SlideShare una empresa de Scribd logo
1 de 81
MECANICA DE SUELOS II
Sandro venero soncco
En el presente documento dispondremos a
desarrollar las preguntas de teoría y práctica de
mecánica de suelos II
VenerosonccoS
1Práctica y teoría resuelto de mecánica de suelos II
01.¡Qué es esfuerzo efectivo?
a) Es la suma de las componentes verticales de las fuerzas desarrolladas en
los puntos de contacto de las partículas sólidas por área de sección
transversal unitaria.
b) Es el esfuerzo que absorbe las partículas sólidas del suelo.
c) es la fracción del esfuerzo normal absorbida por el esqueleto del
suelo en los puntos de contacto de las partículas. RESPUESTA
d) Todas las anteriores son correctas
e) Ninguna anterior
02.¿Por qué es importante conocer el esfuerzo cortante máximo?
a) Para el cálculo de la estabilidad de cimentos. RESPUESTA
b) Para el cálculo de esfuerzos normales
c) Para calcular los esfuerzos verticales
d) Todas las anteriores.
e) Ninguna anterior.
03.El conocimiento de los esfuerzos verticales es de gran importancia
para:
a) La elasticidad
b) Los principios de la deformación
c) La consolidación
d) Los asentamientos
e) Más de una es correcta. RESPUESTA
04.Describe los parámetros de la siguiente fórmula:
𝜎𝑛 = 𝜎𝑒 + ∑ 𝜎𝑧𝑖
𝑛
𝑖=1
𝜎𝑛 : Son los esfuerzos verticales totales por debajo de la superficie del suelo
cuando actúan sobrecargas en la superficie
𝜎𝑒: Esfuerzos efectivos de la masa de suelo
∑ 𝜎𝑧𝑖
𝑛
𝑖=1 : Es la sumatoria de los esfuerzos provocados por las cargas existentes
sobre la superficie del suelo
05.¿Qué entiendes por esfuerzo total vertical?
Es la suma del esfuerzo efectivo y el esfuerzo producido por una carga, que actúan
en la estructura del suelo
VenerosonccoS
2Práctica y teoría resuelto de mecánica de suelos II
06.¿Qué entiendes por esfuerzos Geostáticos?
El esfuerzo geos tatico es el resultado de la suma del esfuerzo efectivo más la
presión neutra
07.¿Qué es presión de poro?
a) Es la presión hidrostática que actúa encima del suelo
b) Es la presión intersticial hidrostática que actúa sobre el suelo y se
presenta cuando existe un nivel de capilaridad. RESPUESTA
c) Es la presión intersticial hidrostática que actúa sobre el suelo y se
presenta cuando existe un nivel de freático.
d) Es la diferencia del esfuerzo efectivo y el esfuerzo total.
e) Más de una respuesta es correcta.
08.Calcule el esfuerzo efectivo en el punto A.
N.S.C: nivel de saturación capilar
N.F: nivel freático
𝜎𝑒 = 𝛾ℎ + 𝛾𝑠𝑎𝑡1 ℎ𝑐 + 𝛾𝑠𝑎𝑡2ℎ𝑤 − 𝛾𝑤ℎ𝑤
𝜎𝑒 = 𝛾ℎ + 𝛾𝑠𝑎𝑡1 ℎ𝑐 + ℎ𝑤( 𝛾𝑠𝑎𝑡2 − 𝛾𝑤)
𝝈 𝒆 = 𝜸𝒉 + 𝜸 𝒔𝒂𝒕, 𝒉𝒄 + 𝒉𝒘𝜸,
--------RESPUESTA
𝛾,
: Peso específico sumergido
09.¿Cuáles son los pasos para usar la carta de Newmark para el cálculo de
esfuerzos verticales correspondiente a cargas encima de la superficie
terrestre?
I. Ubicar el punto indicado sobre el centro de la carta de Newmark
II. Dibujar a escala la gráfica (escala de la gráfica es equivalente a la
profundidad)
III. Sumar el número de áreas que están dentro de la grafica
IV. Reemplazar los valores en la siguiente formula:
∆𝜎 = ( 𝑉𝐼) ∗ ( 𝑞) ∗ ( 𝑁°)
VenerosonccoS
3Práctica y teoría resuelto de mecánica de suelos II
Dónde:
𝑉𝐼: 𝑣𝑎𝑙𝑜𝑟 𝑑𝑒 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑖𝑎
𝑞: 𝑐𝑎𝑟𝑔𝑎
𝑁°: 𝑛𝑢𝑚𝑒𝑟𝑜 𝑑𝑒 𝑎𝑟𝑒𝑎𝑠
10.Dibuje los diagramas de esfuerzos totales, esfuerzos efectivos y
presión de poro del ejercicio 8
11.Demostrar 𝛾 𝑚 =(
1+𝑤
1+𝑒
) 𝛾 𝑠
𝛾 𝑚 =
𝑊
𝑉
𝛾 𝑚 =
𝑊𝑤 + 𝑊𝑠
𝑉𝑉 + 𝑉𝑠
𝛾 𝑚 =
𝑊𝑤 + 𝑊𝑠
𝑊𝑠
∗
𝑊𝑠
1
𝑉𝑉 + 𝑉𝑠
𝑉𝑠
∗
𝑉𝑠
1
𝛾 𝑚 =
𝑊 + 1
𝑒 + 1
∗
𝑊𝑠
𝑉𝑠
𝛾 𝑚 = (
𝑊 + 1
𝑒 + 1
)𝛾𝑠
12.Demostrar 𝛾𝑠𝑎𝑡=(
𝛾 𝑠+𝑒
1 +𝑒
)
𝛾𝑠𝑎𝑡 =
𝑊𝑠 + 𝑊𝑤 + 𝑊𝑝𝑜𝑟𝑜𝑠 𝑙𝑙𝑒𝑛𝑜𝑠 𝑑𝑒 𝑎𝑔𝑢𝑎
𝑉
𝛾𝑠𝑎𝑡 =
𝑊𝑠 + 𝑉𝑉
𝑉𝑉 + 𝑉𝑠
VenerosonccoS
4Práctica y teoría resuelto de mecánica de suelos II
𝛾𝑠𝑎𝑡 =
(𝑊𝑠 + 𝑉𝑉 )
𝑉𝑠
(𝑉𝑉 + 𝑉𝑠)
𝑉𝑠
𝛾𝑠𝑎𝑡 = (
𝛾𝑠 + 𝑒
1 + 𝑒
)
VenerosonccoS
5Práctica y teoría resuelto de mecánica de suelos II
1) Determinar y graficar los Diagramas de esfuerzos totales, neutrales y
efectivos del perfil del suelo que se indica.
 00.00 a -8.40 Arena mal graduada medianamente densa
(Encima del nivel freático w = 6,5%)
Relación de vacíos = 0,40
G = 2,60
N = 0,1128 ; D10 = 0,0006
 -8,40 a -16,40 Limo inorgánico; n = 0,55; G = 2,67
 -16,40 a -18,20 Arcilla inorgánica; e = 0,61; G = 2,79.
 -18,20 a -20,00 Arena mal graduada; Gw = 100%; w = 25%;
d = 1,60 gr/cm3.
 El nivel freático está a -5.70
Solución
VenerosonccoS
6Práctica y teoría resuelto de mecánica de suelos II
Determinamos la altura del acenso capilar
Usaremos la siguiente formula
𝒉 𝒄 =
𝑵
𝒆∗𝑫 𝟏𝟎
𝒉 𝒄 =
𝑵
𝒆 ∗ 𝑫 𝟏𝟎
⟹ ℎ 𝑐 =
0.1128
0.40 ∗ 0.0006
= 47 𝑐𝑚 ⟹ ℎ 𝑐 = 4.7 𝑚
Calculamos los pesos específicos en cada fase
Para el estrato I
Para peso específico seco usaremos la formula siguiente
𝛾 𝑚 = (
1 + 𝑊
1 + 𝑒
) 𝛾𝑠 =
(1 + 𝑤) 𝐺𝑠 𝛾𝑤
1 + 𝑒
⟹ 𝛾 𝑚 =
(1 + 0.65)(2.60)(1)
1 + 0.40
= 1.98
𝑡𝑛
𝑚3
𝛾 𝑚 = 1.98
𝑡𝑛
𝑚3
Para el peso específico saturado usaremos la formula siguiente
𝛾𝑠𝑎𝑡 = (
𝛾𝑠 + 𝑒
1 + 𝑒
) =
𝐺𝑠 𝛾𝑤 + 𝑒
1 + 𝑒
⟹ 𝛾𝑠𝑎𝑡 =
2.60(1) + 0.40
1 + 0.40
= 2.14
𝑡𝑛
𝑚3
⟹ 𝛾𝑠𝑎𝑡 = 2.14
𝑡𝑛
𝑚3
𝛾𝑠𝑎𝑡 = (
𝛾𝑠 + 𝑒
1 + 𝑒
) =
𝐺𝑠 𝛾𝑤 + 𝑒
1 + 𝑒
⟹ 𝛾𝑠𝑎𝑡 =
2.60(1) + 0.40
1 + 0.40
= 2.14
𝑡𝑛
𝑚3
⟹ 𝛾𝑠𝑎𝑡 = 2.14
𝑡𝑛
𝑚3
VenerosonccoS
7Práctica y teoría resuelto de mecánica de suelos II
Para el estrato II
En este caso primero hallamos “e” para luego calcular (𝛾𝑠𝑎𝑡 )
𝑒 =
𝑛
1 − 𝑛
⟹ 𝑒 =
0.55
1 − 0.55
= 1.22 ⟹ 𝑒 = 1.22
𝛾𝑠𝑎𝑡 = (
𝛾𝑠 + 𝑒
1 + 𝑒
) =
𝐺𝑠 𝛾𝑤 + 𝑒
1 + 𝑒
⟹ 𝛾𝑠𝑎𝑡 =
2.67(1) + 1.22
1 + 1.22
= 1.75
𝑡𝑛
𝑚3
⟹ 𝛾𝑠𝑎𝑡 = 1.75
𝑡𝑛
𝑚3
Para el estrato III
𝛾𝑠𝑎𝑡 = (
𝛾𝑠 + 𝑒
1 + 𝑒
) =
𝐺𝑠 𝛾𝑤 + 𝑒
1 + 𝑒
⟹ 𝛾𝑠𝑎𝑡 =
2.79(1) + 0.61
1 + 0.61
= 2.11
𝑡𝑛
𝑚3
⟹ 𝛾𝑠𝑎𝑡 = 2.11
𝑡𝑛
𝑚3
Para el estrato IV
 25% =
𝑊 𝑊
𝑊 𝑆
⟹ 𝑊𝑆 = 4𝑊𝑊
 𝛾 𝑊 =
𝑊 𝑊
𝑉 𝑊
⟹ 𝑉𝑊 = 𝑊𝑊
 𝛾𝑑 =
𝑊 𝑆
𝑉
⟹ 1.6𝑉 = 𝑊 𝑊 ⟹ 𝑉 = 2.5𝑊𝑊 ⟹ 0.4𝑉 = 𝑊𝑊
Para ( 𝛾𝑠 )
𝛾𝑠 =
𝑊𝑆
𝑉𝑆
=
1.6𝑉
0.4𝑉
= 2.67
Para calculara (e)
𝑒 =
𝑉𝑉
𝑉𝑆
=
0.4𝑉
0.6𝑉
= 0.67
Ahora reemplazamos los valores en la formula siguiente para hallar el peso
específico saturado
VenerosonccoS
8Práctica y teoría resuelto de mecánica de suelos II
𝛾𝑠𝑎𝑡 = (
𝛾𝑠 + 𝑒
1 + 𝑒
) =
2.67(1)+ 0.67
1 + 0.67
= 2
𝑡𝑛
𝑚3
⟹ 𝛾𝑠𝑎𝑡 = 2
𝑡𝑛
𝑚3
Ahora calculamos los esfuerzos totales (𝜎𝑡), la presión de poros (𝑢) y los esfuerzos
