, también se utiliza la regla de los signos:
• (+) × (+)=(+) Más por más igual a más.
• (+) × (−)=(−) Más por menos igual a menos.
• (−) × (+)=(−) Menos por más igual a menos.
• (−) × (−)=(+) Menos por menos igual a más.
Ejemplo. (+4) × (−6) = −24, (+5) × (+3) = +15, (−7) × (+8) = −56, (−9) × (−2) = +18.
La multiplicación de números enteros tiene también propiedades similares a la de números naturales:
La multiplicación de números enteros cumple las siguientes propiedades:
• Propiedad asociativa. Dados tres números enteros a, b y c, los productos (a × b) × c ya × (b × c)
son iguales.
• Propiedad conmutativa. Dados dos números enteros a y b, los productos a × b y b ×a son
iguales.
• Elemento neutro. Todos los números enteros a quedan inalterados al multiplicarlos por 1: a × 1
= a.
Ejemplo.
1. Propiedad asociativa:
[ (−7) × (+4) ] × (+5) = (−28) × (+5) = −140
(−7) × [ (+4) × (+5) ] = (−7) × (+20) = −140
2. Propiedad conmutativa:
(−6) × (+9) = −54
(+9) × (−6) = −54
SERVICIO NACIONAL DE APRENDIZAJE SENA
GUÍA DE APRENDIZAJE
SISTEMA INTEGRADO DE GESTIÓN
Proceso Gestión de la Formación Profesional Integral
Procedimiento Ejecución de la Formación Profesional Integral
Versión: 02
Fecha: 30/09/2013
Código: F004-P006-GFPI
Página 7 de 13
La suma y multiplicación de números enteros están relacionadas, al igual que los números naturales, por la
propiedad distributiva:
Ejemplo.
• (−7) × [ (−2) + (+5) ] = (−7) × (+3) = −21
• [ (−7) × (−2) ] + [ (−7) × (+5) ] = (+14) + (−35) = −21
3.2 Actividades de contextualización e identificación de conocimientos necesarios para el aprendizaje.
2. RESOLUCION DE ECUACIONES
Al resolver ecuaciones comúnmente acortamos el uso de la propiedad de la igualdad. Observe en los
siguientes ejemplos que al mover de un lado al otro signo de igualdad, el signo cambia. (En verdad, lo que
pasa es que estamos sumando el opuesto a ambos lados de la ecuación.)
Ejemplos:
A.
1. ¿Es 6 una solución para la ecuación 3x - 1 = 2x +5?
3x -1 = 2x + 5
3(6)-1 = 2(6) + 5 <Se sustituyó el x por el 6>
18 - 1 = 12 + 5 <Se resuelve en ambos lados>
17 = 17
2. ¿Es 3 la solución de la ecuación 3x + 1 = 2x + 3?
3x + 1 = 2x + 3
3(3) + 1 = 2(3) + 3
9 + 1 = 6 + 3
10 = 9 < 3 no es la solución >
Propiedad distributiva. Dados tres números enteros a, b y c, el producto a × (b
+ c) y la suma de productos (a × b) + (a × c) son idénticos.
SERVICIO NACIONAL DE APRENDIZAJE SENA
GUÍA DE APRENDIZAJE
SISTEMA INTEGRADO DE GESTIÓN
Proceso Gestión de la Formación Profesional Integral
Procedimiento Ejecución de la Formación Profesional Integral
Versión: 02
Fecha: 30/09/2013
Código: F004-P006-GFPI
Página 8 de 13
B.
1. x - 3 = 9
x + -3 = 9
x + -3 +3 = 9 + 3 <añadir 3 elimina la resta y
x + 0 = 12 mueve todo excepto la variable x
x = 12 del lado izquierdo>
Recuerda que restar un número es igual que sumar su opuesto:
6 - 7 = 6 + -7
x - 3 = x + -3
2. x - 6 = 2
x + -6 = 2
x + -6 + 6 = 2 + 6
x + 0 = 8
x = 8
3. 4x = 16
4x = 16 <Utilizar la regla de la multiplicación. para dividir
4 4 ambos por 4>
x = 4
4. x = 5
2
(2) x = 5(2) <Multiplica ambos lados por dos>
2
(2) x = 5(2) <al multiplicar el lado de la x se elimina el 2
2 con el 2 y queda la x sola>
x = 10
SERVICIO NACIONAL DE APRENDIZAJE SENA
GUÍA DE APRENDIZAJE
SISTEMA INTEGRADO DE GESTIÓN
Proceso Gestión de la Formación Profesional Integral
Procedimiento Ejecución de la Formación Profesional Integral
Versión: 02
Fecha: 30/09/2013
Código: F004-P006-GFPI
Página 9 de 13
5. 2x + 6 = 20
2x = 20 - 6 < Se pasa el 6 negativo para dejar
2x = 14 el 2x solo.>
2x = 14
2 2
x = 7
6. 4x - 9 = 2x + 3
4x + - 9 = 2x + 3 <se agrupan términos semejantes>
4x - 2x = 3 + 9 <Se suma>
2x = 12 <Se divide entre 2 para despejar x>
2 2
x = 6
7. 3x + 9 = 2x - 3
3x + 9 = 2x + -3
3x - 2x = -9 + -3 <Al sumar queda la x sola por lo tanto x = -12 >
x = -12
3.3 Actividades de apropiación del conocimiento (Conceptualización y Teorización).
1. Calcular
a) (–5) + (+4) b) (+8) + (–6)
c) (–3) + (–12) d) (+234) + (+123)
2. Efectuar las sumas siguientes:
a) (–7) + (–4) + (+2) + (+12) + (–3) + (–9) =
b) (+2) + (–6) + (–5) + (+5) + (–9) + (+3) =
c) (–5) + (–4) + (+2) + (+8) + (–3) + (–1) =
SERVICIO NACIONAL DE APRENDIZAJE SENA
GUÍA DE APRENDIZAJE
SISTEMA INTEGRADO DE GESTIÓN
Proceso Gestión de la Formación Profesional Integral
Procedimiento Ejecución de la Formación Profesional Integral
Versión: 02
Fecha: 30/09/2013
Código: F004-P006-GFPI
Página 10 de 13
d) (+7) + (–3) + (–2) + (–6) + (+5) + (+8) =
e) (–3) + (+7) + (–4) + (+2) + (–10) + (+6) =
3. Haciendo las operaciones, comprobar que se verifica la siguiente igualdad escribiendo si es falsa o
verdadera:
[(+5) + (–2)] + (–6) = (+5) + [(–2) + (–6)]
4. Hallar:
a) [(+5) + (–3)] + [(–2) + (+6)] =
b) [(–4) + 7] + {(–3) + [(+8) + (–5)]} =
c) {[(+6) + (–3)] + (+4)} + [(–1) + (+7)] =
5. Calcular:
a) (+23) – (–15) b) (–12) – (–35)
c) (+8) – (+12)d) (–24) – (+15)
6. Hallar:
a) (–4) + (–3) – (+2) =
b) (+8) – (–2) + (+6) =
c) (–5) + (–2) – (–6) =
d) (+6) + (–2) + (–5) =
e) (–5) + (+9) – (+6) =
3.4 Actividades de transferencia del conocimiento.
Resolución de Ecuaciones
1. 2x + 5 = 1 2. 3x = 21
SERVICIO NACIONAL DE APRENDIZAJE SENA
GUÍA DE APRENDIZAJE
SISTEMA INTEGRADO DE GESTIÓN
Proceso Gestión de la Formación Profesional Integral
Procedimiento Ejecución de la Formación Profesional Integral
Versión: 02
Fecha: 30/09/2013
Código: F004-P006-GFPI
Página 11 de 13
3. 3x + 5 = 4x - 7 4. 3(x - 5) = 2(x + 2)
5. x = 27 6. 3 x = 6
9 5
7. x + 3 = x - 1 8. x + 9 = 2
2 3 5
9. De: despeje t.
10. De: halle el valor de Vo, sabiendo que Vf= 34, a=5 y d=7
11. De halle el valor de l, sabiendo que 𝜋 = al valor de Pi y g =6,98 y T=0,5
3.5 Actividades de evaluación.
Evidencias de Aprendizaje Criterios de Evaluación Técnicas e Instrumentos de
Evaluación
Evidencias de Desempeño:
Resuelve ejercicios con números
enteros y ecuaciones.
Evidencias de Producto:
Ejercicios resueltos en medio
magnético.
Conceptualiza, aplica y entiende
operaciones con números
enteros y resolución de
ecuaciones.
Lista de chequeo (para evaluar el
desempeño.
Lista de chequeo (para evaluar el
producto)
SERVICIO NACIONAL DE APRENDIZAJE SENA
SISTEMA INTEGRADO DE GESTIÓN
Procedimiento Ejecución de la Formación Profesional Integral
GUÍA DE APRENDIZAJE
Versión: 02
Fecha: 30/09/2013
Código: F004-P006-
GFPI
Página 12 de 13
ACTIVIDADES DEL
PROYECTO
DURACIÓN
(Horas)
Materiales de formación devolutivos:
(Equipos/Herramientas)
Materiales de formación
(consumibles)
Talento Humano (Instructores)
AMBIENTES DE
APRENDIZAJE TIPIFICADOS
Descripción Cantidad Descripción Cantidad Especialidad Cantidad
ESCENARIO (Aula,
Laboratorio, taller, unidad
productiva) y elementos y
condiciones de seguridad
industrial, salud ocupacional
y medio ambiente
APLICAR LOS
FUNDAMENTOS DE
PROGRAMACIÓN
88
Computadores
Tablero
Televisor
24
1
1
N/A N/A
Instructor Ingeniero de
sistemas o Tecnólogo en
sistemas o en carreras
afines.
1 Ambiente 509
4. RECURSOS PARA EL APRENDIZAJE
SERVICIO NACIONAL DE APRENDIZAJE SENA
SISTEMA INTEGRADO DE GESTIÓN
Procedimiento Ejecución de la Formación Profesional Integral
GUÍA DE APRENDIZAJE
Versión: 02
Fecha: 30/09/2013
Código: F004-P006-
GFPI
Página 13 de 13
http://es.wikipedia.org/wiki/N%C3%BAmero_entero
Elaborado por:
Noviembre 2013
6. REFERENTES BIBLIOGRÁFICOS
7. CONTROL DEL DOCUMENTO (ELABORADA POR)
5. GLOSARIO DE TERMINOS

