SlideShare una empresa de Scribd logo
UNIVERSIDAD NACIONAL AUTONOMA DE
MÉXICO
ESCUELA NACIONAL PREPARATORIA NO.1
“GABINO BARREDA”
Ciclo Escolar 2013 – 2014
Secuencia Didáctica
Matemáticas VI Área III – IV
Maestra:
María Gloria García Olguín
Unidad 1 – Progresiones
Tema 6
“Problemas de Aplicación de Progresiones”
Equipo: 4 Grupo: 610
Integrantes: Correo:
Palma Tolentino Luis Ernesto
Pérez Castro Rosa Aurora
León Ugarte Omar Alejandro
Higuera Martínez Hugo Sebastián
Fecha de exposición: Miércoles 28 de agosto del 2013
Presentación:
En el presente trabajo deseamos aplicar los conocimientos
adquiridos en esta unidad sobre los diversos tipos de
progresiones explicando y resolviendo problemas de aplicación.
Ficha técnica:
Escuela Nacional
Preparatoria
Matemáticas VI área III - IV
Tema Problemas de aplicación de
progresiones
Objetivo Resolución de problemas y
situación aplicando el uso de
progresiones
Contenido Problemas de Progresiones
Aritméticas, Geométricas y
Armónicas
Duración de la Unidad 20 Horas
Tiempo de Exposición 2 Horas
Población Estudiantes de la ENP
Recursos Uso de Laminas, Plumones
Secuencia Didáctica
Actividad de Apertura
El Equipo volverá a dar de nuevo las definiciones y explicación acerca de los
diversos tipos de progresiones
Objetivo:
Realizar un repaso de los temas vistos anteriormente para que nuestros
compañeros comprendan como se resuelven los problemas de progresiones de
una manera fácil y sencilla.
Recursos: Uso Laminas donde se tendrán escritas definiciones y algunos ejemplo
de progresiones.
Para tomar en cuenta: La comprensión y el prestar atención para poder resolver
problemas de progresiones es muy importante para así saber todos los pasos a
realizar.
Desarrollo de la Actividad:
Para dar inicio a nuestra exposición explicaremos definiciones de progresiones,
sus partes y algunos ejemplos
1.- Progresiones Aritméticas
Una progresión aritmética es una sucesión en que
Cada término (menos el primero) se obtiene sumando al anterior una cantidad fija
d, llamada diferencia de la progresión.
• Si d > 0 los números cada vez son mayores, se
Dice que la progresión es creciente.
• Si d<0 los números cada vez son menores, se
dice que la progresión es decreciente
En una progresión aritmética cada término es igual al
anterior más la diferencia. Observa:
a2 = a1 + d
a3 = a2 + d = a1 + 2·d
a4 = a3 + d = a1 + 2·d + d = a1 + 3·d
a5 = a4 + d = a1 + 3·d + d = a1 + 4·d
y siguiendo así sucesivamente, se llega a:
an = a1 + (n-1)·d
Como bien sabemos a1 es el primer termino de la sucesión en este caso de la
progresión y d se acostumbra a llamar simétrica entre ella
2.- Progresiones Geométricas
Una progresión geométrica es una sucesión en que cada término (menos el
primero) se obtiene multiplicando el anterior por una cantidad fija r, llamada razón
de la progresión.
La razón se obtiene al hacer el cociente entre dos términos consecutivos:
El término general de una progresión geométrica cuyo primer término es a1 y la
razón es r es:
a1 = a1 ·rn-1
3.- Progresión Armónica:
Llamaremos progresión armónica a una sucesión de números reales {an}nΖ
cuyo término general es de la forma
1
n
a
an b
Con , 0a b ya
Como vemos, una progresión armónica está formada por los recíprocos de una
Progresión aritmética.
Actividad de Desarrollo 2
Objetivos de Aprendizaje: Lograr una correcta resolución de problemas y
situaciones matemáticas que implican el uso de progresiones
Recursos: Laminas, Plumones y Calculadora Científica
Para Tomar en cuenta: El Alumno debe dominar el tema de progresiones y
sucesiones para poder analizar y resolver los siguientes problemas planteados.
Desarrollo de la actividad:
Problemas de Progresiones Aritméticas
1) Un coronel manda 5050 soldados y quiere formar con ellos un triángulo para
una exhibición, de modo que la primera fila tenga un soldado, la segunda dos, la
tercera tres, etc. ¿Cuántas filas tienen que haber?
El número de soldados que hay en cada fila es el término de la
sucesión: . Se trata de una P.A con y con , por los que su
término general es .
5050 es la suma de los soldados ha habrá en filas. Por lo que:
Sustituimos el término general por :
Las soluciones de esta ecuación son y . Como ha de ser un
número natural mayor que cero la respuesta correcta es filas.
2) Un esquiador comienza la pretemporada de esquí haciendo pesas en un
gimnasio durante una hora. Decide incrementar el entrenamiento 10 minutos cada
día. ¿Cuánto tiempo deberá entrenar al cabo de 15 días? ¿Cuánto tiempo en total
habrá dedicado al entrenamiento a lo largo de todo un mes de 30 días?
El tiempo de entrenamiento es una P.A en la que y todo en
minutos. su término general es: .
Al cabo de 15 ddías deberá entrenar minutos.
En un mes habrá entrenado
Calculamos a30. minutos.
En un més minutos.
3) En una sala de cine, la primera fila de butacas dista de la pantalla 86 dm, y la
sexta, 134 dm. ¿En qué fila estará una persona si su distancia a la pantalla es de
230 dm?
Las distancias de las filas de butacas a la pantalla forman una P.A donde el
número de orden “n” es el número de fila. Por lo tanto los datos que nos dan son:
dm
dm
Nos preguntan en número de fila “n” cuya distnacia a la pantalla es