efectivos (𝜎𝑒)
Formula del esfuerzo total
𝜎𝑡 = 𝛾ℎ
Fórmula para la presión de poro
𝑢 = 𝛾𝑤 ℎ 𝑤
Formula del esfuerzo efectivo
𝜎𝑒 = 𝜎𝑡 − 𝑢
Para el punto “A” calculamos (𝝈𝒕),( 𝒖) 𝒚 (𝝈 𝒆)
𝜎𝑡 = 1.98 ∗ 1 = 1.98
𝑡𝑛
𝑚2
𝑢 = −𝛾𝑤 ℎ 𝑤 = −1 ∗ 4.7 = −4.7
𝑡𝑛
𝑚2
𝜎𝑒 = 1.98 − (−4.7) = 6.68 𝑡𝑛/𝑚2
La presión de poro es negativo debido a que el agua asciende por capilaridad (esto
se da solamente en el punto “A”)
Para el punto “B” calculamos (𝝈𝒕),( 𝒖) 𝒚 (𝝈 𝒆)
𝜎𝑡 = 1.98 + 2.14 ∗ (4.7) = 12.04
𝑡𝑛
𝑚2
𝑢 = 𝛾𝑤 ℎ 𝑤 = 1 ∗ (0) = 0
𝑡𝑛
𝑚2
𝜎𝑒 = 12.04 − 0 = 12.04 𝑡𝑛/𝑚2
Para el punto “C” calculamos (𝝈𝒕),( 𝒖) 𝒚 (𝝈 𝒆)
𝜎𝑡 = 12.04 + 2.14 ∗ (2.7) = 17.82
𝑡𝑛
𝑚2
𝑢 = 𝛾𝑤 ℎ 𝑤 = 1 ∗ (2.7) = 2.7
𝑡𝑛
𝑚2
𝜎𝑒 = 17.82 − 2.7 = 15.12 𝑡𝑛/𝑚2
VenerosonccoS
9Práctica y teoría resuelto de mecánica de suelos II
Para el punto “D” calculamos (𝝈𝒕),( 𝒖) 𝒚 (𝝈 𝒆)
𝜎𝑡 = 17.82 + 1.75 ∗ (8) = 31.82
𝑡𝑛
𝑚2
𝑢 = 𝛾𝑤 ℎ 𝑤 = 1 ∗ (10.7) = 10.7
𝑡𝑛
𝑚2
𝜎𝑒 = 31.82 − 10.7 = 21.12 𝑡𝑛/𝑚2
Para el punto “E” calculamos (𝝈𝒕),( 𝒖) 𝒚 (𝝈 𝒆)
𝜎𝑡 = 31.82 + 2.11 ∗ (1.8) = 35.62
𝑡𝑛
𝑚2
𝑢 = 𝛾𝑤 ℎ 𝑤 = 1 ∗ (12.5) = 12.5
𝑡𝑛
𝑚2
𝜎𝑒 = 35.62 − 12.5 = 23.12 𝑡𝑛/𝑚2
Para el punto “F” calculamos (𝝈𝒕),( 𝒖) 𝒚 (𝝈 𝒆)
𝜎𝑡 = 35.62 + 2 ∗ (1.8) = 39.22
𝑡𝑛
𝑚2
𝑢 = 𝛾𝑤 ℎ 𝑤 = 1 ∗ (14.3) = 14.3
𝑡𝑛
𝑚2
𝜎𝑒 = 39.22 − 14.3 = 24.92 𝑡𝑛/𝑚2
Grafica
VenerosonccoS
10Práctica y teoría resuelto de mecánica de suelos II
2) Calcular los esfuerzos verticales totales (  e + z ) debajo de los puntos
A y B, en el medio del estrato de arcilla CL. del edificio, que se muestra en la
figura. El nivel de saturación por capilaridad llega hasta – 2,00
Solución
VenerosonccoS
11Práctica y teoría resuelto de mecánica de suelos II
Ahora calculamos los esfuerzos totales (𝜎𝑡), la presión de poros (𝑢) y los esfuerzos
efectivos (𝜎𝑒)
PUNTO “A” (edificio “A”)
Para el punto “A” calculamos (𝝈𝒕),( 𝒖) 𝒚 (𝝈 𝒆)
𝜎𝑡 = 1.5 ∗ (2) + 1.95 ∗ (2) + 2.17 ∗ (7)+ 1.97 ∗ (2.5) = 27.015
𝑡𝑛
𝑚2
𝑢 = 𝛾𝑤 ℎ 𝑤 = 1 ∗ (9.5) = 9.5
𝑡𝑛
𝑚2
𝜎𝑒 = 27.015 − 9.5 = 17.515 𝑡𝑛/𝑚2
Calculamos (𝝈 𝒁𝑨)
Sabemos que 𝜎𝑍𝐴 = 𝑊 ∗ 𝑊0
Dónde:
VenerosonccoS
12Práctica y teoría resuelto de mecánica de suelos II
𝑊: 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑚𝑜𝑠 𝑐𝑜𝑛 𝑙𝑜𝑠 𝑑𝑎𝑡𝑜𝑠 𝑑𝑒𝑙 𝑒𝑑𝑖𝑓𝑖𝑐𝑖𝑜 (𝐴)
𝑊0: 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑚𝑜𝑠 𝑑𝑒 𝑙𝑎 𝑡𝑎𝑏𝑙𝑎
Calculamos (𝑾)
𝑊 = 9 ∗ (1.3) − (1.5 ∗ (2)+ 1.95 ∗ (2)) = 4.8
𝑡𝑛
𝑚2
Calculamos (𝑾 𝟎)
Usaremos la siguiente formula
𝑚 =
𝑋
𝑍
𝑛 =
𝑌
𝑍
Dónde:
𝑍: 𝑒𝑠 𝑙𝑎 𝑝𝑟𝑜𝑓𝑢𝑛𝑑𝑖𝑑𝑎𝑑
Para el punto “A” Z es igual a 9.5 m
Calculamos el valor de “m”
𝑚 =
9.40
9.5
= 0.99
Calculamos el valor de “n”
𝑛 =
30
9.5
= 3.15
Con los valores de “m” y “n” hallamos en la tabla en valor de (𝑊0)
𝑚 = 0.99
𝑛 = 3.15
} = 𝑊0 = 0.203
VenerosonccoS
13Práctica y teoría resuelto de mecánica de suelos II
Teniendo los valores de (𝑊 , 𝑊0 ) reemplazamos en la formula (𝜎𝑍𝐴 = 𝑊 ∗ 𝑊0 )
𝜎𝑍𝐴 = 𝑊 ∗ 𝑊0 ⟹ 𝜎𝑍𝐴 = 4.8 ∗ 0.203 = 0.973 𝑡𝑛/𝑚2
PUNTO “B” (edificio “B”)
Calculamos (𝝈 𝒁)
Sabemos que 𝜎𝑍 = 𝑊 ∗ 𝑊0
Calculamos (𝑾)
𝑊 = 13 ∗ (1.6) − (1.5 ∗ (2)+ 1.95 ∗ (2)) = 13.9
𝑡𝑛
𝑚2
Calculamos (𝑾 𝟎)
Usaremos la siguiente formula
𝑚 =
𝑋
𝑍
𝑛 =
𝑌
𝑍
Dónde:
𝑍: 𝑒𝑠 𝑙𝑎 𝑝𝑟𝑜𝑓𝑢𝑛𝑑𝑖𝑑𝑎𝑑
Calculamos el valor de “m”
Primero calculamos para todo (edificio)
𝑚 =
18.80
9.5
= 1.97
Calculamos el valor de “n”
𝑛 =
30
9.5
= 3.15
VenerosonccoS
14Práctica y teoría resuelto de mecánica de suelos II
Con los valores de “m” y “n” hallamos en la tabla en valor de (𝑊0) (todo el edificio)
𝑚 = 1.97
𝑛 = 3.15
} = 𝑊0 = 0.239
Calculamos para la mitad (edificio)
Calculamos el valor de “m”
𝑚 =
9.40
9.5
= 0.99
Calculamos el valor de “n”
𝑛 =
30
9.5
= 3.15
Con los valores de “m” y “n” hallamos en la tabla en valor de (𝑊0) (mitad del
edificio)
𝑚 = 0.99
𝑛 = 3.15
} = 𝑊0 = 0.203
Ahora restamos los valores de (𝑊0) y reemplazamos en la formula (𝜎𝑍 = 𝑊 ∗ 𝑊0)
𝑊0 = 0.239 − 0.203 = 0.036
𝜎𝑍 = 𝑊 ∗ 𝑊0 ⟹ 𝜎𝑍𝐴 = 13.9 ∗ 0.036 = 0.501 𝑡𝑛/𝑚2
Hallamos (𝜎𝑛𝐴)
𝜎𝑛𝐴 = 17.515 + 0.973 + 0.501 = 18.99 𝑡𝑛/𝑚2
Ahora calculamos los esfuerzos totales (𝜎𝑡), la presión de poros (𝑢) y los esfuerzos
efectivos (𝜎𝑒)
PUNTO “B” (edificio “B”)
La profundidad “Z” para el punto “B” es igual a 10m
𝜎𝑡 = 1.5 ∗ (2) + 1.95 ∗ (2) + 2.17 ∗ (7)+ 1.97 ∗ (3) = 28
𝑡𝑛
𝑚2
𝑢 = 𝛾𝑤 ℎ 𝑤 = 1 ∗ (10) = 10
𝑡𝑛
𝑚2
𝜎𝑒 = 28 − 10 = 18 𝑡𝑛/𝑚2
VenerosonccoS
15Práctica y teoría resuelto de mecánica de suelos II
Calculamos “m” y “n”
𝐸𝐷1 = 𝑊 = 4.8 𝑡𝑛/𝑚2
𝑚 =
9.40
10
= 0.94
𝑛 =
15
10
= 1,5
Con los valores de “m” y “n” hallamos en la tabla en valor de (𝑊0)
𝑚 = 0.94
𝑛 = 1.5
} = 𝑊0 = 0.189 ∗ 𝟐 = 𝟎. 𝟑𝟕𝟖
Los valores de ( 𝑊 𝑦 𝑊0) reemplazamos en la formula ( 𝜎𝑍 = 𝑊 ∗ 𝑊0 )
𝜎𝑍 = 𝑊 ∗ 𝑊0 ⟹ 𝜎𝑍 = 4.8 ∗ 0.378 = 1.81
𝑡𝑛
𝑚2
𝜎𝑍 = 13.9 ∗ 0.378 = 5.25
𝑡𝑛
𝑚2
Hallamos (𝜎𝑛𝐵)
𝜎𝑛𝐵 = 18 + 1.81 + 5.25 = 25.06
𝑡𝑛
𝑚2
3) Utilizando el diagrama de Newmark y el Valor de influencia = 0,005. Calcular
el esfuerzo z a una profundidad de 19,5 pies debajo del punto “O” Del
edificio que transmite una carga distribuida en la superficie de 38,70 kN/m2,
cuya figura en planta se muestra
VenerosonccoS
16Práctica y teoría resuelto de mecánica de suelos II
Solución
Para convertir los valores de pies a metros se multiplican por (0.3048)
Z=19.5 pies
Z=19.5*(0.3048)
Z=5.94 m
El valor de influencia es de 0.005 y mide 3.9 cm
Calculamos los valores en centímetros para graficar en la carta de Newmark
Para “1”
3.9cm…………5.94m
Xcm…………1.21m
X=0.79cm
Para “2”
3.9cm…………5.94m
Xcm…………1.82m
X=1.19cm
Para “3”
3.9cm…………5.94m
Xcm…………12.19m
X=8cm
Para “4”
3.9cm…………5.94m
Xcm…………6.09m
X=4cm
Para “5”
3.9cm…………5.94m
Xcm…………7.92m
X=5.2cm
Para “6”
3.9cm…………5.94m
Xcm…………2.13m
X=1.39cm
VenerosonccoS
17Práctica y teoría resuelto de mecánica de suelos II
VenerosonccoS
18Práctica y teoría resuelto de mecánica de suelos II
1. ¿A qué se debe el proceso de consolidación secundaria? ¿Y en qué
tipos de suelos se presenta?
Se produce después de la consolidación primaria, se debe a la alta
compresibilidad del suelo, porque las partículas del suelo presentan fluencia
viscosa (lenta) que hace que estos se reacomoden. Y se presentan en suelos
arcillosos y turbas
2. ¿A qué se debe el proceso de consolidación primaria? ¿Y en qué tipos
de suelos se presenta?
