SlideShare una empresa de Scribd logo
GEOMETRIA
Los primeros conocimientos geométricos que tuvo el
hombre consistían en un conjunto de reglas prácticas. Para
que la geometría fuera adoptada como ciencia tuvieron que
pasar muchos siglos, hasta llegar a los griegos.
Debido a esto se eleva la
geometría al plano
rigurosamente científico
ETIMOLOGIA
La aplicación de los conocimientos
geométricos para medir la tierra fue la
causa de que se diera a esta parte de la
matemática el nombre de geometría
que significa:
MEDIDA DE LA TIERRA
ORIGEN DE LA
GEOMETRIA
La historia del origen de la Geometría es muy similar
a la de la Aritmética, siendo sus conceptos más
antiguos consecuencia de las actividades prácticas
Los primeros hombres llegaron
a formas geométricas a partir de
la observación de la naturaleza.
PRINCIPALES
REPRESENTANTES
BABILONIA EGIPTO GRECIA
 Fueron cerca de 6000 años, los inventores de la
rueda
 Tal vez de ahí provino su afan por descubrir las
propiedades de la circunsferencia esto condujo a la
relacion entre la longitud de la circunsferencia y su
diámetro era igual a 3
 Hallaron considerando que la longitud de la
circunsferencia entre los perímetros de los cuadros
inscrito y circunscrito
 Cultvaron la Astronomia y obtuvieron el grado
sexagesimal
Los babilonios fueron:
* La base de la civilización egipcia fue la agricultura
* Los reyes de Egipto dividieron la tierra en parcelas.
Cuando el Nilo en sus crecidas periódicas se llevaba
parte de las tierras, los agrimensores tenían que rehacer
las divisiones y calcular cuanto debía pagar el dueño de
la parcela por concepto de impuesto ya que este era
proporcional a la tierra cultivada
* Para la necesidad de medir las tierras no fue para lo
único que la utilizaron pues cultivaron la geometría
aplicándola en la construcción.
-La Geometría de los egipcios era eminentemente
empirica, ya que no se basaba en un sistema logico
deducido a partir de axiomas y postulados
- Los Griegos no se contentaron con saber las reglas
y resolver problemas particulares;no se sintieron
satisfechos hasta obtener explicaciones racionalesen
las cuestiones general y especialmente , de las
geometricas
-En Grecia comienza la Geometia como ciencia
deductiva.
-Tales de Mileto - Euclides
-Pitágoras de Samos -Platón
-Heron de Alejandria, etc.
Es gracias a todos estos matemáticos que se dio la
transformación de la geometría en ciencia deductiva
La historia del origen de la Geometría es muy similar a la de la Aritmética, siendo sus conceptos más antiguos consecuencia de las actividades prácticas. Los primeros hombres llegaron a
formas geométricas a partir de la observación de la naturaleza.
El sabio griego Eudemo de Rodas, atribuyó a los egipcios el descubrimiento de la geometría, ya que, según él, necesitaban medir constantemente sus tierras debido a que las
inundaciones del Nilo borraban continuamente sus fronteras. Recordemos que, precisamente, la palabra geometría significa medida de tierras.
En los matemáticos de la cultura helénica los problemas prácticos relacionados con las necesidades de cálculos aritméticos, mediciones y construcciones geométricas continuaron
jugando un gran papel. Sin embargo, lo novedoso era, que estos problemas poco a poco se desprendieron en una rama independiente de las matemáticas que obtuvo la denominación de
"logística". A la logística fueron atribuidas: las operaciones con números enteros, la extracción numérica de raíces, el cálculo con la ayuda de dispositivos auxiliares, cálculo con fracciones,
resolución numérica de problemas que conducen a ecuaciones de 1er
y 2º grado, problemas prácticos de cálculo y constructivos de la arquitectura, geometría, agrimensura, etc... Al mismo
tiempo ya en la escuela de Pitágoras se advierte un proceso de recopilación de hechos matemáticos abstractos y la unión de ellos en sistemas teóricos. Junto a la demostración
geométrica del teorema de Pitágoras fue encontrado el método de hallazgo de la serie ilimitada de las ternas de números "pitagóricos", esto es, ternas de números que satisfacen la
ecuación a2
+b2
=c2
.
En este tiempo transcurrieron la abstracción y sistematización de las informaciones geométricas. En los trabajos geométricos se introdujeron y perfeccionaron los métodos de
demostración geométrica. Se consideraron, en particular: el teorema de Pitágoras, los problemas sobre la cuadratura del círculo, la trisección de un ángulo, la duplicación del cubo, la
cuadratura de una serie de áreas (en particular las acotadas por líneas curvas). Paralelamente, al ampliarse el número de magnitudes medibles, debido a la aparición de los números
irracionales, se originó una reformulación de la geometría, dando lugar al álgebra geométrica. Esta nueva rama incluía entre otros conceptos el método de anexión de áreas, el conjunto de
proposiciones geométricas que interpretaban las cantidades algebraicas, división áurea, expresión de la arista de un poliedro regular a través del diámetro de la circunferencia circunscrita.
Sin embargo, el álgebra geométrica estaba limitada a objetos de dimensión no mayor que dos, siendo inaccesibles los problemas que conducían a ecuaciones de tercer grado o
superiores, es decir, se hacían imposibles los problemas que no admitieran solución mediante regla y compás. La historia sobre la resolución de los tres problemas geométricos clásicos
(sobre la cuadratura del círculo, la trisección de un ángulo, la duplicación del cubo) está llena de anécdotas, pero lo cierto es que como consecuencia de ellos surgieron, por ejemplo, las
secciones cónicas, cálculo aproximado del número pi, el método de exhaución como predecesor del cálculo de límites o la introducción de curvas trascendentes. Asimismo, el surgimiento
de la irracionalidad condicionó la necesidad de creación de una teoría general de las relaciones, teoría cuyo fundamento inicial lo constituyó el algoritmo de Euclides.
THALES DE MILETO
Tales nació en la ciudad de Mileto una antigua ciudad en la
costa occidental de Asia Menor. Fue hijo de Euxamias y de
Cleobulina y al parecer tuvo ascendencia fenicia.
De los babilonios debió aprender astronomía. En su
¨Cronología¨, afirma que murió a la edad de setenta y ocho
años
SU VIDA
 En su juventud viajó a Egipto, donde aprendió
geometría de los sacerdotes de Menfis, y
astronomía, que posteriormente enseñaría con
el nombre de astrosofía.
 Fue maestro de Pitágoras y Anaxímedes, y
contemporáneo de Anaximandro
 Fue el primer filósofo griego que intentó dar
una explicación física del Universo, que para él
era un espacio racional pese a su aparente
desorden
 Sin embargo, no buscó un Creador en dicha
racionalidad, pues para él todo nacía del agua,
la cual era el elemento básico del que estaban
hechas todas las cosas, pues se constituye en
vapor, que es aire, nubes y éter; del agua se
forman los cuerpos sólidos al condensarse, y
la Tierra flota en ella.
SUS
ESTUDIOS
 Sus estudios lo condujeron a resolver ciertas
cuestiones como:
o La determinación de las distancias
inaccesibles
o La igualdad de los ángulos de la base
en el triangulo isósceles
o El valor del Angulo inscrito
o La demostración de los conocidos
teoremas que llevan su nombre
relativos a la proporcionalidad de
segmentos determinados en dos rectas
cortadas por un sistema de paralelas
SU
REPRESENTACIÓN
 Representa los comienzos de la geometría
como ciencia racional.
 Fue uno de los siete sabios y fundador de la
escuela jonica a la que pertenecieron
Anaximandro, Anaxagoras, etc.
 En su edad madura se dedico al estudio de
la filosofía y de las ciencias, especialmente
de la GEOMETRIA
PITAGORAS DE SAMOS
Pitágoras de Samos nació en la isla de Samos.
Siendo muy joven viajó a Mesopotamia y Egipto fue
un filósofo y matemático griego, famoso sobre todo
por el Teorema de Pitágoras, que en realidad
pertenece a la escuela pitagórica y no sólo al mismo
Pitágoras.
SU VIDA
 Pitágoras, nació en la isla de Samos
 Su escuela de pensamiento afirmaba que la
estructura del universo era aritmética y
geométrica, a partir de lo cual las matemáticas
se convirtieron en una disciplina fundamental
para toda investigación científica.
 Pitágoras pasa por ser el introductor de pesos
y medidas, y elaborador de la teoría musical;
el primero en hablar de "teoría" y de "filósofos",
en postular el vacío, en canalizar el fervor
religioso en fervor intelectual, en usar la
definición y en considerar que el universo es
una obra sólo descifrable a través de las
matemáticas.
SU
FUNDACION
 Se dice que fue discípulo de Tales , pero
apartándose de la escuela jonica, fundo Trotona,
Italia, la escuela pitagórica.
 Se le atribuye también a la escuela pitagórica:
o la demostración de la propiedad de la
suma de los ángulos internos
o la construcción geométrica del polígono
estrellado de cinco lados