Más contenido relacionado

La actualidad más candente

Multiplicación y división en Enteros (Propiedades de cada una de las operacio...
Multiplicación y división en Enteros (Propiedades de cada una de las operacio...Multiplicación y división en Enteros (Propiedades de cada una de las operacio...
Multiplicación y división en Enteros (Propiedades de cada una de las operacio...
Sabrina Dechima
 
U4 t4 significado de operaciones
U4 t4   significado de operacionesU4 t4   significado de operaciones
U4 t4 significado de operaciones
Brenda Jasmin Palomera Perez
 
Guía resumen de álgebra
Guía resumen de álgebraGuía resumen de álgebra
Guía resumen de álgebra
matematicalichan
 
Operaciones con números naturales
Operaciones con números naturalesOperaciones con números naturales
Operaciones con números naturales
adisla
 
Clase 3 Conjuntos numéricos I.ppt
Clase 3 Conjuntos numéricos I.pptClase 3 Conjuntos numéricos I.ppt
Clase 3 Conjuntos numéricos I.ppt
Leonardoantonio
 
numeros enteros
numeros enterosnumeros enteros
numeros enteros
Cata Treiki
 
Numeros Naturales
Numeros NaturalesNumeros Naturales
Numeros Naturales
EDU VALLE PEREYRA
 
Adición y sustracción de numeros
Adición y sustracción de numerosAdición y sustracción de numeros
Adición y sustracción de numeros
serg28
 
Maria presentacion diapositivas
Maria presentacion diapositivasMaria presentacion diapositivas
Maria presentacion diapositivas
greymar miquilena
 
Los numeros naturales
Los numeros naturalesLos numeros naturales
Los numeros naturales
William Lozano
 
Multiplicacion de numeros con signo
Multiplicacion de numeros con signoMultiplicacion de numeros con signo
Multiplicacion de numeros con signo
jonathan20
 
Como resolver ecuaciones
Como resolver ecuacionesComo resolver ecuaciones
Como resolver ecuaciones
mari v.g
 
1.1 Numeros Naturales
1.1 Numeros Naturales1.1 Numeros Naturales
1.1 Numeros Naturales
Brenda Jasmin Palomera Perez
 
3.- Multiplicación y división de números enteros
3.- Multiplicación y división de números enteros3.- Multiplicación y división de números enteros
3.- Multiplicación y división de números enteros
Damián Gómez Sarmiento
 
Numeros naturales
Numeros naturalesNumeros naturales
Numeros naturales
francesca2009_10
 
Multiplicacion y division de numeros enteros
Multiplicacion y division de numeros enterosMultiplicacion y division de numeros enteros
Multiplicacion y division de numeros enteros
florpintado
 
Numeros Naturales
Numeros NaturalesNumeros Naturales
Numeros Naturales
Aaron Salguero
 
División de numeros enteros
División de numeros enterosDivisión de numeros enteros
División de numeros enteros
serg28
 
Conjuntos numericos
Conjuntos numericosConjuntos numericos
Conjuntos numericos
Omar Lacave
 
Operaciones basicas de la aritmetica
Operaciones basicas de la aritmeticaOperaciones basicas de la aritmetica
Operaciones basicas de la aritmetica
Isabel Acosta C.
 

La actualidad más candente (20)

Multiplicación y división en Enteros (Propiedades de cada una de las operacio...
Multiplicación y división en Enteros (Propiedades de cada una de las operacio...Multiplicación y división en Enteros (Propiedades de cada una de las operacio...
Multiplicación y división en Enteros (Propiedades de cada una de las operacio...
 