Se debe a la expulsión del agua que ocupa los espacios vacíos (el agua
intersticial se drena) producido a lo largo del tiempo. Y se presenta en
suelos como la arcilla saturada
3. Defina los siguientes conceptos. Emplee un croquis en caso sea
necesario
 Incremento de pre-consolidación: Es el resultado de la diferencia del
esfuerzo de pre-consolidación y el esfuerzo efectivo
𝐼𝑃𝐶 = 𝜎𝑐
,
− 𝜎𝑒
 Relación de pre-consolidación: es el resultado de la división del esfuerzo
de pre-consolidación y el esfuerzo efectivo
𝑂𝐶𝑅 =
𝜎𝐶
,
𝜎𝑒
 Índice de compresibilidad: es el resultado de la división de la variación de
los vacíos y el logaritmo de los esfuerzos efectivo mayor entre el esfuerzo
efectivo menor
𝐶 𝐶 =
∆𝑒
log(
𝜎𝑒2
𝜎𝑒1
)
VenerosonccoS
19Práctica y teoría resuelto de mecánica de suelos II
4. A partir de curva de compresibilidad del ensayo de consolidación se
puede determinar la presión de pre-consolidación por el método de
casa grande. Explique el método y dibuje
 se toma un punto “a” en la curva donde presenta menor radio
 se traza una línea horizontal “ab” desde el punto “a”
 se traza una línea tangente “ac” en el punto “a”
 se traza una línea bisectriz “ad” del Angulo “bac”
 se prolonga la línea “gh” o hasta intersectar la línea bisectriz en el punto “f”
la abscisa del punto “f” es el esfuerzo de pre-consolidación
5. ¿En qué teoría se basa el asentamiento instantáneo?
En la teoría de la elasticidad, y está presente el simultaneo en construcción
de obres civiles
6. ¿Cómo se denomina las presiones verticales en la masa de los suelos
saturados? Explique cómo actúa cada uno
A la suma del esfuerzo de sobre carga y el esfuerzo geos tatico
 esfuerzo de sobre carga: producida por la presión de las estructuras
civiles
 esfuerzo gestáltico: es la suma del esfuerzo efectivo más la presión de
poro
 Presión efectiva: es la presión que absorbe las partículas sólidas del suelo
 presión de poro: es la presión que genera el agua en los poros
7. ¿Qué entiendes por un suelo pre-consolidado? Y debido a que aspectos
se debe
La presión de sobrecargas efectiva es menor que la que el suelo
experimento en su pasado
Es debido a procesos geológicos y/o intervención del hombre
8. ¿Qué entiendes por suelo normalmente consolidado?
La presión de sobrecarga efectiva presente es la presión máxima a la que el
suelo fue sometido en su pasado
VenerosonccoS
20Práctica y teoría resuelto de mecánica de suelos II
1. La zapata típica de una edificación tiene un área de 3.50 x 5.50 m y esta
cimentada a 1.70 m de profundidad, transmite una carga de 2.25
kg/cm2.cuyo perfil del suelo es el siguiente
Considerar estratos de un metro obligatoriamente
VenerosonccoS
21Práctica y teoría resuelto de mecánica de suelos II
a) Determinar y graficar los diagramas de los esfuerzos geos taticos, neutrales
y efectivos
b) Calcular el asentamiento total
Solución
𝛾𝑚 =
1.85𝑔𝑟
𝑚3
=
1.85𝑡𝑛
𝑚3
𝛾𝑠𝑎𝑡 =
2.15𝑔𝑟
𝑚3
=
2.15𝑡𝑛
𝑚3
𝑤 =
2.25𝑘𝑔
𝑚2
=
22.5𝑡𝑛
𝑚2
Calculamos:
Hc =
N
e ∗ D10
⇒ 𝐻𝑐 =
0.115
0.65 ∗ 0.00093
= 190𝑐𝑚 = 𝟏. 𝟗𝒎
Calculando:
VenerosonccoS
22Práctica y teoría resuelto de mecánica de suelos II
γsat1 =
Gs ∗ γw + e
1 + e
Antes hallamos “e”
𝑒 =
𝑛
1 − 𝑛
⇒ 𝑒 =
0.45
1 − 0.45
= 𝟎. 𝟖𝟏
γsat1 =
Gs ∗ γw + e
1 + e
=
2.45 ∗ 1 + 0.81
1 + 0.81
= 1.80
𝑡𝑛
𝑚2
γsat2 =
Gs ∗ γw + e
1 + e
=
2.66 ∗ 1 + 0.44
1 + 0.44
= 2.15
𝑡𝑛
𝑚2
Hallamos los esfuerzos geos taticos, neutrales y efectivos
a. A una profundidad de 0.8 metros
𝜎𝑡 = 0.8 ∗ (1.85) = 1.48
𝑡𝑛
𝑚2
𝑢 = −𝐻𝑐 ∗ 𝛾𝑤 = −1.9 ∗ 1 = −1.9
𝑡𝑛
𝑚2
𝜎𝑒 = 1.48 − (−1.9) = 3.38 𝑡𝑛/𝑚2
b. A una profundidad de 2.70 metros
𝜎𝑡 = 1.48 + 1.9 ∗ (2.15) = 5.57
𝑡𝑛
𝑚2
𝑢 = 0 = 0
𝑡𝑛
𝑚2
𝜎𝑒 = 5.57 − 0 = 5.57 𝑡𝑛/𝑚2
c. A una profundidad de 5.70 metros
𝜎𝑡 = 5.57 + 3 ∗ (1.80) = 10.97
𝑡𝑛
𝑚2
𝑢 = 3 ∗ 1 = 3
𝑡𝑛
𝑚2
𝜎𝑒 = 10.97 − 3 = 7.97 𝑡𝑛/𝑚2
d. A una profundidad de 8.60 metros
𝜎𝑡 = 10.97 + 2.90 ∗ (2.15) = 17.205
𝑡𝑛
𝑚2
𝑢 = 5.90 ∗ 1 = 5.90
𝑡𝑛
𝑚2
𝜎𝑒 = 17.205 − 5.90 = 11.305
𝑡𝑛
𝑚2
Dibujamos los diagramas de los esfuerzos geos taticos, neutrales y efectivos
VenerosonccoS
23Práctica y teoría resuelto de mecánica de suelos II
VenerosonccoS
24Práctica y teoría resuelto de mecánica de suelos II
N° Hi (m) 𝝈 𝟎
,
𝒕𝒐𝒏
/𝒎𝟐
𝝈 𝒄
,
𝒕𝒐𝒏
/𝒎𝟐
Zi(m) m n W0 Sobrecarga
∆𝝈
∆𝝈 + 𝝈 𝟎
,
𝝈 𝒄
,
formula S(mm)
1 3.20 5.97 7.91 1.50 1.17 1.83 0.209 18.81 24.78 > 7.91 III 72.70
2 4.20 6.76 8.70 2.50 0.7 1.1 0.152 13.68 20.44 > 8.70 III 54.26
3 5.20 7.56 9.50 3.50 0.5 0.78 0.109 9.81 17.37 > 9.50 III 38.93
total 165.89
σ0 1
,
= 5.57 + 0.50(1.80 − 1) = 5.97
σ0 2
,
= 5.57 + 1.50(1.80 − 1) = 6.77
σ0 3
,
= 5.57 + 2.50(1.80 − 1) = 7.56
σe = 5.57 + 0.40(1.80 − 1) = 5.89
3.10-2.70=0.40→ es lo que falta para llegar a 3.10 metros
σ0
,
= 1.33 ∗ 5.89 = 7.83
IPC = 7.83 − 5.89 = 𝟏. 𝟗𝟒 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭𝐞
𝜎𝑐 1
,
= 1.94 + 5.57 = 7.91
𝜎𝑐 2
,
= 1.94 + 6.77 = 8.70
𝜎𝑐 3
,
= 1.94 + 7.56 = 9.50
VenerosonccoS
25Práctica y teoría resuelto de mecánica de suelos II
n1 =
2.75
1.50
= 1.83 m1 =
1.75
1.50
= 1.17
n2 =
2.75
2.50
= 1.1 m2 =
1.75
2.50
= 0.7
n3 =
2.75
3.50
= 0.78 m3 =
1.75
3.50
= 0.5
σz = w ∗ w0 w =
22.5ton
m2
dato
σz 1 = 22.5 ∗ 0.209 ∗ 𝟒 = 18.81
σz 2 = 22.5 ∗ 0.152 ∗ 𝟒 = 13.68
σz 3 = 22.5 ∗ 0.109 ∗ 𝟒 = 9.81
1) ∆𝜎 + 𝜎0
,
= 18.81 + 5.97 = 24.78
2) ∆𝜎 + 𝜎0
,
= 13.68 + 6.76 = 20.44
3) ∆𝜎 + 𝜎0
,
= 9.81 + 7.56 = 17.37
𝑺 =
𝑪 𝒔 𝑯
𝟏 + 𝒆 𝟎
𝐥𝐨𝐠(
𝝈 𝒄
,
𝝈 𝟎
, )+
𝑪 𝒄 𝑯
𝟏 + 𝒆 𝟎
𝐥𝐨𝐠(
𝝈 𝟎
,
+ ∆𝝈
𝝈 𝒄
, )
𝐂𝐬 = 𝟎. 𝟎𝟓 𝐂𝐜 = 𝟎. 𝟐𝟓 𝐞 𝟎 = 𝟎. 𝟖𝟏
𝑆1 =
0.05 ∗ 1
1 + 0.81
log(
7.91
5.57
)+
0.25 ∗ 1
1 + 0.81
log(
24.78
7.91
) = 72.70 𝑚𝑚
𝑆2 =
0.05 ∗ 1
1 + 0.81
log(
8.70
6.76
) +
0.25 ∗ 1
1 + 0.81
log(
20.44
8.70
) = 54.26 𝑚𝑚
𝑆3 =
0.05 ∗ 1
1 + 0.81
log(
9.50
7.56
) +
0.25 ∗ 1
1 + 0.81
log(
17.37
9.50
) = 38.93 𝑚𝑚
VenerosonccoS
26Práctica y teoría resuelto de mecánica de suelos II
N° Hi (m) 𝝈 𝟎
,
𝒕𝒐𝒏
/𝒎𝟐
𝝈 𝒄
,
𝒕𝒐𝒏
/𝒎𝟐
Zi(m) m n W0 Sobrecarga
∆𝝈
∆𝝈 + 𝝈 𝟎
,
𝝈 𝒄
,
formula S(mm)
4 6.20 8.545 23.169 4.50 0.39 0.61 0.078 7.02 15.565 < 23.169 II 10.85
5 7.20 9.695 24.319 5.50 0.32 0.5 0.059 5.31 15.005 < 24.319 II 7.90
6 8.15 10.787 25.411 6.45 0.27 0.42 0.048 4.32 15.107 < 25.411 II 6.09
total 24.84
σ0 4
,
= 7.97 + 0.50(2.15 − 1) = 8.545
σ0 5
,
= 7.97 + 0.50(2.15 − 1) = 9.695
σ0 6
,
= 7.97 + 0.50(2.15 − 1) = 10.787
σe = 7.97 + 0.55(2.15 − 1) = 8.602
6.25-5.70=0.55→ es lo que falta para llegar a 6.25 metros
σ0
,
= 2.70 ∗ 8.602 = 23.226
IPC = 23.226 − 8.602 = 𝟏𝟒. 𝟔𝟐𝟒 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭𝐞
𝜎𝑐 4
,
= 14.624 + 8.545 = 23.169
𝜎𝑐 5
,
= 14.624 + 9.695 = 24.319
𝜎𝑐 6
,
= 14.624 + 10.787 = 25.411
VenerosonccoS
27Práctica y teoría resuelto de mecánica de suelos II
n4 =
2.75
4.50
= 0.61 m4 =
1.75
4.50
= 0.39
n5 =
2.75
5.50
= 0.5 m4 =
1.75
5.50
= 0.32
n6 =
2.75
6.45
= 0.42 m6 =
1.75
6.45
= 0.27
σz = w ∗ w0 w =
22.5ton
m2
dato
σz 4 = 22.5 ∗ 0.078 ∗ 𝟒 = 7.02
σz 5 = 22.5 ∗ 0.059 ∗ 𝟒 = 5.31
σz 6 = 22.5 ∗ 0.048 ∗ 𝟒 = 4.32
1) ∆𝜎 + 𝜎0
,
= 7.02 + 8.545 = 15.565
2) ∆𝜎 + 𝜎0
,
= 5.31 + 9.695 = 15.005
3) ∆𝜎 + 𝜎0
,
= 4.32 + 10.787 = 15.107
𝑺 =
𝑪 𝒔 𝑯
𝟏 + 𝒆 𝟎
𝐥𝐨𝐠(
𝝈 𝟎
,
+ ∆𝝈
𝝈 𝒄
, )
𝐂𝐬 = 𝟎. 𝟎𝟔 𝐂𝐜 = 𝟎. 𝟒𝟐 𝐞 𝟎 = 𝟎. 𝟒𝟒
𝑆4 =
0.06 ∗ 1
1 + 0.44
log(
15.565
8.545
) = 10.85 𝑚𝑚
𝑆5 =
0.06 ∗ 1
1 + 0.44
log(
15.005
9.695
) = 7.90 𝑚𝑚
𝑆6 =
0.06 ∗ 1
1 + 0.44
log(
15.107
10.787
) = 6.09 𝑚𝑚
Asentamiento total
𝑺𝒕𝒐𝒕𝒂𝒍 = 𝑺𝒕𝒐𝒕𝒂𝒍 𝟏 + 𝑺𝒕𝒐𝒕𝒂𝒍 𝟐
𝑺𝒕𝒐𝒕𝒂𝒍 = 𝟏𝟔𝟓. 𝟖𝟗 + 𝟐𝟒. 𝟖𝟒
𝑺𝒕𝒐𝒕𝒂𝒍 = 𝟏𝟗𝟎. 𝟕𝟑 𝒎𝒎
VenerosonccoS
28Práctica y teoría resuelto de mecánica de suelos II
0.209
0.152
0.109
0.078
0.059
0.048
VenerosonccoS
29Práctica y teoría resuelto de mecánica de suelos II
2. En la figura se muestra el perfil de un suelo. Si se aplica una carga
uniformemente distribuida en la superficie del suelo. ¿Cuál será el
asentamiento del estrato de arcilla causado por consolidación primaria?