o Fueron los pitagóricos los primeros en
sostener la forma esférica de la tierra y
postular que esta, el sol y el resto de los
planetas conocidos, no se encontraban en
el centro del universo, sino que giraban en
torno a una fuerza simbolizada por el
número uno.
TEOREMA
DE
PITAGORAS
En un triángulo rectángulo, el cuadrado de la hipotenusa
es igual a la suma de los cuadrados de los catetos.
Cada uno de los sumandos, representa el área de un
cuadrado de lado, a, b, c. Con lo que la expresión anterior,
en términos de áreas se expresa en la forma siguiente:
El área del cuadrado construido sobre la hipotenusa de un
triángulo rectángulo, es igual a la suma de las áreas de los
cuadrados construidos sobre los catetos.
EUCLIDES
Euclides vivió alrededor del año 300 a.C,
Matemático griego. Poco se conoce a ciencia cierta de la
biografía de Euclides, pese a ser el matemático más
famoso de la Antigüedad.
SU VIDA
 Su vida es poco conocida, salvo que vivió en
Alejandría, Egipto. Proclo, el último de los
grandes filósofos griegos, quien vivió alrededor
del 450 dC., es la principal fuente.
 Es probable que Euclides se educara en
Atenas, lo que explicaría con su buen
conocimiento de la geometría elaborada en la
escuela de Platón, aunque no parece que
estuviera familiarizado con las obras de
Aristóteles.
 Existen algunos otros datos poco fiables.
Algunos autores árabes afirman que Euclides
era hijo de Naucrates
OBRAS:
 Euclides fue autor de diversos tratados, pero
su nombre se asocia principalmente a uno de
ellos, los Elementos, que rivaliza por su
difusión con las obras más famosas de la
literatura universal, como la Biblia o el Quijote
 Euclides fue un personaje histórico que
escribió Los Elementos y otras obras
atribuidas a él.
 Euclides fue el líder de un equipo de
matemáticos que trabajaba en Alejandría.
Todos ellos contribuyeron a escribir las obras
completas de Euclides, incluso escribiendo
libros a nombre de Euclides después de su
muerte.
OTROS DATOS
DE SU VIDA:
 La tradición ha conservado una imagen de
Euclides como hombre de notable amabilidad y
modestia
 Enseñó en Alejandría, donde alcanzó un gran
prestigio en el ejercicio de su magisterio durante el
reinado de Tolomeo I Sóter; se cuenta que éste lo
requirió para que le mostrara un procedimiento
abreviado para acceder al conocimiento de las
matemáticas, a lo que Euclides repuso que no
existía una vía regia para llegar a la geometría
 Euclides construye la geometría partir de
definiciones, postulados y axiomas con los cuales
demuestra teoremas que, a su vez, le sirven para
demostrar otros teoremas
PLATÓN
Platón fue un filósofo griego, alumno de Sócrates y
maestro de Aristóteles, de familia nobilísima y de la más
alta aristocracia. Su influencia como autor y
sistematizador ha sido incalculable en toda la historia de
la filosofía,
SU VIDA
 Nacido en el seno de una familia aristocrática,
abandonó su vocación política por la Filosofía,
atraído por Sócrates.
 Siguió a éste durante veinte años y se enfrentó
abiertamente a los sofistas (Protágoras,
Gorgias…). Tras la muerte de Sócrates (399 a.
C.), se apartó completamente de la política; no
obstante, los temas políticos ocuparon siempre
un lugar central en su pensamiento, y llegó a
concebir un modelo ideal de Estado.
 Viajó por Oriente y el sur de Italia, donde entró
en contacto con los discípulos de Pitágoras;
luego pasó algún tiempo prisionero de unos
piratas, hasta que fue rescatado y pudo
regresar a Atenas.
FUE FUNDADOR
DE:
 Fue fundador de la Academia de Atenas, donde estudió
Aristóteles. Participó activamente en la enseñanza de la
Academia y escribió sobre diversos temas filosóficos,
especialmente los que trataban de la política, ética, metafísica
y epistemología.
 Se opuso a las aplicaciones de Geometría pues para el la
matematica no tiene como finalidad la practica sino la
cultivación de esta con el unico fin de conocer
 La geometría la dividio en elemental y superior
o La Geometría Elemental comprendia todos los
problemas que se podian resolver con regla y
compas
o Y la Geometría Superior estudiaba los tres
problemas mas famosos de la Geometría
Antigua
- La Cuadratura del Circulo
- La trisección del angulo
- La duplicación del cubo
OBRAS:
 A diferencia de Sócrates, que no dejó obra
escrita, los trabajos de Platón se han
conservado casi completos y se le considera
por ello el fundador de la Filosofía académica
 El contenido de estos escritos es una
especulación metafísica, pero con evidente
orientación práctica. El mundo del verdadero
ser es el de las ideas, mientras que el mundo
de las apariencias que nos rodean está
sometido a continuo cambio y degeneración.
ARQUIMEDES DE
SARACUSA
Arquímedes matemático y geómetro griego considerado
el más notable científico y matemático de la antigüedad,
es recordado por el Principio de Arquímedes y por sus
aportes a la cuadratura del círculo
SU VIDA
 Matemático griego. Hijo de Fidias un
astrónomo, quien probablemente le introdujo
en las matemáticas
 Arquímedes estudió en Alejandría, donde tuvo
como maestro a Conón de Samos y entró en
contacto con Eratóstenes; a este último dedicó
Arquímedes su Método, en el que expuso su
genial aplicación de la mecánica a la
geometría, en la que «pesaba»
imaginariamente áreas y volúmenes
desconocidos para determinar su valor.
 De la biografía de Arquímedes, gran
matemático e ingeniero, a quien Plutarco
atribuyó una «inteligencia sobrehumana», sólo
se conocen una serie de anécdotas.
OTROS DATOS
DE SU VIDA
 Se encuentra en el una mentalidad practica, un genio
técnico, que lo llevo a investigar problemas de orden
físico y resolverlos por métodos nuevos
 Por esto después de grandes disputas con los
euclidianos se retiro a Siracusa donde puso sus
descubrimientos al servicio de la técnica.
 La obra Sobre la esfera y el cilindro, fue su teorema
favorito, que por expreso deseo suyo se grabó sobre
su tumba.
 Son célebres los ingenios bélicos cuya paternidad le
atribuye la tradición y que, según se dice, permitieron
a Siracusa resistir tres años el asedio romano, antes
de caer en manos de las tropas de Marcelo; también
se cuenta que, contraviniendo órdenes expresas del
general romano, un soldado mató a Arquímedes por
resistirse éste a abandonar la resolución de un
problema matemático en el que estaba inmerso,
escena perpetuada en un mosaico hallado en
Herculano.
DESCUBRIMIENTOS
 Calculo:
o Un valor más aproximado de π (pi)
o El volumen del cono , de la esfera
o el estudio de la palanca
o el tornillo de Arquímedes
o la Arquímedes que sirve para la
trisección del Angulo y otros aportes a
la matemática, la ingeniería y la
geometría.
HERÓN DE
ALEJANDRIA
Herón de Alejandría (c. 20-62 d.C.), matemático y
científico griego. Su nombre también podría ser Hero
(aproximadamente 18 escritores griegos se llamaron Hero
ó Herón, creándose cierta dificultad a la hora de su
identificación).
SU VIDA
 Herón de Alejandría nació probablemente en
Egipto y realizó su trabajo en Alejandría
(Egipto).
 Después de que desapareció el Imperio
Alejandrino y con él la ciencia griega, todavía
existieron algunos destellos de genialidad. Uno
de estos genios fue Herón, que desplegó una
actitud casi moderna para la mecánica
 Sin embargo, es conocido sobre todo como
matemático tanto en el campo de la geometría
como en el de la geodesia (una rama de las
matemáticas que se encarga de la
determinación del tamaño y configuración de la
Tierra, y de la ubicación de áreas concretas de
la misma).
SUS OBRAS:
 Escribió al menos 13 obras sobre mecánica,
matemáticas y física.
 En lo referente a la óptica, Herón, en su
libro Catóptrico, propuso que la luz viaja a lo
largo del camino geométricamente más
corto. Hoy se sabe que esto es falso, según
el principio de Fermat.
 En otro libro, Neumática, describe el diseño
de sifones, de máquinas que funcionan con
monedas y del aelopilo, que vendría a ser el
equivalente de una turbina de vapor
 Estudió la reflexión de la luz en espejos de
distinta forma.
DESCUBRIMIENTOS
 Sus principales descubrimientos son:
o demostró que el angulo de incidencia es igual al de
reflexión, conocido como Ley fundamental de la reflexión.
o Describió un gran número de máquinas sencillas y
generalizó el principio de la palanca de Arquímedes.
o Sin olvidar que realizó grandes trabajos, hizo numerables
innovaciones en el campo de los autómatas, incluyendo
uno el cual debería de hablar.
o Su mayor logro es la invención la primera máquina de
vapor, conocida como eolípila y la fuente de Herón.
o Encuentra diferentes maneras de hallar el área de
triángulos, cuadriláteros, polígonos regulares de tres a
doce lados, círculos, elipses y superficies y volúmenes de
cilindros, conos y esferas.
Orígenes y Representantes de la geometría
Orígenes y Representantes de la geometría