decimetros.
. (1)
Obtenemos d a partir del término sexto:
Sustituyendo en (1): . De donde
4) Las edades de cuatro hermanos forman una progresión aritmética, y su suma
es 32 años. El mayor tiene 6 años más que el menor. Halla las edades de los
cuatro hermanos
Vamos a considerar que el mayor es .
Usando el término general nos queda:
Las edades de los hermanos serán
5) Una deuda puede ser pagada en 32 semanas pagando $5,000 la primera
semana, $8,000 la segunda
semana, $11,000 la tercera semana, y así sucesivamente. Hallar el importe de la
deuda.
6) En una carrera un hombre avanza 6 metros en el primer segundo, y en cada
segundo posterior avanza
25 cm. más que el anterior. ¿Cuánto avanzó en el octavo segundo y que distancia
habrá recorrido en 8
Segundos?
Problemas de Progresiones Geométricas
1.- Una persona gano $20.00 el lunes y cada día ganó el doble de lo que ganó el
anterior. ¿Cuánto ganó el sábado y cuánto de lunes a sábado?
Solución:
2.- Un apostador jugó durante 8 días y cada día ganó 1/3 de lo que ganó el día
anterior. Si el octavo día ganó $10 ¿cuánto ganó el primer día?
Solución:
3.-U n hombre ahorra cada año los partes de lo que ahorró el año anterior, el
quinto año ahorró $16,000. ¿Cuánto ha ahorrado en los 5 años?
Solución:
4.- Una persona ha invertido cada año delos que invirtió el año anterior. Sí el
primer año invirtió $24300, ¿Cuánto ha invertido en 6 años?
Solución:
5.- Para construir un desarrollo turístico se compra un terreno de 2,000 hectáreas
y se va a pagar en 15 años, pagando el primer año $100, el segundo $300, el
tercero $900… ¿Cuánto cuesta el terreno?
Solución:
6.- El cuarto término de una progresión geométrica es 1/4 y el séptimo 1/32. Hallar
el sexto término.
Solución:
Problemas de Progresiones Armónicas
1. Dados a y b encontrar n números a1, a2,……an tales que a, a1 ,a2 b estén en PH.
(a y b diferentes de o)
Solución:
a, a1 ,a2 b están en PH 
1 2
1 1 1 1 1
, , ,... ,
n
a a a a b
están en P.A de aquí
1 1 1 1
( 1) ( 1)
( 1) ( 1)k
a b a b
n d d k
b a ab n a a ab n
donde
( 1)
( 1) ( )k
n ab
a
k a n k b
Para el caso particular de un medio armónico entre y hacemos:
2
2
2 3
ab
k n a
a a
2.- Hallar el término que sigue en la Progresión Armónica
Solución: Debemos trabajar con los recíprocos de los términos dados y buscar
la diferencia:
aquí la diferencia es
por lo tanto el término siguiente es
Luego el término que sigue en la Progresión
Armónica es
3.- Determinar si la siguiente Sucesión es o no una Progresión
Armónica.
Solución: Debemos analizar si la sucesión de los términos recíprocos es una
P.A.
Entonces en la Sucesión
y es una P.A
Luego es una
Progresión
Armónica.
4.- Interpolar un medio armónico entre 2 y 3
Solución:
Sea x el medio armónico que debemos interpolar
Entonces 2 , x , 3 deben estar en Progresión Armónica.
lo que significa que
deben estar en Progresión Aritmética.
Entonces:
5.- Determinar el 8º término de la PH ,...
11
1
,
7
1
,
3
1
Solución:
Si invertimos estos números quedan expresados en PA. 3 – 7 – 11 … la cual
tiene primer termino igual a 3 y su diferencia es 4.
31473718 daa
Luego el 8º termino de la PH es
31
1
6.- Tres términos están en PH. Hallar el valor de x si los términos son
x, x-8 y x-12.
Por ser parte de una PH, sus recíprocos están en PA. Luego
1216;24
24
964
4968
1289612812
)12()8()12)(8()12(
)12)(8)((
8
1
12
11
8
1
2222
ysonnumeroslosluego
x
x
xx
xxxxxxxxx
xxxxxxxx
xxxMCMaplicando
xxxx
Actividad de Cierre
Nombre de la Actividad: Secuencia didáctica sobre progresiones
Objetivo de la Actividad: Que el alumno después de la exposición le permita
responder preguntas teóricas sobre el tema de progresiones y después pasar al
tema practico de aplicación resolviendo problemas de progresiones o
proporcionando ejemplo y finalmente hacer un mapa conceptual de lo que se vio
en esta exposición y a lo largo de la unidad.
Recursos: Material Impreso, Internet, investigación en sus apuntes del cuaderno.
Evaluación:
Después de realizar esta exposición hemos podido comprobar que todos los
conocimientos y aprendizajes de esta unidad nos han llevado a tener una correcta
resolución de estos problemas además de identificar en que caso se tienen
problemas de los diversos tipos de progresiones podría ser que a algunos
compañeros se les haya costado algo de dificultad comprender estos conceptos o
resolver los ejercicios pero con practica y dedicación estamos seguros que el tema
quedara comprendido al cien.
Acreditación:
Duración:
2 Horas de exposición
Contenido:
Unidad 1 Tema 6 “Problemas de aplicación de Progresiones”
Recursos:
Laminas, Material Impreso, Plumones, Calculadora científica, cuaderno de
apuntes.
Créditos:
Luis Ernesto: Problemas de Progresiones Armónicas, Organización e impresión
del trabajo
Omar Alejandro: Problemas de Progresiones Geométricas
Rosa Aurora: Problemas de Progresiones Aritméticas
Hugo Sebastián: Definiciones de los Diversos tipos de Progresiones
Bibliografía:
http://www.luiszegarra.cl/moodle/pluginfile.php/131/mod_resource/content/1/cap4.pdf
http://www.fca.unam.mx/docs/apuntes_matematicas/32.%20Progresiones.pdf
http://www.amolasmates.es/
http://www.vadenumeros.es/tercero/problemas-progresiones.htm