PRUEBA DE CONSOLIDACION EN LABORATORIO
Presión efectiva (KN/m2) Altura final del espécimen al final de
la consolidación (mm)
0 25.81
50 25.58
100 25.39
200 24.67
400 23.61
800 22.41
WS = 106.88gr,GS = 2.69, diametro del especimen = 63.5mm
Perfil del suelo
Solución
Primero calculamos la altura de los solidos (𝑯 𝑺 =
𝑾 𝑺
𝑨𝑮 𝑺 𝜸 𝑾
)
Dónde:
𝐻 𝑆 = 𝑎𝑙𝑡𝑢𝑟𝑎 𝑑𝑒 𝑙𝑜𝑠 𝑠𝑜𝑙𝑖𝑑𝑜𝑠 𝑒𝑛 𝑒𝑙 𝑒𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑑𝑒 𝑠𝑢𝑒𝑙𝑜
𝑊𝑆 = 𝑝𝑒𝑠𝑜 𝑠𝑒𝑐𝑜 𝑑𝑒𝑙 𝑒𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛
𝐴 = 𝑎𝑟𝑒𝑎 𝑑𝑒𝑙 𝑒𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛
𝐺𝑆 = 𝑑𝑒𝑛𝑠𝑖𝑑𝑎𝑑 𝑑𝑒 𝑙𝑜𝑠 𝑠𝑜𝑙𝑖𝑑𝑜𝑠 𝑑𝑒𝑙 𝑠𝑢𝑒𝑙𝑜
𝛾 𝑊 = 𝑝𝑒𝑠𝑜 𝑒𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑜 𝑑𝑒𝑙 𝑎𝑔𝑢𝑎
𝐻 𝑆 =
𝑊𝑆
𝐴𝐺𝑆 𝛾 𝑊
⟹ 𝐻 𝑆 =
106.88
𝜋
4
(63.5)2(2.69)(1)
= 12.55𝑚𝑚 ⟹ 𝐻 𝑆12.55𝑚𝑚
VenerosonccoS
30Práctica y teoría resuelto de mecánica de suelos II
Hallamos los valores de la altura
inicial de vacíos ( 𝑯 𝑽)y la relación
de vacíos (𝒆)
Formula
𝐻 𝑉 = 𝐻 − 𝐻𝑆
Dónde:
𝐻 𝑉 = 𝑎𝑙𝑡𝑢𝑟𝑎 𝑖𝑛𝑖𝑐𝑖𝑎𝑙 𝑑𝑒 𝑣𝑎𝑐𝑖𝑜𝑠
𝐻 = 𝑎𝑙𝑡𝑢𝑟𝑎 𝑖𝑛𝑖𝑐𝑖𝑎𝑙 𝑑𝑒𝑙 𝑒𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛
𝐻 𝑆 = 𝑎𝑙𝑡𝑢𝑟𝑎 𝑑𝑒 𝑙𝑜𝑠 𝑠𝑜𝑙𝑖𝑑𝑜𝑠
Calculando los valores de (𝐻 𝑉)
𝐻 𝑉1 = 25.81 − 12.55 = 13.26
𝐻 𝑉2 = 25.58 − 12.55 = 13.03
𝐻 𝑉3 = 25.39 − 12.55 = 12.84
𝐻 𝑉4 = 24.67 − 12.55 = 12.12
𝐻 𝑉5 = 23.61 − 12.55 = 11.06
𝐻 𝑉6 = 22.41.12.55 = 9.86
Calculando los valores de (𝑒)
Formula
𝑒 =
𝐻 𝑉
𝐻 𝑆
𝑒1 =
13.26
12.55
= 1.06
𝑒2 =
13.03
12.55
= 1.04
𝑒3 =
12.84
12.55
= 1.02
𝑒4 =
12.12
12.55
= 0.97
𝑒5 =
11.06
12.55
= 0.88
𝑒6 =
9.86
12.55
= 0.79
Completamos los valores en la tabla
PRUEBA DE CONSOLIDACION EN LABORATORIO
Presión efectiva
(KN/m2)
Altura final del
espécimen al final de
la consolidación (mm)
𝐇 𝐕 = 𝐇 − 𝐇 𝐒
𝐞 =
𝐇 𝐕
𝐇 𝐒
0 25.81 13.26 1.06
50 25.58 13.03 1.04
100 25.39 12.84 1.02
200 24.67 12.12 0.97
400 23.61 11.06 0.88
800 22.41 9.86 0.79
Calculamos el índice de compresión (𝑪 𝑪)
𝐶 𝐶 =
∆𝑒
log(
𝜎2
𝜎1
)
⟹ 𝐶 𝐶 =
0.88 − 0.79
log(
800
400
)
= 0.299 = 0.3 ⟹ 𝐶 𝐶 = 0.3
VenerosonccoS
31Práctica y teoría resuelto de mecánica de suelos II
Calculamos el índice de expansión (𝑪 𝑺)
𝐶 𝑆 =
1
10
( 𝐶 𝐶)+
1
5
(𝐶 𝐶)
2
⟹ 𝐶 𝑆 =
1
10
(0.3) +
1
5
(0.3)
2
= 0.045 ⟹ 𝐶 𝑆 = 0.045
Calculamos el esfuerzo efectivo (𝝈 𝟎
,
)
𝜎0
,
= 4.5 ∗ (16.95) + 5.5 ∗ (17.75) + 3.25 ∗ (16.65)− 8.75 ∗ (9.81)
𝜎0
,
= 142.175 𝐾𝑁/𝑚2
𝟖. 𝟕𝟓 𝒆𝒔 𝒍𝒂 𝒂𝒍𝒕𝒖𝒓𝒂 𝒅𝒆𝒔𝒅𝒆 𝒆𝒍 𝒏𝒊𝒗𝒆𝒍 𝒇𝒓𝒆𝒂𝒕𝒊𝒄𝒐 𝒂 𝒍𝒂 𝒎𝒊𝒕𝒂𝒅 𝒅𝒆𝒍 𝒆𝒔𝒕𝒓𝒂𝒕𝒐 𝒅𝒆 𝒂𝒓𝒄𝒊𝒍𝒍𝒂
𝟗. 𝟖𝟏 𝒆𝒔 𝒆𝒍 𝒑𝒆𝒔𝒐 𝒆𝒔𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒐 𝒅𝒆𝒍 𝒂𝒈𝒖𝒂 𝒆𝒏 𝑲𝑵/𝒎𝟑
Otra manera de calcular (𝝈 𝟎
,
)
𝜎0
,
= 16.95 ∗ (4.5) + (17.75 − 9.81) ∗ (5.5) + (16.65 − 9.81) ∗ (3.25)
𝜎0
,
= 142.175 𝐾𝑁/𝑚2
Ahora sumamos (𝜎0
,
+ ∇𝜎)
𝜎0
,
+ ∇𝜎 = 142.175 + 58 = 200.175 𝐾𝑁/𝑚2
Analizaremos cuál de las formulas usaremos para calcular (S)
Cuando: 𝜎0
,
+ ∇𝜎 = 𝜎𝑐
,
𝑆 =
𝐶 𝐶 𝐻
1 + 𝑒0
log(
𝜎0
,
+ ∆𝜎,
𝜎0
, )
Cuando: 𝜎0
,
+ ∇𝜎 < 𝜎𝑐
,
𝑆 =
𝐶𝑆 𝐻
1 + 𝑒0
log(
𝜎0
,
+ ∆𝜎,
𝜎0
, )
VenerosonccoS
32Práctica y teoría resuelto de mecánica de suelos II
Cuando: 𝜎0
,
+ ∇𝜎 > 𝜎𝑐
,
𝑆 =
𝐶𝑆 𝐻
1 + 𝑒0
log
𝜎𝑐
,
𝜎0
, +
𝐶 𝐶 𝐻
1 + 𝑒0
log(
𝜎0
,
+ ∆𝜎,
𝜎0
, )
En el problema cumple la siguiente condición
𝜎0
,
+ ∇𝜎 > 𝜎𝑐
,
Por lo tanto utilizaremos la formula siguiente
𝑆 =
𝐶𝑆 𝐻
1 + 𝑒0
log
𝜎𝑐
,
𝜎0
, +
𝐶 𝐶 𝐻
1 + 𝑒0
log(
𝜎0
,
+ ∆𝜎,
𝜎0
, )
𝑆 =
0.045 ∗ (6.5)
1 + 0.87
log (
145
142.175
)+ (
0.3 ∗ 6.5
1 + 0.87
)log(
142.175 + 58
145
)
𝑆 = 0.1473
𝑆 = 147.3𝑚𝑚
El 145 hallamos a partir de la gráfica de la hoja logarítmica (relación de vacíos vs
presión efectiva)
VenerosonccoS
33Práctica y teoría resuelto de mecánica de suelos II
3. Un árearectangularflexible de10,50m de longitud por5,4m de ancho,aplica
una presión uniforme de 68 KN/m2 en la superficie de un estrato de 18 m de
arcilla saturada que reposa sobre un lecho rocoso. Calcular el asentamiento
diferencial inmediato entre el centro y una esquina del área cargada si las
propiedades de arcilla son: El módulo de elasticidad no drenada es 3550
KN/m2 y la relación de poisson es 0,44
Solución
Datos
𝑞 = 68 𝐾𝑁/𝑚2
𝐿 = 10.5𝑚
𝐵 = 5.4𝑚
𝐷 = 18𝑚
𝐸 = 3550
𝐾𝑁
𝑚2
𝑢 = 0.44
Calculamos (𝜹𝒊) en una esquina del área cargada
𝐿
𝐵
=
10.5
5.4
= 2} ⟹ 𝐹1 = 0.425
𝐿
𝐵
=
18
5.4
= 3.3} ⟹ 𝐹2 = 0.08
VenerosonccoS
34Práctica y teoría resuelto de mecánica de suelos II
Calculamos el factor de influencia (𝑰 𝑺)
𝐼𝑆 = 𝐹1 + (
1 − 2𝑢
1 − 𝑢
) 𝐹2 ⟹ 𝐼𝑆 = 0.425 + (
1 − 2(0.44)
1 − 0.44
)0.08 = 0.442 ⟹ 𝐼𝑆 = 0.442
Calculamos el asentamiento (𝜹𝒊)
𝛿𝑖 =
𝑞𝐵(1 − 𝑢2
)
𝐸
𝐼𝑆 ⟹ 𝛿𝑖 =
(68)(5.4)(1− 0.442)
3550
(0.442) = 36.868 𝑚𝑚
𝛿𝑖 = 36.868𝑚𝑚
Calculamos (𝜹𝒊) en el centro
𝐿
𝐵
=
5.25
2.7
= 2} ⟹ 𝐹1 = 0.58
𝐿
𝐵
=
18
2.7
= 6.7} ⟹ 𝐹2 = 0.045
Calculamos el factor de influencia (𝑰 𝑺)
𝐼𝑆 = 𝐹1 + (
1 − 2𝑢
1 − 𝑢
) 𝐹2 ⟹ 𝐼𝑆 = 0.58 + (
1 − 2(0.44)
1 − 0.44
)0.045 = 0.59 ⟹ 𝐼𝑆 = 0.59
Calculamos el asentamiento (𝜹𝒊)
𝛿𝑖 =
𝑞𝐵(1 − 𝑢2
)
𝐸
𝐼𝑆 ⟹ 𝛿𝑖 =
(68)(2.7)(1− 0.442)
3550
(0.59) = 0.024606 = 24.606𝑚𝑚
Como el (𝛿𝑖)queremos calcular en el centro multiplicamos por 4
𝛿𝑖 = 24.606(4) = 98.425𝑚𝑚
𝛿𝑖 = 98.425𝑚𝑚
VenerosonccoS
35Práctica y teoría resuelto de mecánica de suelos II
Calculamos (∆𝜹𝒊)
∆𝛿𝑖 = 98.425 − 36.868 = 61.557𝑚𝑚
∆𝛿𝑖 = 61.557𝑚𝑚
Si fuera rígida seria
𝛿𝑖 = 0.8(61.557)
𝛿𝑖 = 49.2456𝑚𝑚
Tabla para hallar los valores de 𝑭 𝟏 𝒚 𝑭 𝟐
VenerosonccoS
36Práctica y teoría resuelto de mecánica de suelos II
1. Indique que representa los puntos A, B,Y C en el diagrama de la
muestra
A: esfuerzo normal y esfuerzo cortante en el plano de falla
B: esfuerzo normal y esfuerzo cortante maximo
C: no existe
2. Cual sera la resistencia al corte de una arena saturada en la prueba
triaxial no drenada (Cu)
𝝉 = 𝑪 𝒄𝒖 + 𝝈𝒕𝒂𝒏∅ 𝒄𝒖
3. Cual sera la resistencia al corte de una arena saturada en la prueba
triaxial no drenada (UU)
𝝉 = 𝑪 𝒄𝒖
4. Que es la Sensitividad de un suelo
Es la resistencia a compresión simple es considerablemente reducida cuando los
suelos se prueba después de ser remoldados sin ningún cambio en el contenido de
agua
5. En un plano de suelo el esfuerzo tensional de los esfuerzos totales es:
esfuerzo normal 2.98 ton/m2, esfuerzo tangencial 1.99ton/m2, si la
presión de poro es 0.07 kg/m2. Cuanto valdrán los esfuerzos efectivos
normales y tangenciales
𝟏. 𝟗𝟗 = 𝟐. 𝟗𝟖𝒕𝒐𝒏∅
𝒕𝒂𝒏−𝟏
(
𝟏.𝟗𝟗
𝟐.𝟗𝟖
) = ∅ → ∅ = 𝟑𝟑. 𝟕𝟑°
𝟎. 𝟎𝟕
𝒌𝒎
𝒎𝟐
=
𝟎. 𝟎𝟕
𝟏𝟎𝟎𝟎
∗
𝟏𝟎𝟎𝟎
𝟏𝟎−𝟒
= 𝟕𝟎𝟎𝒌𝒈 →
𝟕𝟎𝟎
𝟏𝟎𝟎𝟎
= 𝟎. 𝟕𝒕𝒐𝒏/𝒎𝟐
𝝈,
= 𝟐. 𝟗𝟖 − 𝟎. 𝟕 = 𝟐.