U4 t4 significado de operaciones
U4 t4   significado de operacionesU4 t4   significado de operaciones
U4 t4 significado de operaciones
 
Guía resumen de álgebra
Guía resumen de álgebraGuía resumen de álgebra
Guía resumen de álgebra
 
Operaciones con números naturales
Operaciones con números naturalesOperaciones con números naturales
Operaciones con números naturales
 
Clase 3 Conjuntos numéricos I.ppt
Clase 3 Conjuntos numéricos I.pptClase 3 Conjuntos numéricos I.ppt
Clase 3 Conjuntos numéricos I.ppt
 
numeros enteros
numeros enterosnumeros enteros
numeros enteros
 
Numeros Naturales
Numeros NaturalesNumeros Naturales
Numeros Naturales
 
Adición y sustracción de numeros
Adición y sustracción de numerosAdición y sustracción de numeros
Adición y sustracción de numeros
 
Maria presentacion diapositivas
Maria presentacion diapositivasMaria presentacion diapositivas
Maria presentacion diapositivas
 
Los numeros naturales
Los numeros naturalesLos numeros naturales
Los numeros naturales
 
Multiplicacion de numeros con signo
Multiplicacion de numeros con signoMultiplicacion de numeros con signo
Multiplicacion de numeros con signo
 
Como resolver ecuaciones
Como resolver ecuacionesComo resolver ecuaciones
Como resolver ecuaciones
 
1.1 Numeros Naturales
1.1 Numeros Naturales1.1 Numeros Naturales
1.1 Numeros Naturales
 
3.- Multiplicación y división de números enteros
3.- Multiplicación y división de números enteros3.- Multiplicación y división de números enteros
3.- Multiplicación y división de números enteros
 
Numeros naturales
Numeros naturalesNumeros naturales
Numeros naturales
 
Multiplicacion y division de numeros enteros
Multiplicacion y division de numeros enterosMultiplicacion y division de numeros enteros
Multiplicacion y division de numeros enteros
 
Numeros Naturales
Numeros NaturalesNumeros Naturales
Numeros Naturales
 
División de numeros enteros
División de numeros enterosDivisión de numeros enteros
División de numeros enteros
 
Conjuntos numericos
Conjuntos numericosConjuntos numericos
Conjuntos numericos
 
Operaciones basicas de la aritmetica
Operaciones basicas de la aritmeticaOperaciones basicas de la aritmetica
Operaciones basicas de la aritmetica
 

Destacado

Guiaevaluacion
GuiaevaluacionGuiaevaluacion
Guiaevaluacion
ronaldmam
 
DESARROLLO GUÍAS 2 Y 3 ETICA
DESARROLLO GUÍAS 2 Y 3 ETICA DESARROLLO GUÍAS 2 Y 3 ETICA
DESARROLLO GUÍAS 2 Y 3 ETICA
23Mariafernandacorredor
 
Firmenadressen kaufen
Firmenadressen kaufenFirmenadressen kaufen
Firmenadressen kaufen
Address Base
 
Marktinfo Schweiz 2015
Marktinfo Schweiz 2015Marktinfo Schweiz 2015
Marktinfo Schweiz 2015
Austrian National Tourist Office
 
Web2.0 im Innovationsmanagement: Potenziale für Kommunikation und Zusammenarbeit
Web2.0 im Innovationsmanagement: Potenziale für Kommunikation und ZusammenarbeitWeb2.0 im Innovationsmanagement: Potenziale für Kommunikation und Zusammenarbeit
Web2.0 im Innovationsmanagement: Potenziale für Kommunikation und Zusammenarbeit
Sven Schimpf
 
2016 F 16 Fighter
2016 F 16 Fighter2016 F 16 Fighter
2016 F 16 Fighter
Jürgen Mirbach
 
KGB images
KGB imagesKGB images
KGB images
Dilawar Ali
 
ÖW Marketingkampagne Winter 2014/15 Niederlande
ÖW Marketingkampagne Winter 2014/15 NiederlandeÖW Marketingkampagne Winter 2014/15 Niederlande
ÖW Marketingkampagne Winter 2014/15 Niederlande
Austrian National Tourist Office
 
Vanderbilt Univ-Fitch (2005)
Vanderbilt Univ-Fitch (2005)Vanderbilt Univ-Fitch (2005)
Vanderbilt Univ-Fitch (2005)Jim Gilliland
 
Online Marketing Manager 2013 - Social Media Marketing
Online Marketing Manager 2013 - Social Media MarketingOnline Marketing Manager 2013 - Social Media Marketing
Online Marketing Manager 2013 - Social Media Marketing
Tim Bruysten
 
Www.kaufenakkus.com dell-inspiron-1525.html
Www.kaufenakkus.com dell-inspiron-1525.htmlWww.kaufenakkus.com dell-inspiron-1525.html
Www.kaufenakkus.com dell-inspiron-1525.htmlrestorationsder
 
Plantilla presentaciones educa digital regional 2014 diplomado tic2015
Plantilla presentaciones educa digital regional 2014 diplomado tic2015Plantilla presentaciones educa digital regional 2014 diplomado tic2015
Plantilla presentaciones educa digital regional 2014 diplomado tic2015
Miguel Nova
 
Formatoparaplanificacionasignatura(1)
Formatoparaplanificacionasignatura(1)Formatoparaplanificacionasignatura(1)
Formatoparaplanificacionasignatura(1)
stefyta123
 
Teorías de la Libertad Unidad 1 Actividad 2
Teorías de la Libertad Unidad 1 Actividad 2Teorías de la Libertad Unidad 1 Actividad 2
Teorías de la Libertad Unidad 1 Actividad 2
glass74
 
REFORMA EDUCATIVA INTEGRAL EDUCACIÓN MEDIA SUPERIOR EN MÉXICO!!!
REFORMA EDUCATIVA INTEGRAL EDUCACIÓN MEDIA SUPERIOR EN MÉXICO!!!REFORMA EDUCATIVA INTEGRAL EDUCACIÓN MEDIA SUPERIOR EN MÉXICO!!!
REFORMA EDUCATIVA INTEGRAL EDUCACIÓN MEDIA SUPERIOR EN MÉXICO!!!
MARCO CORREA
 
Actividades 2014. ESCUELA 258- SERODINO
Actividades 2014. ESCUELA 258- SERODINOActividades 2014. ESCUELA 258- SERODINO
Actividades 2014. ESCUELA 258- SERODINO
Escuela Domingo Faustino Sarmiento
 

Destacado (20)

Guiaevaluacion
GuiaevaluacionGuiaevaluacion
Guiaevaluacion
 
DESARROLLO GUÍAS 2 Y 3 ETICA
DESARROLLO GUÍAS 2 Y 3 ETICA DESARROLLO GUÍAS 2 Y 3 ETICA
DESARROLLO GUÍAS 2 Y 3 ETICA
 
Firmenadressen kaufen
Firmenadressen kaufenFirmenadressen kaufen
Firmenadressen kaufen
 