Más contenido relacionado

La actualidad más candente

Evaluacion de ecuacion de primer grado
Evaluacion de ecuacion de primer gradoEvaluacion de ecuacion de primer grado
Evaluacion de ecuacion de primer grado
Jairo de Jesus Tovar Hernandez
 
7° GEOMETRÍA
7° GEOMETRÍA7° GEOMETRÍA
Taller las propiedades de la radicación
Taller las propiedades de la radicaciónTaller las propiedades de la radicación
Taller las propiedades de la radicación
Ramiro Muñoz
 
Guía para maestros: Teorema del coseno
Guía para maestros: Teorema del cosenoGuía para maestros: Teorema del coseno
Guía para maestros: Teorema del coseno
Compartir Palabra Maestra
 
Homotecia material didactico
Homotecia material didacticoHomotecia material didactico
Homotecia material didactico
Alexa C Castro M
 
Plan de clase estadistica
Plan de clase estadisticaPlan de clase estadistica
Plan de clase estadistica
Cliffor Jerry Herrera Castrillo
 
Matemáticas Octavo Grado
Matemáticas Octavo GradoMatemáticas Octavo Grado
Matemáticas Octavo Grado
Elizabeth Hz
 
Ficha de trabajo operaciones combinadas ii
Ficha de trabajo   operaciones combinadas iiFicha de trabajo   operaciones combinadas ii
Ficha de trabajo operaciones combinadas ii
Miguel Angel
 
SECUENCIA DIDACTICA - FUNCIONES EXPONENCIALES
SECUENCIA DIDACTICA - FUNCIONES EXPONENCIALESSECUENCIA DIDACTICA - FUNCIONES EXPONENCIALES
SECUENCIA DIDACTICA - FUNCIONES EXPONENCIALES
cla_tom
 
Plan de clase estadistica y probabilidad 2018
Plan de clase estadistica y probabilidad 2018Plan de clase estadistica y probabilidad 2018
Plan de clase estadistica y probabilidad 2018
INGSEGOVIA
 
Propuesta de estrategia didáctica sobre números racionales
Propuesta de estrategia didáctica sobre números racionalesPropuesta de estrategia didáctica sobre números racionales
Propuesta de estrategia didáctica sobre números racionales
Leandro Ernesto
 
Clase nº 2 (razones trigonometricas)
Clase nº 2 (razones trigonometricas)Clase nº 2 (razones trigonometricas)
Clase nº 2 (razones trigonometricas)
lunistilla4
 
Evaluacion teorema de pitagoras 8 basico 2019
Evaluacion teorema de pitagoras 8 basico 2019Evaluacion teorema de pitagoras 8 basico 2019
Evaluacion teorema de pitagoras 8 basico 2019
Claudia Villalon
 
Prueba matematicas, pre test 7° fraccionarios
Prueba matematicas, pre test 7° fraccionariosPrueba matematicas, pre test 7° fraccionarios
Prueba matematicas, pre test 7° fraccionarios
Carlos Mario Lopez Ramirez
 
Combinatoria: conceptos y ejercicios resueltos
Combinatoria: conceptos y ejercicios resueltosCombinatoria: conceptos y ejercicios resueltos
Combinatoria: conceptos y ejercicios resueltos
Javier Valdés
 
Examen 1 de numeros reales
Examen 1 de numeros realesExamen 1 de numeros reales
Examen 1 de numeros reales
Egidio Mosquer Copete
 
Sesion rt angulos posicion normal
Sesion  rt  angulos posicion normalSesion  rt  angulos posicion normal
Sesion rt angulos posicion normal
victor alegre
 
Ejercicio de Estadística: Construcción de un Histograma.
Ejercicio de Estadística: Construcción de un Histograma.Ejercicio de Estadística: Construcción de un Histograma.
Ejercicio de Estadística: Construcción de un Histograma.
David Torres
 
Guía de matemáticas decimales 5°
Guía de matemáticas decimales 5°Guía de matemáticas decimales 5°
Guía de matemáticas decimales 5°
Pablo Leiva
 
Ecuaciones de Primer Grado
Ecuaciones de Primer GradoEcuaciones de Primer Grado
Ecuaciones de Primer Grado
Myriam Quijano
 

La actualidad más candente (20)

Evaluacion de ecuacion de primer grado
Evaluacion de ecuacion de primer gradoEvaluacion de ecuacion de primer grado
Evaluacion de ecuacion de primer grado
 
7° GEOMETRÍA
7° GEOMETRÍA7° GEOMETRÍA
7° GEOMETRÍA
 
Taller las propiedades de la radicación
Taller las propiedades de la radicaciónTaller las propiedades de la radicación
Taller las propiedades de la radicación
 
Guía para maestros: Teorema del coseno
Guía para maestros: Teorema del cosenoGuía para maestros: Teorema del coseno
Guía para maestros: Teorema del coseno
 
Homotecia material didactico
Homotecia material didacticoHomotecia material didactico
Homotecia material didactico
 
Plan de clase estadistica
Plan de clase estadisticaPlan de clase estadistica
Plan de clase estadistica
 
Matemáticas Octavo Grado
Matemáticas Octavo GradoMatemáticas Octavo Grado
Matemáticas Octavo Grado
 
Ficha de trabajo operaciones combinadas ii
Ficha de trabajo   operaciones combinadas iiFicha de trabajo   operaciones combinadas ii
Ficha de trabajo operaciones combinadas ii
 
SECUENCIA DIDACTICA - FUNCIONES EXPONENCIALES
SECUENCIA DIDACTICA - FUNCIONES EXPONENCIALESSECUENCIA DIDACTICA - FUNCIONES EXPONENCIALES
SECUENCIA DIDACTICA - FUNCIONES EXPONENCIALES
 
Plan de clase estadistica y probabilidad 2018
Plan de clase estadistica y probabilidad 2018Plan de clase estadistica y probabilidad 2018
Plan de clase estadistica y probabilidad 2018
 