Más contenido relacionado

La actualidad más candente

Transformaciones geometricas
Transformaciones geometricas Transformaciones geometricas
Transformaciones geometricas
Emilianomartinez132003
 
El origen de los números racionales
El origen de los números racionalesEl origen de los números racionales
El origen de los números racionales
gvivi
 
TRIANGULOS Y CUADRILATEROS
TRIANGULOS Y CUADRILATEROSTRIANGULOS Y CUADRILATEROS
TRIANGULOS Y CUADRILATEROS
Lisi Salas
 
Linea del tiempo DRA. Hercy
Linea del tiempo DRA. HercyLinea del tiempo DRA. Hercy
Linea del tiempo DRA. Hercy
denissestefaniasotel
 
Poliedros regulares
Poliedros regularesPoliedros regulares
Poliedros regulares
fgilmelend
 
Geometría y sus Aplicaciones
Geometría y sus AplicacionesGeometría y sus Aplicaciones
Geometría y sus Aplicaciones
Elisbeiro De Bastidas
 
ROMPECABEZAS DE ECUACIONES DE 1ER. GRADO DE PERSONAJE CONECTADO AL NÚMERO PI
ROMPECABEZAS DE ECUACIONES DE 1ER. GRADO DE PERSONAJE CONECTADO AL NÚMERO PIROMPECABEZAS DE ECUACIONES DE 1ER. GRADO DE PERSONAJE CONECTADO AL NÚMERO PI
ROMPECABEZAS DE ECUACIONES DE 1ER. GRADO DE PERSONAJE CONECTADO AL NÚMERO PI
JAVIER SOLIS NOYOLA
 
LINEA DE TIEMPO RESEÑA HISTORICA DE LAS MATEMATICAS
LINEA DE TIEMPO RESEÑA HISTORICA DE LAS MATEMATICASLINEA DE TIEMPO RESEÑA HISTORICA DE LAS MATEMATICAS
LINEA DE TIEMPO RESEÑA HISTORICA DE LAS MATEMATICAS
Guillermo Puche
 
Aplicacioes de trigonometria
Aplicacioes de trigonometriaAplicacioes de trigonometria
Aplicacioes de trigonometria
iralys83
 
Antecedentes Historicos De La Geometria
Antecedentes Historicos De La GeometriaAntecedentes Historicos De La Geometria
Antecedentes Historicos De La Geometria
Sep-Dgeti-Cbtis No. 140
 
Matemáticas egipcias - 2 - Curso 2010/11
Matemáticas egipcias - 2 - Curso 2010/11Matemáticas egipcias - 2 - Curso 2010/11
Matemáticas egipcias - 2 - Curso 2010/11
Mates y + Estalmat
 
Trabajo de trigonometría.
Trabajo de trigonometría.Trabajo de trigonometría.
Trabajo de trigonometría.
Dolores Salguero González
 
¿Qué es la cartografía?
¿Qué es la cartografía?¿Qué es la cartografía?
¿Qué es la cartografía?
pacoelrana
 
Aritmética
AritméticaAritmética
Aritmética
EduPeru
 
Area De Regiones Poligonales: Cuadrado y Rectángulo-Edken
Area De Regiones Poligonales: Cuadrado y Rectángulo-EdkenArea De Regiones Poligonales: Cuadrado y Rectángulo-Edken
Area De Regiones Poligonales: Cuadrado y Rectángulo-Edken
Mg. Edgar Zavaleta Portillo
 
5 postulados de euclides
5 postulados de euclides5 postulados de euclides
5 postulados de euclides
Ana M
 
Cuerpos geometricos
Cuerpos geometricosCuerpos geometricos
Cuerpos geometricos
Jorge Moreira
 
Power point: Figuras Geométricas
Power point: Figuras GeométricasPower point: Figuras Geométricas
Power point: Figuras Geométricas
profesoradanielaramos
 
El origen de los números racionales
El origen de los números racionalesEl origen de los números racionales
El origen de los números racionales
gvivi
 
la historia de la multiplicacion
la historia de la multiplicacionla historia de la multiplicacion
la historia de la multiplicacion
Martin Araya Diaz
 

La actualidad más candente (20)

Transformaciones geometricas
Transformaciones geometricas Transformaciones geometricas
Transformaciones geometricas
 
El origen de los números racionales
El origen de los números racionalesEl origen de los números racionales
El origen de los números racionales
 
TRIANGULOS Y CUADRILATEROS
TRIANGULOS Y CUADRILATEROSTRIANGULOS Y CUADRILATEROS
TRIANGULOS Y CUADRILATEROS
 
Linea del tiempo DRA. Hercy
Linea del tiempo DRA. HercyLinea del tiempo DRA. Hercy
Linea del tiempo DRA. Hercy
 
Poliedros regulares
Poliedros regularesPoliedros regulares
Poliedros regulares
 
Geometría y sus Aplicaciones
Geometría y sus AplicacionesGeometría y sus Aplicaciones
Geometría y sus Aplicaciones
 
ROMPECABEZAS DE ECUACIONES DE 1ER. GRADO DE PERSONAJE CONECTADO AL NÚMERO PI
ROMPECABEZAS DE ECUACIONES DE 1ER. GRADO DE PERSONAJE CONECTADO AL NÚMERO PIROMPECABEZAS DE ECUACIONES DE 1ER. GRADO DE PERSONAJE CONECTADO AL NÚMERO PI
ROMPECABEZAS DE ECUACIONES DE 1ER. GRADO DE PERSONAJE CONECTADO AL NÚMERO PI
 
LINEA DE TIEMPO RESEÑA HISTORICA DE LAS MATEMATICAS
LINEA DE TIEMPO RESEÑA HISTORICA DE LAS MATEMATICASLINEA DE TIEMPO RESEÑA HISTORICA DE LAS MATEMATICAS
LINEA DE TIEMPO RESEÑA HISTORICA DE LAS MATEMATICAS
 
Aplicacioes de trigonometria
Aplicacioes de trigonometriaAplicacioes de trigonometria
Aplicacioes de trigonometria
 
Antecedentes Historicos De La Geometria
Antecedentes Historicos De La GeometriaAntecedentes Historicos De La Geometria
Antecedentes Historicos De La Geometria
 
Matemáticas egipcias - 2 - Curso 2010/11
Matemáticas egipcias - 2 - Curso 2010/11Matemáticas egipcias - 2 - Curso 2010/11
Matemáticas egipcias - 2 - Curso 2010/11
 
Trabajo de trigonometría.
Trabajo de trigonometría.Trabajo de trigonometría.
Trabajo de trigonometría.
 
¿Qué es la cartografía?
¿Qué es la cartografía?¿Qué es la cartografía?
¿Qué es la cartografía?
 
Aritmética
AritméticaAritmética
Aritmética
 
Area De Regiones Poligonales: Cuadrado y Rectángulo-Edken
Area De Regiones Poligonales: Cuadrado y Rectángulo-EdkenArea De Regiones Poligonales: Cuadrado y Rectángulo-Edken
Area De Regiones Poligonales: Cuadrado y Rectángulo-Edken
 
5 postulados de euclides
5 postulados de euclides5 postulados de euclides
5 postulados de euclides
 
Cuerpos geometricos
Cuerpos geometricosCuerpos geometricos
Cuerpos geometricos
 
Power point: Figuras Geométricas
Power point: Figuras GeométricasPower point: Figuras Geométricas
Power point: Figuras Geométricas
 
El origen de los números racionales
El origen de los números racionalesEl origen de los números racionales
El origen de los números racionales
 
la historia de la multiplicacion
la historia de la multiplicacionla historia de la multiplicacion
la historia de la multiplicacion
 

Destacado

Origen y desarrollo de la Geometría
Origen y desarrollo de la GeometríaOrigen y desarrollo de la Geometría
Origen y desarrollo de la Geometría
Hiram Baez Andino
 
Ppt geometría en el espacio.
Ppt geometría en el espacio.Ppt geometría en el espacio.
Ppt geometría en el espacio.
Carolina González
 
Máximos representantes del álgebra
Máximos representantes del álgebraMáximos representantes del álgebra
Máximos representantes del álgebra
Natalia Rios
 
Teoria basica de la geometria
Teoria basica de la geometriaTeoria basica de la geometria
Teoria basica de la geometria
neptuno geometrico
 
Antecedentes de la geometria...
Antecedentes de la geometria...Antecedentes de la geometria...
Antecedentes de la geometria...
cobao32
 
Problemas Clasicos de Grecia
Problemas Clasicos de GreciaProblemas Clasicos de Grecia
Constelaciones y galaxias
Constelaciones y galaxiasConstelaciones y galaxias
Constelaciones y galaxias
Aarón Jiménez
 
Cuadratura Del Círculo 1
Cuadratura Del Círculo 1Cuadratura Del Círculo 1
Presentacion galaxia
Presentacion galaxiaPresentacion galaxia
Presentacion galaxia
Aaronlauder Garcia
 
Personajes en la historia del cálculo
Personajes en la historia del cálculoPersonajes en la historia del cálculo
Personajes en la historia del cálculo
Giuseppe Lanza Tarricone
 