𝟐𝟖𝒕𝒐𝒏
𝒎𝟐
VenerosonccoS
37Práctica y teoría resuelto de mecánica de suelos II
𝝉,
= 𝟐. 𝟐𝟖𝒕𝒐𝒏 ∗ 𝟑𝟑. 𝟕𝟑° = 𝟏. 𝟓𝟐𝒕𝒐𝒏/𝒎𝟐
6. Cuáles son los parámetros de resistencia al corte y deformación de los
suelos y como se determina
Los parámetros son: esfuerzos totales (∅, 𝐶) y esfuerzos efectivos (∅,
, 𝐶,
)
Se determinan mediante los siguientes ensayos
 Corte directo, compresión y ensayo Triaxiales
7. De qué manera se pueden obtener parámetros de resistencia al corte a
mediano plazo de un suelo
Se puede determinar mediante pruebas; corte directo, consolidado no drenado
(CU), no consolidado no drenado (UU)
8. Describa el ensayo triaxial (UU) y grafique la distribución de los
esfuerzos totales y efectivos
Etapa 01: La muestra del suelo se somete a esfuerzos efectivos hidrostáticos 𝜎3 y
no se permite consolidar ni drenar (válvula de drenaje cerrada) produciéndose
una presión de poro neutral 𝜇1
Etapa 02: la muestra se lleva a la falla con aplicación de un esfuerzo desviador 𝑃,,
actuante manteniendo la válvula de drenaje cerrado de modo que se desarrolla en
el agua
9. Describa el ensayo triaxial (CU) y grafique la distribución de los
esfuerzos totales y efectivos
Etapa 01: la muestra del suelo es sometido a esfuerzos hidrostáticos 𝜎3 y se espera
que se consolide manteniendo la válvula de drenaje abierta hasta que la presión
de poro sea cero
Etapa 02: la muestra se lleva a la falla con aplicación de un esfuerzo desviador
axial 𝑃,
actuante con la válvula de drenaje cerrada (sin drenar la muestra) de modo
que no se permite ninguna consolidación adicional al espécimen produciéndose
una presión de poro 𝜇 o sea que los esfuerzos efectivos ya no son iguales a los
esfuerzos totales
VenerosonccoS
38Práctica y teoría resuelto de mecánica de suelos II
10.Describa el ensayo triaxial (CD) y grafique la distribución de los
esfuerzos totales y efectivos
Etapa 01: la muestra del suelo es sometido a esfuerzos hidrostáticos 𝜎3 y luego se
espera a que se consolide manteniendo la válvula de drenaje abierta hasta que la
presión de poro sea igual a cero
Etapa 02: la muestra se lleva a la falla con incrementos P permitiendo su completa
consolidación bajo cada incremento de carga y manteniendo siempre la válvula de
drenaje abierta
11.Qué ventajas representa la medición de la presión de poro en la
prueba triaxial (CU)
Representa un ahorro de tiempo considerable en comparación con la prueba
triaxial CD que requiere mayor tiempo, el precio es más económico
12.Que representa un punto cualquiera en el círculo de Mohr
Representa el lugar geométrico del esfuerzo normal y cortante en un plano de falla
13.Que se entiende por cohesión aparente y en qué tipo de suelos se
presenta
Se genera debido a una fuerza provocado por la tensión superficial del agua
existente en la masa del suelo y se presenta en las arenas húmedas
14.Que se entiende por cohesión verdadera y en qué tipo de suelos se
presenta
La cohesión verdadera es la atracción eléctrica molecular entre las partículas de
los suelos finos y se presenta en los suelos finos
15.De qué factores depende la resistencia al corte en los suelos cohesivos
a) El grado de saturación (contenido de agua W%)
b) Condiciones de drenaje
c) El grado de consolidación
d) Origen mineralógico (caolín son diferentes)
VenerosonccoS
39Práctica y teoría resuelto de mecánica de suelos II
e) Condiciones de carga (ensayo de laboratorio)
16.De qué depende la resistencia al corte en los suelos friccionantes
granulares
a) La granulometría de los suelos (como ordenamiento)
b) Tamaño de partículas de los suelos
c) Forma de las partículas de los suelos
d) El grado de compactación de los suelos
e) Relación de vacíos inicial
f) Estructura del suelo
g) El grado de saturación (va a depender de las condiciones de drenaje)
h) Componentes mineralógicos en las partículas
i) Tipo de carga (ensayos de laboratorio)
1) Se llevaron a cabo tres ensayos Triaxiales consolidados sin drenar con los
siguientes resultados
ENSAYO PRESION DE
CAMARA KPa
ESFUERZO
DESVIADOR KPa
PRESION DE
PORO KPa
1 0 145.5 0
2 68 288.8 58.3
3 145.5 382.0 108.5
Se pide calcular los parámetros de resistencia al esfuerzo
Solución
Calculamos los valores para la siguiente tabla que usaremos para la solución del
ejercicio
Hallamos los valores de ( 𝛔)
σ1 = 0 + 145.5 = 145.5
σ2 = 288.8 + 68 = 356.8
VenerosonccoS
40Práctica y teoría resuelto de mecánica de suelos II
σ3 = 382.0 + 145.5 = 527.5
Hallamos los valores de ( 𝛔 𝟏
,
)
σ1−1
,
= 145.5 − 0 = 145.5
σ1−2
,
= 356.8 − 58.3 = 298.5
σ1−3
,
= 527.5 − 108.5 = 419
Hallamos los valores de ( 𝛔 𝟑
,
)
σ3−1
,
= 0 − 0 = 0
σ3−2
,
= 68 − 58.3 = 9.7
σ3−3
,
= 145.5 − 108.5 = 37
Los resultados obtenidos colocamos en la tabla siguiente
tabla 1-primero 2-segundo
NUMERO 𝝈 𝟏 𝝈 𝟑 𝝈 𝟏
,
𝝈 𝟑
,
1 145.5 0 145.5 0
2 356.8 68 298.5 9.7
3 527.5 145.5 419 37
1-primero
Para el ensayo 1-2
(−)145.5 = 0 ∗ tan (45 +
∅
2
) + 2𝐶 ∗ tan(45 +
∅
2
) 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛 01
356.8 = 68 ∗ tan (45 +
∅
2
) + 2𝐶 ∗ tan (45 +
∅
2
) 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛 02
211.3 = 68 ∗ tan (45 +
∅
2)… … … …… … …… … …… … … . .I
De laecuación I hallamos el Angulo de fricción ( ∅)
211.3
68
= 3.107352941 ⟹ √3.107352941 = 1.762768544
⇒ 𝑡𝑎𝑛−1(1.762768544) = 60.43421518 ⟹ 60.43421518 − 45 = 15.43421518
⇒ 15.43421518 ∗ 2 = 30.86843035
∅ = 30.868
De laecuación01 hallamosel Angulode cohesión(C)
145.5 = 0 ∗ tan (45 +
∅
2
) + 2𝐶 ∗ tan (45 +
∅
2
)
VenerosonccoS
41Práctica y teoría resuelto de mecánica de suelos II
𝐶 =
145.5 − 0 ∗ tan(45 +
∅
2
)
2
2 ∗ tan(45 +
∅
2
)
𝐶 =
145.5 − 0 ∗ tan(45 +
30.868
2
)2
2 ∗ tan(
30.868
2
)
𝐶 = 41.270
Para el ensayo 2-3
(−)356.8 = 68 ∗ tan (45 +
∅
2
) + 2𝐶 ∗ tan (45 +
∅
2
) 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛 03
527.5 = 145.5 ∗ tan (45 +
∅
2
) + 2𝐶 ∗ tan (45 +
∅
2
) 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛 04
170.7 = 77.5 ∗ 𝑡𝑎𝑛 (45 +
∅
2
) …… … …… … …… . … … …… … …. . 𝐼𝐼
De la ecuación 𝐼𝐼 hallamos el Angulo de fricción ( ∅)
170.7
77.5
= 2.202580645 ⟹ √2.202580645 = 1.484109378
⟹ 𝑡𝑎𝑛−1(1.484109378) = 56.02772171 ⟹ 56.02772171− 45 = 11.02772171
⟹ 11.02772171 ∗ 2 = 22.05544342
∅ = 22.055
De la ecuación 03 hallamos el Angulo de cohesión (C)
356.8 = 68 ∗ tan (45 +
∅
2
) + 2𝐶 ∗ tan(45 +
∅
2
)
𝐶 =
356.8− 68 ∗ tan(45 +
∅
2
)
2
2 ∗ tan(45 +
∅
2)
𝐶 =
356.8− 68 ∗ tan(45 +
22.055
2
)
2
2 ∗ tan(45 +
22.055
2
)
𝐶 = 69.748
Para el ensayo 1-3
VenerosonccoS
42Práctica y teoría resuelto de mecánica de suelos II
(−)145.5 = 0 ∗ tan(45 +
∅
2
) + 2𝐶 ∗ tan (45 +
∅
2
) 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛 05
527.5 = 145.5 ∗ tan (45 +
∅
2
) + 2𝐶 ∗ tan (45 +
∅
2
) 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛 06
382 = 145.5 ∗ tan (45 +
∅
2
)… … …… … …… … … …… … …. . III
De la ecuación 𝐼𝐼𝐼 hallamos el Angulo de fricción ( ∅)
382
145.5
= 2.625429553 ⟹ √2.625429553 = 1.620317732
⟹ 𝑡𝑎𝑛−1(1.620317732) = 58.31865442 ⟹ 58.31865442− 45 = 13.31865442
⟹ 13.31865442 ∗ 2 = 26.637
∅ = 26.637
De la ecuación 05 hallamos el Angulo de cohesión (C)
145.5 = 0 ∗ tan (45 +
∅
2
) + 2𝐶 ∗ tan (45 +
∅
2
)
𝐶 =
145.5 − 0 ∗ tan(45 +
∅
2
)
2
2 ∗ tan (45 +
∅
2
)
𝐶 =
145.5 − 0 ∗ tan(45 +
26.637
2
)
2
2 ∗ tan (45 +
26.637
2
)
𝐶 = 44.898
Promediode losángulosde fricción ∅ yángulosde cohesión(C) (1-primero)
∅ = 26.52
𝐶 = 51.972
2-segundo
Para el ensayo 1-3
(−)145.5 = 0 ∗ tan (45 +
