SlideShare una empresa de Scribd logo
UNIVERSIDAD NACIONAL DEL SANTA
FACULTAD DE INGENIERIA
E.A.P AGROINDUSTRIAL
MEDICIONES Y CÁLCULO DE INCERTIDUMBRES
EXPERIMENTALES
CURSO :FISICA 1
GRUPO : “C”
DOCENTE :LIC. VERA MEZA SECUNDINO.
INTEGRANTES :VEGA VIERA JHONAS ABNER.
MUÑOZ ROJAS ANDREA GISELA
LI SALAZAR ASHLEY ALYSSA
ORO BELTRAN JOSLING BRIAN
CICLO: “III”
NUEVO CHIMBOTE - PERÚ
2013
UNIVERSIDAD NACIONAL DEL SANTA
FACULTAD DE INGENIERÍA AGROINDUSTRIAL
MEDICIONES Y CALCULOS DE INCERTIDUMBRES
EXPERIMENTALES
1. INTRODUCCIÓN
El propósito del experimento es aprender a calcular incertidumbres en las
mediciones que realizamos en nuestros experimentos y comprobar así que
toda medición tiene una incertidumbre o margen de error el cual se pudo
hallar por medio de métodos estadísticos y otros no estadísticos.
Para hallar la incertidumbre del periodo de oscilación del péndulo se
utilizara un método estadístico que se basa en calcular la desviación
estándar de la media y para hallar la incertidumbre de la longitud del
péndulo y de la aceleración de la gravedad (hallada indirectamente con los
valores del periodo y de la longitud del péndulo) se utilizara un método no
estadístico.
Al final tendremos como resultado el valor aproximado de la aceleración de
la gravedad con base en los resultados de nuestros datos.
2. OBJETIVOS
o Conocer el manejo del calibrador vernier y del cronometro.
o Evitar los errores sistemáticos en las mediciones directas.
o Realizar mediciones de distintas magnitudes físicas: una medición.
o Establecer la relación entre las lecturas de un instrumento y los valores
indicados por un patrón, bajo condiciones específicas.
o Determinar en forma directa las longitudes y masas de pequeños objetos
de diversas geometrías con sus respectivas incertidumbres
experimentales, registrando los datos con el número apropiado de cifras
significativas de acuerdo a la exactitud del instrumento.
o Determinar el volumen y la densidad de los objetos en forma indirecta con
sus respectivas incertidumbres experimentales, teniendo en cuenta la regla
de las operaciones con cifras significativas.
o Determinar la aceleración de la gravedad con su respectiva incertidumbre
experimental utilizando un péndulo simple.
o Asegurar la calidad en los procesos tratando de disminuir el margen de
error.
UNIVERSIDAD NACIONAL DEL SANTA
FACULTAD DE INGENIERÍA AGROINDUSTRIAL
3. MARCO TEÓRICO.
Las mediciones que se realizan en la ciencia y la ingeniería tienen por objetivo
establecer el valor numérico de determinada magnitud. Este valor numérico no
corresponde al valor real de la magnitud que se mide porque los resultados que
se obtienen en el proceso de medición son aproximados debido a la presencia
del error experimental se le conoce como incertidumbre experimental.
Clasificación de errores:
a) Errores sistemáticos:
Son los que en principio se pueden evitar, corregir o compensar. Se les
llama sistemáticos porque dan efectos consistentes, pues cuando están
presentes se obtienen valores que son más altos o más bajos que el
valor verdadero.
Ejemplos: defectos o falta de calibración de los instrumentos de
medición, el error debido al paralaje, etc.
b) Errores accidentales:
Se deben a la suma de gran número de perturbaciones individuales y
fluctuantes que se combinan para dar lugar a que la repetición de una
misma medición de en cada ocasión un valor algo distinto.
Ejemplos:
Errores de apreciación, como por ejemplo en la estimación de la fracción
de la menor división de una escala; errores que fluctúan, como por
ejemplo, variaciones en la red de energía eléctrica.
Incertidumbre absoluta ( )
Representa los límites de confianza dentro de los cuales se está seguro
de que el valor verdadero se encuentra en dicho intervalo.
Incertidumbre relativa ( )
Se define como el cociente de la incertidumbre absoluta y el valor medio
y se expresa así:
UNIVERSIDAD NACIONAL DEL SANTA
FACULTAD DE INGENIERÍA AGROINDUSTRIAL
Incertidumbre porcentual (I%)
Es el índice que más comúnmente se usa para especificar la exactitud
de una medida. Se define como la incertidumbre relativa por 100% es
decir:
Incertidumbre en medidas directas:
Cuando se realiza una medición directa de una magnitud y no es posible
repetir la medición o cuando al hacer una serie de las lecturas se obtiene
los mismos resultados para la magnitud a la lectura que se obtiene se le
asocia generalmente una incertidumbre absoluta, igual a la división más
pequeña de la escala del instrumento.
Ejemplo: al hacer una medición de longitud de un objeto con una regla
graduada en milímetros y se obtiene repetidamente la magnitud de
125mm, entonces tomaremos como 1 o -1 mm
Por lo tanto el resultado para la longitud será (125+1 o 125-1) mm
Es decir la longitud verdadera del objeto se encontrara dentro del
intervalo de 124 mm al 126 mm
Incertidumbre en mediciones indirectas:
Las mediciones que se realiza en la ciencia y en la ingeniería, la mayoría
son indirectas y para calcular la incertidumbre de una medida indirecta Z
que depende de las variables x, ye, z y w se emplea la siguiente
ecuación:
Sea z=f(x, y, w), la incertidumbre experimental absoluta de Z es:
Como consecuencia de los errores aleatorios (errores accidentales)
hacer repeticiones de una medida estas en general resultan diferentes, y
dado que no se conoce la medida verdadera, sur gen dos preguntas:
¿Cuál es el valor que se debe reportar?, ¿Qué incertidumbre es la que
se debe asociar al resultado?
UNIVERSIDAD NACIONAL DEL SANTA
FACULTAD DE INGENIERÍA AGROINDUSTRIAL
Para contestar la primera hay que tener en cuenta que los errores
aleatorios provocan en primer lugar que las medidas se distribuyan
alrededor de un valor promedio y en segundo lugar que la frecuencia
relativa de dichas medidas la describa la curva conocida como curva de
gauss
Y
X
De acuerdo con ello, el valor alrededor del cual se distribuye las medidas
las medidas es el que se acepta como más probable y con la mejor
estimación del valor verdadero. Este valor es la media aritmética:
Donde:
= valor de cada lectura
En cuanto a la segunda pregunta, la respuesta rigurosa pertenece a la
estadística, Se puede asignar como incertidumbre a la desviación
absoluta máxima que es simplemente la mayor de las diferencias
absolutas entre el valor promedio y las lecturas obtenidas.
En la asignación de la incertidumbre se utilizaban índices de precisión
como rango desviación media, desviación estándar, desviación estándar
de la media. Dichos índices son medidas de la dispersión de las lecturas
obtenidas.
Rango
Se define como la diferencia entre la mayor y la menor de las lecturas
que se obtienen al medir una magnitud.
Desviación media
Esta curva indica que los errores
aleatorios ocurren igualmente en forma
desviaciones pequeñas es mucho más
probables que las desviaciones grandes
UNIVERSIDAD NACIONAL DEL SANTA
FACULTAD DE INGENIERÍA AGROINDUSTRIAL
Desviación estándar ( para un conjunto finito de lectura es:
Al reportar el resultado de una medición como x ± Sxse establece que el
68% de las lecturas se encuentran en dicho intervalo; pero si el resultado
se reporta como x ± 2Sx o como x ± 3Sx entonces el 95% y el 99% de las
medidas se encuentran respectivamente en dichos intervalos.
Desviación estándar de la media
CALCULO DE LA DESVIACION ESTANDAR EN MEDICIONES
INDIRECTAS
La determinación experimental del valor de ciertas magnitudes físicas
como la velocidad la densidad, etc., rara vez se obtiene con métodos de
medición directa. Para calcular la desviación estándar de una medida
indirecta Z se aplica la siguiente ecuación:
Sea Z= f(x, y, w), entonces
Combinación de distintos tipos de incertidumbre.
Sea z=f(x, y)
Donde x= variable con tratamiento estadístico
Y= variable con tratamiento estadístico
La incertidumbre experimental se Z se calcula mediante la siguiente
ecuación:
UNIVERSIDAD NACIONAL DEL SANTA
FACULTAD DE INGENIERÍA AGROINDUSTRIAL
Cifras significativas:
Se llama cifra significativa a cada uno de los dígitos (1, 2,3,…., 9, 0) que
resultan de hacer una medición o que son producto de cálculos a partir
de mediciones. Por ejemplo si en la medición del diámetro de una esfera