Diapositiva de conocimiento.
Diapositiva de conocimiento.Diapositiva de conocimiento.
Diapositiva de conocimiento.
5principefelipe
 
Antecedentes históricos de la geometría
Antecedentes históricos de la geometríaAntecedentes históricos de la geometría
Antecedentes históricos de la geometría
Marcial Martinez
 
Geometría analítica en el espacio
Geometría analítica en el espacioGeometría analítica en el espacio
Geometría analítica en el espacio
Karina Parra Gil
 
Universo (galaxias)
Universo (galaxias)Universo (galaxias)
Universo (galaxias)
IES Floridablanca
 
La Historia De La GeoméTríA
La Historia De La GeoméTríALa Historia De La GeoméTríA
La Historia De La GeoméTríA
Luis Zumarán Chavez
 
Historia de la geometría
Historia de la geometríaHistoria de la geometría
Historia de la geometría
Abelardo Chavarria
 
Reperesentantes de Trigonometría
Reperesentantes de TrigonometríaReperesentantes de Trigonometría
Reperesentantes de Trigonometría
Iván Dominguez
 
Linea del tiempo de la geometría
Linea del tiempo de la geometríaLinea del tiempo de la geometría
Linea del tiempo de la geometría
CHARLY10101990
 
1.Elementos primitivos de geometría
1.Elementos primitivos de geometría1.Elementos primitivos de geometría
1.Elementos primitivos de geometría
RAMON GOMEZ
 
Tema 7. Trazados Geométricos.
Tema 7. Trazados Geométricos.Tema 7. Trazados Geométricos.
Tema 7. Trazados Geométricos.
IES Luis de Morales
 

Destacado (20)

Origen y desarrollo de la Geometría
Origen y desarrollo de la GeometríaOrigen y desarrollo de la Geometría
Origen y desarrollo de la Geometría
 
Ppt geometría en el espacio.
Ppt geometría en el espacio.Ppt geometría en el espacio.
Ppt geometría en el espacio.
 
Máximos representantes del álgebra
Máximos representantes del álgebraMáximos representantes del álgebra
Máximos representantes del álgebra
 
Teoria basica de la geometria
Teoria basica de la geometriaTeoria basica de la geometria
Teoria basica de la geometria
 
Antecedentes de la geometria...
Antecedentes de la geometria...Antecedentes de la geometria...
Antecedentes de la geometria...
 
Problemas Clasicos de Grecia
Problemas Clasicos de GreciaProblemas Clasicos de Grecia
Problemas Clasicos de Grecia
 
Constelaciones y galaxias
Constelaciones y galaxiasConstelaciones y galaxias
Constelaciones y galaxias
 
Cuadratura Del Círculo 1
Cuadratura Del Círculo 1Cuadratura Del Círculo 1
Cuadratura Del Círculo 1
 
Presentacion galaxia
Presentacion galaxiaPresentacion galaxia
Presentacion galaxia
 
Personajes en la historia del cálculo
Personajes en la historia del cálculoPersonajes en la historia del cálculo
Personajes en la historia del cálculo
 
Diapositiva de conocimiento.
Diapositiva de conocimiento.Diapositiva de conocimiento.
Diapositiva de conocimiento.
 
Antecedentes históricos de la geometría
Antecedentes históricos de la geometríaAntecedentes históricos de la geometría
Antecedentes históricos de la geometría
 
Geometría analítica en el espacio
Geometría analítica en el espacioGeometría analítica en el espacio
Geometría analítica en el espacio
 
Universo (galaxias)
Universo (galaxias)Universo (galaxias)
Universo (galaxias)
 
La Historia De La GeoméTríA
La Historia De La GeoméTríALa Historia De La GeoméTríA
La Historia De La GeoméTríA
 
Historia de la geometría
Historia de la geometríaHistoria de la geometría
Historia de la geometría
 
Reperesentantes de Trigonometría
Reperesentantes de TrigonometríaReperesentantes de Trigonometría
Reperesentantes de Trigonometría
 
Linea del tiempo de la geometría
Linea del tiempo de la geometríaLinea del tiempo de la geometría
Linea del tiempo de la geometría
 
1.Elementos primitivos de geometría
1.Elementos primitivos de geometría1.Elementos primitivos de geometría
1.Elementos primitivos de geometría
 
Tema 7. Trazados Geométricos.
Tema 7. Trazados Geométricos.Tema 7. Trazados Geométricos.
Tema 7. Trazados Geométricos.
 

Similar a Orígenes y Representantes de la geometría

Capitulo 0 ReseñA Historica2007
Capitulo 0  ReseñA Historica2007Capitulo 0  ReseñA Historica2007
Capitulo 0 ReseñA Historica2007
Isidorogg
 
geometría analítica
geometría analítica geometría analítica
geometría analítica
Junior Hans Alberca Carrasco
 
La geometría
La geometríaLa geometría
La geometría
ZenetLuanaZuritaLean
 
El origen de la geometría
El origen de la geometríaEl origen de la geometría
El origen de la geometría
ruth1964
 
Eno upc geometria_plana_layout_06-18-10_da
Eno upc geometria_plana_layout_06-18-10_daEno upc geometria_plana_layout_06-18-10_da
Eno upc geometria_plana_layout_06-18-10_da
Isidoro Gordillo
 
Geometria del espacio
Geometria del espacioGeometria del espacio
Historiadelageometra 130903205945-
Historiadelageometra 130903205945-Historiadelageometra 130903205945-
Historiadelageometra 130903205945-
Jorge Carmona Montes
 
Pres histgeo
Pres histgeoPres histgeo
Pres histgeo
davidanyvero
 
historia de la geometria
historia de la geometria historia de la geometria
historia de la geometria
Omar Bucio
 
Suandrelin.nero. pdf
Suandrelin.nero. pdfSuandrelin.nero. pdf
Suandrelin.nero. pdf
suannero
 
Historia de las matematicas grupo 551104 224
Historia de las matematicas grupo 551104 224Historia de las matematicas grupo 551104 224
Historia de las matematicas grupo 551104 224
edna rojas
 
Hist. geometría
Hist. geometríaHist. geometría
Hist. geometría
Hugo Fernández
 
Anonimo historia de las matematicas
Anonimo   historia de las matematicasAnonimo   historia de las matematicas
Anonimo historia de las matematicas
Gabriel Moreno Cordero Jr.
 
Anónimo historia de las matemáticas
Anónimo   historia de las matemáticasAnónimo   historia de las matemáticas
Anónimo historia de las matemáticasdolfoster
 
las matemáticas en la historia
las matemáticas en la historialas matemáticas en la historia
las matemáticas en la historia
cecicollazo
 
Historia de las matématicas
Historia de las matématicasHistoria de las matématicas
Historia de las matématicas
astridla050612
 
Geometria
GeometriaGeometria
Historia de las matematicas
Historia de las matematicasHistoria de las matematicas
Historia de las matematicas
jenifermar
 
Anonimo historia de las matematicas
Anonimo   historia de las matematicasAnonimo   historia de las matematicas
Anonimo historia de las matematicas
samuel silgado
 
Conceptos básicos de geometría y trigonometría
Conceptos básicos de geometría y trigonometríaConceptos básicos de geometría y trigonometría
Conceptos básicos de geometría y trigonometría
Celeste Gago
 

Similar a Orígenes y Representantes de la geometría (20)

Capitulo 0 ReseñA Historica2007
Capitulo 0  ReseñA Historica2007Capitulo 0  ReseñA Historica2007
Capitulo 0 ReseñA Historica2007
 
geometría analítica
geometría analítica geometría analítica
geometría analítica
 
La geometría
La geometríaLa geometría
La geometría
 
El origen de la geometría
El origen de la geometríaEl origen de la geometría
El origen de la geometría
 
Eno upc geometria_plana_layout_06-18-10_da
Eno upc geometria_plana_layout_06-18-10_daEno upc geometria_plana_layout_06-18-10_da
Eno upc geometria_plana_layout_06-18-10_da
 
Geometria del espacio
Geometria del espacioGeometria del espacio
Geometria del espacio
 
Historiadelageometra 130903205945-
Historiadelageometra 130903205945-Historiadelageometra 130903205945-
Historiadelageometra 130903205945-
 
Pres histgeo
Pres histgeoPres histgeo
Pres histgeo
 
historia de la geometria
historia de la geometria historia de la geometria
historia de la geometria
 
Suandrelin.nero. pdf
Suandrelin.nero. pdfSuandrelin.nero. pdf
Suandrelin.nero. pdf
 
Historia de las matematicas grupo 551104 224
Historia de las matematicas grupo 551104 224Historia de las matematicas grupo 551104 224
Historia de las matematicas grupo 551104 224
 
Hist. geometría
Hist. geometríaHist. geometría
Hist. geometría
 
Anonimo historia de las matematicas
Anonimo   historia de las matematicasAnonimo   historia de las matematicas
Anonimo historia de las matematicas
 
Anónimo historia de las matemáticas
Anónimo   historia de las matemáticasAnónimo   historia de las matemáticas
Anónimo historia de las matemáticas
 
las matemáticas en la historia
las matemáticas en la historialas matemáticas en la historia
las matemáticas en la historia
 