Propuesta de estrategia didáctica sobre números racionales
Propuesta de estrategia didáctica sobre números racionalesPropuesta de estrategia didáctica sobre números racionales
Propuesta de estrategia didáctica sobre números racionales
 
Clase nº 2 (razones trigonometricas)
Clase nº 2 (razones trigonometricas)Clase nº 2 (razones trigonometricas)
Clase nº 2 (razones trigonometricas)
 
Evaluacion teorema de pitagoras 8 basico 2019
Evaluacion teorema de pitagoras 8 basico 2019Evaluacion teorema de pitagoras 8 basico 2019
Evaluacion teorema de pitagoras 8 basico 2019
 
Prueba matematicas, pre test 7° fraccionarios
Prueba matematicas, pre test 7° fraccionariosPrueba matematicas, pre test 7° fraccionarios
Prueba matematicas, pre test 7° fraccionarios
 
Combinatoria: conceptos y ejercicios resueltos
Combinatoria: conceptos y ejercicios resueltosCombinatoria: conceptos y ejercicios resueltos
Combinatoria: conceptos y ejercicios resueltos
 
Examen 1 de numeros reales
Examen 1 de numeros realesExamen 1 de numeros reales
Examen 1 de numeros reales
 
Sesion rt angulos posicion normal
Sesion  rt  angulos posicion normalSesion  rt  angulos posicion normal
Sesion rt angulos posicion normal
 
Ejercicio de Estadística: Construcción de un Histograma.
Ejercicio de Estadística: Construcción de un Histograma.Ejercicio de Estadística: Construcción de un Histograma.
Ejercicio de Estadística: Construcción de un Histograma.
 
Guía de matemáticas decimales 5°
Guía de matemáticas decimales 5°Guía de matemáticas decimales 5°
Guía de matemáticas decimales 5°
 
Ecuaciones de Primer Grado
Ecuaciones de Primer GradoEcuaciones de Primer Grado
Ecuaciones de Primer Grado
 

Destacado

Practica 4 secuencia didactica equipo 4 problemas de progresiones (1)
Practica 4 secuencia didactica equipo 4 problemas de progresiones (1)Practica 4 secuencia didactica equipo 4 problemas de progresiones (1)
Practica 4 secuencia didactica equipo 4 problemas de progresiones (1)
Rodrigo Chávez
 
EJERCICIO 2
EJERCICIO 2EJERCICIO 2
EJERCICIO 2
davidule
 
Ejercicios para Repasar 5
Ejercicios para Repasar 5Ejercicios para Repasar 5
Ejercicios para Repasar 5
Beatriz Hernández
 
EJEMPLOS DE SECUENCIAS DIDACTICAS
EJEMPLOS DE SECUENCIAS DIDACTICASEJEMPLOS DE SECUENCIAS DIDACTICAS
EJEMPLOS DE SECUENCIAS DIDACTICAS
Alejandra Chica
 
Secuencias para el aula expresiones algebraicas y modelos de area
Secuencias para el aula expresiones algebraicas y modelos de areaSecuencias para el aula expresiones algebraicas y modelos de area
Secuencias para el aula expresiones algebraicas y modelos de area
Noemi Haponiuk
 
Progresiones aritmeticas
Progresiones aritmeticasProgresiones aritmeticas
Progresiones aritmeticas
mirthadiaz
 
La hoja de cálculo y las progresiones aritméticas y geométricas
La hoja de cálculo y las progresiones aritméticas y geométricasLa hoja de cálculo y las progresiones aritméticas y geométricas
La hoja de cálculo y las progresiones aritméticas y geométricas
Jesús Fernández
 
Progresiones aritméticas para slideshare
Progresiones aritméticas para slideshareProgresiones aritméticas para slideshare
Progresiones aritméticas para slideshare
carmenaneiros1
 
Progresiones aritmeticas
Progresiones aritmeticasProgresiones aritmeticas
Progresiones aritmeticas
JOSE VICENTE CONTRERAS JULIO
 
Secuencia didactica Conocemos el Universo
Secuencia didactica Conocemos el UniversoSecuencia didactica Conocemos el Universo
Secuencia didactica Conocemos el Universo
antoniosh1985
 

Destacado (10)

Practica 4 secuencia didactica equipo 4 problemas de progresiones (1)
Practica 4 secuencia didactica equipo 4 problemas de progresiones (1)Practica 4 secuencia didactica equipo 4 problemas de progresiones (1)
Practica 4 secuencia didactica equipo 4 problemas de progresiones (1)
 
EJERCICIO 2
EJERCICIO 2EJERCICIO 2
EJERCICIO 2
 
Ejercicios para Repasar 5
Ejercicios para Repasar 5Ejercicios para Repasar 5
Ejercicios para Repasar 5
 
EJEMPLOS DE SECUENCIAS DIDACTICAS
EJEMPLOS DE SECUENCIAS DIDACTICASEJEMPLOS DE SECUENCIAS DIDACTICAS
EJEMPLOS DE SECUENCIAS DIDACTICAS
 
Secuencias para el aula expresiones algebraicas y modelos de area
Secuencias para el aula expresiones algebraicas y modelos de areaSecuencias para el aula expresiones algebraicas y modelos de area
Secuencias para el aula expresiones algebraicas y modelos de area
 
Progresiones aritmeticas
Progresiones aritmeticasProgresiones aritmeticas
Progresiones aritmeticas
 
La hoja de cálculo y las progresiones aritméticas y geométricas
La hoja de cálculo y las progresiones aritméticas y geométricasLa hoja de cálculo y las progresiones aritméticas y geométricas
La hoja de cálculo y las progresiones aritméticas y geométricas
 
Progresiones aritméticas para slideshare
Progresiones aritméticas para slideshareProgresiones aritméticas para slideshare
Progresiones aritméticas para slideshare
 