ORTHODONTICS
ORTHODONTICS ORTHODONTICS
ORTHODONTICS
 
Marktinfo Schweiz 2015
Marktinfo Schweiz 2015Marktinfo Schweiz 2015
Marktinfo Schweiz 2015
 
Web2.0 im Innovationsmanagement: Potenziale für Kommunikation und Zusammenarbeit
Web2.0 im Innovationsmanagement: Potenziale für Kommunikation und ZusammenarbeitWeb2.0 im Innovationsmanagement: Potenziale für Kommunikation und Zusammenarbeit
Web2.0 im Innovationsmanagement: Potenziale für Kommunikation und Zusammenarbeit
 
2016 F 16 Fighter
2016 F 16 Fighter2016 F 16 Fighter
2016 F 16 Fighter
 
KGB images
KGB imagesKGB images
KGB images
 
ÖW Marketingkampagne Winter 2014/15 Niederlande
ÖW Marketingkampagne Winter 2014/15 NiederlandeÖW Marketingkampagne Winter 2014/15 Niederlande
ÖW Marketingkampagne Winter 2014/15 Niederlande
 
Archeo
ArcheoArcheo
Archeo
 
Vanderbilt Univ-Fitch (2005)
Vanderbilt Univ-Fitch (2005)Vanderbilt Univ-Fitch (2005)
Vanderbilt Univ-Fitch (2005)
 
Online Marketing Manager 2013 - Social Media Marketing
Online Marketing Manager 2013 - Social Media MarketingOnline Marketing Manager 2013 - Social Media Marketing
Online Marketing Manager 2013 - Social Media Marketing
 
Www.kaufenakkus.com dell-inspiron-1525.html
Www.kaufenakkus.com dell-inspiron-1525.htmlWww.kaufenakkus.com dell-inspiron-1525.html
Www.kaufenakkus.com dell-inspiron-1525.html
 
Plantilla presentaciones educa digital regional 2014 diplomado tic2015
Plantilla presentaciones educa digital regional 2014 diplomado tic2015Plantilla presentaciones educa digital regional 2014 diplomado tic2015
Plantilla presentaciones educa digital regional 2014 diplomado tic2015
 
Formatoparaplanificacionasignatura(1)
Formatoparaplanificacionasignatura(1)Formatoparaplanificacionasignatura(1)
Formatoparaplanificacionasignatura(1)
 
Ausschreibung Kurzreisekampagne D 2014
Ausschreibung Kurzreisekampagne D 2014Ausschreibung Kurzreisekampagne D 2014
Ausschreibung Kurzreisekampagne D 2014
 
Teorías de la Libertad Unidad 1 Actividad 2
Teorías de la Libertad Unidad 1 Actividad 2Teorías de la Libertad Unidad 1 Actividad 2
Teorías de la Libertad Unidad 1 Actividad 2
 
Marktinfo Frankreich 2015
Marktinfo Frankreich 2015Marktinfo Frankreich 2015
Marktinfo Frankreich 2015
 
REFORMA EDUCATIVA INTEGRAL EDUCACIÓN MEDIA SUPERIOR EN MÉXICO!!!
REFORMA EDUCATIVA INTEGRAL EDUCACIÓN MEDIA SUPERIOR EN MÉXICO!!!REFORMA EDUCATIVA INTEGRAL EDUCACIÓN MEDIA SUPERIOR EN MÉXICO!!!
REFORMA EDUCATIVA INTEGRAL EDUCACIÓN MEDIA SUPERIOR EN MÉXICO!!!
 
Actividades 2014. ESCUELA 258- SERODINO
Actividades 2014. ESCUELA 258- SERODINOActividades 2014. ESCUELA 258- SERODINO
Actividades 2014. ESCUELA 258- SERODINO
 

Similar a F004 p006-gfpi guia de aprendizaje 1 -- aplicar los fundamentos de programación

Unidad didactica numeros enteros
Unidad didactica numeros enterosUnidad didactica numeros enteros
Unidad didactica numeros enteros
Edwin Laureano Lopez Vargas
 
Libro
LibroLibro
Numeros enteros juan pablo pantoja juan pablo mamian EXPLICACION SOBRE ESTE...
Numeros  enteros juan pablo pantoja  juan pablo mamian EXPLICACION SOBRE ESTE...Numeros  enteros juan pablo pantoja  juan pablo mamian EXPLICACION SOBRE ESTE...
Numeros enteros juan pablo pantoja juan pablo mamian EXPLICACION SOBRE ESTE...
juanpabloauywqie37e
 
Curso tic´s (1)
Curso tic´s (1)Curso tic´s (1)
Curso tic´s (1)
Humberto230371
 
Clase 1. Matematica. 07-06-2022.pptx
Clase 1. Matematica. 07-06-2022.pptxClase 1. Matematica. 07-06-2022.pptx
Clase 1. Matematica. 07-06-2022.pptx
JuanUgas2
 
CURSO DE MATEVOCA4
CURSO DE MATEVOCA4CURSO DE MATEVOCA4
CURSO DE MATEVOCA4
negugorriak
 
Matematicas i (autoguardado)
Matematicas i (autoguardado)Matematicas i (autoguardado)
Matematicas i (autoguardado)
Constantino Simon Jose
 
Matemática de primer año
Matemática de primer añoMatemática de primer año
Matemática de primer año
palomaindia
 
Portafolio de Algebra
Portafolio de AlgebraPortafolio de Algebra
Portafolio de Algebra
Anabel Montenegro
 
Números enteros
Números enterosNúmeros enteros
Números enteros
hendric Diaz
 
Numeros matematicos
Numeros matematicosNumeros matematicos
Numeros matematicos
alianaSalazar
 
Números naturales
Números naturalesNúmeros naturales
Números naturales
Joel David
 
Operaciones enteros verano2016 (1)
Operaciones enteros verano2016 (1)Operaciones enteros verano2016 (1)
Operaciones enteros verano2016 (1)
1022miguelangel
 
Cátedra de Aritmética
Cátedra de AritméticaCátedra de Aritmética
Cátedra de Aritmética
RosmaryVillalobos
 
Ppt 1 numeros enteros
Ppt 1 numeros enterosPpt 1 numeros enteros
Ppt 1 numeros enteros
Bárbara Paz Riquelme Ponce
 
Los números enteros
Los números enterosLos números enteros
Los números enteros
Giovannitha Hernandez
 
Numeros reales
Numeros reales Numeros reales
Numeros reales
EliannysMartinez2
 
Portafolio de algebra
Portafolio de algebraPortafolio de algebra
Portafolio de algebra
Gisela Ceron
 
Portafolio de algebra
Portafolio de algebraPortafolio de algebra
Portafolio de algebra
VALENCIAMARYA
 
Matematicas 1ERA Clase Trayecto Inicial 2022-2023 primera clase.ppt
Matematicas 1ERA Clase Trayecto Inicial 2022-2023 primera clase.pptMatematicas 1ERA Clase Trayecto Inicial 2022-2023 primera clase.ppt
Matematicas 1ERA Clase Trayecto Inicial 2022-2023 primera clase.ppt
CARLOS ALFONSO MENDEZ
 

Similar a F004 p006-gfpi guia de aprendizaje 1 -- aplicar los fundamentos de programación (20)

Unidad didactica numeros enteros
Unidad didactica numeros enterosUnidad didactica numeros enteros
Unidad didactica numeros enteros
 
Libro
LibroLibro
Libro
 
Numeros enteros juan pablo pantoja juan pablo mamian EXPLICACION SOBRE ESTE...
Numeros  enteros juan pablo pantoja  juan pablo mamian EXPLICACION SOBRE ESTE...Numeros  enteros juan pablo pantoja  juan pablo mamian EXPLICACION SOBRE ESTE...
Numeros enteros juan pablo pantoja juan pablo mamian EXPLICACION SOBRE ESTE...
 