Historia de las matématicas
Historia de las matématicasHistoria de las matématicas
Historia de las matématicas
 
Geometria
GeometriaGeometria
Geometria
 
Historia de las matematicas
Historia de las matematicasHistoria de las matematicas
Historia de las matematicas
 
Anonimo historia de las matematicas
Anonimo   historia de las matematicasAnonimo   historia de las matematicas
Anonimo historia de las matematicas
 
Conceptos básicos de geometría y trigonometría
Conceptos básicos de geometría y trigonometríaConceptos básicos de geometría y trigonometría
Conceptos básicos de geometría y trigonometría
 

Más de Cesar Suarez Carranza

Historia de la geometria
Historia de la geometriaHistoria de la geometria
Historia de la geometria
Cesar Suarez Carranza
 
ángulos formados entre rectas paralelas
ángulos formados entre rectas paralelasángulos formados entre rectas paralelas
ángulos formados entre rectas paralelas
Cesar Suarez Carranza
 
Historia de la geometria
Historia de la geometriaHistoria de la geometria
Historia de la geometria
Cesar Suarez Carranza
 
Elementos de la circunferencia
Elementos de la circunferenciaElementos de la circunferencia
Elementos de la circunferencia
Cesar Suarez Carranza
 
Elementos de la circunferencia
Elementos de la circunferenciaElementos de la circunferencia
Elementos de la circunferencia
Cesar Suarez Carranza
 
Problemas de cronometría(raz 5° sec)
Problemas de cronometría(raz 5° sec)Problemas de cronometría(raz 5° sec)
Problemas de cronometría(raz 5° sec)
Cesar Suarez Carranza
 
PROGRESIÓN GEOMÉTRICA
PROGRESIÓN GEOMÉTRICAPROGRESIÓN GEOMÉTRICA
PROGRESIÓN GEOMÉTRICA
Cesar Suarez Carranza
 
Triangulos
TriangulosTriangulos
Triangulos
TriangulosTriangulos
AFIANZANDO EL TEMA DE GRADOS(6° )
AFIANZANDO EL TEMA DE GRADOS(6° )AFIANZANDO EL TEMA DE GRADOS(6° )
AFIANZANDO EL TEMA DE GRADOS(6° )
Cesar Suarez Carranza
 
Suc
SucSuc
Sucesiones
SucesionesSucesiones
Suc
SucSuc
AUTOEVALUACIÓN
AUTOEVALUACIÓNAUTOEVALUACIÓN
AUTOEVALUACIÓN
Cesar Suarez Carranza
 
POLÍGONOS
POLÍGONOSPOLÍGONOS
APRENDEMOS FACTORIZACIÓN JUGANDO DOMINÓ
APRENDEMOS FACTORIZACIÓN JUGANDO DOMINÓAPRENDEMOS FACTORIZACIÓN JUGANDO DOMINÓ
APRENDEMOS FACTORIZACIÓN JUGANDO DOMINÓ
Cesar Suarez Carranza
 
APRENDEMOS FACTORIZACIÓN JUGANDO DOMINÓ
APRENDEMOS FACTORIZACIÓN JUGANDO DOMINÓAPRENDEMOS FACTORIZACIÓN JUGANDO DOMINÓ
APRENDEMOS FACTORIZACIÓN JUGANDO DOMINÓ
Cesar Suarez Carranza
 
EJERCICIOS PROPUESTOS DE PLANTEO DE ECUACIONES
EJERCICIOS PROPUESTOS DE PLANTEO DE ECUACIONESEJERCICIOS PROPUESTOS DE PLANTEO DE ECUACIONES
EJERCICIOS PROPUESTOS DE PLANTEO DE ECUACIONES
Cesar Suarez Carranza
 
PROPUESTOS DE RECTAS PARALELAS
PROPUESTOS DE RECTAS PARALELASPROPUESTOS DE RECTAS PARALELAS
PROPUESTOS DE RECTAS PARALELAS
Cesar Suarez Carranza
 
EJERCICIOS RESULETOS SOBRE DIFERENCIAS ENTRE VARIACIÓN,PERMUTACIÓN Y COMBINACIÓN
EJERCICIOS RESULETOS SOBRE DIFERENCIAS ENTRE VARIACIÓN,PERMUTACIÓN Y COMBINACIÓNEJERCICIOS RESULETOS SOBRE DIFERENCIAS ENTRE VARIACIÓN,PERMUTACIÓN Y COMBINACIÓN
EJERCICIOS RESULETOS SOBRE DIFERENCIAS ENTRE VARIACIÓN,PERMUTACIÓN Y COMBINACIÓN
Cesar Suarez Carranza
 

Más de Cesar Suarez Carranza (20)

Historia de la geometria
Historia de la geometriaHistoria de la geometria
Historia de la geometria
 
ángulos formados entre rectas paralelas
ángulos formados entre rectas paralelasángulos formados entre rectas paralelas
ángulos formados entre rectas paralelas
 
Historia de la geometria
Historia de la geometriaHistoria de la geometria
Historia de la geometria
 
Elementos de la circunferencia
Elementos de la circunferenciaElementos de la circunferencia
Elementos de la circunferencia
 
Elementos de la circunferencia
Elementos de la circunferenciaElementos de la circunferencia
Elementos de la circunferencia
 
Problemas de cronometría(raz 5° sec)
Problemas de cronometría(raz 5° sec)Problemas de cronometría(raz 5° sec)
Problemas de cronometría(raz 5° sec)
 
PROGRESIÓN GEOMÉTRICA
PROGRESIÓN GEOMÉTRICAPROGRESIÓN GEOMÉTRICA
PROGRESIÓN GEOMÉTRICA
 
Triangulos
TriangulosTriangulos
Triangulos
 
Triangulos
TriangulosTriangulos
Triangulos
 
AFIANZANDO EL TEMA DE GRADOS(6° )
AFIANZANDO EL TEMA DE GRADOS(6° )AFIANZANDO EL TEMA DE GRADOS(6° )
AFIANZANDO EL TEMA DE GRADOS(6° )
 
Suc
SucSuc
Suc
 
Sucesiones
SucesionesSucesiones
Sucesiones
 
Suc
SucSuc
Suc
 
AUTOEVALUACIÓN
AUTOEVALUACIÓNAUTOEVALUACIÓN
AUTOEVALUACIÓN
 
POLÍGONOS
POLÍGONOSPOLÍGONOS
POLÍGONOS
 
APRENDEMOS FACTORIZACIÓN JUGANDO DOMINÓ
APRENDEMOS FACTORIZACIÓN JUGANDO DOMINÓAPRENDEMOS FACTORIZACIÓN JUGANDO DOMINÓ
APRENDEMOS FACTORIZACIÓN JUGANDO DOMINÓ
 
APRENDEMOS FACTORIZACIÓN JUGANDO DOMINÓ
APRENDEMOS FACTORIZACIÓN JUGANDO DOMINÓAPRENDEMOS FACTORIZACIÓN JUGANDO DOMINÓ
APRENDEMOS FACTORIZACIÓN JUGANDO DOMINÓ
 
EJERCICIOS PROPUESTOS DE PLANTEO DE ECUACIONES
EJERCICIOS PROPUESTOS DE PLANTEO DE ECUACIONESEJERCICIOS PROPUESTOS DE PLANTEO DE ECUACIONES
EJERCICIOS PROPUESTOS DE PLANTEO DE ECUACIONES
 
PROPUESTOS DE RECTAS PARALELAS
PROPUESTOS DE RECTAS PARALELASPROPUESTOS DE RECTAS PARALELAS
PROPUESTOS DE RECTAS PARALELAS
 
EJERCICIOS RESULETOS SOBRE DIFERENCIAS ENTRE VARIACIÓN,PERMUTACIÓN Y COMBINACIÓN
EJERCICIOS RESULETOS SOBRE DIFERENCIAS ENTRE VARIACIÓN,PERMUTACIÓN Y COMBINACIÓNEJERCICIOS RESULETOS SOBRE DIFERENCIAS ENTRE VARIACIÓN,PERMUTACIÓN Y COMBINACIÓN
EJERCICIOS RESULETOS SOBRE DIFERENCIAS ENTRE VARIACIÓN,PERMUTACIÓN Y COMBINACIÓN
 

Último

Blogs_y_Educacion_Por Zaracho Lautaro_.pdf
Blogs_y_Educacion_Por Zaracho Lautaro_.pdfBlogs_y_Educacion_Por Zaracho Lautaro_.pdf
Blogs_y_Educacion_Por Zaracho Lautaro_.pdf
lautyzaracho4
 
Vida, obra y pensamiento de Kant I24.ppt
Vida, obra y pensamiento de Kant I24.pptVida, obra y pensamiento de Kant I24.ppt
Vida, obra y pensamiento de Kant I24.ppt
LinoLatella
 
Evaluacion del tercer trimestre del 2023-2024
Evaluacion del tercer trimestre del 2023-2024Evaluacion del tercer trimestre del 2023-2024
Evaluacion del tercer trimestre del 2023-2024
israelsouza67
 