Progresiones aritmeticas
Progresiones aritmeticasProgresiones aritmeticas
Progresiones aritmeticas
 
Secuencia didactica Conocemos el Universo
Secuencia didactica Conocemos el UniversoSecuencia didactica Conocemos el Universo
Secuencia didactica Conocemos el Universo
 

Similar a Secuencia didactica. equipo 4. problemas de aplicacion de progresiones 610

Presentacion de-progesiones-rismetica-y-geometricas
Presentacion de-progesiones-rismetica-y-geometricasPresentacion de-progesiones-rismetica-y-geometricas
Presentacion de-progesiones-rismetica-y-geometricas
Maria Altuve
 
Sucesiones y progresiones
Sucesiones y progresionesSucesiones y progresiones
Sucesiones y progresiones
Jorge Didier Obando Montoya
 
Guía 4 matemática I
Guía 4 matemática IGuía 4 matemática I
Guía 4 matemática I
Karlos Rivero
 
Comprension matematica 8
Comprension matematica 8Comprension matematica 8
Comprension matematica 8
Jose Rodrigo Aponte Calero
 
Comprension matematica 8
Comprension matematica 8Comprension matematica 8
Comprension matematica 8
Jose Rodrigo Aponte Calero
 
Refuerzo 15
Refuerzo 15Refuerzo 15
Refuerzo 15
matedivliss
 
Refuerzo 15
Refuerzo 15Refuerzo 15
Refuerzo 15
matedivliss
 
Guia basica matematicas 4
Guia basica matematicas 4Guia basica matematicas 4
Guia basica matematicas 4
Escuela Laura Rodriguez
 
Sistemas numéricos
Sistemas numéricosSistemas numéricos
Sistemas numéricos
Darling_Reyes
 
Mat 11 u1
Mat 11 u1Mat 11 u1
Tarea sucesiones y progresiones actividad 4º
Tarea sucesiones y progresiones actividad 4ºTarea sucesiones y progresiones actividad 4º
Tarea sucesiones y progresiones actividad 4º
doreligp21041969
 
Presentación1 progresion aritmetica
Presentación1 progresion aritmeticaPresentación1 progresion aritmetica
Presentación1 progresion aritmetica
luis marquez
 
Sec. didac.e9
Sec. didac.e9Sec. didac.e9
Sec. didac.e9
Eduardo Hernandez
 
s5-1-sec-ppt-matematica-dia-4.pdf
s5-1-sec-ppt-matematica-dia-4.pdfs5-1-sec-ppt-matematica-dia-4.pdf
s5-1-sec-ppt-matematica-dia-4.pdf
Edgar Loayza Lozada
 
Guia 3 reales
Guia 3 realesGuia 3 reales
5c64c5002dcd7def69c3982201f64574
5c64c5002dcd7def69c3982201f645745c64c5002dcd7def69c3982201f64574
5c64c5002dcd7def69c3982201f64574
ssuser63e5231
 
Sucesiones progresiones
Sucesiones progresionesSucesiones progresiones
Sucesiones progresiones
Eduardo Estrada
 
Proyecto de taller y razonamiento
Proyecto de taller y razonamientoProyecto de taller y razonamiento
Proyecto de taller y razonamiento
DonovanBarrena
 
S16 M1- ALGEBRA: PROGRESIONES ARITMETICAS
S16 M1- ALGEBRA: PROGRESIONES ARITMETICASS16 M1- ALGEBRA: PROGRESIONES ARITMETICAS
S16 M1- ALGEBRA: PROGRESIONES ARITMETICAS
Jorge La Chira
 
Sucesiones Progresiones
Sucesiones ProgresionesSucesiones Progresiones
Sucesiones Progresiones
johed
 

Similar a Secuencia didactica. equipo 4. problemas de aplicacion de progresiones 610 (20)

Presentacion de-progesiones-rismetica-y-geometricas
Presentacion de-progesiones-rismetica-y-geometricasPresentacion de-progesiones-rismetica-y-geometricas
Presentacion de-progesiones-rismetica-y-geometricas
 
Sucesiones y progresiones
Sucesiones y progresionesSucesiones y progresiones
Sucesiones y progresiones
 
Guía 4 matemática I
Guía 4 matemática IGuía 4 matemática I
Guía 4 matemática I
 
Comprension matematica 8
Comprension matematica 8Comprension matematica 8
Comprension matematica 8
 
Comprension matematica 8
Comprension matematica 8Comprension matematica 8
Comprension matematica 8
 
Refuerzo 15
Refuerzo 15Refuerzo 15
Refuerzo 15
 
Refuerzo 15
Refuerzo 15Refuerzo 15
Refuerzo 15
 
Guia basica matematicas 4
Guia basica matematicas 4Guia basica matematicas 4
Guia basica matematicas 4
 
Sistemas numéricos
Sistemas numéricosSistemas numéricos
Sistemas numéricos
 
Mat 11 u1
Mat 11 u1Mat 11 u1
Mat 11 u1
 
Tarea sucesiones y progresiones actividad 4º
Tarea sucesiones y progresiones actividad 4ºTarea sucesiones y progresiones actividad 4º
Tarea sucesiones y progresiones actividad 4º
 
Presentación1 progresion aritmetica
Presentación1 progresion aritmeticaPresentación1 progresion aritmetica
Presentación1 progresion aritmetica
 
Sec. didac.e9
Sec. didac.e9Sec. didac.e9
Sec. didac.e9
 
s5-1-sec-ppt-matematica-dia-4.pdf
s5-1-sec-ppt-matematica-dia-4.pdfs5-1-sec-ppt-matematica-dia-4.pdf
s5-1-sec-ppt-matematica-dia-4.pdf
 
Guia 3 reales
Guia 3 realesGuia 3 reales
Guia 3 reales
 
5c64c5002dcd7def69c3982201f64574
5c64c5002dcd7def69c3982201f645745c64c5002dcd7def69c3982201f64574
5c64c5002dcd7def69c3982201f64574
 