con un vernier se obtuvo la lectura de 8,43cm se dice que los números
8,4 y 3 son cifras significativas.
En general, el número de cifras significativas de una idea aproximada de
la precisión de la magnitud medida. En algunas ocasiones se incluye el
resultado de una cifra dudosa (cifra estimada). Ejemplo: se obtiene un
Valor de 12,36 cm y 12,4cm.
Si el resultado de una medición, es 0,00321 m, el número de cifras
significativas es tres y no cinco o seis, porque los ceros a la izquierda no
son significativos. Para evitar confusiones se hace uso de las notaciones
de potencias de 10, de tal modo que el resultado se reporta 321x10-5
m.
Por otra parte, los ceros de la derecha no se deben escribir si no tienen
significado. Para eliminar los dígitos superfluos es conveniente recordar
las siguientes reglas:
1. Si el último digito es menor que cinco, simplemente se elimina.
Ejemplo: 7.83 redondeando da 7.8.
2. Si el último digito es mayor que cinco se elimina y se le suma 1 al
último digito que se conserva. Ejemplo: 7.37 redondeando da 7.4
3. Si el último digito es cinco, el anterior sube si impar y se conserva si
es par. Ejemplo: 3.75 redondeando da 3.8.
4. El digito incierto se debe escribir de menor tamaño y ponerse como
subíndice de los otros. Ejemplo: en 7.42 el 2 es un digito incierto.
5. De la suma o resta de cantidades que tienen distintos número de
cifras decimales el resultado se debe expresar como datos decimales
como correspondan a la cantidad que menos tenga.
Ejemplo: en la suma de:
31.02+
0.8
2.322
34.142
El resultado debe tener una sola cifra decimal y es igual a 34.1.
6. en la multiplicación o división el resultado tendrá esencialmente el
mismo número de cifras significativas que el término que menos
tenga.
Ejemplo: Al efectuar siguientes multiplicaciones: 2.341x2.2=5.1502
El resultado tendrá dos cifras significativas: 5.2 (ya redondeando,
porque el factor 2.2 es el que menos cifras significativas tiene).
UNIVERSIDAD NACIONAL DEL SANTA
FACULTAD DE INGENIERÍA AGROINDUSTRIAL
En las sumas, restas, multiplicaciones y divisiones es conveniente
arrastrar más dígitos superfluos, eliminándolos el resultado final.
En los cálculos estadísticos el número de cifras significativas que se
retienen en la medida normalmente es uno más que en los datos
primarios.
Una cifra incierta multiplicada por una cierta produce una cifra
incierta. En el caso de una constante tal como “pi”, el Valor usado
dependerá de la fricción de las otras cantidades. Si el radio de la
circunferencia es 8,76 cm. Escribiríamos para el área:
π(r2)=3.14x(8.76)2
cm2
.
III. PARTE EXPERIMENTAL
3.1 PARA MEDIR LONGITUDES Y MASAS
INSTRUMENTOS MATERIALES
Balanza digital
Calibrador Vernier
Regla milimetrada
Objetos diversos (esfera metálica, taco de madera, etc.)
PROCEDIMIENTO
- Para realizar las medidas exteriores de la esfera y del taco de
madera, desplazar la parte móvil del Vernier lo suficiente como para
colocar el objeto a medir.
- Una vez colocado el objeto, cerrar que quede aprisionado
suavemente.
- La lectura de la medida se efectuara de la siguiente manera: leer
sobre la regla fija la longitud que hay hasta le cero de la regla móvil
(nonio). Mirar luego que división del nonio coincide o se aproxima
más a una división de la regla fija; el número de orden de aquella (el
nonio) son los decimales que hay que añadir a la longitud leída en la
regla móvil.
- Cada integrante de grupo, hará sus respectivas medidas llenara las
siguientes tablas de datos.
ESFERA
N° DE MEDIDAS D(cm) m (gr)
1
2
.
.
.
10
UNIVERSIDAD NACIONAL DEL SANTA
FACULTAD DE INGENIERÍA AGROINDUSTRIAL
4. MATERIALES
A. MEDICIONES Y SU INCERTIDUMBRE
Pie de rey:
Es un instrumento para medir dimensiones de
objetos relativamente pequeños, desde
centímetros hasta fracciones de milímetros
(1/10 de milímetro, 1/20 de milímetro, 1/50 de
milímetro). En la escala de las pulgadas tiene
divisiones equivalentes a 1/16 de pulgada, y,
en su nonio, de 1/128 de pulgada.
Micrómetro:
También llamado Tornillo de Palmer, es un
instrumento de medición cuyo funcionamiento
está basado en el tornillo micrométrico que
sirve para medir las dimensiones de un objeto
con alta precisión, del orden de centésimas de
milímetros (0,01 mm) y de milésimas de
milímetros (0,001 mm) (micra).
Varilla:
Suele ser de metal, constituido por una larga
varilla enroscada en una base. A él se sujetan
los recipientes que se necesitan para realizar los
montajes experimentales.
Cinta métrica:
El fluxómetro o cinta métrica es un
instrumento de medición, con la
particularidad de que está construido en
chapa metálica flexible debido su escaso
espesor, dividida en unidades de medición, y
que se enrolla en espiral dentro de una
carcasa metálica o de plástico.
UNIVERSIDAD NACIONAL DEL SANTA
FACULTAD DE INGENIERÍA AGROINDUSTRIAL
Paralelepípedo
Un paralelepípedo es un poliedro de seis caras
(por tanto, un hexaedro), en el que todas las caras
son paralelogramos, y paralelas e iguales dos a
dos. Un paralelepípedo tiene 12 aristas, que son
iguales y paralelas en grupos de cuatro; y 8
vértices.
4.2 MEDIDA DE TIEMPO
Nueces doble
Es una pieza que posee dos agujeros con dos tornillos
opuestos. Uno de los agujeros se utiliza para ajustar la
doble nuez (generalmente a un pie universal), mientras
que en la otra se coloca y ajusta la pieza a sujetar.
Soporte universal:
El pie universal o soporte universal es un elemento que se
utiliza en laboratorio para realizar montajes con los diversos
materiales y obtener sistemas de medición o de diversas
funciones. Está formado por una base o pie en forma de
semicírculo o de rectángulo, y desde el centro de uno de los
lados, tiene una varilla cilíndrica que sirve para sujetar otros
elementos a través de doble nueces.
Cronómetro:
El cronómetro es un reloj o una función de reloj
utilizada para medir fracciones temporales,
normalmente breves y precisas. Consiste en empezar
a contar desde cero al pulsarse el mismo botón que lo
detiene.
Pesa de ranura:
Instrumento de laboratorio tanto físico como químico.
Existe juegos de ranuras de acuerdo al peso, como por
ejemplo de 10, 100, 500 gramos.
UNIVERSIDAD NACIONAL DEL SANTA
FACULTAD DE INGENIERÍA AGROINDUSTRIAL
5. CÁLCULOS Y RESULTADOS.
6.
7.
8.
tabla de datos N°03
N° c (cm) T(seg)
1 46.1 1.3
2 46.5 1.4
3 46.4 1.43
4 46.6 1.35
5 46.8 1.26
6 46.9 1.38
7 46.7 1.41
8 47 1.35
9 46.3 1.44
10 47.1 1.36
tabla de datos N°02
N° a (cm) l (cm) h (cm) m (g)
1 4.64 7.24 11.82 174
2 4.61 7.284 11.824 174
3 4.611 7.29 11.822 174
4 4.612 7.21 11.823 174
5 4.62 7.22 11.83 174
6 4.621 7.293 11.812 174
7 4.623 7.294 11.821 174
8 4.622 7.203 11.814 174
9 4.63 7.221 11.813 174
10 4.629 7.244 11.81 174
tabla de datos N°01
n° D (cm) m (mg)
1 5,62 cm 159 g
2 5,623 cm 160 g
3 5,21 cm 161 g
4 5,632 cm 162 g
5 5,63 cm 163 g
6 5,634 cm 164 g
7 5,631 cm 165 g
8 5,624 cm 166 g
9 5,633 cm 167 g
10 5,59 cm 168 g
Cada integrante del grupo, con la
cinta métrica medirá la longitud del
péndulo y con el cronometro medirá
el tiempo que demora el péndulo en
realizar 10 oscilaciones.
UNIVERSIDAD NACIONAL DEL SANTA
FACULTAD DE INGENIERÍA AGROINDUSTRIAL
RESULTADOS DE LA TABLA DE DATOS N°01
1. cálculo del valor medio (Dm)
2. calculo de la desviación (δDi)
(δDi)
3.8x 10-3
8x 10-4
0.1028
8.2x 10-3
0.0102
6.2x10-3
2x10-4
7.2x10-3
0.0662
9.2x10-3
3. calculo de desviación media (ᵹDi)
4. el error absoluto ( )
5. el error relativo ( )
6. el error porcentual ( )
UNIVERSIDAD NACIONAL DEL SANTA
FACULTAD DE INGENIERÍA AGROINDUSTRIAL
7. medición final (D)
8. errores absolutos promedios ( )
RESULTADOS DE LA TABLA DE DATOS N°02
LARGO EN CM
1. cálculo del valor medio L(cm)
2. calculo de la desviación (δDi)
(δDi)
0.0099
0.0341
0.0401
0.0399
0.0299
0.0431
0.0441
0.0289
0.0469
0.0059
UNIVERSIDAD NACIONAL DEL SANTA
FACULTAD DE INGENIERÍA AGROINDUSTRIAL
3. calculo de desviación media (ᵹDi)
4. el error absoluto ( )
5. el error relativo ( )
6. el error porcentual ( )
7. medición final (D)
8. errores absolutos promedios ( )
RESULTADOS DE LA TABLA DE DATOS N°02
ANCHO EN CM
1. cálculo del valor medio (Dm)
UNIVERSIDAD NACIONAL DEL SANTA
FACULTAD DE INGENIERÍA AGROINDUSTRIAL