∅
2
) + 2𝐶 ∗ tan (45 +
∅
2
) 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛 01− 1
298.5 = 9.7 ∗ tan (45 +
∅
2
) + 2𝐶 ∗ tan (45 +
∅
2
) 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛 02 − 2
153 = 9.7 ∗ tan (45 +
∅
2
) … …… … …… … …… … … …… . . IV
De la ecuación 𝐼𝑉 hallamos el Angulo de fricción ( ∅)
VenerosonccoS
43Práctica y teoría resuelto de mecánica de suelos II
153
9.7
= 15.77319588 ⟹ √15.77319588 = 3.971548297
⟹ 𝑡𝑎𝑛−1(3.971548297) = 75.86721844 ⟹ 75.8672184− 45 = 30.86721844
⟹ 30.86721844 ∗ 2 = 61.73443687
∅ = 61.734
De la ecuación 01 − 1 hallamos el Angulo de cohesión (C)
145.5 = 0 ∗ tan (45 +
∅
2
) + 2𝐶 ∗ tan (45 +
∅
2
)
𝐶 =
145.5 − 0 ∗ tan(45 +
∅
2
)
2
2 ∗ tan (45 +
∅
2
)
𝐶 =
145.5 − 0 ∗ tan(45 +
61.734
2
)
2
2 ∗ tan (45 +
61.734
2
)
𝐶 = 18.318
Para el ensayo 2-3
(−)298.5 = 9.7 ∗ tan(45 +
∅
2
) + 2𝐶 ∗ tan (45 +
∅
2
) 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛 03− 3
419 = 37 ∗ tan (45 +
∅
2
) + 2𝐶 ∗ tan(45 +
∅
2
) 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛 04 − 4
120.5 = 27.3 ∗ tan (45 +
∅
2
)… … …… … … …… … …… … …… . . V
De la ecuación 𝑉 hallamos el Angulo de fricción ( ∅)
120.5
27.3
= 4.413919414 ⟹ √4.413919414 = 2.100932987
⟹ 𝑡𝑎𝑛−1(2.100932987) = 64.54653236 ⟹ 64.54653236− 45 = 19.54653236
⟹ 19.54653236 ∗ 2 = 39.09306472
∅ = 39.093
De la ecuación 03 − 3 hallamos el Angulo de cohesión (C)
298.5 = 9.7 ∗ tan (45 +
∅
2
) + 2𝐶 ∗ tan (45 +
∅
2
)
VenerosonccoS
44Práctica y teoría resuelto de mecánica de suelos II
𝐶 =
298.5 − 9.7 ∗ tan (45 +
∅
2
)
2
2 ∗ tan (45 +
∅
2
)
𝐶 =
298.5 − 9.7 ∗ tan (45 +
39.093
2
)
2
2 ∗ tan (45 +
39.093
2
)
𝐶 = 60.850
Para el ensayo 1-3
(−)145.5 = 0 ∗ tan (45 +
∅
2
) + 2𝐶 ∗ tan (45 +
∅
2
) 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛 05 − 5
419 = 37 ∗ tan (45 +
∅
2
) + 2𝐶 ∗ tan(45 +
∅
2
) 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛 06 − 6
273.5 = 37 ∗ tan (45 +
∅
2
) … …… … … …… … …… … …… . . VI
De la ecuación 𝑉𝐼 hallamos el Angulo de fricción ( ∅)
273.5
37
= 7.391891892 ⟹ √7.391891892 = 2.718803393
⟹ 𝑡𝑎𝑛−1(2.718803393) = 69.80603031 ⟹ 69.80603031− 45 = 24.80603031
⟹ 24.80603031 ∗ 2 = 49.61206062
∅ = 49.612
Promediode losángulosde fricción ∅ yángulosde cohesión(C) (2-segundo)
∅ = 50.146
𝐶 = 35.308
Respuestas
(1-primero)
∅ = 26.52
𝐶 = 51.972
(2-segundo)
∅ = 50.146
VenerosonccoS
45Práctica y teoría resuelto de mecánica de suelos II
𝐶 = 35.308
2) A continuación de dan los resultados de cuatro pruebas de corte directo con
drenaje sobre una arcilla normalmente saturada
 Diámetro del espécimen=59mm
 Altura del espécimen=28mm
PRUEBA
N°
FUERZA
NORMAL (N)
FUERZA
CORTANTE EN
LA FALLA (N)
ESFUERZO
NORMAL (𝝈)
ESFUERZO
CORTANTE
EN LA FALLA
(𝝉)
1 276 125.6
2 412.25 175.64
3 480 209.1
4 547.65 249.3
a) Dibuje una gráfica de esfuerzo cortante en la falla versus el esfuerzo normal
b) Determinar el ángulo de fricción drenado a partir de la grafica
Solución
Hallamos los esfuerzos normales (σ)
Usaremos la siguiente fórmula para calcular los esfuerzos normales
𝝈 =
𝒇𝒖𝒆𝒓𝒛𝒂 𝒏𝒐𝒓𝒎𝒂𝒍 ∗ 𝟏𝟎−𝟑
𝑲𝑵
𝝅
𝟒 ∗ (𝑫) 𝟐 ∗ 𝟏𝟎−𝟔 𝑲𝑵
Primero hallamos el área para el problema
𝐴 =
𝜋
4
∗ ( 𝐷)2
⟹ 𝐴 =
𝜋
4
∗ (59)2
= 2733.971 𝑚𝑚
𝐴 = 2733.971 𝑚𝑚
𝜎1 =
276 ∗ 10−3
2733.971 ∗ 10−6
= 100.95
𝜎2 =
412.25 ∗ 10−3
2733.971 ∗ 10−6
= 150.78
𝜎3 =
480 ∗ 10−3
2733.971 ∗ 10−6
= 175.56
VenerosonccoS
46Práctica y teoría resuelto de mecánica de suelos II
𝜎4 =
547.65 ∗ 10−3
2733.971 ∗ 10−6
= 200.31
Hallamos los esfuerzos cortantes en la falla (𝜏)
Usaremos la siguiente fórmula para calcular los esfuerzos cortantes en la falla
𝝉 =
𝒇𝒖𝒆𝒓𝒛𝒂 𝒄𝒐𝒓𝒕𝒂𝒏𝒕𝒆∗ 𝟏𝟎−𝟑
𝑲𝑵
𝝅
𝟒
∗ (𝑫) 𝟐 ∗ 𝟏𝟎−𝟔 𝑲𝑵
𝜏1 =
125.6 ∗ 10−3
2733.971 ∗ 10−6
= 45.94
𝜏2 =
175.64 ∗ 10−3
2733.971 ∗ 10−6
= 64.24
𝜏3 =
209.1 ∗ 10−3
2733.971 ∗ 10−6
= 76.48
𝜏4 =
249.3 ∗ 10−3
2733.971 ∗ 10−6
= 91.18
Los resultados obtenidos los completamos en la tabla siguiente del problema
PRUEBA
N°
FUERZA
NORMAL (N)
FUERZA
CORTANTE EN
LA FALLA (N)
ESFUERZO
NORMAL (𝝈)
ESFUERZO
CORTANTE
EN LA FALLA
(𝝉)
1 276 125.6 100.95 45.94
2 412.25 175.64 150.78 64.24
3 480 209.1 175.56 76.48
4 547.65 249.3 200.31 91.18
Con los datos calculados dibujamos la gráfica en la hoja logarítmica
VenerosonccoS
47Práctica y teoría resuelto de mecánica de suelos II
Hallamos (∅)
∅1 = 𝑡𝑎𝑛−1
(
45.94
100.95
) = 24°
28,
9.05,,
∅2 = 𝑡𝑎𝑛−1
(
64.24
150.78
) = 23°
4,
35.35,,
∅1 = 𝑡𝑎𝑛−1
(
76.48
175.56
) = 23°
32,
22.58,,
∅1 = 𝑡𝑎𝑛−1
(
91.18
200.31
) = 23°
53,
24.03,,
Promedio de los (∅)
∅ = 23°
44,
37.75,,
∅ = 23.74
Comprobar en la gráfica con un transportador el promedio calculado del ángulo de
fricción (∅)
3) A un cilindro de suelo cemento al que no se le ha aplicado esfuerzo principal
menor (𝜎3 = 0) se le aplica un esfuerzo principal mayor (𝜎1) que se
incrementa lentamente. Si la envolvente de falla pasa por el punto cuyas
VenerosonccoS
48Práctica y teoría resuelto de mecánica de suelos II
coordenadas son (0.2) con una pendiente hacia arriba y hacia la derecha de
20° calcular
a) La máxima carga axial cuando se produce la falla
b) Los esfuerzos normales y cortantes en el plano de falla
c) El ángulo del plano de falla
Solución
Solución grafica
Solución analítica
 2𝜃 = 90° + ∅ ⟹ 𝜃 = 45 +
∅
2
⟹ 𝜃 = 45 +
20
2
= 55°
 Ecuación línea de falla
𝜏 = 𝜎𝑡𝑎𝑛∅ + 𝑐
𝜏 = 𝜎𝑡𝑎𝑛∅ + 2
En el momento de falla
𝜏𝑓 = 𝜎𝑓 𝑡𝑎𝑛20° + 2 … …… … (1)
VenerosonccoS
49Práctica y teoría resuelto de mecánica de suelos II
Por ecuación
𝜏𝑓 =
𝜎1 − 𝜎3
2
𝑠𝑒𝑛2𝜃
𝜏𝑓 =
𝜎1
2
𝑠𝑒𝑛2(55°) ⟹ 𝜏𝑓 = 𝜎1
1
2
𝑠𝑒𝑛2(55°) = 0.47𝜎1 ⟹ 𝜏𝑓 = 0.47𝜎1 … …… … . (2)
𝜎𝑓 =
𝜎1 + 𝜎3
2
+
𝜎1 − 𝜎3
2
𝑐𝑜𝑠2𝜃
𝜎𝑓 =
𝜎1
2
+
𝜎1
2
𝑐𝑜𝑠2(55°) ⟹ 𝜎𝑓 =
𝜎1
2
+
𝜎1
2
cos(110°)
𝜎𝑓 =
𝜎1
2
(1 + cos(110°)) ⟹ 𝜎𝑓 = 𝜎1
1
2
(1 + cos(110°)) = 0.329𝜎1 … …… … . (3)
Reemplazando (2) y (3) en (1)
𝜏𝑓 = 𝜎𝑓 𝑡𝑎𝑛20° + 2 … …… … (1)
0.47𝜎1 = 2 + 0.329𝜎1 𝑡𝑎𝑛20°
0.47𝜎1 − 0.329𝜎1 𝑡𝑎𝑛20° = 2
𝜎1(0.47 − 0.329𝜎1 𝑡𝑎𝑛20°) = 2
𝜎1(0.350) = 2
𝜎1 (𝑓) =
2
0.350
= 5.71… …. 𝑓𝑎𝑙𝑙𝑎
𝜎𝑓 = 0.329(5.71) = 2.684
𝜏𝑓 = 0.47(5.71) = 1.871
VenerosonccoS
50Práctica y teoría resuelto de mecánica de suelos II
17.Que entiendes por estado de equilibrio activo
 extensión del relleno
 elemento de contención es presionado por el relleno
18.Que entiendes por estado de equilibrio pasivo
 contracción del terreno
 elemento de contención presiona al terreno
19.Grafique Ud. los círculos de Mohr de los estados de equilibrio plástico
activo y pasivo para una arena limpia
20.En qué casos se presenta el empuje pasivo –ponga un ejemplo
 contracción del terreno
 elemento de contención presiona al terreno
VenerosonccoS
51Práctica y teoría resuelto de mecánica de suelos II
21.En qué casos se presenta el empuje activo –ponga un ejemplo
 extensión del relleno
 elemento de contención es presionado por el relleno
22. Que entiendes por esfuerzo admisible y como se calcula en los casos
de
a) Suelos puramente cohesivos
b) Suelos puramente friccionantes
Es el esfuerzo con el cual se diseña las cimentaciones de las estructuras
𝑎) 𝑞 𝑎𝑑𝑚 =
𝐶𝑁𝑐
𝐹𝑆
+ 𝛾, 𝐷𝐹𝑁𝑞 𝑏) 𝑞 𝑎𝑑𝑚 =
𝑞𝑐
𝐹𝑠
23.Que es profundidad activa de cimentación
Es la profundidad hasta donde surten los efectos de falla por corte de
cimentación
24.Para determinar la capacidad de carga de los suelos, en qué casos y en
qué tipo de suelo se aplica en criterio de falla localizada
Se da generalmente en terrenos de arena de densidad suelta a media. En
este tipo de falla, las superficies de falla, a diferencia de la falla por corte
General, terminan en algún lugar dentro del suelo.