Sucesiones progresiones
Sucesiones progresionesSucesiones progresiones
Sucesiones progresiones
 
Proyecto de taller y razonamiento
Proyecto de taller y razonamientoProyecto de taller y razonamiento
Proyecto de taller y razonamiento
 
S16 M1- ALGEBRA: PROGRESIONES ARITMETICAS
S16 M1- ALGEBRA: PROGRESIONES ARITMETICASS16 M1- ALGEBRA: PROGRESIONES ARITMETICAS
S16 M1- ALGEBRA: PROGRESIONES ARITMETICAS
 
Sucesiones Progresiones
Sucesiones ProgresionesSucesiones Progresiones
Sucesiones Progresiones
 

Más de Eduardo Hernandez

U6 funciones
U6 funcionesU6 funciones
U6 funciones
Eduardo Hernandez
 
Equipo 9
Equipo 9Equipo 9
Equipo 7
Equipo 7Equipo 7
Equipo 5
Equipo 5Equipo 5
Equipo 4
Equipo 4Equipo 4
Equipo 3
Equipo 3Equipo 3
Equipo 2
Equipo 2Equipo 2
Equipo 1
Equipo 1Equipo 1
Equipo 8
Equipo 8Equipo 8
Sec didac. e7
Sec didac. e7Sec didac. e7
Sec didac. e7
Eduardo Hernandez
 
Sec didac. e6
Sec didac. e6Sec didac. e6
Sec didac. e6
Eduardo Hernandez
 
Sec didac. e5
Sec didac. e5Sec didac. e5
Sec didac. e5
Eduardo Hernandez
 
Sec didac. e4
Sec didac. e4Sec didac. e4
Sec didac. e4
Eduardo Hernandez
 
Sec didac. e3
Sec didac. e3Sec didac. e3
Sec didac. e3
Eduardo Hernandez
 
Sec didac. e2
Sec didac. e2Sec didac. e2
Sec didac. e2
Eduardo Hernandez
 
Sec didac. e8
Sec didac. e8Sec didac. e8
Sec didac. e8
Eduardo Hernandez
 
4 6 secuencia didáctica unidad 2 t1t2 equipo 6 610. resuelta equipo 4
4 6 secuencia didáctica unidad 2 t1t2 equipo 6 610. resuelta equipo 44 6 secuencia didáctica unidad 2 t1t2 equipo 6 610. resuelta equipo 4
4 6 secuencia didáctica unidad 2 t1t2 equipo 6 610. resuelta equipo 4
Eduardo Hernandez
 
4 9 secuencia didactica unidad 2 t01 t02 equipo 9 resuelta por equipo4
4 9 secuencia didactica unidad 2 t01 t02 equipo 9 resuelta por equipo44 9 secuencia didactica unidad 2 t01 t02 equipo 9 resuelta por equipo4
4 9 secuencia didactica unidad 2 t01 t02 equipo 9 resuelta por equipo4
Eduardo Hernandez
 
4 8 secuencia didáctica unidad 2 equipo 8. resuelto por equipo4
4 8 secuencia didáctica unidad 2 equipo 8. resuelto por equipo44 8 secuencia didáctica unidad 2 equipo 8. resuelto por equipo4
4 8 secuencia didáctica unidad 2 equipo 8. resuelto por equipo4
Eduardo Hernandez
 
4 1 sec didac. e1 equipo4.resuelta.
4 1 sec didac. e1 equipo4.resuelta.4 1 sec didac. e1 equipo4.resuelta.
4 1 sec didac. e1 equipo4.resuelta.
Eduardo Hernandez
 

Más de Eduardo Hernandez (20)

U6 funciones
U6 funcionesU6 funciones
U6 funciones
 
Equipo 9
Equipo 9Equipo 9
Equipo 9
 
Equipo 7
Equipo 7Equipo 7
Equipo 7
 
Equipo 5
Equipo 5Equipo 5
Equipo 5
 
Equipo 4
Equipo 4Equipo 4
Equipo 4
 
Equipo 3
Equipo 3Equipo 3
Equipo 3
 
Equipo 2
Equipo 2Equipo 2
Equipo 2
 
Equipo 1
Equipo 1Equipo 1
Equipo 1
 
Equipo 8
Equipo 8Equipo 8
Equipo 8
 
Sec didac. e7
Sec didac. e7Sec didac. e7
Sec didac. e7
 
Sec didac. e6
Sec didac. e6Sec didac. e6
Sec didac. e6
 
Sec didac. e5
Sec didac. e5Sec didac. e5
Sec didac. e5
 
Sec didac. e4
Sec didac. e4Sec didac. e4
Sec didac. e4
 
Sec didac. e3
Sec didac. e3Sec didac. e3
Sec didac. e3
 
Sec didac. e2
Sec didac. e2Sec didac. e2
Sec didac. e2
 
Sec didac. e8
Sec didac. e8Sec didac. e8
Sec didac. e8
 
4 6 secuencia didáctica unidad 2 t1t2 equipo 6 610. resuelta equipo 4
4 6 secuencia didáctica unidad 2 t1t2 equipo 6 610. resuelta equipo 44 6 secuencia didáctica unidad 2 t1t2 equipo 6 610. resuelta equipo 4
4 6 secuencia didáctica unidad 2 t1t2 equipo 6 610. resuelta equipo 4
 
4 9 secuencia didactica unidad 2 t01 t02 equipo 9 resuelta por equipo4
4 9 secuencia didactica unidad 2 t01 t02 equipo 9 resuelta por equipo44 9 secuencia didactica unidad 2 t01 t02 equipo 9 resuelta por equipo4
4 9 secuencia didactica unidad 2 t01 t02 equipo 9 resuelta por equipo4
 
4 8 secuencia didáctica unidad 2 equipo 8. resuelto por equipo4
4 8 secuencia didáctica unidad 2 equipo 8. resuelto por equipo44 8 secuencia didáctica unidad 2 equipo 8. resuelto por equipo4
4 8 secuencia didáctica unidad 2 equipo 8. resuelto por equipo4
 
4 1 sec didac. e1 equipo4.resuelta.
4 1 sec didac. e1 equipo4.resuelta.4 1 sec didac. e1 equipo4.resuelta.
4 1 sec didac. e1 equipo4.resuelta.
 