2. calculo de la desviación (δDi)
(δDi)
0.0052
0.0092
0.0082
0.0072
0.0008
0.0018
0.0028
0.0038
0.0108
0.0098
3. calculo de desviación media (ᵹDi)
4. el error absoluto ( )
5. el error relativo ( )
6. el error porcentual ( )
UNIVERSIDAD NACIONAL DEL SANTA
FACULTAD DE INGENIERÍA AGROINDUSTRIAL
7. medición final (D)
8. errores absolutos promedios ( )
RESULTADOS DE LA TABLA DE DATOS N°02
ANCHO EN CM
1. cálculo del valor medio (Dm)
2. calculo de la desviación (δDi)
(δDi)
0.0011
0.0051
0.0031
0.0041
0.0111
0.0069
0.0021
0.0049
0.0059
0.0089
UNIVERSIDAD NACIONAL DEL SANTA
FACULTAD DE INGENIERÍA AGROINDUSTRIAL
3. calculo de desviación media (ᵹDi)
4. el error absoluto ( )
5. el error relativo ( )
6. el error porcentual ( )
7. medición final (D)
8. errores absolutos promedios ( )
RESULTADOS DE LA TABLA DE DATOS N°03
1. cálculo del valor medio (Dm)
UNIVERSIDAD NACIONAL DEL SANTA
FACULTAD DE INGENIERÍA AGROINDUSTRIAL
2. calculo de la desviación (δDi)
(δDi)
0.54
0.14
0.24
0.04
0.16
0.26
0.06
0.36
0.34
0.46
3. calculo de desviación media (ᵹDi)
4. el error absoluto ( )
5. el error relativo ( )
6. el error porcentual ( )
7. medición final (D)
UNIVERSIDAD NACIONAL DEL SANTA
FACULTAD DE INGENIERÍA AGROINDUSTRIAL
8. errores absolutos promedios ( )
RESULTADOS DE LA TABLA DE DATOS N°03
TIEMPO (seg)
1. cálculo del valor medio (Dm)
2. calculo de la desviación (δDi)
(δDi)
0.688
0.0312
0.0612
0.0188
0.1088
0.0112
0.0412
0.0108
0.0712
0.0088
3. calculo de desviación media (ᵹDi)
UNIVERSIDAD NACIONAL DEL SANTA
FACULTAD DE INGENIERÍA AGROINDUSTRIAL
4. el error absoluto ( )
5. el error relativo ( )
6. el error porcentual ( )
7. medición final (D)
8. errores absolutos promedios ( )
CUESTIONARIO:
1. ¿Cuál es la menor fracción de milímetros que puede ser leída en el
calibrador vernier?
La menor fracción que se puede leer es de 0,1mm.
2. ¿Cómo se mediría el espeso de una sola hoja de papel por medio del
calibrador vernier?
Tomaría un cierto húmero de hojas como por ejemplo 100 hojas, mediría
el espesor y a aquel resultado lo divido entre el número de hojas, en
este se divide entre 100.
Otro método sería medir el espesor de un vidrio y luego poner la hoja
junto al vidrio y volverlo a medir, entonces por cálculo de diferencia se
sacaría el espesor de la hoja.
UNIVERSIDAD NACIONAL DEL SANTA
FACULTAD DE INGENIERÍA AGROINDUSTRIAL
3. Calcule la desviación estándar de las medidas directas y compruebe
que porcentaje estos caen en el intervalo:
Recipiente del cilindro
Péndulo
4. ¿Cuáles de las 3 medidas (a, l, h) contribuyen para el cálculo del
volumen con mayor error? ¿Por qué?
Largo (L)
= 0.036
Altura (h)
= 0.00599
Ancho (A)
Largo (l) presenta mayor margen de error porque existe un menor valor
medio y tiene un mayor porcentaje de error
b. Diámetro:
Sx = 0.04
X = 14.88
Intervalo=
Porcentaje= 90%
a. Altura:
Sx = 0.006
X = 15.11
Intervalo=
Porcentaje= 60%
d. Longitud:
Sx = 0.02
X = 22.98
Intervalo=
Porcentaje= 80%
c. Periodo:
Sx = 0.02
X = 22.98
Intervalo=
Porcentaje= 80%
UNIVERSIDAD NACIONAL DEL SANTA
FACULTAD DE INGENIERÍA AGROINDUSTRIAL
5. ¿Cómo se puede reducir el error aleatorio en las medidas de los
objetos?
Utilizando el instrumento de mayor precisión y también estos errores se
deben a la fatiga del ojo, por lo tanto es recomendable que las
mediciones no lo realice una sola persona sino que vayan alternando,
también:
o Calibrando los instrumentos.
o Compensando el error al final de una lectura de medición.
o Teniendo presente que se puede cometer errores de paralaje.
o Utilizando instrumentos de mayor precisión.
6. Comparar los resultados obtenidos de la densidad de los valores
teóricos(phierro, pmadera) que dan en los libros. Enumera las posibles
fuentes de error.
Valores Teóricos Valores prácticos
Hierro: 7,96g/cm3
Hierro:
Madera: 0,6 – 0,9g/cm3
Madera:
La medición puede ser falla física o geométrica.
La calibración de los aparatos.
Influencia de ciertos factores como la dilatación y humedad.
En el paralaje.
7. Teniendo en cuenta que g=980cm/s2
, comparar con el valor obtenido.
Enumere las posibles fuentes de error.
g (teórico) = 980 cm/s2
g (práctico) =
Las principales fuentes de error pueden ser las anomalías en la
dirección y la intensidad de la aceleración de la gravedad están ligadas a
la repartición de las diferentes masas en el espesor de la corteza
terrestre.
Se puede contribuir a la determinación de la estructura geológica de una
región. Puede ser captadas por la presencia en el subsuelo de una gran
cantidad de gas que anuncia la variedad del peso.
Por otra fuente sería por la variación del peso para eso se recomienda
mantener las ventanas y puertas cerradas.
Una de las posibles fuentes de error puede ser la imprecisión del
experimentador al realizar las mediciones en el periodo y en la longitud
del péndulo.
UNIVERSIDAD NACIONAL DEL SANTA
FACULTAD DE INGENIERÍA AGROINDUSTRIAL
8. Al medir la resistencia de un resistor, la lectura del voltímetro era de
15,2 0,2V; y la lectura del amperímetro era de 2,6 0,1A. ¿Cuál es la
incertidumbre absoluta de la resistencia calculada usando la ecuación
R = V/I?
V: 15.2 0.2v 15 y 15.4
I: 2.6 0.1A 2.7 y 2.5
R1 = = 5.70 R3= = 5.55
R2= = 6.16 R4= = 6
9. En la medición de la masa de un cuerpo se obtuvieron los siguientes
valores: 4,2 sg; 4,0 sg; 4,1 sg; 3,2 sg; 4,0 sg.
Calcular:
a) El valor más probable de la masa: X= 4.1 gr
b) La desviación media: x= 0.08
c) La desviación estándar: Sx = 0.1 gr
d) La desviación estándar media :
10.Una serie de mediciones consecutivas del diámetro del corte
transversal circular de un alambre, dio por resultado una media de
0,62mm. con una desviación estándar de la muestra de 0,04mm. ¿Cuál
es la desviación estándar del valor calculado para el área de corte
transversal?
9. CONCLUSIONES
a. MEDICIONES Y SU INCERTIDUMBRE
Al medir los objetos con las diferentes herramientas de medición
nos hemos dado cuenta de la precisión de los diferentes aparatos
de medición, por ejemplo sabemos que un vernier es sumamente
más exacto que una cinta métrica, aunque conocemos que la gran
desventaja del vernier es que no puede medir objetos de tamaño
considerable, y la regla si, además notamos que la precisión
nunca llega a ser del 100% porque las escalas nos limitan y es
por eso que necesitamos conocer los rangos de error.
UNIVERSIDAD NACIONAL DEL SANTA
FACULTAD DE INGENIERÍA AGROINDUSTRIAL
b. MEDIDA DE TIEMPO
También en algunas ocasiones nos valimos de los instrumentos
de medición para lograr medidas indirectas, como la velocidad,
que utilizamos un metro y el cronómetro para concluir la velocidad
de un objeto. También es importante conocer las incertidumbres
ya que de otra forma los resultados que se dan podrían ser
inexactos y eso alteraría los resultados esperados.
c. Realizamos la medición directa de los diferentes objetos, en
forma individual tomando en cuenta sus pesos, longitudes,
diámetros y alturas, según el caso.
d. Al concluir con el experimento adquirimos mayor destreza
en el manejo de los distintos instrumentos,
familiarizándonos con las magnitudes, unidades y errores
de los mismos.
e. Consideramos la realización de esta práctica importante, ya
que nos permitió, verificar por experiencia propia, lo
aprendido en teoría.
10.RECOMENDACIONES:
Para un buen trabajo de medición es necesario comprobar el buen
funcionamiento de los instrumentos (el estado físico del instrumento).
Para reducir el problema de errores se debe verificar la precisión del
instrumento en cuanto a sus unidades más pequeñas.
11.BIBLIOGRAFÍA
o http://www.google.com.pe/search?hl=es&biw=1006&bih=636&q=pie+de+
rey&aq=f&aqi=g10&aql=&oq=&gs_rfai=
o http://www.google.com.pe/search?hl=es&biw=1006&bih=636&q=microm
etro&aq=f&aqi=g10&aql=&oq=&gs_rfai=
o http://es.wikipedia.org/wiki/Varilla_de_vidrio_(qu%C3%ADmica)
o http://es.wikipedia.org/wiki/Doble_nuez
o http://www.monografias.com/trabajos12/medtrab/medtrab2.shtml
o http://www.google.com.pe/images?hl=es&q=soporte+universal&um=1&ie
=UTF8&source=univ&ei=84qQTJHoEsXflgf1z4DkAQ&sa=X&oi=image_r
esult_group&ct=title&resnum=1&ved=0C
UNIVERSIDAD NACIONAL DEL SANTA
FACULTAD DE INGENIERÍA AGROINDUSTRIAL