Curso tic´s (1)
Curso tic´s (1)Curso tic´s (1)
Curso tic´s (1)
 
Clase 1. Matematica. 07-06-2022.pptx
Clase 1. Matematica. 07-06-2022.pptxClase 1. Matematica. 07-06-2022.pptx
Clase 1. Matematica. 07-06-2022.pptx
 
CURSO DE MATEVOCA4
CURSO DE MATEVOCA4CURSO DE MATEVOCA4
CURSO DE MATEVOCA4
 
Matematicas i (autoguardado)
Matematicas i (autoguardado)Matematicas i (autoguardado)
Matematicas i (autoguardado)
 
Matemática de primer año
Matemática de primer añoMatemática de primer año
Matemática de primer año
 
Portafolio de Algebra
Portafolio de AlgebraPortafolio de Algebra
Portafolio de Algebra
 
Números enteros
Números enterosNúmeros enteros
Números enteros
 
Numeros matematicos
Numeros matematicosNumeros matematicos
Numeros matematicos
 
Números naturales
Números naturalesNúmeros naturales
Números naturales
 
Operaciones enteros verano2016 (1)
Operaciones enteros verano2016 (1)Operaciones enteros verano2016 (1)
Operaciones enteros verano2016 (1)
 
Cátedra de Aritmética
Cátedra de AritméticaCátedra de Aritmética
Cátedra de Aritmética
 
Ppt 1 numeros enteros
Ppt 1 numeros enterosPpt 1 numeros enteros
Ppt 1 numeros enteros
 
Los números enteros
Los números enterosLos números enteros
Los números enteros
 
Numeros reales
Numeros reales Numeros reales
Numeros reales
 
Portafolio de algebra
Portafolio de algebraPortafolio de algebra
Portafolio de algebra
 
Portafolio de algebra
Portafolio de algebraPortafolio de algebra
Portafolio de algebra
 
Matematicas 1ERA Clase Trayecto Inicial 2022-2023 primera clase.ppt
Matematicas 1ERA Clase Trayecto Inicial 2022-2023 primera clase.pptMatematicas 1ERA Clase Trayecto Inicial 2022-2023 primera clase.ppt
Matematicas 1ERA Clase Trayecto Inicial 2022-2023 primera clase.ppt
 

Más de Sebastián Santana A

Sebastian santana 600182 cuestionario para la leccion 1
Sebastian santana 600182 cuestionario para la leccion 1Sebastian santana 600182 cuestionario para la leccion 1
Sebastian santana 600182 cuestionario para la leccion 1
Sebastián Santana A
 
Tutorial base de datos
Tutorial base de datosTutorial base de datos
Tutorial base de datos
Sebastián Santana A
 
Analisisydesarrollodesistemasdeinformacion1 140522112809-phpapp01
Analisisydesarrollodesistemasdeinformacion1 140522112809-phpapp01Analisisydesarrollodesistemasdeinformacion1 140522112809-phpapp01
Analisisydesarrollodesistemasdeinformacion1 140522112809-phpapp01
Sebastián Santana A
 
Inducción senalogia formación complementaria 1
Inducción senalogia formación complementaria 1Inducción senalogia formación complementaria 1
Inducción senalogia formación complementaria 1
Sebastián Santana A
 
F004 p006-gfpi guia de aprendizaje 2 -- aplicar los fundamentos de programación
F004 p006-gfpi guia de aprendizaje 2 -- aplicar los fundamentos de programaciónF004 p006-gfpi guia de aprendizaje 2 -- aplicar los fundamentos de programación
F004 p006-gfpi guia de aprendizaje 2 -- aplicar los fundamentos de programación
Sebastián Santana A
 
Analisis y desarrollo de sistemas de informacion (1)
Analisis y desarrollo de sistemas de informacion (1)Analisis y desarrollo de sistemas de informacion (1)
Analisis y desarrollo de sistemas de informacion (1)
Sebastián Santana A
 
24 hoja de vida del aprendiz v3 (27-06-13)-1
24   hoja de vida del aprendiz v3 (27-06-13)-124   hoja de vida del aprendiz v3 (27-06-13)-1
24 hoja de vida del aprendiz v3 (27-06-13)-1
Sebastián Santana A
 
Analisis y desarrollo de sistemas de informacion (1)
Analisis y desarrollo de sistemas de informacion (1)Analisis y desarrollo de sistemas de informacion (1)
Analisis y desarrollo de sistemas de informacion (1)
Sebastián Santana A
 

Más de Sebastián Santana A (11)

Urband proyec
Urband proyecUrband proyec
Urband proyec
 
My sql
My sqlMy sql
My sql
 
Sebastian santana 600182 cuestionario para la leccion 1
Sebastian santana 600182 cuestionario para la leccion 1Sebastian santana 600182 cuestionario para la leccion 1
Sebastian santana 600182 cuestionario para la leccion 1
 
Tutorial base de datos
Tutorial base de datosTutorial base de datos
Tutorial base de datos
 
Analisisydesarrollodesistemasdeinformacion1 140522112809-phpapp01
Analisisydesarrollodesistemasdeinformacion1 140522112809-phpapp01Analisisydesarrollodesistemasdeinformacion1 140522112809-phpapp01
Analisisydesarrollodesistemasdeinformacion1 140522112809-phpapp01
 
Reglamento aprendiz 2012
Reglamento aprendiz 2012Reglamento aprendiz 2012
Reglamento aprendiz 2012
 
Inducción senalogia formación complementaria 1
Inducción senalogia formación complementaria 1Inducción senalogia formación complementaria 1
Inducción senalogia formación complementaria 1
 
F004 p006-gfpi guia de aprendizaje 2 -- aplicar los fundamentos de programación
F004 p006-gfpi guia de aprendizaje 2 -- aplicar los fundamentos de programaciónF004 p006-gfpi guia de aprendizaje 2 -- aplicar los fundamentos de programación
F004 p006-gfpi guia de aprendizaje 2 -- aplicar los fundamentos de programación
 
Analisis y desarrollo de sistemas de informacion (1)
Analisis y desarrollo de sistemas de informacion (1)Analisis y desarrollo de sistemas de informacion (1)
Analisis y desarrollo de sistemas de informacion (1)
 
24 hoja de vida del aprendiz v3 (27-06-13)-1
24   hoja de vida del aprendiz v3 (27-06-13)-124   hoja de vida del aprendiz v3 (27-06-13)-1
24 hoja de vida del aprendiz v3 (27-06-13)-1
 