Secuencia didactica. equipo 4. problemas de aplicacion de progresiones 610

  • 1. UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO ESCUELA NACIONAL PREPARATORIA NO.1 “GABINO BARREDA” Ciclo Escolar 2013 – 2014 Secuencia Didáctica Matemáticas VI Área III – IV Maestra: María Gloria García Olguín Unidad 1 – Progresiones Tema 6 “Problemas de Aplicación de Progresiones” Equipo: 4 Grupo: 610 Integrantes: Correo: Palma Tolentino Luis Ernesto Pérez Castro Rosa Aurora León Ugarte Omar Alejandro Higuera Martínez Hugo Sebastián Fecha de exposición: Miércoles 28 de agosto del 2013
  • 2. Presentación: En el presente trabajo deseamos aplicar los conocimientos adquiridos en esta unidad sobre los diversos tipos de progresiones explicando y resolviendo problemas de aplicación. Ficha técnica: Escuela Nacional Preparatoria Matemáticas VI área III - IV Tema Problemas de aplicación de progresiones Objetivo Resolución de problemas y situación aplicando el uso de progresiones Contenido Problemas de Progresiones Aritméticas, Geométricas y Armónicas Duración de la Unidad 20 Horas Tiempo de Exposición 2 Horas Población Estudiantes de la ENP Recursos Uso de Laminas, Plumones
  • 3. Secuencia Didáctica Actividad de Apertura El Equipo volverá a dar de nuevo las definiciones y explicación acerca de los diversos tipos de progresiones Objetivo: Realizar un repaso de los temas vistos anteriormente para que nuestros compañeros comprendan como se resuelven los problemas de progresiones de una manera fácil y sencilla. Recursos: Uso Laminas donde se tendrán escritas definiciones y algunos ejemplo de progresiones. Para tomar en cuenta: La comprensión y el prestar atención para poder resolver problemas de progresiones es muy importante para así saber todos los pasos a realizar. Desarrollo de la Actividad: Para dar inicio a nuestra exposición explicaremos definiciones de progresiones, sus partes y algunos ejemplos 1.- Progresiones Aritméticas Una progresión aritmética es una sucesión en que Cada término (menos el primero) se obtiene sumando al anterior una cantidad fija d, llamada diferencia de la progresión. • Si d > 0 los números cada vez son mayores, se Dice que la progresión es creciente. • Si d<0 los números cada vez son menores, se dice que la progresión es decreciente En una progresión aritmética cada término es igual al anterior más la diferencia. Observa: a2 = a1 + d a3 = a2 + d = a1 + 2·d a4 = a3 + d = a1 + 2·d + d = a1 + 3·d a5 = a4 + d = a1 + 3·d + d = a1 + 4·d y siguiendo así sucesivamente, se llega a:
  • 4. an = a1 + (n-1)·d Como bien sabemos a1 es el primer termino de la sucesión en este caso de la progresión y d se acostumbra a llamar simétrica entre ella 2.- Progresiones Geométricas Una progresión geométrica es una sucesión en que cada término (menos el primero) se obtiene multiplicando el anterior por una cantidad fija r, llamada razón de la progresión. La razón se obtiene al hacer el cociente entre dos términos consecutivos: El término general de una progresión geométrica cuyo primer término es a1 y la razón es r es: a1 = a1 ·rn-1 3.- Progresión Armónica: Llamaremos progresión armónica a una sucesión de números reales {an}nΖ cuyo término general es de la forma 1 n a an b Con , 0a b ya Como vemos, una progresión armónica está formada por los recíprocos de una Progresión aritmética. Actividad de Desarrollo 2 Objetivos de Aprendizaje: Lograr una correcta resolución de problemas y situaciones matemáticas que implican el uso de progresiones Recursos: Laminas, Plumones y Calculadora Científica Para Tomar en cuenta: El Alumno debe dominar el tema de progresiones y sucesiones para poder analizar y resolver los siguientes problemas planteados.
  • 5. Desarrollo de la actividad: Problemas de Progresiones Aritméticas 1) Un coronel manda 5050 soldados y quiere formar con ellos un triángulo para una exhibición, de modo que la primera fila tenga un soldado, la segunda dos, la tercera tres, etc. ¿Cuántas filas tienen que haber? El número de soldados que hay en cada fila es el término de la sucesión: . Se trata de una P.A con y con , por los que su término general es . 5050 es la suma de los soldados ha habrá en filas. Por lo que: Sustituimos el término general por : Las soluciones de esta ecuación son y . Como ha de ser un número natural mayor que cero la respuesta correcta es filas. 2) Un esquiador comienza la pretemporada de esquí haciendo pesas en un gimnasio durante una hora. Decide incrementar el entrenamiento 10 minutos cada día. ¿Cuánto tiempo deberá entrenar al cabo de 15 días? ¿Cuánto tiempo en total habrá dedicado al entrenamiento a lo largo de todo un mes de 30 días? El tiempo de entrenamiento es una P.A en la que y todo en minutos. su término general es: . Al cabo de 15 ddías deberá entrenar minutos. En un mes habrá entrenado Calculamos a30. minutos. En un més minutos. 3) En una sala de cine, la primera fila de butacas dista de la pantalla 86 dm, y la sexta, 134 dm. ¿En qué fila estará una persona si su distancia a la pantalla es de 230 dm? Las distancias de las filas de butacas a la pantalla forman una P.A donde el número de orden “n” es el número de fila. Por lo tanto los datos que nos dan son: dm dm