Más contenido relacionado

La actualidad más candente

Lab 1[1]
Lab 1[1]Lab 1[1]
Lab 1[1]
quiqueperu
 
Trayectorias ortogonales monografia
Trayectorias ortogonales monografiaTrayectorias ortogonales monografia
Trayectorias ortogonales monografia
Centro de Multimedios
 
Calor especifico de un metal. Informe de fisica By Jairo A. Marchena M. USB. ...
Calor especifico de un metal. Informe de fisica By Jairo A. Marchena M. USB. ...Calor especifico de un metal. Informe de fisica By Jairo A. Marchena M. USB. ...
Calor especifico de un metal. Informe de fisica By Jairo A. Marchena M. USB. ...
Universidad Simon Bolivar (Bquilla-Col)
 
ERRORES Y MEDICION
ERRORES Y MEDICIONERRORES Y MEDICION
ERRORES Y MEDICION
Torimat Cordova
 
Problemas resueltos-cap-20-fisica-serway
Problemas resueltos-cap-20-fisica-serwayProblemas resueltos-cap-20-fisica-serway
Problemas resueltos-cap-20-fisica-serway
David Ballena
 
Electrolisis soluciones
Electrolisis solucionesElectrolisis soluciones
Electrolisis soluciones
edwinvargas777
 
Ejercicios resueltos y propuestos
Ejercicios resueltos y propuestosEjercicios resueltos y propuestos
Ejercicios resueltos y propuestos
mariavarey
 
Densidad de líquidos y sólidos
Densidad de líquidos y sólidosDensidad de líquidos y sólidos
Densidad de líquidos y sólidos
Hellen Herrera
 
ECUACIÓN DE ESTADO DEL VIRIAL
ECUACIÓN DE ESTADO DEL VIRIALECUACIÓN DE ESTADO DEL VIRIAL
ECUACIÓN DE ESTADO DEL VIRIAL
Boris Chicoma Larrea
 
LEY DE OHM LABORATORIO FÍSICA ELECTROMAGNÉTICA 2019
LEY DE OHM LABORATORIO FÍSICA ELECTROMAGNÉTICA 2019LEY DE OHM LABORATORIO FÍSICA ELECTROMAGNÉTICA 2019
LEY DE OHM LABORATORIO FÍSICA ELECTROMAGNÉTICA 2019
Universidad Francisco de Paula Santander
 
Aplicacion de-las-matrices-en-la-ingenieria-civil
Aplicacion de-las-matrices-en-la-ingenieria-civilAplicacion de-las-matrices-en-la-ingenieria-civil
Aplicacion de-las-matrices-en-la-ingenieria-civil
Edilson Paucar
 
Sistema de unidades y análisis dimensional
Sistema de unidades y análisis dimensional Sistema de unidades y análisis dimensional
Sistema de unidades y análisis dimensional
Alejandro Requena
 
Ecuaciones Empíricas
 Ecuaciones Empíricas Ecuaciones Empíricas
Ecuaciones Empíricas
Self-employed
 
Equilibrio prb-resueltos
Equilibrio prb-resueltosEquilibrio prb-resueltos
Equilibrio prb-resueltos
Nora Benitez
 
Dilatación lineal laboratorio de fisica
Dilatación lineal laboratorio de fisicaDilatación lineal laboratorio de fisica
Dilatación lineal laboratorio de fisica
Marco Apolinario Lainez
 
Aplicaciones del cálculo a la ingeniería
Aplicaciones del cálculo a la ingenieríaAplicaciones del cálculo a la ingeniería
Aplicaciones del cálculo a la ingeniería
Abel Rivera Cervantes
 
Aplicaciones de las ecuaciones diferenciales
Aplicaciones de las ecuaciones diferenciales Aplicaciones de las ecuaciones diferenciales
Aplicaciones de las ecuaciones diferenciales
Ingeniero Edwin Torres Rodríguez
 
Problemas sobre vaciado de tanques
Problemas sobre vaciado de tanquesProblemas sobre vaciado de tanques
Problemas sobre vaciado de tanques
Nedzon Pinto Catalan
 
Ejercicios tipo examen
Ejercicios tipo examenEjercicios tipo examen
Ejercicios tipo examen
Rodolfo Alvarez Manzo
 
Laboratorio de fisica
Laboratorio de fisicaLaboratorio de fisica
Laboratorio de fisica
Jirson Perez
 

La actualidad más candente (20)

Lab 1[1]
Lab 1[1]Lab 1[1]
Lab 1[1]
 
Trayectorias ortogonales monografia
Trayectorias ortogonales monografiaTrayectorias ortogonales monografia
Trayectorias ortogonales monografia
 
Calor especifico de un metal. Informe de fisica By Jairo A. Marchena M. USB. ...
Calor especifico de un metal. Informe de fisica By Jairo A. Marchena M. USB. ...Calor especifico de un metal. Informe de fisica By Jairo A. Marchena M. USB. ...
Calor especifico de un metal. Informe de fisica By Jairo A. Marchena M. USB. ...
 
ERRORES Y MEDICION
ERRORES Y MEDICIONERRORES Y MEDICION
ERRORES Y MEDICION
 
Problemas resueltos-cap-20-fisica-serway
Problemas resueltos-cap-20-fisica-serwayProblemas resueltos-cap-20-fisica-serway
Problemas resueltos-cap-20-fisica-serway
 
Electrolisis soluciones
Electrolisis solucionesElectrolisis soluciones
Electrolisis soluciones
 
Ejercicios resueltos y propuestos
Ejercicios resueltos y propuestosEjercicios resueltos y propuestos
Ejercicios resueltos y propuestos
 
Densidad de líquidos y sólidos
Densidad de líquidos y sólidosDensidad de líquidos y sólidos
Densidad de líquidos y sólidos
 
ECUACIÓN DE ESTADO DEL VIRIAL
ECUACIÓN DE ESTADO DEL VIRIALECUACIÓN DE ESTADO DEL VIRIAL
ECUACIÓN DE ESTADO DEL VIRIAL
 
LEY DE OHM LABORATORIO FÍSICA ELECTROMAGNÉTICA 2019
LEY DE OHM LABORATORIO FÍSICA ELECTROMAGNÉTICA 2019LEY DE OHM LABORATORIO FÍSICA ELECTROMAGNÉTICA 2019
LEY DE OHM LABORATORIO FÍSICA ELECTROMAGNÉTICA 2019
 
Aplicacion de-las-matrices-en-la-ingenieria-civil
Aplicacion de-las-matrices-en-la-ingenieria-civilAplicacion de-las-matrices-en-la-ingenieria-civil
Aplicacion de-las-matrices-en-la-ingenieria-civil
 
Sistema de unidades y análisis dimensional
Sistema de unidades y análisis dimensional Sistema de unidades y análisis dimensional
Sistema de unidades y análisis dimensional
 
Ecuaciones Empíricas
 Ecuaciones Empíricas Ecuaciones Empíricas
Ecuaciones Empíricas
 
Equilibrio prb-resueltos
Equilibrio prb-resueltosEquilibrio prb-resueltos
Equilibrio prb-resueltos
 
Dilatación lineal laboratorio de fisica
Dilatación lineal laboratorio de fisicaDilatación lineal laboratorio de fisica
Dilatación lineal laboratorio de fisica
 
Aplicaciones del cálculo a la ingeniería
Aplicaciones del cálculo a la ingenieríaAplicaciones del cálculo a la ingeniería
Aplicaciones del cálculo a la ingeniería
 
Aplicaciones de las ecuaciones diferenciales
Aplicaciones de las ecuaciones diferenciales Aplicaciones de las ecuaciones diferenciales
Aplicaciones de las ecuaciones diferenciales
 
Problemas sobre vaciado de tanques
Problemas sobre vaciado de tanquesProblemas sobre vaciado de tanques
Problemas sobre vaciado de tanques
 
Ejercicios tipo examen
Ejercicios tipo examenEjercicios tipo examen
Ejercicios tipo examen
 
Laboratorio de fisica
Laboratorio de fisicaLaboratorio de fisica
Laboratorio de fisica
 

Similar a Mediciones y cálculo de incertidumbres experimentales

Mediciones y cálculo de incertidumbres experimentales
Mediciones y cálculo de incertidumbres experimentalesMediciones y cálculo de incertidumbres experimentales
Mediciones y cálculo de incertidumbres experimentales
Jhonás A. Vega
 
mediciones, estática y cinematica
mediciones, estática y cinematicamediciones, estática y cinematica
mediciones, estática y cinematica
Jhonás A. Vega
 
02__Repaso_de_Tratamiento_de_Errores_y_Ajuste_de_Datos.pdf
02__Repaso_de_Tratamiento_de_Errores_y_Ajuste_de_Datos.pdf02__Repaso_de_Tratamiento_de_Errores_y_Ajuste_de_Datos.pdf
02__Repaso_de_Tratamiento_de_Errores_y_Ajuste_de_Datos.pdf
MarlonGeovanyTurcios
 
Presentacion de ciencia fisica
Presentacion de ciencia fisicaPresentacion de ciencia fisica
Presentacion de ciencia fisica
arlencitha12
 
Sesion2
Sesion2Sesion2
LABORATORIOS FISICA MECÁNICA.docx
LABORATORIOS FISICA MECÁNICA.docxLABORATORIOS FISICA MECÁNICA.docx
LABORATORIOS FISICA MECÁNICA.docx
yanky16
 
Hector parra
Hector parraHector parra
Hector parra
Marian Osorio
 
Teoria de errores
Teoria de erroresTeoria de errores
Teoria de errores
RoinnerRodriguez
 
laboratorio05-06opt.pdf
laboratorio05-06opt.pdflaboratorio05-06opt.pdf
laboratorio05-06opt.pdf
KreepLinus
 
2001 estadística en qa
2001 estadística en qa2001 estadística en qa
2001 estadística en qa
CtdmEusebioAyala
 
Teoria errores
Teoria erroresTeoria errores
Teoria errores1
Teoria errores1Teoria errores1
Teoria errores1
JORGE CONDORI VILCA
 
Teoria errores
Teoria erroresTeoria errores
Teoria errores
ENRIQUEGARCIA373
 
2. errores en las mediciones
2. errores en las mediciones2. errores en las mediciones
2. errores en las mediciones
mjrunah
 