VenerosonccoS
52Práctica y teoría resuelto de mecánica de suelos II
25.Cuál es la razón por la que la teoría de capacidad de carga de Terzaghi
es solo aplicable a cimentaciones superficiales
Debido a que para Terzaghi la cimentación es superficial si la profundidad
DF de la cimentación es menor o igual al ancho de la misma
26.Indique tres diferencias entre las teorías de capacidad de carga de
Terzaghi y Meyerhof
Terzaghi:
1) ∅ 𝑛𝑜 𝑠𝑒 𝑐𝑜𝑟𝑟𝑖𝑔𝑒
2) 𝑞𝑐 = 𝛾1 𝐷𝐹𝑁𝑞 + 0.5𝛾2 𝑁𝛾
3) 𝑒𝑠 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑑𝑜𝑟
4) 𝑞𝑢 = 𝑐𝑁𝑐 + 𝑞𝑁𝑞 + 1
2⁄ 𝛾𝐵𝑁𝛾
5)
𝐷𝑓
𝐵⁄ ≤ 1
Meyerhof:
1) ∅ 𝑐𝑜𝑟𝑟𝑒𝑔𝑖𝑑𝑜 𝑒𝑠 ∅ 𝑟
2) 𝑞𝑐 = 𝑑0 1 𝛾1 𝐷𝐹𝑁𝑞 + 0.5𝑑𝛾𝐺𝑁𝛾
3) 𝑛𝑜 𝑒𝑠 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑑𝑜𝑟
4) 𝑞𝑢 = 𝑐𝑁𝑐𝐹𝑐𝑠𝐹𝑐𝑑𝐹𝑐𝑖 + 𝑞𝑁𝑞𝐹𝑞𝑠𝐹𝑞𝑑𝐹𝑞𝑖 + 1
2⁄ 𝛾𝐵𝑁𝛾𝐹𝛾𝑠𝐹𝛾𝑑𝐹𝛾𝑖
27.Grafique Ud. los círculos de Mohr de los estados de equilibrio plástico
y pasivo para un suelo cohesivo friccionantes
VenerosonccoS
53Práctica y teoría resuelto de mecánica de suelos II
28.En qué tipo de suelos y en qué casos se aplica el criterio de falla
generalizada
Se da cuando la carga sobre la fundación alcanza la carga última de apoyo,
qu, y la fundación tiene un asentamiento grande sin ningún incremento
mayor de carga. Se presenta en arenas densas y arcillas rígidas
29.En la teoría de capacidad de carga por corte- cuáles son los tipos
clásicos de falla localizada que se presentan bajo las cimentaciones
El tipo de falla depende de la compresibilidad del suelo, por lo tanto si una
zapata que se apoya sobre arena compactada, falla normalmente por corte
general, mientras que la misma zapata sobre una arena densa falla por
puzonamineto
VenerosonccoS
54Práctica y teoría resuelto de mecánica de suelos II
1. Diseñar un muro a gravedad para salvar un desnivel de 2,80 m, si la
profundidad de cimentación es de 70 cm y la capacidad admisible del suelo
es 10 ton/m2. El suelo está constituido por una arcilla arenosa de peso
específico 1,80 ton /m3 con un ángulo de fricción de 30° (Peso específico del
concreto 2350 kg/m3)
Solución
Datos:
 Capacidad admisible del suelo 10 tn/m2
 Peso específico del suelo 1.80 tn/m2
 Angulo de fricción 30°
 Peso específico del concreto 2350kg/m3………………..2.30 tn7m3
 Corona 0.30 ….sabemos por teoría
 Profundidad de cimentación 0.70 m
VenerosonccoS
55Práctica y teoría resuelto de mecánica de suelos II
Diseño del muro
Por teoría sabemos
VenerosonccoS
56Práctica y teoría resuelto de mecánica de suelos II
En el problema utilizaremos 0.15H y 0.55H por seguridad (también podemos
trabajar con los otros valores)
Para la altura de la zapata
0.15H ⟹ 0.15(2.80) = 0.42
Trabajamos con el valor entero (0.40)
Para la base de la zapata
0.55H ⟹ 0.55(2.80) = 1.54
Trabajamos con el valor entero (1.50)
Para el talón y la punta de la zapata
0.15H ⟹ 0.15(2.80) = 0.42
Trabajamos con el valor entero (0.40)
Pre diseño
VenerosonccoS
57Práctica y teoría resuelto de mecánica de suelos II
Calculo de pesos
Tabla para completar datos
VenerosonccoS
58Práctica y teoría resuelto de mecánica de suelos II
grafico N° Base
b(m)
Altura
h(m)
W mat
tn/m3
W (t) Brazo
(m)
Momento
(t.m)
W1 1 1.50 0.40 2.30
W2 1 0.30 2.40 2.30
W3 0.50 0.40 2.40 2.30
W4 0.50 0.40 2.40 1.80
W5 1 0.40 2.40 1.80
Datos obtenidos del muro
BASE: En el cuadro anotamos la base de cada figura (triangulo, rectángulo)
ALTURA: En el cuadro anotamos la altura de cada figura (triangulo, rectángulo)
W mat tn/m3: Es el peso específico del material. Como podemos ver el (W1, W2,
W3) están dentro del muro de concreto por lo tanto el peso específico para (W1,
W2, W3) es de 2.30 tn/m3, y el peso específico para (W4, W5) será de 1.80 tn/m3
por que están dentro del material de relleno (suelo)
Calculamos (W (t))
Para calcular W (t) tener en cuenta la figura si es un triángulo o un rectángulo
Para un rectángulo
𝐴 = 𝑏 ∗ ℎ
Para un triangulo
𝐴 =
𝑏 ∗ ℎ
2
𝐰𝐭 = 𝐛 ∗ 𝐡 ∗ 𝐩𝐞𝐬𝐨 𝐞𝐬𝐩𝐞𝐜𝐢𝐟𝐢𝐜𝐨 𝐝𝐞𝐥 𝐦𝐚𝐭𝐞𝐫𝐢𝐚𝐥 𝐞𝐧 𝐜𝐚𝐝𝐚 𝐟𝐢𝐠𝐮𝐫𝐚
wt1▭ = (1.50)(0.40)(2.30) = 1.38
wt2▭ = (0.30)(2.40)(2.30) = 1.656
wt3△ =
(0.40)(2.40)
2
(2.30) = 1.104
wt4△ =
(0.40)(2.40)
2
(1.80) = 0.864
wt5▭ = (0.40)(2.40)(1.80) = 1.728
Calculamos los brazos
VenerosonccoS
59Práctica y teoría resuelto de mecánica de suelos II
Para calcular los brazos tener en cuenta la figura si es un triángulo o un rectángulo
Tomar un punto de referencia en la figura (muro), del punto de referencia a la
mitad de cada figura (en el caso de los triángulos a la tercera parte de la figura)
𝐵1▭ =
1.50
2
= 0.75
𝐵2▭ = 0.40 +
0.30
2
= 0.55
𝐵3△ = 0.40 + 0.30 +
0.40
3
= 0.83
𝐵4△ = 0.40 + 0.30 +
2(0.40)
3
= 0.97
𝐵5▭ = 0.40 + 0.30 + 0.40 +
0.40
2
= 1.30
Calculo de momentos
VenerosonccoS
60Práctica y teoría resuelto de mecánica de suelos II
M = w(t) ∗ (brazo)
M1 = (1.38)(0.75) = 1.035
M2 = (1.656)(0.55) = 0.911
M3 = (1.104)(0.83) = 0.920
M4 = (0.864)(0.97) = 0.838
M5 = (1.728)(1.30) = 2.246
Los valores calculamos colocamos en la tabla
grafico N° Base
b(m)
Altura
h(m)
W mat
tn/m3
W (t) Brazo
(m)
Momento
(t.m)
W1 1 1.50 0.40 2.30 1.38 0.75 1.035
W2 1 0.30 2.40 2.30 1.656 0.55 0.911
W3 0.50 0.40 2.40 2.30 1.104 0.83 0.920
W4 0.50 0.40 2.40 1.80 0.864 0.97 0.838
W5 1 0.40 2.40 1.80 1.728 1.30 2.246
Datos obtenidos del muro 6.73 5.944
Calculo de empujes
Cah =
1 − sen∅
1 + sen∅
⟹ Cah =
1 − sen(30)
1 + sen(30)
= 0.33 ⟹ Cah = 0.33
Cph =
1 + sen∅
1 − sen∅
⟹ Cah =
1 + sen(30)
1 − sen(30)
= 3 ⟹ Cah = 3
Empuje activo
Eah =
1
2
(Cah)(γ)(h2) ⟹ Eah =
1
2
(0.33)(1.80)(2.802) = 2.350 tn
Eah = 2.350 tn
Eap =
1
2
(Cph)(γ)(h2) ⟹ Eah =
1
2
(3)(1.80)(0.72) = 1.323 tn
Eap = 1.323 tn
Seguridad al volcamiento
VenerosonccoS
61Práctica y teoría resuelto de mecánica de suelos II
 Momento de estabilización (Me)=5944
 Momento de volcamiento (Mv)
MV = Eah (
h
3
) ⟹ MV = 2.350(
2.80
3
) = 2.193 tn
FSV =
Me
MV
≥ 2.00
FSV =
5.944
2.193
= 2.71 > 2.00
Seguridad al deslizamiento
TABLA
Material factor
Arena o gruesa sin limo 0.50-0.70
Materiales granulares gruesos con limo 0.45
Arena o grava fina 0.40-0.60
Arcillas densas 0.30-0.50
Arcillas blandas o limo 0.20-0.30
FSD =
Fr + EP
∑ Fd
=
f(∑V) + EP
∑ Fd
⟹ FSD =
(0.50)(6.73)+ 1.323
2.350
= 2.00 tn
∑ 𝑉 = 6.73 𝑡𝑛 (𝑠𝑢𝑚𝑎𝑡𝑜𝑟𝑖𝑎 𝑑𝑒 𝑙𝑎𝑠 𝑓𝑢𝑎𝑟𝑧𝑎𝑠 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑒𝑠, 𝑝𝑒𝑠𝑜 𝑑𝑒𝑙 𝑚𝑢𝑟𝑜 𝑦 𝑟𝑒𝑙𝑙𝑒𝑛𝑜)
𝑓 = 0.50 …… … 𝑡𝑎𝑏𝑙𝑎
𝐸 𝑃 = 1.323 𝑡𝑛 ⟹ empuje pasivo
∑ 𝐸𝑑 = 2.350 𝑡𝑛 ⟹ empuje actvo
Sumatoria de las fuerzas a favor del deslizamiento
Seguridad ante la falla por capacidad de carga
Calculo de excentricidad
e =
B
2
−
Me − MV
∑ V
Excentricidad: la resultante a todos los pesos [c°-suelo]
VenerosonccoS
62Práctica y teoría resuelto de mecánica de suelos II
Me = 5.944 tn
MV = 2.193 tn
∑ V = 6.75 tn
e =
1.50
2
−
5.944 − 2.193
6.73
= 0.193 m = 19.3 cm
B
6
=
1.50
6
= 0.25 cm e <
B
6
qmax =
∑ V
B
(1 +
6e
B
) ⟹ qmax =
6.73
1.50
(1 +
6(0.193)
1.50
= 7.95
𝑡𝑛
𝑚2
< 10
𝑡𝑛
𝑚2
qmin =
∑ V
B
(1 −
6e
B
) ⟹ qmax =
6.73
1.50
(1 −
6(0.193)