Analisis y desarrollo de sistemas de informacion (1)
Analisis y desarrollo de sistemas de informacion (1)Analisis y desarrollo de sistemas de informacion (1)
Analisis y desarrollo de sistemas de informacion (1)
 

F004 p006-gfpi guia de aprendizaje 1 -- aplicar los fundamentos de programación

  • 1. SERVICIO NACIONAL DE APRENDIZAJE SENA SISTEMA INTEGRADO DE GESTIÓN Procedimiento Ejecución de la Formación Profesional Integral GUÍA DE APRENDIZAJE Versión: 02 Fecha: 30/09/2013 Código: F004-P006- GFPI Página 1 de 13 Programa de Formación: ANÁLISIS Y DESARROLLO DE SISTEMAS DE INFORMACIÓN Código: Versión: 228106 V101 Nombre del Proyecto: IMPLANTAR SISTEMAS DE INFORMACIÓN CON INSTRUMENTACIÓN VIRTUAL, ROBÓTICA Y DOMÓTICA. Código: 375959 Fase del proyecto: Actividad (es) del Proyecto: APLICAR LOS FUNDAMENTOS DE PROGRAMACIÓN Actividad (es) de Aprendizaje: Aplicar los fundamentos en lógica matemática Ambiente de formación: CENIGRAF CALLE 69 AMBIENTE 202 MATERIALES DE FORMACIÓN DEVOLUTIVO Computador Internet Tablero Televisor CONSUMIBLE N/A Resultados de Aprendizaje: 436542 - REPRESENTA EL BOSQUEJO DE LA SOLUCIÓN AL PROBLEMA PRESENTADO POR ELCLIENTE, MEDIANTE LA ELABORACIÓN DE DIAGRAMAS DE CASOS DE USO, APOYADOEN EL ANÁLISIS DEL INFORME DE REQUERIMIENTOS, AL CONFRONTAR LA SITUACIÓN PROBLEMICA CON EL USUARIO SEGÚN NORMAS Y PROTOCOLOS DE LA ORGANIZACIÓN Competencia: 220501032 - ANALIZAR LOS REQUISITOS DEL CLIENTE PARA CONSTRUIR EL SISTEMA DE INFORMACION. Duración de la guía ( en horas): 8 horas GUÍA DE APRENDIZAJE Nº 001 1. IDENTIFICACIÓN DE LA GUIA DE APRENDIZAJE
  • 2. SERVICIO NACIONAL DE APRENDIZAJE SENA GUÍA DE APRENDIZAJE SISTEMA INTEGRADO DE GESTIÓN Proceso Gestión de la Formación Profesional Integral Procedimiento Ejecución de la Formación Profesional Integral Versión: 02 Fecha: 30/09/2013 Código: F004-P006-GFPI Página 2 de 13 El ingenio de la persona que crea programas radica en modelar los problemas de la vida cotidiana en simples sumas y decisiones, ya que la computadora por muy mágica que la veas, solo es una máquina que sabe contar muy bien y puede decir si un elemento es diferente o igual a otro. Además de ejercitar la mente, la idea que aprendas matemáticas es para que cuando veas la esencia de las cosas una vez que se modelan para la computadora puedas entender; y una vez que entiendas, puedas crear, modificar y/o mejorar algo. 3.1 Actividades de Reflexión inicial. 1. NUMEROS ENTEROS Resta con negativos. La resta de dos números naturales no es un número natural cuando el sustraendo es mayor que el minuendo, sino que su valor es negativo: en la imagen, sólo pueden sustraerse 3 plátanos, por lo que se apunta un plátano «debido» o «negativo» (en rojo). Los números enteros son un conjunto de números que incluye a los números naturales distintos de cero (1, 2, 3, ...), los negativos de los números naturales (..., −3, −2, −1) y al 0. Los enteros negativos, como −1 o −3 (se leen «menos uno», «menos tres», etc.), son menores que todos los enteros positivos (1, 2, ...) y que el cero. Para resaltar la diferencia entre positivos y negativos, a veces también se escribe un signo «más» delante de los positivos: +1, +5, etc. Cuando no se le escribe signo al número se asume que es positivo. El 2. INTRODUCCIÓN 3. ESTRUCTURACION DIDACTICA DE LAS ACTIVIDADES DE APRENDIZAJE
  • 3. SERVICIO NACIONAL DE APRENDIZAJE SENA GUÍA DE APRENDIZAJE SISTEMA INTEGRADO DE GESTIÓN Proceso Gestión de la Formación Profesional Integral Procedimiento Ejecución de la Formación Profesional Integral Versión: 02 Fecha: 30/09/2013 Código: F004-P006-GFPI Página 3 de 13 conjunto de todos los números enteros se representa por la letra = {..., −3, −2, −1, 0, +1, +2, +3, ...}, que proviene del alemán Zahlen («números», pronunciado [ˈtsaːlən]). Los números enteros no tienen parte decimal.  −783 y 154 son números enteros  45,23 y −34/95 no son números enteros Al igual que los números naturales, los números enteros pueden sumarse, restarse, multiplicarse y dividirse, de forma similar a los primeros. Sin embargo, en el caso de los enteros es necesario calcular también el signo del resultado. Los números enteros extienden la utilidad de los números naturales para contar cosas. Pueden utilizarse para contabilizar pérdidas: si en un colegio entran 80 alumnos nuevos de primer curso un cierto año, pero hay 100 alumnos de último curso que pasaron a educación secundaria, en total habrá 100 − 80 = 20 alumnos menos; pero también puede decirse que dicho número ha aumentado en 80 − 100 = −20 alumnos. También hay ciertas magnitudes, como la temperatura o la altura toman valores por debajo del cero. La altura del Everest es 8848 metros por encima del nivel del mar, y por el contrario, la orilla del Mar Muerto está 423 metros por debajo del nivel del mar; es decir, su altura se puede expresar como −423 m. La recta numérica Los números enteros negativos son más pequeños que todos los positivos y que el cero. Para entender como están ordenados se utiliza la recta numérica: Se ve con esta representación que los números negativos son más pequeños cuanto más a la izquierda, es decir, cuanto mayor es el número tras el signo. A este número se le llama el valor absoluto: Ejemplo. |+5| = 5, |−2| = 2, |0| = 0. El valor absoluto de un número entero es el número natural que resulta de quitarle el signo. El valor absoluto de 0 es simplemente 0. Se representa por dos barras verticales «| |».