Cronica-de-una-Muerte-Anunciada - Gabriel Garcia Marquez.pdf
Cronica-de-una-Muerte-Anunciada - Gabriel Garcia Marquez.pdfCronica-de-una-Muerte-Anunciada - Gabriel Garcia Marquez.pdf
Cronica-de-una-Muerte-Anunciada - Gabriel Garcia Marquez.pdf
RicardoValdiviaVega
 
Power Point: El conflicto inminente (Bosquejo)
Power Point: El conflicto inminente (Bosquejo)Power Point: El conflicto inminente (Bosquejo)
Power Point: El conflicto inminente (Bosquejo)
https://gramadal.wordpress.com/
 
tema 7. Los siglos XVI y XVII ( resumen)
tema 7. Los siglos XVI y XVII ( resumen)tema 7. Los siglos XVI y XVII ( resumen)
tema 7. Los siglos XVI y XVII ( resumen)
saradocente
 
1° T3 Examen Zany de primer grado compl
1° T3 Examen Zany  de primer grado compl1° T3 Examen Zany  de primer grado compl
1° T3 Examen Zany de primer grado compl
ROCIORUIZQUEZADA
 
La necesidad de bienestar y el uso de la naturaleza.pdf
La necesidad de bienestar y el uso de la naturaleza.pdfLa necesidad de bienestar y el uso de la naturaleza.pdf
La necesidad de bienestar y el uso de la naturaleza.pdf
JonathanCovena1
 
Liturgia día del Padre del siguiente domingo.pptx
Liturgia día del Padre del siguiente domingo.pptxLiturgia día del Padre del siguiente domingo.pptx
Liturgia día del Padre del siguiente domingo.pptx
YeniferGarcia36
 
UrkuninaLab.pdfsadsadasddassadsadsadasdsad
UrkuninaLab.pdfsadsadasddassadsadsadasdsadUrkuninaLab.pdfsadsadasddassadsadsadasdsad
UrkuninaLab.pdfsadsadasddassadsadsadasdsad
JorgeVillota6
 
pueblos originarios de chile presentacion twinkl.pptx
pueblos originarios de chile presentacion twinkl.pptxpueblos originarios de chile presentacion twinkl.pptx
pueblos originarios de chile presentacion twinkl.pptx
RAMIREZNICOLE
 
Manual de procedimiento para gráficos HC
Manual de procedimiento para gráficos HCManual de procedimiento para gráficos HC
Manual de procedimiento para gráficos HC
josseanlo1581
 
RETROALIMENTACIÓN PARA EL EXAMEN ÚNICO AUXILIAR DE ENFERMERIA.docx
RETROALIMENTACIÓN PARA EL EXAMEN ÚNICO AUXILIAR DE ENFERMERIA.docxRETROALIMENTACIÓN PARA EL EXAMEN ÚNICO AUXILIAR DE ENFERMERIA.docx
RETROALIMENTACIÓN PARA EL EXAMEN ÚNICO AUXILIAR DE ENFERMERIA.docx
100078171
 
APUNTES UNIDAD I ECONOMIA EMPRESARIAL .pdf
APUNTES UNIDAD I ECONOMIA EMPRESARIAL .pdfAPUNTES UNIDAD I ECONOMIA EMPRESARIAL .pdf
APUNTES UNIDAD I ECONOMIA EMPRESARIAL .pdf
VeronicaCabrera50
 
CONCURSOS EDUCATIVOS 2024-PRESENTACIÓN ORIENTACIONES ETAPA IE (1).pptx
CONCURSOS EDUCATIVOS 2024-PRESENTACIÓN ORIENTACIONES ETAPA IE (1).pptxCONCURSOS EDUCATIVOS 2024-PRESENTACIÓN ORIENTACIONES ETAPA IE (1).pptx
CONCURSOS EDUCATIVOS 2024-PRESENTACIÓN ORIENTACIONES ETAPA IE (1).pptx
CARMENSnchez854591
 
2° año LA VESTIMENTA-ciencias sociales 2 grado
2° año LA VESTIMENTA-ciencias sociales 2 grado2° año LA VESTIMENTA-ciencias sociales 2 grado
2° año LA VESTIMENTA-ciencias sociales 2 grado
GiselaBerrios3
 
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdfFEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
Jose Luis Jimenez Rodriguez
 
SEMIOLOGIA DE HEMORRAGIAS DIGESTIVAS.pptx
SEMIOLOGIA DE HEMORRAGIAS DIGESTIVAS.pptxSEMIOLOGIA DE HEMORRAGIAS DIGESTIVAS.pptx
SEMIOLOGIA DE HEMORRAGIAS DIGESTIVAS.pptx
Osiris Urbano
 
Presentación simple corporativa degradado en violeta blanco.pdf
Presentación simple corporativa degradado en violeta blanco.pdfPresentación simple corporativa degradado en violeta blanco.pdf
Presentación simple corporativa degradado en violeta blanco.pdf
eleandroth
 

Último (20)

Blogs_y_Educacion_Por Zaracho Lautaro_.pdf
Blogs_y_Educacion_Por Zaracho Lautaro_.pdfBlogs_y_Educacion_Por Zaracho Lautaro_.pdf
Blogs_y_Educacion_Por Zaracho Lautaro_.pdf
 
Vida, obra y pensamiento de Kant I24.ppt
Vida, obra y pensamiento de Kant I24.pptVida, obra y pensamiento de Kant I24.ppt
Vida, obra y pensamiento de Kant I24.ppt
 
Evaluacion del tercer trimestre del 2023-2024
Evaluacion del tercer trimestre del 2023-2024Evaluacion del tercer trimestre del 2023-2024
Evaluacion del tercer trimestre del 2023-2024
 
Cronica-de-una-Muerte-Anunciada - Gabriel Garcia Marquez.pdf
Cronica-de-una-Muerte-Anunciada - Gabriel Garcia Marquez.pdfCronica-de-una-Muerte-Anunciada - Gabriel Garcia Marquez.pdf
Cronica-de-una-Muerte-Anunciada - Gabriel Garcia Marquez.pdf
 
Power Point: El conflicto inminente (Bosquejo)
Power Point: El conflicto inminente (Bosquejo)Power Point: El conflicto inminente (Bosquejo)
Power Point: El conflicto inminente (Bosquejo)
 
tema 7. Los siglos XVI y XVII ( resumen)
tema 7. Los siglos XVI y XVII ( resumen)tema 7. Los siglos XVI y XVII ( resumen)
tema 7. Los siglos XVI y XVII ( resumen)
 
1° T3 Examen Zany de primer grado compl
1° T3 Examen Zany  de primer grado compl1° T3 Examen Zany  de primer grado compl
1° T3 Examen Zany de primer grado compl
 
La necesidad de bienestar y el uso de la naturaleza.pdf
La necesidad de bienestar y el uso de la naturaleza.pdfLa necesidad de bienestar y el uso de la naturaleza.pdf
La necesidad de bienestar y el uso de la naturaleza.pdf
 
A VISITA DO SENHOR BISPO .
A VISITA DO SENHOR BISPO                .A VISITA DO SENHOR BISPO                .
A VISITA DO SENHOR BISPO .
 
Liturgia día del Padre del siguiente domingo.pptx
Liturgia día del Padre del siguiente domingo.pptxLiturgia día del Padre del siguiente domingo.pptx
Liturgia día del Padre del siguiente domingo.pptx
 
UrkuninaLab.pdfsadsadasddassadsadsadasdsad
UrkuninaLab.pdfsadsadasddassadsadsadasdsadUrkuninaLab.pdfsadsadasddassadsadsadasdsad
UrkuninaLab.pdfsadsadasddassadsadsadasdsad
 
pueblos originarios de chile presentacion twinkl.pptx
pueblos originarios de chile presentacion twinkl.pptxpueblos originarios de chile presentacion twinkl.pptx
pueblos originarios de chile presentacion twinkl.pptx
 
Manual de procedimiento para gráficos HC
Manual de procedimiento para gráficos HCManual de procedimiento para gráficos HC
Manual de procedimiento para gráficos HC
 
RETROALIMENTACIÓN PARA EL EXAMEN ÚNICO AUXILIAR DE ENFERMERIA.docx
RETROALIMENTACIÓN PARA EL EXAMEN ÚNICO AUXILIAR DE ENFERMERIA.docxRETROALIMENTACIÓN PARA EL EXAMEN ÚNICO AUXILIAR DE ENFERMERIA.docx
RETROALIMENTACIÓN PARA EL EXAMEN ÚNICO AUXILIAR DE ENFERMERIA.docx
 
APUNTES UNIDAD I ECONOMIA EMPRESARIAL .pdf
APUNTES UNIDAD I ECONOMIA EMPRESARIAL .pdfAPUNTES UNIDAD I ECONOMIA EMPRESARIAL .pdf
APUNTES UNIDAD I ECONOMIA EMPRESARIAL .pdf
 
CONCURSOS EDUCATIVOS 2024-PRESENTACIÓN ORIENTACIONES ETAPA IE (1).pptx
CONCURSOS EDUCATIVOS 2024-PRESENTACIÓN ORIENTACIONES ETAPA IE (1).pptxCONCURSOS EDUCATIVOS 2024-PRESENTACIÓN ORIENTACIONES ETAPA IE (1).pptx
CONCURSOS EDUCATIVOS 2024-PRESENTACIÓN ORIENTACIONES ETAPA IE (1).pptx
 