C Tema 1 Errores De Medicion
C Tema 1 Errores De MedicionC Tema 1 Errores De Medicion
C Tema 1 Errores De Medicion
danielvillagran
 
Fisica pract 1 lab
Fisica pract 1 labFisica pract 1 lab
Fisica pract 1 lab
laury kiryu
 
Medidas, errores e incertidumbre
Medidas, errores e incertidumbreMedidas, errores e incertidumbre
Medidas, errores e incertidumbre
AWAKENMUSTAKRAKISH
 
Republica bolivariana de venezuela
Republica bolivariana de venezuelaRepublica bolivariana de venezuela
Republica bolivariana de venezuela
Bernardo Medina
 
Q.Analitica - Clase 15 - Estadistica.pdf
Q.Analitica - Clase 15 - Estadistica.pdfQ.Analitica - Clase 15 - Estadistica.pdf
Q.Analitica - Clase 15 - Estadistica.pdf
ErmyCruz
 
Lab fisica1
Lab fisica1Lab fisica1
Lab fisica1
Diego Román Santos
 

Similar a Mediciones y cálculo de incertidumbres experimentales (20)

Mediciones y cálculo de incertidumbres experimentales
Mediciones y cálculo de incertidumbres experimentalesMediciones y cálculo de incertidumbres experimentales
Mediciones y cálculo de incertidumbres experimentales
 
mediciones, estática y cinematica
mediciones, estática y cinematicamediciones, estática y cinematica
mediciones, estática y cinematica
 
02__Repaso_de_Tratamiento_de_Errores_y_Ajuste_de_Datos.pdf
02__Repaso_de_Tratamiento_de_Errores_y_Ajuste_de_Datos.pdf02__Repaso_de_Tratamiento_de_Errores_y_Ajuste_de_Datos.pdf
02__Repaso_de_Tratamiento_de_Errores_y_Ajuste_de_Datos.pdf
 
Presentacion de ciencia fisica
Presentacion de ciencia fisicaPresentacion de ciencia fisica
Presentacion de ciencia fisica
 
Sesion2
Sesion2Sesion2
Sesion2
 
LABORATORIOS FISICA MECÁNICA.docx
LABORATORIOS FISICA MECÁNICA.docxLABORATORIOS FISICA MECÁNICA.docx
LABORATORIOS FISICA MECÁNICA.docx
 
Hector parra
Hector parraHector parra
Hector parra
 
Teoria de errores
Teoria de erroresTeoria de errores
Teoria de errores
 
laboratorio05-06opt.pdf
laboratorio05-06opt.pdflaboratorio05-06opt.pdf
laboratorio05-06opt.pdf
 
2001 estadística en qa
2001 estadística en qa2001 estadística en qa
2001 estadística en qa
 
Teoria errores
Teoria erroresTeoria errores
Teoria errores
 
Teoria errores1
Teoria errores1Teoria errores1
Teoria errores1
 
Teoria errores
Teoria erroresTeoria errores
Teoria errores
 
2. errores en las mediciones
2. errores en las mediciones2. errores en las mediciones
2. errores en las mediciones
 
C Tema 1 Errores De Medicion
C Tema 1 Errores De MedicionC Tema 1 Errores De Medicion
C Tema 1 Errores De Medicion
 
Fisica pract 1 lab
Fisica pract 1 labFisica pract 1 lab
Fisica pract 1 lab
 
Medidas, errores e incertidumbre
Medidas, errores e incertidumbreMedidas, errores e incertidumbre
Medidas, errores e incertidumbre
 
Republica bolivariana de venezuela
Republica bolivariana de venezuelaRepublica bolivariana de venezuela
Republica bolivariana de venezuela
 
Q.Analitica - Clase 15 - Estadistica.pdf
Q.Analitica - Clase 15 - Estadistica.pdfQ.Analitica - Clase 15 - Estadistica.pdf
Q.Analitica - Clase 15 - Estadistica.pdf
 
Lab fisica1
Lab fisica1Lab fisica1
Lab fisica1
 

Más de Jhonás A. Vega

Caso Puma.pptx
Caso Puma.pptxCaso Puma.pptx
Caso Puma.pptx
Jhonás A. Vega
 
Velocidad de congelacion y calidad
Velocidad de congelacion y calidadVelocidad de congelacion y calidad
Velocidad de congelacion y calidad
Jhonás A. Vega
 
Sistema de refrigeración mecánico
Sistema de refrigeración mecánicoSistema de refrigeración mecánico
Sistema de refrigeración mecánico
Jhonás A. Vega
 
Reconocimiento de equipos de tratamiento termico
Reconocimiento de equipos de tratamiento termicoReconocimiento de equipos de tratamiento termico
Reconocimiento de equipos de tratamiento termico
Jhonás A. Vega
 
Liofilización de yogurt
Liofilización de yogurtLiofilización de yogurt
Liofilización de yogurt
Jhonás A. Vega
 
Determinación del punto mas frio
Determinación del punto mas frioDeterminación del punto mas frio
Determinación del punto mas frio
Jhonás A. Vega
 
Curvas de congelacion de agua y soluciones binarias (recuperado)
Curvas de congelacion de agua y soluciones binarias (recuperado)Curvas de congelacion de agua y soluciones binarias (recuperado)
Curvas de congelacion de agua y soluciones binarias (recuperado)
Jhonás A. Vega
 
Efecto de la temperatura y tipos de daño sobre la calidad del tomate
Efecto de la temperatura y tipos de daño sobre la calidad del tomateEfecto de la temperatura y tipos de daño sobre la calidad del tomate
Efecto de la temperatura y tipos de daño sobre la calidad del tomate
Jhonás A. Vega
 
Evaluacion de-la-vida-útil-de-embutidos-envasados-de-los-supermercados
Evaluacion de-la-vida-útil-de-embutidos-envasados-de-los-supermercadosEvaluacion de-la-vida-útil-de-embutidos-envasados-de-los-supermercados
Evaluacion de-la-vida-útil-de-embutidos-envasados-de-los-supermercados
Jhonás A. Vega
 
Evaluacion de la vida útil de embutidos envasados de los supermercados
Evaluacion de la vida útil de embutidos envasados de los supermercadosEvaluacion de la vida útil de embutidos envasados de los supermercados
Evaluacion de la vida útil de embutidos envasados de los supermercados
Jhonás A. Vega
 
Determinación de la resistencia al cartón
Determinación de la resistencia al cartónDeterminación de la resistencia al cartón
Determinación de la resistencia al cartón
Jhonás A. Vega
 
Determinacion de la permeabilidad de los empaques
Determinacion de la permeabilidad de los empaquesDeterminacion de la permeabilidad de los empaques
Determinacion de la permeabilidad de los empaques
Jhonás A. Vega
 
Utilizacion de envases activos en productos agroindustriales
Utilizacion de envases activos en productos agroindustrialesUtilizacion de envases activos en productos agroindustriales
Utilizacion de envases activos en productos agroindustriales
Jhonás A. Vega
 
Corrosion de envases metalicos frente a los acidos
Corrosion de envases metalicos frente a los acidosCorrosion de envases metalicos frente a los acidos
Corrosion de envases metalicos frente a los acidos
Jhonás A. Vega
 
Caracterizacion fisica de los envases de plastico
Caracterizacion fisica de los envases de plasticoCaracterizacion fisica de los envases de plastico
Caracterizacion fisica de los envases de plastico
Jhonás A. Vega
 
Exposición 1 (equilibrio líquido vapor)
Exposición 1 (equilibrio líquido  vapor)Exposición 1 (equilibrio líquido  vapor)
Exposición 1 (equilibrio líquido vapor)
Jhonás A. Vega
 
Influencia del método de secado en parámetros de calidad relacionados con ...
Influencia del método de secado en parámetros  de  calidad  relacionados con ...Influencia del método de secado en parámetros  de  calidad  relacionados con ...
Influencia del método de secado en parámetros de calidad relacionados con ...
Jhonás A. Vega
 
Destilación equilibrio líquido vapor
Destilación equilibrio líquido vaporDestilación equilibrio líquido vapor
Destilación equilibrio líquido vapor
Jhonás A. Vega
 
Determinacion de humedad y ceniza nutricion desayuno
Determinacion de humedad y ceniza nutricion  desayunoDeterminacion de humedad y ceniza nutricion  desayuno
Determinacion de humedad y ceniza nutricion desayuno
Jhonás A. Vega
 
Determinacion de proteinas mediante el metodo de kjeldahl nutricion
Determinacion de proteinas mediante el metodo de kjeldahl  nutricionDeterminacion de proteinas mediante el metodo de kjeldahl  nutricion
Determinacion de proteinas mediante el metodo de kjeldahl nutricion
Jhonás A. Vega
 

Más de Jhonás A. Vega (20)

Caso Puma.pptx
Caso Puma.pptxCaso Puma.pptx
Caso Puma.pptx
 
Velocidad de congelacion y calidad
Velocidad de congelacion y calidadVelocidad de congelacion y calidad
Velocidad de congelacion y calidad
 
Sistema de refrigeración mecánico
Sistema de refrigeración mecánicoSistema de refrigeración mecánico
Sistema de refrigeración mecánico
 
Reconocimiento de equipos de tratamiento termico
Reconocimiento de equipos de tratamiento termicoReconocimiento de equipos de tratamiento termico
Reconocimiento de equipos de tratamiento termico
 
Liofilización de yogurt
Liofilización de yogurtLiofilización de yogurt
Liofilización de yogurt
 
Determinación del punto mas frio
Determinación del punto mas frioDeterminación del punto mas frio
Determinación del punto mas frio
 
