SIMULACIÓN
Unidad tres: tema 3.7 Procedimientos Especiales
ISC. Enrique Ponce Rivera
Sosa Mejía Anel Verónica
Existen diferentes tipos de métodos para generar variables aleatorias, pero
también existen casos especiales para facilitar y agilizar el proceso de
generación de números al azar.
A continuacion mencionaremos algunos procedimientos especiales
En honor a Simeón Dennis Poisson (1781-1840), francés que desarrolló
esta distribución basándose en estudios efectuados en la última parte de
su vida.
En teoría de probabilidad y estadística, la distribución de Poisson es
una distribución de probabilidad discreta que expresa, a partir de una
frecuencia de ocurrencia media, la probabilidad de que ocurra un
determinado número de eventos durante cierto período de tiempo.
*Numero de clientes que son atendidos en el banco en una hora
• Clientes: Variable Discreta
• Hora: Rango de tiempo
Variable Continua
Ejemplo:
Características
• El número medio (promedio) de eventos en el espacio temporal o región
específica de interés
• El número de resultados que ocurren en un intervalo de tiempo o región
específicos es independiente de el número que ocurre en cualquier otro
intervalo de tiempo o región
• La probabilidad de que un resultado muy pequeño ocurra en un intervalo
de tiempo muy corto o en una región pequeña es proporcional a la
longitud del intervalo de tiempo o al tamaño de la región
• La probabilidad de que más de un resultado ocurra en un intervalo de
tiempo tan corto o en esa región tan pequeña es inapreciable, que se
puede asignar el valor de 0
Formula de distribución de poisson
U= es la media de número de concurrencias en un intervalo
e= es la constante 2.71828
X=es el numero de concurrencias
p(x)= es la probabilidad que se va a calcular para un valor dado
de x
Ejemplo:
La Distribución Binomial
La distribución de Poisson, se aplica a varios fenómenos discretos de la naturaleza (esto es,
aquellos fenómenos que ocurren 0, 1, 2, 3,... veces durante un periodo definido de tiempo o en
una área determinada) cuando la probabilidad de ocurrencia del fenómeno es constante en el
tiempo o el espacio.
Ejemplo:
Sean λ y η las variables aleatorias que cuentan el número de veces que sale 1 y
6, respectivamente, en 5 lanzamientos de un dado. ¿Son λ y η independientes?.
SOLUCIÓN:
Las variables λ y η siguen una distribución binomial de parámetros n=5 y p=1/6.
Veamos mediante un contraejemplo, que λ y η no son independientes. Por un
lado se tiene que:
Formula de distribución binomial
 F(x) =
𝑛!
𝑥!(𝑛−𝑥)
𝑝 𝑥
)(1 − 𝑝) 𝑛−𝑥
n=numero de probabilidades
X= la cantidad de éxitos o errores
P=proporción o probabilidad
Se aplica cuando se realiza una sola ves un experimento que tiene únicamente
dos posibles resultados
 Serret Moreno-Gil, J. and Darío Rodríguez, R. (1995). Manual de estadística universitaria. 1st ed.
Pozuelo de Alarcón (Madrid): ESIC.
 www.frsf.utn.edu.ar/matero/visitante/bajar_apunte.php%3Fid_catedra%3D150%26id_apunte%3D3047+&
cd=3&hl=es&ct=clnk&gl=mx
 http://www.sites.upiicsa.ipn.mx/polilibros/portal/Polilibros/P_terminados/SimSist/doc/SIMULACI-N-
128.htm

Procedimientos especiales

  • 1.
    SIMULACIÓN Unidad tres: tema3.7 Procedimientos Especiales ISC. Enrique Ponce Rivera Sosa Mejía Anel Verónica
  • 2.
    Existen diferentes tiposde métodos para generar variables aleatorias, pero también existen casos especiales para facilitar y agilizar el proceso de generación de números al azar. A continuacion mencionaremos algunos procedimientos especiales
  • 3.
    En honor aSimeón Dennis Poisson (1781-1840), francés que desarrolló esta distribución basándose en estudios efectuados en la última parte de su vida. En teoría de probabilidad y estadística, la distribución de Poisson es una distribución de probabilidad discreta que expresa, a partir de una frecuencia de ocurrencia media, la probabilidad de que ocurra un determinado número de eventos durante cierto período de tiempo.
  • 4.
    *Numero de clientesque son atendidos en el banco en una hora • Clientes: Variable Discreta • Hora: Rango de tiempo Variable Continua Ejemplo:
  • 5.
    Características • El númeromedio (promedio) de eventos en el espacio temporal o región específica de interés • El número de resultados que ocurren en un intervalo de tiempo o región específicos es independiente de el número que ocurre en cualquier otro intervalo de tiempo o región • La probabilidad de que un resultado muy pequeño ocurra en un intervalo de tiempo muy corto o en una región pequeña es proporcional a la longitud del intervalo de tiempo o al tamaño de la región • La probabilidad de que más de un resultado ocurra en un intervalo de tiempo tan corto o en esa región tan pequeña es inapreciable, que se puede asignar el valor de 0
  • 6.
    Formula de distribuciónde poisson U= es la media de número de concurrencias en un intervalo e= es la constante 2.71828 X=es el numero de concurrencias p(x)= es la probabilidad que se va a calcular para un valor dado de x
  • 7.
  • 8.
    La Distribución Binomial Ladistribución de Poisson, se aplica a varios fenómenos discretos de la naturaleza (esto es, aquellos fenómenos que ocurren 0, 1, 2, 3,... veces durante un periodo definido de tiempo o en una área determinada) cuando la probabilidad de ocurrencia del fenómeno es constante en el tiempo o el espacio.
  • 9.
    Ejemplo: Sean λ yη las variables aleatorias que cuentan el número de veces que sale 1 y 6, respectivamente, en 5 lanzamientos de un dado. ¿Son λ y η independientes?. SOLUCIÓN: Las variables λ y η siguen una distribución binomial de parámetros n=5 y p=1/6. Veamos mediante un contraejemplo, que λ y η no son independientes. Por un lado se tiene que:
  • 10.
    Formula de distribuciónbinomial  F(x) = 𝑛! 𝑥!(𝑛−𝑥) 𝑝 𝑥 )(1 − 𝑝) 𝑛−𝑥 n=numero de probabilidades X= la cantidad de éxitos o errores P=proporción o probabilidad Se aplica cuando se realiza una sola ves un experimento que tiene únicamente dos posibles resultados
  • 11.
     Serret Moreno-Gil,J. and Darío Rodríguez, R. (1995). Manual de estadística universitaria. 1st ed. Pozuelo de Alarcón (Madrid): ESIC.  www.frsf.utn.edu.ar/matero/visitante/bajar_apunte.php%3Fid_catedra%3D150%26id_apunte%3D3047+& cd=3&hl=es&ct=clnk&gl=mx  http://www.sites.upiicsa.ipn.mx/polilibros/portal/Polilibros/P_terminados/SimSist/doc/SIMULACI-N- 128.htm