2° año LA VESTIMENTA-ciencias sociales 2 grado
2° año LA VESTIMENTA-ciencias sociales 2 grado2° año LA VESTIMENTA-ciencias sociales 2 grado
2° año LA VESTIMENTA-ciencias sociales 2 grado
 
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdfFEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
 
SEMIOLOGIA DE HEMORRAGIAS DIGESTIVAS.pptx
SEMIOLOGIA DE HEMORRAGIAS DIGESTIVAS.pptxSEMIOLOGIA DE HEMORRAGIAS DIGESTIVAS.pptx
SEMIOLOGIA DE HEMORRAGIAS DIGESTIVAS.pptx
 
Presentación simple corporativa degradado en violeta blanco.pdf
Presentación simple corporativa degradado en violeta blanco.pdfPresentación simple corporativa degradado en violeta blanco.pdf
Presentación simple corporativa degradado en violeta blanco.pdf
 

Orígenes y Representantes de la geometría

  • 1. GEOMETRIA Los primeros conocimientos geométricos que tuvo el hombre consistían en un conjunto de reglas prácticas. Para que la geometría fuera adoptada como ciencia tuvieron que pasar muchos siglos, hasta llegar a los griegos. Debido a esto se eleva la geometría al plano rigurosamente científico ETIMOLOGIA La aplicación de los conocimientos geométricos para medir la tierra fue la causa de que se diera a esta parte de la matemática el nombre de geometría que significa: MEDIDA DE LA TIERRA ORIGEN DE LA GEOMETRIA La historia del origen de la Geometría es muy similar a la de la Aritmética, siendo sus conceptos más antiguos consecuencia de las actividades prácticas Los primeros hombres llegaron a formas geométricas a partir de la observación de la naturaleza. PRINCIPALES REPRESENTANTES BABILONIA EGIPTO GRECIA  Fueron cerca de 6000 años, los inventores de la rueda  Tal vez de ahí provino su afan por descubrir las propiedades de la circunsferencia esto condujo a la relacion entre la longitud de la circunsferencia y su diámetro era igual a 3  Hallaron considerando que la longitud de la circunsferencia entre los perímetros de los cuadros inscrito y circunscrito  Cultvaron la Astronomia y obtuvieron el grado sexagesimal Los babilonios fueron: * La base de la civilización egipcia fue la agricultura * Los reyes de Egipto dividieron la tierra en parcelas. Cuando el Nilo en sus crecidas periódicas se llevaba parte de las tierras, los agrimensores tenían que rehacer las divisiones y calcular cuanto debía pagar el dueño de la parcela por concepto de impuesto ya que este era proporcional a la tierra cultivada * Para la necesidad de medir las tierras no fue para lo único que la utilizaron pues cultivaron la geometría aplicándola en la construcción. -La Geometría de los egipcios era eminentemente empirica, ya que no se basaba en un sistema logico deducido a partir de axiomas y postulados - Los Griegos no se contentaron con saber las reglas y resolver problemas particulares;no se sintieron satisfechos hasta obtener explicaciones racionalesen las cuestiones general y especialmente , de las geometricas -En Grecia comienza la Geometia como ciencia deductiva. -Tales de Mileto - Euclides -Pitágoras de Samos -Platón -Heron de Alejandria, etc. Es gracias a todos estos matemáticos que se dio la transformación de la geometría en ciencia deductiva
  • 2. La historia del origen de la Geometría es muy similar a la de la Aritmética, siendo sus conceptos más antiguos consecuencia de las actividades prácticas. Los primeros hombres llegaron a formas geométricas a partir de la observación de la naturaleza. El sabio griego Eudemo de Rodas, atribuyó a los egipcios el descubrimiento de la geometría, ya que, según él, necesitaban medir constantemente sus tierras debido a que las inundaciones del Nilo borraban continuamente sus fronteras. Recordemos que, precisamente, la palabra geometría significa medida de tierras. En los matemáticos de la cultura helénica los problemas prácticos relacionados con las necesidades de cálculos aritméticos, mediciones y construcciones geométricas continuaron jugando un gran papel. Sin embargo, lo novedoso era, que estos problemas poco a poco se desprendieron en una rama independiente de las matemáticas que obtuvo la denominación de "logística". A la logística fueron atribuidas: las operaciones con números enteros, la extracción numérica de raíces, el cálculo con la ayuda de dispositivos auxiliares, cálculo con fracciones, resolución numérica de problemas que conducen a ecuaciones de 1er y 2º grado, problemas prácticos de cálculo y constructivos de la arquitectura, geometría, agrimensura, etc... Al mismo tiempo ya en la escuela de Pitágoras se advierte un proceso de recopilación de hechos matemáticos abstractos y la unión de ellos en sistemas teóricos. Junto a la demostración geométrica del teorema de Pitágoras fue encontrado el método de hallazgo de la serie ilimitada de las ternas de números "pitagóricos", esto es, ternas de números que satisfacen la ecuación a2 +b2 =c2 . En este tiempo transcurrieron la abstracción y sistematización de las informaciones geométricas. En los trabajos geométricos se introdujeron y perfeccionaron los métodos de demostración geométrica. Se consideraron, en particular: el teorema de Pitágoras, los problemas sobre la cuadratura del círculo, la trisección de un ángulo, la duplicación del cubo, la cuadratura de una serie de áreas (en particular las acotadas por líneas curvas). Paralelamente, al ampliarse el número de magnitudes medibles, debido a la aparición de los números irracionales, se originó una reformulación de la geometría, dando lugar al álgebra geométrica. Esta nueva rama incluía entre otros conceptos el método de anexión de áreas, el conjunto de proposiciones geométricas que interpretaban las cantidades algebraicas, división áurea, expresión de la arista de un poliedro regular a través del diámetro de la circunferencia circunscrita. Sin embargo, el álgebra geométrica estaba limitada a objetos de dimensión no mayor que dos, siendo inaccesibles los problemas que conducían a ecuaciones de tercer grado o superiores, es decir, se hacían imposibles los problemas que no admitieran solución mediante regla y compás. La historia sobre la resolución de los tres problemas geométricos clásicos (sobre la cuadratura del círculo, la trisección de un ángulo, la duplicación del cubo) está llena de anécdotas, pero lo cierto es que como consecuencia de ellos surgieron, por ejemplo, las secciones cónicas, cálculo aproximado del número pi, el método de exhaución como predecesor del cálculo de límites o la introducción de curvas trascendentes. Asimismo, el surgimiento de la irracionalidad condicionó la necesidad de creación de una teoría general de las relaciones, teoría cuyo fundamento inicial lo constituyó el algoritmo de Euclides. THALES DE MILETO Tales nació en la ciudad de Mileto una antigua ciudad en la costa occidental de Asia Menor. Fue hijo de Euxamias y de Cleobulina y al parecer tuvo ascendencia fenicia. De los babilonios debió aprender astronomía. En su ¨Cronología¨, afirma que murió a la edad de setenta y ocho años SU VIDA
  • 3.  En su juventud viajó a Egipto, donde aprendió geometría de los sacerdotes de Menfis, y astronomía, que posteriormente enseñaría con el nombre de astrosofía.  Fue maestro de Pitágoras y Anaxímedes, y contemporáneo de Anaximandro  Fue el primer filósofo griego que intentó dar una explicación física del Universo, que para él era un espacio racional pese a su aparente desorden  Sin embargo, no buscó un Creador en dicha racionalidad, pues para él todo nacía del agua, la cual era el elemento básico del que estaban hechas todas las cosas, pues se constituye en vapor, que es aire, nubes y éter; del agua se forman los cuerpos sólidos al condensarse, y la Tierra flota en ella. SUS ESTUDIOS  Sus estudios lo condujeron a resolver ciertas cuestiones como: o La determinación de las distancias inaccesibles o La igualdad de los ángulos de la base en el triangulo isósceles o El valor del Angulo inscrito o La demostración de los conocidos teoremas que llevan su nombre relativos a la proporcionalidad de segmentos determinados en dos rectas cortadas por un sistema de paralelas SU REPRESENTACIÓN  Representa los comienzos de la geometría como ciencia racional.  Fue uno de los siete sabios y fundador de la escuela jonica a la que pertenecieron Anaximandro, Anaxagoras, etc.  En su edad madura se dedico al estudio de la filosofía y de las ciencias, especialmente de la GEOMETRIA PITAGORAS DE SAMOS