Curvas de congelacion de agua y soluciones binarias (recuperado)
Curvas de congelacion de agua y soluciones binarias (recuperado)Curvas de congelacion de agua y soluciones binarias (recuperado)
Curvas de congelacion de agua y soluciones binarias (recuperado)
 
Efecto de la temperatura y tipos de daño sobre la calidad del tomate
Efecto de la temperatura y tipos de daño sobre la calidad del tomateEfecto de la temperatura y tipos de daño sobre la calidad del tomate
Efecto de la temperatura y tipos de daño sobre la calidad del tomate
 
Evaluacion de-la-vida-útil-de-embutidos-envasados-de-los-supermercados
Evaluacion de-la-vida-útil-de-embutidos-envasados-de-los-supermercadosEvaluacion de-la-vida-útil-de-embutidos-envasados-de-los-supermercados
Evaluacion de-la-vida-útil-de-embutidos-envasados-de-los-supermercados
 
Evaluacion de la vida útil de embutidos envasados de los supermercados
Evaluacion de la vida útil de embutidos envasados de los supermercadosEvaluacion de la vida útil de embutidos envasados de los supermercados
Evaluacion de la vida útil de embutidos envasados de los supermercados
 
Determinación de la resistencia al cartón
Determinación de la resistencia al cartónDeterminación de la resistencia al cartón
Determinación de la resistencia al cartón
 
Determinacion de la permeabilidad de los empaques
Determinacion de la permeabilidad de los empaquesDeterminacion de la permeabilidad de los empaques
Determinacion de la permeabilidad de los empaques
 
Utilizacion de envases activos en productos agroindustriales
Utilizacion de envases activos en productos agroindustrialesUtilizacion de envases activos en productos agroindustriales
Utilizacion de envases activos en productos agroindustriales
 
Corrosion de envases metalicos frente a los acidos
Corrosion de envases metalicos frente a los acidosCorrosion de envases metalicos frente a los acidos
Corrosion de envases metalicos frente a los acidos
 
Caracterizacion fisica de los envases de plastico
Caracterizacion fisica de los envases de plasticoCaracterizacion fisica de los envases de plastico
Caracterizacion fisica de los envases de plastico
 
Exposición 1 (equilibrio líquido vapor)
Exposición 1 (equilibrio líquido  vapor)Exposición 1 (equilibrio líquido  vapor)
Exposición 1 (equilibrio líquido vapor)
 
Influencia del método de secado en parámetros de calidad relacionados con ...
Influencia del método de secado en parámetros  de  calidad  relacionados con ...Influencia del método de secado en parámetros  de  calidad  relacionados con ...
Influencia del método de secado en parámetros de calidad relacionados con ...
 
Destilación equilibrio líquido vapor
Destilación equilibrio líquido vaporDestilación equilibrio líquido vapor
Destilación equilibrio líquido vapor
 
Determinacion de humedad y ceniza nutricion desayuno
Determinacion de humedad y ceniza nutricion  desayunoDeterminacion de humedad y ceniza nutricion  desayuno
Determinacion de humedad y ceniza nutricion desayuno
 
Determinacion de proteinas mediante el metodo de kjeldahl nutricion
Determinacion de proteinas mediante el metodo de kjeldahl  nutricionDeterminacion de proteinas mediante el metodo de kjeldahl  nutricion
Determinacion de proteinas mediante el metodo de kjeldahl nutricion
 