  • 6. Nos preguntan en número de fila “n” cuya distnacia a la pantalla es decimetros. . (1) Obtenemos d a partir del término sexto: Sustituyendo en (1): . De donde 4) Las edades de cuatro hermanos forman una progresión aritmética, y su suma es 32 años. El mayor tiene 6 años más que el menor. Halla las edades de los cuatro hermanos Vamos a considerar que el mayor es . Usando el término general nos queda: Las edades de los hermanos serán 5) Una deuda puede ser pagada en 32 semanas pagando $5,000 la primera semana, $8,000 la segunda semana, $11,000 la tercera semana, y así sucesivamente. Hallar el importe de la deuda. 6) En una carrera un hombre avanza 6 metros en el primer segundo, y en cada segundo posterior avanza 25 cm. más que el anterior. ¿Cuánto avanzó en el octavo segundo y que distancia habrá recorrido en 8 Segundos?
  • 7. Problemas de Progresiones Geométricas 1.- Una persona gano $20.00 el lunes y cada día ganó el doble de lo que ganó el anterior. ¿Cuánto ganó el sábado y cuánto de lunes a sábado? Solución: 2.- Un apostador jugó durante 8 días y cada día ganó 1/3 de lo que ganó el día anterior. Si el octavo día ganó $10 ¿cuánto ganó el primer día? Solución: 3.-U n hombre ahorra cada año los partes de lo que ahorró el año anterior, el quinto año ahorró $16,000. ¿Cuánto ha ahorrado en los 5 años?
  • 8. Solución: 4.- Una persona ha invertido cada año delos que invirtió el año anterior. Sí el primer año invirtió $24300, ¿Cuánto ha invertido en 6 años? Solución: 5.- Para construir un desarrollo turístico se compra un terreno de 2,000 hectáreas y se va a pagar en 15 años, pagando el primer año $100, el segundo $300, el tercero $900… ¿Cuánto cuesta el terreno? Solución: 6.- El cuarto término de una progresión geométrica es 1/4 y el séptimo 1/32. Hallar el sexto término. Solución:
  • 9. Problemas de Progresiones Armónicas 1. Dados a y b encontrar n números a1, a2,……an tales que a, a1 ,a2 b estén en PH. (a y b diferentes de o) Solución: a, a1 ,a2 b están en PH  1 2 1 1 1 1 1 , , ,... , n a a a a b están en P.A de aquí 1 1 1 1 ( 1) ( 1) ( 1) ( 1)k a b a b n d d k b a ab n a a ab n donde ( 1) ( 1) ( )k n ab a k a n k b Para el caso particular de un medio armónico entre y hacemos: 2 2 2 3 ab k n a a a 2.- Hallar el término que sigue en la Progresión Armónica Solución: Debemos trabajar con los recíprocos de los términos dados y buscar la diferencia: aquí la diferencia es por lo tanto el término siguiente es
  • 10. Luego el término que sigue en la Progresión Armónica es 3.- Determinar si la siguiente Sucesión es o no una Progresión Armónica. Solución: Debemos analizar si la sucesión de los términos recíprocos es una P.A. Entonces en la Sucesión y es una P.A Luego es una Progresión Armónica. 4.- Interpolar un medio armónico entre 2 y 3 Solución: Sea x el medio armónico que debemos interpolar Entonces 2 , x , 3 deben estar en Progresión Armónica. lo que significa que deben estar en Progresión Aritmética. Entonces:
  • 11. 5.- Determinar el 8º término de la PH ,... 11 1 , 7 1 , 3 1 Solución: Si invertimos estos números quedan expresados en PA. 3 – 7 – 11 … la cual tiene primer termino igual a 3 y su diferencia es 4. 31473718 daa Luego el 8º termino de la PH es 31 1 6.- Tres términos están en PH. Hallar el valor de x si los términos son x, x-8 y x-12. Por ser parte de una PH, sus recíprocos están en PA. Luego 1216;24 24 964 4968 1289612812 )12()8()12)(8()12( )12)(8)(( 8 1 12 11 8 1 2222 ysonnumeroslosluego x x xx xxxxxxxxx xxxxxxxx xxxMCMaplicando xxxx Actividad de Cierre Nombre de la Actividad: Secuencia didáctica sobre progresiones Objetivo de la Actividad: Que el alumno después de la exposición le permita responder preguntas teóricas sobre el tema de progresiones y después pasar al tema practico de aplicación resolviendo problemas de progresiones o proporcionando ejemplo y finalmente hacer un mapa conceptual de lo que se vio en esta exposición y a lo largo de la unidad. Recursos: Material Impreso, Internet, investigación en sus apuntes del cuaderno. Evaluación:
  • 12. Después de realizar esta exposición hemos podido comprobar que todos los conocimientos y aprendizajes de esta unidad nos han llevado a tener una correcta resolución de estos problemas además de identificar en que caso se tienen problemas de los diversos tipos de progresiones podría ser que a algunos compañeros se les haya costado algo de dificultad comprender estos conceptos o resolver los ejercicios pero con practica y dedicación estamos seguros que el tema quedara comprendido al cien. Acreditación: Duración: 2 Horas de exposición Contenido: Unidad 1 Tema 6 “Problemas de aplicación de Progresiones” Recursos: Laminas, Material Impreso, Plumones, Calculadora científica, cuaderno de apuntes. Créditos: Luis Ernesto: Problemas de Progresiones Armónicas, Organización e impresión del trabajo Omar Alejandro: Problemas de Progresiones Geométricas Rosa Aurora: Problemas de Progresiones Aritméticas Hugo Sebastián: Definiciones de los Diversos tipos de Progresiones Bibliografía: http://www.luiszegarra.cl/moodle/pluginfile.php/131/mod_resource/content/1/cap4.pdf http://www.fca.unam.mx/docs/apuntes_matematicas/32.%20Progresiones.pdf http://www.amolasmates.es/ http://www.vadenumeros.es/tercero/problemas-progresiones.htm