  • 4. Pitágoras de Samos nació en la isla de Samos. Siendo muy joven viajó a Mesopotamia y Egipto fue un filósofo y matemático griego, famoso sobre todo por el Teorema de Pitágoras, que en realidad pertenece a la escuela pitagórica y no sólo al mismo Pitágoras. SU VIDA  Pitágoras, nació en la isla de Samos  Su escuela de pensamiento afirmaba que la estructura del universo era aritmética y geométrica, a partir de lo cual las matemáticas se convirtieron en una disciplina fundamental para toda investigación científica.  Pitágoras pasa por ser el introductor de pesos y medidas, y elaborador de la teoría musical; el primero en hablar de "teoría" y de "filósofos", en postular el vacío, en canalizar el fervor religioso en fervor intelectual, en usar la definición y en considerar que el universo es una obra sólo descifrable a través de las matemáticas. SU FUNDACION  Se dice que fue discípulo de Tales , pero apartándose de la escuela jonica, fundo Trotona, Italia, la escuela pitagórica.  Se le atribuye también a la escuela pitagórica: o la demostración de la propiedad de la suma de los ángulos internos o la construcción geométrica del polígono estrellado de cinco lados o Fueron los pitagóricos los primeros en sostener la forma esférica de la tierra y postular que esta, el sol y el resto de los planetas conocidos, no se encontraban en el centro del universo, sino que giraban en torno a una fuerza simbolizada por el número uno. TEOREMA DE PITAGORAS En un triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos. Cada uno de los sumandos, representa el área de un cuadrado de lado, a, b, c. Con lo que la expresión anterior, en términos de áreas se expresa en la forma siguiente: El área del cuadrado construido sobre la hipotenusa de un triángulo rectángulo, es igual a la suma de las áreas de los cuadrados construidos sobre los catetos. EUCLIDES
  • 5. Euclides vivió alrededor del año 300 a.C, Matemático griego. Poco se conoce a ciencia cierta de la biografía de Euclides, pese a ser el matemático más famoso de la Antigüedad. SU VIDA  Su vida es poco conocida, salvo que vivió en Alejandría, Egipto. Proclo, el último de los grandes filósofos griegos, quien vivió alrededor del 450 dC., es la principal fuente.  Es probable que Euclides se educara en Atenas, lo que explicaría con su buen conocimiento de la geometría elaborada en la escuela de Platón, aunque no parece que estuviera familiarizado con las obras de Aristóteles.  Existen algunos otros datos poco fiables. Algunos autores árabes afirman que Euclides era hijo de Naucrates OBRAS:  Euclides fue autor de diversos tratados, pero su nombre se asocia principalmente a uno de ellos, los Elementos, que rivaliza por su difusión con las obras más famosas de la literatura universal, como la Biblia o el Quijote  Euclides fue un personaje histórico que escribió Los Elementos y otras obras atribuidas a él.  Euclides fue el líder de un equipo de matemáticos que trabajaba en Alejandría. Todos ellos contribuyeron a escribir las obras completas de Euclides, incluso escribiendo libros a nombre de Euclides después de su muerte. OTROS DATOS DE SU VIDA:  La tradición ha conservado una imagen de Euclides como hombre de notable amabilidad y modestia  Enseñó en Alejandría, donde alcanzó un gran prestigio en el ejercicio de su magisterio durante el reinado de Tolomeo I Sóter; se cuenta que éste lo requirió para que le mostrara un procedimiento abreviado para acceder al conocimiento de las matemáticas, a lo que Euclides repuso que no existía una vía regia para llegar a la geometría  Euclides construye la geometría partir de definiciones, postulados y axiomas con los cuales demuestra teoremas que, a su vez, le sirven para demostrar otros teoremas
  • 6. PLATÓN Platón fue un filósofo griego, alumno de Sócrates y maestro de Aristóteles, de familia nobilísima y de la más alta aristocracia. Su influencia como autor y sistematizador ha sido incalculable en toda la historia de la filosofía, SU VIDA  Nacido en el seno de una familia aristocrática, abandonó su vocación política por la Filosofía, atraído por Sócrates.  Siguió a éste durante veinte años y se enfrentó abiertamente a los sofistas (Protágoras, Gorgias…). Tras la muerte de Sócrates (399 a. C.), se apartó completamente de la política; no obstante, los temas políticos ocuparon siempre un lugar central en su pensamiento, y llegó a concebir un modelo ideal de Estado.  Viajó por Oriente y el sur de Italia, donde entró en contacto con los discípulos de Pitágoras; luego pasó algún tiempo prisionero de unos piratas, hasta que fue rescatado y pudo regresar a Atenas. FUE FUNDADOR DE:  Fue fundador de la Academia de Atenas, donde estudió Aristóteles. Participó activamente en la enseñanza de la Academia y escribió sobre diversos temas filosóficos, especialmente los que trataban de la política, ética, metafísica y epistemología.  Se opuso a las aplicaciones de Geometría pues para el la matematica no tiene como finalidad la practica sino la cultivación de esta con el unico fin de conocer  La geometría la dividio en elemental y superior o La Geometría Elemental comprendia todos los problemas que se podian resolver con regla y compas o Y la Geometría Superior estudiaba los tres problemas mas famosos de la Geometría Antigua - La Cuadratura del Circulo - La trisección del angulo - La duplicación del cubo OBRAS:  A diferencia de Sócrates, que no dejó obra escrita, los trabajos de Platón se han conservado casi completos y se le considera por ello el fundador de la Filosofía académica  El contenido de estos escritos es una especulación metafísica, pero con evidente orientación práctica. El mundo del verdadero ser es el de las ideas, mientras que el mundo de las apariencias que nos rodean está sometido a continuo cambio y degeneración.
  • 7. ARQUIMEDES DE SARACUSA Arquímedes matemático y geómetro griego considerado el más notable científico y matemático de la antigüedad, es recordado por el Principio de Arquímedes y por sus aportes a la cuadratura del círculo SU VIDA  Matemático griego. Hijo de Fidias un astrónomo, quien probablemente le introdujo en las matemáticas  Arquímedes estudió en Alejandría, donde tuvo como maestro a Conón de Samos y entró en contacto con Eratóstenes; a este último dedicó Arquímedes su Método, en el que expuso su genial aplicación de la mecánica a la geometría, en la que «pesaba» imaginariamente áreas y volúmenes desconocidos para determinar su valor.  De la biografía de Arquímedes, gran matemático e ingeniero, a quien Plutarco atribuyó una «inteligencia sobrehumana», sólo se conocen una serie de anécdotas. OTROS DATOS DE SU VIDA  Se encuentra en el una mentalidad practica, un genio técnico, que lo llevo a investigar problemas de orden físico y resolverlos por métodos nuevos  Por esto después de grandes disputas con los euclidianos se retiro a Siracusa donde puso sus descubrimientos al servicio de la técnica.  La obra Sobre la esfera y el cilindro, fue su teorema favorito, que por expreso deseo suyo se grabó sobre su tumba.  Son célebres los ingenios bélicos cuya paternidad le atribuye la tradición y que, según se dice, permitieron a Siracusa resistir tres años el asedio romano, antes de caer en manos de las tropas de Marcelo; también se cuenta que, contraviniendo órdenes expresas del general romano, un soldado mató a Arquímedes por resistirse éste a abandonar la resolución de un problema matemático en el que estaba inmerso, escena perpetuada en un mosaico hallado en Herculano. DESCUBRIMIENTOS  Calculo: o Un valor más aproximado de π (pi) o El volumen del cono , de la esfera o el estudio de la palanca o el tornillo de Arquímedes o la Arquímedes que sirve para la trisección del Angulo y otros aportes a la matemática, la ingeniería y la geometría.
  • 8. HERÓN DE ALEJANDRIA Herón de Alejandría (c. 20-62 d.C.), matemático y científico griego. Su nombre también podría ser Hero (aproximadamente 18 escritores griegos se llamaron Hero ó Herón, creándose cierta dificultad a la hora de su identificación). SU VIDA  Herón de Alejandría nació probablemente en Egipto y realizó su trabajo en Alejandría (Egipto).  Después de que desapareció el Imperio Alejandrino y con él la ciencia griega, todavía existieron algunos destellos de genialidad. Uno de estos genios fue Herón, que desplegó una actitud casi moderna para la mecánica  Sin embargo, es conocido sobre todo como matemático tanto en el campo de la geometría como en el de la geodesia (una rama de las matemáticas que se encarga de la determinación del tamaño y configuración de la Tierra, y de la ubicación de áreas concretas de la misma). SUS OBRAS:  Escribió al menos 13 obras sobre mecánica, matemáticas y física.  En lo referente a la óptica, Herón, en su libro Catóptrico, propuso que la luz viaja a lo largo del camino geométricamente más corto. Hoy se sabe que esto es falso, según el principio de Fermat.  En otro libro, Neumática, describe el diseño de sifones, de máquinas que funcionan con monedas y del aelopilo, que vendría a ser el equivalente de una turbina de vapor  Estudió la reflexión de la luz en espejos de distinta forma. DESCUBRIMIENTOS  Sus principales descubrimientos son: o demostró que el angulo de incidencia es igual al de reflexión, conocido como Ley fundamental de la reflexión. o Describió un gran número de máquinas sencillas y generalizó el principio de la palanca de Arquímedes. o Sin olvidar que realizó grandes trabajos, hizo numerables innovaciones en el campo de los autómatas, incluyendo uno el cual debería de hablar. o Su mayor logro es la invención la primera máquina de vapor, conocida como eolípila y la fuente de Herón. o Encuentra diferentes maneras de hallar el área de triángulos, cuadriláteros, polígonos regulares de tres a doce lados, círculos, elipses y superficies y volúmenes de cilindros, conos y esferas.