  • 4. SERVICIO NACIONAL DE APRENDIZAJE SENA GUÍA DE APRENDIZAJE SISTEMA INTEGRADO DE GESTIÓN Proceso Gestión de la Formación Profesional Integral Procedimiento Ejecución de la Formación Profesional Integral Versión: 02 Fecha: 30/09/2013 Código: F004-P006-GFPI Página 4 de 13 El orden de los números enteros se define como: • Dados dos números enteros de signos distintos, +a y −b, el negativo es menor que el positivo: −b < +a. • Dados dos números enteros con el mismo signo, el menor de los dos números es:  El de menor valor absoluto, si el signo común es «+».  El de mayor valor absoluto, si el signo común es «−». • El cero, 0, es menor que todos los positivos y mayor que todos los negativos. Ejemplo. +23 > −56 , +31 < +47 , −15 < −9 , 0 > −36 Operaciones con números enteros Los números enteros pueden sumarse, restarse, multiplicarse y dividirse, igual que puede hacerse con los números naturales. Suma En la suma de dos números enteros, se determina por separado el signo y el valor absoluto del resultado. Para sumar dos números enteros, se determina el signo y el valor absoluto del resultado del siguiente modo:  Si ambos sumandos tienen el mismo signo: ese es también el signo del resultado, y su valor absoluto es la suma de los valores absolutos de los sumandos.  Si ambos sumandos tienen distinto signo:  El signo del resultado es el signo del sumando con mayor valor absoluto.  El valor absoluto del resultado es la diferencia entre el mayor valor absoluto y el menor valor absoluto, de entre los dos sumandos. Ejemplo. (+21) + (−13) = +8 , (+17) + (+26) = +43 , (−41) + (+19) = −22 , (−33) + (−28) = −61
  • 5. SERVICIO NACIONAL DE APRENDIZAJE SENA GUÍA DE APRENDIZAJE SISTEMA INTEGRADO DE GESTIÓN Proceso Gestión de la Formación Profesional Integral Procedimiento Ejecución de la Formación Profesional Integral Versión: 02 Fecha: 30/09/2013 Código: F004-P006-GFPI Página 5 de 13 La suma de números enteros se comporta de manera similar a la suma de números naturales: La suma de números enteros cumple las siguientes propiedades: • Propiedad asociativa. Dados tres números enteros a, b y c, las sumas (a + b) + c y a + (b + c) son iguales. • Propiedad conmutativa. Dados dos números enteros a y b, las sumas a + b y b + a son iguales. • Elemento neutro. Todos los números enteros a quedan inalterados al sumarles 0: a + 0 = a. Ejemplo. 1. Propiedad asociativa: [ (−13) + (+25) ] + (+32) = (+12) + (+32) = (+44) (−13) + [ (+25) + (+32) ] = (−13) + (+57) = (+44) 2. Propiedad conmutativa: (+9) + (−17) = −8 (−17) + (+9) = −8 Además, la suma de números enteros posee una propiedad adicional que no tienen los números naturales: Resta La resta de números enteros es muy sencilla, ya que ahora es un caso particular de la suma. Ejemplos (+10) − (−5) = (+10) + (+5) = +15 (−7) − (+6) = (−7) + (−6) = −13 (−4) − (−8) = (−4) + (+8) = +4 (+2) − (+9) = (+2) + (−9) = −7 Elemento opuesto o simétrico. Para cada número entero a, existe otro entero −a, que sumado al primero resulta en cero: a + (−a) = 0. La resta de dos números enteros (minuendo menos sustraendo) se realiza sumando el minuendo más el sustraendo cambiado de signo.
  • 6. SERVICIO NACIONAL DE APRENDIZAJE SENA GUÍA DE APRENDIZAJE SISTEMA INTEGRADO DE GESTIÓN Proceso Gestión de la Formación Profesional Integral Procedimiento Ejecución de la Formación Profesional Integral Versión: 02 Fecha: 30/09/2013 Código: F004-P006-GFPI Página 6 de 13 Multiplicación La multiplicación de números enteros, al igual que la suma, requiere determinar por separado el signo y valor absoluto del resultado. En la multiplicación (o división) de dos números enteros se determinan el valor absoluto y el signo del resultado de la siguiente manera: • El valor absoluto es el producto de los valores absolutos de los factores. • El signo es «+» si los signos de los factores son iguales, y «−» si son distintos. Para recordar el signo del resultado, también se utiliza la regla de los signos: • (+) × (+)=(+) Más por más igual a más. • (+) × (−)=(−) Más por menos igual a menos. • (−) × (+)=(−) Menos por más igual a menos. • (−) × (−)=(+) Menos por menos igual a más. Ejemplo. (+4) × (−6) = −24, (+5) × (+3) = +15, (−7) × (+8) = −56, (−9) × (−2) = +18. La multiplicación de números enteros tiene también propiedades similares a la de números naturales: La multiplicación de números enteros cumple las siguientes propiedades: • Propiedad asociativa. Dados tres números enteros a, b y c, los productos (a × b) × c ya × (b × c) son iguales. • Propiedad conmutativa. Dados dos números enteros a y b, los productos a × b y b ×a son iguales. • Elemento neutro. Todos los números enteros a quedan inalterados al multiplicarlos por 1: a × 1 = a. Ejemplo. 1. Propiedad asociativa: [ (−7) × (+4) ] × (+5) = (−28) × (+5) = −140 (−7) × [ (+4) × (+5) ] = (−7) × (+20) = −140 2. Propiedad conmutativa: (−6) × (+9) = −54 (+9) × (−6) = −54
  • 7. SERVICIO NACIONAL DE APRENDIZAJE SENA GUÍA DE APRENDIZAJE SISTEMA INTEGRADO DE GESTIÓN Proceso Gestión de la Formación Profesional Integral Procedimiento Ejecución de la Formación Profesional Integral Versión: 02 Fecha: 30/09/2013 Código: F004-P006-GFPI Página 7 de 13 La suma y multiplicación de números enteros están relacionadas, al igual que los números naturales, por la propiedad distributiva: Ejemplo. • (−7) × [ (−2) + (+5) ] = (−7) × (+3) = −21 • [ (−7) × (−2) ] + [ (−7) × (+5) ] = (+14) + (−35) = −21 3.2 Actividades de contextualización e identificación de conocimientos necesarios para el aprendizaje. 2. RESOLUCION DE ECUACIONES Al resolver ecuaciones comúnmente acortamos el uso de la propiedad de la igualdad. Observe en los siguientes ejemplos que al mover de un lado al otro signo de igualdad, el signo cambia. (En verdad, lo que pasa es que estamos sumando el opuesto a ambos lados de la ecuación.) Ejemplos: A. 1. ¿Es 6 una solución para la ecuación 3x - 1 = 2x +5? 3x -1 = 2x + 5 3(6)-1 = 2(6) + 5 <Se sustituyó el x por el 6> 18 - 1 = 12 + 5 <Se resuelve en ambos lados> 17 = 17 2. ¿Es 3 la solución de la ecuación 3x + 1 = 2x + 3? 3x + 1 = 2x + 3 3(3) + 1 = 2(3) + 3 9 + 1 = 6 + 3 10 = 9 < 3 no es la solución > Propiedad distributiva. Dados tres números enteros a, b y c, el producto a × (b + c) y la suma de productos (a × b) + (a × c) son idénticos.