Mediciones y cálculo de incertidumbres experimentales

  • 1. UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERIA E.A.P AGROINDUSTRIAL MEDICIONES Y CÁLCULO DE INCERTIDUMBRES EXPERIMENTALES CURSO :FISICA 1 GRUPO : “C” DOCENTE :LIC. VERA MEZA SECUNDINO. INTEGRANTES :VEGA VIERA JHONAS ABNER. MUÑOZ ROJAS ANDREA GISELA LI SALAZAR ASHLEY ALYSSA ORO BELTRAN JOSLING BRIAN CICLO: “III” NUEVO CHIMBOTE - PERÚ 2013
  • 2. UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA AGROINDUSTRIAL MEDICIONES Y CALCULOS DE INCERTIDUMBRES EXPERIMENTALES 1. INTRODUCCIÓN El propósito del experimento es aprender a calcular incertidumbres en las mediciones que realizamos en nuestros experimentos y comprobar así que toda medición tiene una incertidumbre o margen de error el cual se pudo hallar por medio de métodos estadísticos y otros no estadísticos. Para hallar la incertidumbre del periodo de oscilación del péndulo se utilizara un método estadístico que se basa en calcular la desviación estándar de la media y para hallar la incertidumbre de la longitud del péndulo y de la aceleración de la gravedad (hallada indirectamente con los valores del periodo y de la longitud del péndulo) se utilizara un método no estadístico. Al final tendremos como resultado el valor aproximado de la aceleración de la gravedad con base en los resultados de nuestros datos. 2. OBJETIVOS o Conocer el manejo del calibrador vernier y del cronometro. o Evitar los errores sistemáticos en las mediciones directas. o Realizar mediciones de distintas magnitudes físicas: una medición. o Establecer la relación entre las lecturas de un instrumento y los valores indicados por un patrón, bajo condiciones específicas. o Determinar en forma directa las longitudes y masas de pequeños objetos de diversas geometrías con sus respectivas incertidumbres experimentales, registrando los datos con el número apropiado de cifras significativas de acuerdo a la exactitud del instrumento. o Determinar el volumen y la densidad de los objetos en forma indirecta con sus respectivas incertidumbres experimentales, teniendo en cuenta la regla de las operaciones con cifras significativas. o Determinar la aceleración de la gravedad con su respectiva incertidumbre experimental utilizando un péndulo simple. o Asegurar la calidad en los procesos tratando de disminuir el margen de error.
  • 3. UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA AGROINDUSTRIAL 3. MARCO TEÓRICO. Las mediciones que se realizan en la ciencia y la ingeniería tienen por objetivo establecer el valor numérico de determinada magnitud. Este valor numérico no corresponde al valor real de la magnitud que se mide porque los resultados que se obtienen en el proceso de medición son aproximados debido a la presencia del error experimental se le conoce como incertidumbre experimental. Clasificación de errores: a) Errores sistemáticos: Son los que en principio se pueden evitar, corregir o compensar. Se les llama sistemáticos porque dan efectos consistentes, pues cuando están presentes se obtienen valores que son más altos o más bajos que el valor verdadero. Ejemplos: defectos o falta de calibración de los instrumentos de medición, el error debido al paralaje, etc. b) Errores accidentales: Se deben a la suma de gran número de perturbaciones individuales y fluctuantes que se combinan para dar lugar a que la repetición de una misma medición de en cada ocasión un valor algo distinto. Ejemplos: Errores de apreciación, como por ejemplo en la estimación de la fracción de la menor división de una escala; errores que fluctúan, como por ejemplo, variaciones en la red de energía eléctrica. Incertidumbre absoluta ( ) Representa los límites de confianza dentro de los cuales se está seguro de que el valor verdadero se encuentra en dicho intervalo. Incertidumbre relativa ( ) Se define como el cociente de la incertidumbre absoluta y el valor medio y se expresa así:
  • 4. UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA AGROINDUSTRIAL Incertidumbre porcentual (I%) Es el índice que más comúnmente se usa para especificar la exactitud de una medida. Se define como la incertidumbre relativa por 100% es decir: Incertidumbre en medidas directas: Cuando se realiza una medición directa de una magnitud y no es posible repetir la medición o cuando al hacer una serie de las lecturas se obtiene los mismos resultados para la magnitud a la lectura que se obtiene se le asocia generalmente una incertidumbre absoluta, igual a la división más pequeña de la escala del instrumento. Ejemplo: al hacer una medición de longitud de un objeto con una regla graduada en milímetros y se obtiene repetidamente la magnitud de 125mm, entonces tomaremos como 1 o -1 mm Por lo tanto el resultado para la longitud será (125+1 o 125-1) mm Es decir la longitud verdadera del objeto se encontrara dentro del intervalo de 124 mm al 126 mm Incertidumbre en mediciones indirectas: Las mediciones que se realiza en la ciencia y en la ingeniería, la mayoría son indirectas y para calcular la incertidumbre de una medida indirecta Z que depende de las variables x, ye, z y w se emplea la siguiente ecuación: Sea z=f(x, y, w), la incertidumbre experimental absoluta de Z es: Como consecuencia de los errores aleatorios (errores accidentales) hacer repeticiones de una medida estas en general resultan diferentes, y dado que no se conoce la medida verdadera, sur gen dos preguntas: ¿Cuál es el valor que se debe reportar?, ¿Qué incertidumbre es la que se debe asociar al resultado?
  • 5. UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA AGROINDUSTRIAL Para contestar la primera hay que tener en cuenta que los errores aleatorios provocan en primer lugar que las medidas se distribuyan alrededor de un valor promedio y en segundo lugar que la frecuencia relativa de dichas medidas la describa la curva conocida como curva de gauss Y X De acuerdo con ello, el valor alrededor del cual se distribuye las medidas las medidas es el que se acepta como más probable y con la mejor estimación del valor verdadero. Este valor es la media aritmética: Donde: = valor de cada lectura En cuanto a la segunda pregunta, la respuesta rigurosa pertenece a la estadística, Se puede asignar como incertidumbre a la desviación absoluta máxima que es simplemente la mayor de las diferencias absolutas entre el valor promedio y las lecturas obtenidas. En la asignación de la incertidumbre se utilizaban índices de precisión como rango desviación media, desviación estándar, desviación estándar de la media. Dichos índices son medidas de la dispersión de las lecturas obtenidas. Rango Se define como la diferencia entre la mayor y la menor de las lecturas que se obtienen al medir una magnitud. Desviación media Esta curva indica que los errores aleatorios ocurren igualmente en forma desviaciones pequeñas es mucho más probables que las desviaciones grandes
  • 6. UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA AGROINDUSTRIAL Desviación estándar ( para un conjunto finito de lectura es: Al reportar el resultado de una medición como x ± Sxse establece que el 68% de las lecturas se encuentran en dicho intervalo; pero si el resultado se reporta como x ± 2Sx o como x ± 3Sx entonces el 95% y el 99% de las medidas se encuentran respectivamente en dichos intervalos. Desviación estándar de la media CALCULO DE LA DESVIACION ESTANDAR EN MEDICIONES INDIRECTAS La determinación experimental del valor de ciertas magnitudes físicas como la velocidad la densidad, etc., rara vez se obtiene con métodos de medición directa. Para calcular la desviación estándar de una medida indirecta Z se aplica la siguiente ecuación: Sea Z= f(x, y, w), entonces Combinación de distintos tipos de incertidumbre. Sea z=f(x, y) Donde x= variable con tratamiento estadístico Y= variable con tratamiento estadístico La incertidumbre experimental se Z se calcula mediante la siguiente ecuación:
  • 7. UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA AGROINDUSTRIAL Cifras significativas: Se llama cifra significativa a cada uno de los dígitos (1, 2,3,…., 9, 0) que resultan de hacer una medición o que son producto de cálculos a partir de mediciones. Por ejemplo si en la medición del diámetro de una esfera con un vernier se obtuvo la lectura de 8,43cm se dice que los números 8,4 y 3 son cifras significativas. En general, el número de cifras significativas de una idea aproximada de la precisión de la magnitud medida. En algunas ocasiones se incluye el resultado de una cifra dudosa (cifra estimada). Ejemplo: se obtiene un Valor de 12,36 cm y 12,4cm. Si el resultado de una medición, es 0,00321 m, el número de cifras significativas es tres y no cinco o seis, porque los ceros a la izquierda no son significativos. Para evitar confusiones se hace uso de las notaciones de potencias de 10, de tal modo que el resultado se reporta 321x10-5 m. Por otra parte, los ceros de la derecha no se deben escribir si no tienen significado. Para eliminar los dígitos superfluos es conveniente recordar las siguientes reglas: 1. Si el último digito es menor que cinco, simplemente se elimina. Ejemplo: 7.83 redondeando da 7.8. 2. Si el último digito es mayor que cinco se elimina y se le suma 1 al último digito que se conserva. Ejemplo: 7.37 redondeando da 7.4 3. Si el último digito es cinco, el anterior sube si impar y se conserva si es par. Ejemplo: 3.75 redondeando da 3.8. 4. El digito incierto se debe escribir de menor tamaño y ponerse como subíndice de los otros. Ejemplo: en 7.42 el 2 es un digito incierto. 5. De la suma o resta de cantidades que tienen distintos número de cifras decimales el resultado se debe expresar como datos decimales como correspondan a la cantidad que menos tenga. Ejemplo: en la suma de: 31.02+ 0.8 2.322 34.142 El resultado debe tener una sola cifra decimal y es igual a 34.1. 6. en la multiplicación o división el resultado tendrá esencialmente el mismo número de cifras significativas que el término que menos tenga. Ejemplo: Al efectuar siguientes multiplicaciones: 2.341x2.2=5.1502 El resultado tendrá dos cifras significativas: 5.2 (ya redondeando, porque el factor 2.2 es el que menos cifras significativas tiene).
  • 8. UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA AGROINDUSTRIAL En las sumas, restas, multiplicaciones y divisiones es conveniente arrastrar más dígitos superfluos, eliminándolos el resultado final. En los cálculos estadísticos el número de cifras significativas que se retienen en la medida normalmente es uno más que en los datos primarios. Una cifra incierta multiplicada por una cierta produce una cifra incierta. En el caso de una constante tal como “pi”, el Valor usado dependerá de la fricción de las otras cantidades. Si el radio de la circunferencia es 8,76 cm. Escribiríamos para el área: π(r2)=3.14x(8.76)2 cm2 . III. PARTE EXPERIMENTAL 3.1 PARA MEDIR LONGITUDES Y MASAS INSTRUMENTOS MATERIALES Balanza digital Calibrador Vernier Regla milimetrada Objetos diversos (esfera metálica, taco de madera, etc.) PROCEDIMIENTO - Para realizar las medidas exteriores de la esfera y del taco de madera, desplazar la parte móvil del Vernier lo suficiente como para colocar el objeto a medir. - Una vez colocado el objeto, cerrar que quede aprisionado suavemente. - La lectura de la medida se efectuara de la siguiente manera: leer sobre la regla fija la longitud que hay hasta le cero de la regla móvil (nonio). Mirar luego que división del nonio coincide o se aproxima más a una división de la regla fija; el número de orden de aquella (el nonio) son los decimales que hay que añadir a la longitud leída en la regla móvil. - Cada integrante de grupo, hará sus respectivas medidas llenara las siguientes tablas de datos. ESFERA N° DE MEDIDAS D(cm) m (gr) 1 2 . . . 10