  • 8. SERVICIO NACIONAL DE APRENDIZAJE SENA GUÍA DE APRENDIZAJE SISTEMA INTEGRADO DE GESTIÓN Proceso Gestión de la Formación Profesional Integral Procedimiento Ejecución de la Formación Profesional Integral Versión: 02 Fecha: 30/09/2013 Código: F004-P006-GFPI Página 8 de 13 B. 1. x - 3 = 9 x + -3 = 9 x + -3 +3 = 9 + 3 <añadir 3 elimina la resta y x + 0 = 12 mueve todo excepto la variable x x = 12 del lado izquierdo> Recuerda que restar un número es igual que sumar su opuesto: 6 - 7 = 6 + -7 x - 3 = x + -3 2. x - 6 = 2 x + -6 = 2 x + -6 + 6 = 2 + 6 x + 0 = 8 x = 8 3. 4x = 16 4x = 16 <Utilizar la regla de la multiplicación. para dividir 4 4 ambos por 4> x = 4 4. x = 5 2 (2) x = 5(2) <Multiplica ambos lados por dos> 2 (2) x = 5(2) <al multiplicar el lado de la x se elimina el 2 2 con el 2 y queda la x sola> x = 10
  • 9. SERVICIO NACIONAL DE APRENDIZAJE SENA GUÍA DE APRENDIZAJE SISTEMA INTEGRADO DE GESTIÓN Proceso Gestión de la Formación Profesional Integral Procedimiento Ejecución de la Formación Profesional Integral Versión: 02 Fecha: 30/09/2013 Código: F004-P006-GFPI Página 9 de 13 5. 2x + 6 = 20 2x = 20 - 6 < Se pasa el 6 negativo para dejar 2x = 14 el 2x solo.> 2x = 14 2 2 x = 7 6. 4x - 9 = 2x + 3 4x + - 9 = 2x + 3 <se agrupan términos semejantes> 4x - 2x = 3 + 9 <Se suma> 2x = 12 <Se divide entre 2 para despejar x> 2 2 x = 6 7. 3x + 9 = 2x - 3 3x + 9 = 2x + -3 3x - 2x = -9 + -3 <Al sumar queda la x sola por lo tanto x = -12 > x = -12 3.3 Actividades de apropiación del conocimiento (Conceptualización y Teorización). 1. Calcular a) (–5) + (+4) b) (+8) + (–6) c) (–3) + (–12) d) (+234) + (+123) 2. Efectuar las sumas siguientes: a) (–7) + (–4) + (+2) + (+12) + (–3) + (–9) = b) (+2) + (–6) + (–5) + (+5) + (–9) + (+3) = c) (–5) + (–4) + (+2) + (+8) + (–3) + (–1) =
  • 10. SERVICIO NACIONAL DE APRENDIZAJE SENA GUÍA DE APRENDIZAJE SISTEMA INTEGRADO DE GESTIÓN Proceso Gestión de la Formación Profesional Integral Procedimiento Ejecución de la Formación Profesional Integral Versión: 02 Fecha: 30/09/2013 Código: F004-P006-GFPI Página 10 de 13 d) (+7) + (–3) + (–2) + (–6) + (+5) + (+8) = e) (–3) + (+7) + (–4) + (+2) + (–10) + (+6) = 3. Haciendo las operaciones, comprobar que se verifica la siguiente igualdad escribiendo si es falsa o verdadera: [(+5) + (–2)] + (–6) = (+5) + [(–2) + (–6)] 4. Hallar: a) [(+5) + (–3)] + [(–2) + (+6)] = b) [(–4) + 7] + {(–3) + [(+8) + (–5)]} = c) {[(+6) + (–3)] + (+4)} + [(–1) + (+7)] = 5. Calcular: a) (+23) – (–15) b) (–12) – (–35) c) (+8) – (+12)d) (–24) – (+15) 6. Hallar: a) (–4) + (–3) – (+2) = b) (+8) – (–2) + (+6) = c) (–5) + (–2) – (–6) = d) (+6) + (–2) + (–5) = e) (–5) + (+9) – (+6) = 3.4 Actividades de transferencia del conocimiento. Resolución de Ecuaciones 1. 2x + 5 = 1 2. 3x = 21
  • 11. SERVICIO NACIONAL DE APRENDIZAJE SENA GUÍA DE APRENDIZAJE SISTEMA INTEGRADO DE GESTIÓN Proceso Gestión de la Formación Profesional Integral Procedimiento Ejecución de la Formación Profesional Integral Versión: 02 Fecha: 30/09/2013 Código: F004-P006-GFPI Página 11 de 13 3. 3x + 5 = 4x - 7 4. 3(x - 5) = 2(x + 2) 5. x = 27 6. 3 x = 6 9 5 7. x + 3 = x - 1 8. x + 9 = 2 2 3 5 9. De: despeje t. 10. De: halle el valor de Vo, sabiendo que Vf= 34, a=5 y d=7 11. De halle el valor de l, sabiendo que 𝜋 = al valor de Pi y g =6,98 y T=0,5 3.5 Actividades de evaluación. Evidencias de Aprendizaje Criterios de Evaluación Técnicas e Instrumentos de Evaluación Evidencias de Desempeño: Resuelve ejercicios con números enteros y ecuaciones. Evidencias de Producto: Ejercicios resueltos en medio magnético. Conceptualiza, aplica y entiende operaciones con números enteros y resolución de ecuaciones. Lista de chequeo (para evaluar el desempeño. Lista de chequeo (para evaluar el producto)
  • 12. SERVICIO NACIONAL DE APRENDIZAJE SENA SISTEMA INTEGRADO DE GESTIÓN Procedimiento Ejecución de la Formación Profesional Integral GUÍA DE APRENDIZAJE Versión: 02 Fecha: 30/09/2013 Código: F004-P006- GFPI Página 12 de 13 ACTIVIDADES DEL PROYECTO DURACIÓN (Horas) Materiales de formación devolutivos: (Equipos/Herramientas) Materiales de formación (consumibles) Talento Humano (Instructores) AMBIENTES DE APRENDIZAJE TIPIFICADOS Descripción Cantidad Descripción Cantidad Especialidad Cantidad ESCENARIO (Aula, Laboratorio, taller, unidad productiva) y elementos y condiciones de seguridad industrial, salud ocupacional y medio ambiente APLICAR LOS FUNDAMENTOS DE PROGRAMACIÓN 88 Computadores Tablero Televisor 24 1 1 N/A N/A Instructor Ingeniero de sistemas o Tecnólogo en sistemas o en carreras afines. 1 Ambiente 509 4. RECURSOS PARA EL APRENDIZAJE
  • 13. SERVICIO NACIONAL DE APRENDIZAJE SENA SISTEMA INTEGRADO DE GESTIÓN Procedimiento Ejecución de la Formación Profesional Integral GUÍA DE APRENDIZAJE Versión: 02 Fecha: 30/09/2013 Código: F004-P006- GFPI Página 13 de 13 http://es.wikipedia.org/wiki/N%C3%BAmero_entero Elaborado por: Noviembre 2013 6. REFERENTES BIBLIOGRÁFICOS 7. CONTROL DEL DOCUMENTO (ELABORADA POR) 5. GLOSARIO DE TERMINOS