  • 9. UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA AGROINDUSTRIAL 4. MATERIALES A. MEDICIONES Y SU INCERTIDUMBRE Pie de rey: Es un instrumento para medir dimensiones de objetos relativamente pequeños, desde centímetros hasta fracciones de milímetros (1/10 de milímetro, 1/20 de milímetro, 1/50 de milímetro). En la escala de las pulgadas tiene divisiones equivalentes a 1/16 de pulgada, y, en su nonio, de 1/128 de pulgada. Micrómetro: También llamado Tornillo de Palmer, es un instrumento de medición cuyo funcionamiento está basado en el tornillo micrométrico que sirve para medir las dimensiones de un objeto con alta precisión, del orden de centésimas de milímetros (0,01 mm) y de milésimas de milímetros (0,001 mm) (micra). Varilla: Suele ser de metal, constituido por una larga varilla enroscada en una base. A él se sujetan los recipientes que se necesitan para realizar los montajes experimentales. Cinta métrica: El fluxómetro o cinta métrica es un instrumento de medición, con la particularidad de que está construido en chapa metálica flexible debido su escaso espesor, dividida en unidades de medición, y que se enrolla en espiral dentro de una carcasa metálica o de plástico.
  • 10. UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA AGROINDUSTRIAL Paralelepípedo Un paralelepípedo es un poliedro de seis caras (por tanto, un hexaedro), en el que todas las caras son paralelogramos, y paralelas e iguales dos a dos. Un paralelepípedo tiene 12 aristas, que son iguales y paralelas en grupos de cuatro; y 8 vértices. 4.2 MEDIDA DE TIEMPO Nueces doble Es una pieza que posee dos agujeros con dos tornillos opuestos. Uno de los agujeros se utiliza para ajustar la doble nuez (generalmente a un pie universal), mientras que en la otra se coloca y ajusta la pieza a sujetar. Soporte universal: El pie universal o soporte universal es un elemento que se utiliza en laboratorio para realizar montajes con los diversos materiales y obtener sistemas de medición o de diversas funciones. Está formado por una base o pie en forma de semicírculo o de rectángulo, y desde el centro de uno de los lados, tiene una varilla cilíndrica que sirve para sujetar otros elementos a través de doble nueces. Cronómetro: El cronómetro es un reloj o una función de reloj utilizada para medir fracciones temporales, normalmente breves y precisas. Consiste en empezar a contar desde cero al pulsarse el mismo botón que lo detiene. Pesa de ranura: Instrumento de laboratorio tanto físico como químico. Existe juegos de ranuras de acuerdo al peso, como por ejemplo de 10, 100, 500 gramos.
  • 11. UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA AGROINDUSTRIAL 5. CÁLCULOS Y RESULTADOS. 6. 7. 8. tabla de datos N°03 N° c (cm) T(seg) 1 46.1 1.3 2 46.5 1.4 3 46.4 1.43 4 46.6 1.35 5 46.8 1.26 6 46.9 1.38 7 46.7 1.41 8 47 1.35 9 46.3 1.44 10 47.1 1.36 tabla de datos N°02 N° a (cm) l (cm) h (cm) m (g) 1 4.64 7.24 11.82 174 2 4.61 7.284 11.824 174 3 4.611 7.29 11.822 174 4 4.612 7.21 11.823 174 5 4.62 7.22 11.83 174 6 4.621 7.293 11.812 174 7 4.623 7.294 11.821 174 8 4.622 7.203 11.814 174 9 4.63 7.221 11.813 174 10 4.629 7.244 11.81 174 tabla de datos N°01 n° D (cm) m (mg) 1 5,62 cm 159 g 2 5,623 cm 160 g 3 5,21 cm 161 g 4 5,632 cm 162 g 5 5,63 cm 163 g 6 5,634 cm 164 g 7 5,631 cm 165 g 8 5,624 cm 166 g 9 5,633 cm 167 g 10 5,59 cm 168 g Cada integrante del grupo, con la cinta métrica medirá la longitud del péndulo y con el cronometro medirá el tiempo que demora el péndulo en realizar 10 oscilaciones.
  • 12. UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA AGROINDUSTRIAL RESULTADOS DE LA TABLA DE DATOS N°01 1. cálculo del valor medio (Dm) 2. calculo de la desviación (δDi) (δDi) 3.8x 10-3 8x 10-4 0.1028 8.2x 10-3 0.0102 6.2x10-3 2x10-4 7.2x10-3 0.0662 9.2x10-3 3. calculo de desviación media (ᵹDi) 4. el error absoluto ( ) 5. el error relativo ( ) 6. el error porcentual ( )
  • 13. UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA AGROINDUSTRIAL 7. medición final (D) 8. errores absolutos promedios ( ) RESULTADOS DE LA TABLA DE DATOS N°02 LARGO EN CM 1. cálculo del valor medio L(cm) 2. calculo de la desviación (δDi) (δDi) 0.0099 0.0341 0.0401 0.0399 0.0299 0.0431 0.0441 0.0289 0.0469 0.0059
  • 14. UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA AGROINDUSTRIAL 3. calculo de desviación media (ᵹDi) 4. el error absoluto ( ) 5. el error relativo ( ) 6. el error porcentual ( ) 7. medición final (D) 8. errores absolutos promedios ( ) RESULTADOS DE LA TABLA DE DATOS N°02 ANCHO EN CM 1. cálculo del valor medio (Dm)
  • 15. UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA AGROINDUSTRIAL 2. calculo de la desviación (δDi) (δDi) 0.0052 0.0092 0.0082 0.0072 0.0008 0.0018 0.0028 0.0038 0.0108 0.0098 3. calculo de desviación media (ᵹDi) 4. el error absoluto ( ) 5. el error relativo ( ) 6. el error porcentual ( )
  • 16. UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA AGROINDUSTRIAL 7. medición final (D) 8. errores absolutos promedios ( ) RESULTADOS DE LA TABLA DE DATOS N°02 ANCHO EN CM 1. cálculo del valor medio (Dm) 2. calculo de la desviación (δDi) (δDi) 0.0011 0.0051 0.0031 0.0041 0.0111 0.0069 0.0021 0.0049 0.0059 0.0089
  • 17. UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA AGROINDUSTRIAL 3. calculo de desviación media (ᵹDi) 4. el error absoluto ( ) 5. el error relativo ( ) 6. el error porcentual ( ) 7. medición final (D) 8. errores absolutos promedios ( ) RESULTADOS DE LA TABLA DE DATOS N°03 1. cálculo del valor medio (Dm)
  • 18. UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA AGROINDUSTRIAL 2. calculo de la desviación (δDi) (δDi) 0.54 0.14 0.24 0.04 0.16 0.26 0.06 0.36 0.34 0.46 3. calculo de desviación media (ᵹDi) 4. el error absoluto ( ) 5. el error relativo ( ) 6. el error porcentual ( ) 7. medición final (D)
  • 19. UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA AGROINDUSTRIAL 8. errores absolutos promedios ( ) RESULTADOS DE LA TABLA DE DATOS N°03 TIEMPO (seg) 1. cálculo del valor medio (Dm) 2. calculo de la desviación (δDi) (δDi) 0.688 0.0312 0.0612 0.0188 0.1088 0.0112 0.0412 0.0108 0.0712 0.0088 3. calculo de desviación media (ᵹDi)
  • 20. UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA AGROINDUSTRIAL 4. el error absoluto ( ) 5. el error relativo ( ) 6. el error porcentual ( ) 7. medición final (D) 8. errores absolutos promedios ( ) CUESTIONARIO: 1. ¿Cuál es la menor fracción de milímetros que puede ser leída en el calibrador vernier? La menor fracción que se puede leer es de 0,1mm. 2. ¿Cómo se mediría el espeso de una sola hoja de papel por medio del calibrador vernier? Tomaría un cierto húmero de hojas como por ejemplo 100 hojas, mediría el espesor y a aquel resultado lo divido entre el número de hojas, en este se divide entre 100. Otro método sería medir el espesor de un vidrio y luego poner la hoja junto al vidrio y volverlo a medir, entonces por cálculo de diferencia se sacaría el espesor de la hoja.
  • 21. UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA AGROINDUSTRIAL 3. Calcule la desviación estándar de las medidas directas y compruebe que porcentaje estos caen en el intervalo: Recipiente del cilindro Péndulo 4. ¿Cuáles de las 3 medidas (a, l, h) contribuyen para el cálculo del volumen con mayor error? ¿Por qué? Largo (L) = 0.036 Altura (h) = 0.00599 Ancho (A) Largo (l) presenta mayor margen de error porque existe un menor valor medio y tiene un mayor porcentaje de error b. Diámetro: Sx = 0.04 X = 14.88 Intervalo= Porcentaje= 90% a. Altura: Sx = 0.006 X = 15.11 Intervalo= Porcentaje= 60% d. Longitud: Sx = 0.02 X = 22.98 Intervalo= Porcentaje= 80% c. Periodo: Sx = 0.02 X = 22.98 Intervalo= Porcentaje= 80%
  • 22. UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA AGROINDUSTRIAL 5. ¿Cómo se puede reducir el error aleatorio en las medidas de los objetos? Utilizando el instrumento de mayor precisión y también estos errores se deben a la fatiga del ojo, por lo tanto es recomendable que las mediciones no lo realice una sola persona sino que vayan alternando, también: o Calibrando los instrumentos. o Compensando el error al final de una lectura de medición. o Teniendo presente que se puede cometer errores de paralaje. o Utilizando instrumentos de mayor precisión. 6. Comparar los resultados obtenidos de la densidad de los valores teóricos(phierro, pmadera) que dan en los libros. Enumera las posibles fuentes de error. Valores Teóricos Valores prácticos Hierro: 7,96g/cm3 Hierro: Madera: 0,6 – 0,9g/cm3 Madera: La medición puede ser falla física o geométrica. La calibración de los aparatos. Influencia de ciertos factores como la dilatación y humedad. En el paralaje. 7. Teniendo en cuenta que g=980cm/s2 , comparar con el valor obtenido. Enumere las posibles fuentes de error. g (teórico) = 980 cm/s2 g (práctico) = Las principales fuentes de error pueden ser las anomalías en la dirección y la intensidad de la aceleración de la gravedad están ligadas a la repartición de las diferentes masas en el espesor de la corteza terrestre. Se puede contribuir a la determinación de la estructura geológica de una región. Puede ser captadas por la presencia en el subsuelo de una gran cantidad de gas que anuncia la variedad del peso. Por otra fuente sería por la variación del peso para eso se recomienda mantener las ventanas y puertas cerradas. Una de las posibles fuentes de error puede ser la imprecisión del experimentador al realizar las mediciones en el periodo y en la longitud del péndulo.
  • 23. UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA AGROINDUSTRIAL 8. Al medir la resistencia de un resistor, la lectura del voltímetro era de 15,2 0,2V; y la lectura del amperímetro era de 2,6 0,1A. ¿Cuál es la incertidumbre absoluta de la resistencia calculada usando la ecuación R = V/I? V: 15.2 0.2v 15 y 15.4 I: 2.6 0.1A 2.7 y 2.5 R1 = = 5.70 R3= = 5.55 R2= = 6.16 R4= = 6 9. En la medición de la masa de un cuerpo se obtuvieron los siguientes valores: 4,2 sg; 4,0 sg; 4,1 sg; 3,2 sg; 4,0 sg. Calcular: a) El valor más probable de la masa: X= 4.1 gr b) La desviación media: x= 0.08 c) La desviación estándar: Sx = 0.1 gr d) La desviación estándar media : 10.Una serie de mediciones consecutivas del diámetro del corte transversal circular de un alambre, dio por resultado una media de 0,62mm. con una desviación estándar de la muestra de 0,04mm. ¿Cuál es la desviación estándar del valor calculado para el área de corte transversal? 9. CONCLUSIONES a. MEDICIONES Y SU INCERTIDUMBRE Al medir los objetos con las diferentes herramientas de medición nos hemos dado cuenta de la precisión de los diferentes aparatos de medición, por ejemplo sabemos que un vernier es sumamente más exacto que una cinta métrica, aunque conocemos que la gran desventaja del vernier es que no puede medir objetos de tamaño considerable, y la regla si, además notamos que la precisión nunca llega a ser del 100% porque las escalas nos limitan y es por eso que necesitamos conocer los rangos de error.
  • 24. UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA AGROINDUSTRIAL b. MEDIDA DE TIEMPO También en algunas ocasiones nos valimos de los instrumentos de medición para lograr medidas indirectas, como la velocidad, que utilizamos un metro y el cronómetro para concluir la velocidad de un objeto. También es importante conocer las incertidumbres ya que de otra forma los resultados que se dan podrían ser inexactos y eso alteraría los resultados esperados. c. Realizamos la medición directa de los diferentes objetos, en forma individual tomando en cuenta sus pesos, longitudes, diámetros y alturas, según el caso. d. Al concluir con el experimento adquirimos mayor destreza en el manejo de los distintos instrumentos, familiarizándonos con las magnitudes, unidades y errores de los mismos. e. Consideramos la realización de esta práctica importante, ya que nos permitió, verificar por experiencia propia, lo aprendido en teoría. 10.RECOMENDACIONES: Para un buen trabajo de medición es necesario comprobar el buen funcionamiento de los instrumentos (el estado físico del instrumento). Para reducir el problema de errores se debe verificar la precisión del instrumento en cuanto a sus unidades más pequeñas. 11.BIBLIOGRAFÍA o http://www.google.com.pe/search?hl=es&biw=1006&bih=636&q=pie+de+ rey&aq=f&aqi=g10&aql=&oq=&gs_rfai= o http://www.google.com.pe/search?hl=es&biw=1006&bih=636&q=microm etro&aq=f&aqi=g10&aql=&oq=&gs_rfai= o http://es.wikipedia.org/wiki/Varilla_de_vidrio_(qu%C3%ADmica) o http://es.wikipedia.org/wiki/Doble_nuez o http://www.monografias.com/trabajos12/medtrab/medtrab2.shtml o http://www.google.com.pe/images?hl=es&q=soporte+universal&um=1&ie =UTF8&source=univ&ei=84qQTJHoEsXflgf1z4DkAQ&sa=X&oi=image_r esult_group&ct=title&resnum=1&ved=0C
  • 25. UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA AGROINDUSTRIAL