1.50
= 1.022
𝑡𝑛
𝑚2
VenerosonccoS
63Práctica y teoría resuelto de mecánica de suelos II
2. Calcular el empuje activo que actúa sobre el muro mostrado en la figura.
Dibujar los diagramas de esfuerzos y calcular el punto de aplicación de la
resultante del empuje actico
Solución
Coeficientes activos del plano de falla
Utilizaremos la siguiente fórmula para (Suelos friccionantes)
𝐾𝐴 = 𝑡𝑎𝑛2
(45 −
∅
2
)
𝐾𝐴1 = 𝑡𝑎𝑛2
(45 −
35
2
) = 0.270 ⟹ 𝐾𝐴1 = 0.270
𝐾𝐴2 = 𝑡𝑎𝑛2
(45 −
30
2
) = 0.333 ⟹ 𝐾𝐴1 = 0.333
Diagramas de esfuerzos horizontales
Para suelos friccionantes
𝜎𝐻 = 𝐾𝐴 𝜎,
𝑉
En la superficie
𝜎𝑉 = 6
𝑡𝑛
𝑚2
𝑢 = 0
𝜎,
𝑉 = 6
𝑡𝑛
𝑚2
𝜎𝐻 = (𝐾 𝐴1)𝜎,
𝑉 ⟹ 𝜎𝐻 = 0.270 ∗ 6 = 1.62
𝑡𝑛
𝑚2
⟹ 𝜎𝐻 = 1.62
𝑡𝑛
𝑚2
Cambio de estrato
𝜎𝑉 = 6 ∗ +4 ∗ (1.7) = 12.8 𝑡𝑛/𝑚2
𝑢 = 0
𝜎,
𝑉 = 12.8
𝑡𝑛
𝑚2
VenerosonccoS
64Práctica y teoría resuelto de mecánica de suelos II
𝜎𝐻 = (𝐾 𝐴1)𝜎,
𝑉 ⟹ 𝜎𝐻 = 0.270 ∗ 12.8 = 3.456
𝑡𝑛
𝑚2
⟹ 𝜎𝐻 = 3.456
𝑡𝑛
𝑚2
𝜎,
𝑉 = 12.8
𝑡𝑛
𝑚2
𝜎𝐻 = (𝐾 𝐴2)𝜎,
𝑉 ⟹ 𝜎𝐻 = 0.333 ∗ 12.8 = 4.262
𝑡𝑛
𝑚2
⟹ 𝜎𝐻 = 4.262
𝑡𝑛
𝑚2
En el nivel freático
𝜎𝑉 = 12.8 + 3 ∗ (1.96) = 18.68 𝑡𝑛/𝑚2
𝑢 = 0
𝜎,
𝑉 = 18.68
𝑡𝑛
𝑚2
𝜎𝐻 = (𝐾 𝐴2)𝜎,
𝑉 ⟹ 𝜎𝐻 = 0.333 ∗ 18.68 = 6.220
𝑡𝑛
𝑚2
⟹ 𝜎𝐻 = 6.220
𝑡𝑛
𝑚2
En la base
𝑢 = 𝛾𝑤 ∗ ℎ 𝑤 ⟹ 𝑢 = 1 ∗ 1 = 1
𝑡𝑛
𝑚2
⟹ 𝑢 = 1
𝑡𝑛
𝑚2
𝜎𝑉 = 18.68 + 1 ∗ (2.075) = 20.755
𝑡𝑛
𝑚2
⟹ 𝜎𝑉 = 20.755
𝑡𝑛
𝑚2
𝜎,
𝑉 = 20.755 − 1 = 19.755 ⟹ 𝜎,
𝑉 = 19.755
𝜎𝐻 = (𝐾 𝐴2)𝜎,
𝑉 ⟹ 𝜎𝐻 = 0.333 ∗ 19.755 = 6.578
𝑡𝑛
𝑚2
⟹ 𝜎𝐻 = 6.578
𝑡𝑛
𝑚2
Esfuerzo hidrostático
𝜎 𝐻𝑖 = 𝛾𝑤 ∗ ℎ 𝑤 ⟹ 𝜎 𝐻𝑖 = 1 ∗ 1 = 1
𝑡𝑛
𝑚2
⟹ 𝜎 𝐻𝑖 = 1
𝑡𝑛
𝑚2
𝜎𝐻 = 6.578 + 1 = 7.578 𝑡𝑛/𝑚2
Calculo de empujes
VenerosonccoS
65Práctica y teoría resuelto de mecánica de suelos II
𝐸1 = 1.62 ∗ 4 = 6.48
𝑡𝑛
𝑚
𝑌1 = 4 +
4
2
= 6𝑚
𝐸2 = (3.456 − 1.62) ∗
4
2
= 3.672
𝑡𝑛
𝑚
𝑌2 = 4 +
4
3
= 5.33𝑚
𝐸3 = 4.262 ∗ 3 = 12.786
𝑡𝑛
𝑚
𝑌3 = 1 +
3
2
= 2.5𝑚
𝐸4 = (6.220 − 4.262) ∗
3
2
= 2.937
𝑡𝑛
𝑚
𝑌4 = 1 +
3
3
= 2𝑚
𝐸5 = 6.220 ∗ 1 = 6.220
𝑡𝑛
𝑚
𝑌5 =
1
2
= 0.5𝑚
𝐸6 = (6.578 − 6.220) ∗
1
2
= 0.179
𝑡𝑛
𝑚
𝑌6 =
1
3
= 0.33𝑚
𝐸7 = (7.578 − 6.578) ∗
1
2
= 0.5
𝑡𝑛
𝑚
𝑌7 =
1
3
= 0.33𝑚
Respuestas
𝐸𝐴 = 𝐸1 + 𝐸2 + 𝐸3 + 𝐸4 + 𝐸5 + 𝐸6 + 𝐸7
𝐸𝐴 = 6.48 + 3.672 + 12.786 + 2.937 + 6.220 + 0.179 + 0.5
𝐸𝐴 = 32.774
𝑡𝑛
𝑚
𝑌 =
𝐸1 𝑌1 + 𝐸2 𝑌2 + 𝐸3 𝑌3 + 𝐸4 𝑌4 + 𝐸5 𝑌5 + 𝐸6 𝑌6 + 𝐸7 𝑌7
𝐸1 + 𝐸2 + 𝐸3 + 𝐸4 + 𝐸5 + 𝐸6 + 𝐸7
𝑌 =
99.62483
32.774
𝑌 = 3.039𝑚
VenerosonccoS
66Práctica y teoría resuelto de mecánica de suelos II
3. Calcular el empuje activo e indicar su ubicación para un muro liso de 9 m de
alto y espaldón vertical que soporta una carga uniformemente distribuida
muy extensa de 4500 kg/m2 sobre el relleno horizontal considerando la
presencia del nivel freático a 3m de profundidad y que el suelo está saturado
por capilaridad hasta la superficie, las propiedades del suelos son:
Angulo de fricción interna=19°, cohesión=0,35kg/cm2, peso específico de los
sólidos= 2,70 ton/m3, relación de vacíos= 0,63.
Solución
Datos:
 Altura de muro 9m
 Soporta una carga de 4.5 tn/m2
 Nivel freático está a 3m de profundidad
 Angulo de fricción 19°
 Cohesión 3.5 tn/m2
 Peso específico de los sólidos 2.70 tn/m2
 Relación de vacíos 0.63
Calculo de las propiedades volumétricas
𝛾𝑠𝑎𝑡 =
𝛾𝑠 + 𝑒
1 + 𝑒
⟹ 𝛾𝑠𝑎𝑡 =
2.70 + 0.63
1 + 0.63
= 2.04
𝑡𝑛
𝑚3
⟹ 𝛾𝑠𝑎𝑡 = 2.04
𝑡𝑛
𝑚3
VenerosonccoS
67Práctica y teoría resuelto de mecánica de suelos II
Esfuerzos horizontales
(Relleno de suelo)
(Cohesivo-friccionantes)
Fórmulas para suelos (Cohesivo-friccionantes)
σH = KAσV
,
− 2C√KA
KA = tan2
(45 −
∅
2
)
KA = tan2
(45 −
∅
2
) ⟹ KA = tan2
(45 −
19
2
) = 0.508 ⟹ KA = 0.508
En la superficie
𝑢 = −γw ∗ h ⟹ −1 ∗ 3 = −3
tn
m3
⟹ 𝑢 = −3
tn
m3
σV = 4.5
tn
m2
σV
,
= σV − u
σV
,
= 4.5 − (−3) = 7.5
tn
m2
⟹ σV
,
= 7.5
tn
m2
σH = KAσV
,
− 2C√KA
σH = 0.508(7.5) − 2(3.5)(√0.508) ⟹ σH = −1.179
tn
m2
En el nivel freático
σV = 4.5 + 3(2.04) ⟹ σV =
10.62𝑡𝑛
𝑚2
σV
,
= σV − 𝑢 ⟹ σV
,
=
10.62𝑡𝑛
𝑚2
𝑢: 𝑒𝑠 𝑐𝑒𝑟𝑜
σH = KAσV
,
− 2C√KA
σH = 0.508(10.62) − 2(3.5)(√0.508) ⟹ σH =
0.405𝑡𝑛
𝑚2
VenerosonccoS
68Práctica y teoría resuelto de mecánica de suelos II
En la base
𝑢 = γw ∗ h ⟹ 1 ∗ 6 = 6
tn
m3
⟹ 𝑢 = 6
tn
m3
σV = 10.62 + 2.04(6) = 22.86 𝑡𝑛/𝑚2 ⟹ σV = 22.86
10.62𝑡𝑛
𝑚2
σV
,
= 22.86 − 6 = 16.36
𝑡𝑛
𝑚2
σH = KAσV
,
− 2C√KA
σH = 0.508(16.86) − 2(3.5)(√0.508) = 3.575
𝑡𝑛
𝑚2
⟹ σH = 3.575
𝑡𝑛
𝑚2
Esfuerzo hidrostático
σHi = 𝛾𝑤∗ ℎ 𝑤 ⟹ σHi = 1 ∗ 6 = 6
𝑡𝑛
𝑚2
⟹ σHi = 6
𝑡𝑛
𝑚2
Calculo de empujes
Calculando “h”
Semejanza de triángulos
VenerosonccoS
69Práctica y teoría resuelto de mecánica de suelos II
1.179
3 − ℎ
=
0.405
ℎ
1.179ℎ = 0.405(3− ℎ)
1.179ℎ = 1.215 − 0.405ℎ
1.179ℎ + 0.405ℎ = 1.215
1.584ℎ = 1.215
ℎ = 0.767 𝑚
𝐸1 =
0.405 ∗ 0.767
2
= 0.155
𝑡𝑛
𝑚
⟹ 𝐸1 = 0.155
𝑡𝑛
𝑚
𝑌1 = 6 +
0.767
3
= 6.25𝑚 ⟹ 𝑌1 = 6.25𝑚
𝐸2 = 0.405 ∗ 6 = 2.43
𝑡𝑛
𝑚
⟹ 𝐸1 = 2.43
𝑡𝑛
𝑚
𝑌2 =
6
2
= 3𝑚 ⟹ 𝑌2 = 3𝑚
𝐸3 = (3.575 − 0.405) ∗
6
2
= 9.51
𝑡𝑛
𝑚
⟹ 𝐸1 = 9.51
𝑡𝑛
𝑚
𝑌3 =
6
3
= 2𝑚 ⟹ 𝑌3 = 2𝑚
𝐸4 = (9.572 − 3.575) ∗
6
2
= 17.991
𝑡𝑛
𝑚
⟹ 𝐸1 = 17.991
𝑡𝑛
𝑚
𝑌4 =
6
3
= 2𝑚 ⟹ 𝑌4 = 2𝑚
𝐸𝐴 = 𝐸1 + 𝐸2 + 𝐸3 + 𝐸4
𝐸𝐴 = 0.155 + 2.43 + 9.51 + 17.991 = 30.086
𝑡𝑛
𝑚2
𝐸𝐴 = 30.086
𝑡𝑛
𝑚
𝑌 =
𝐸1 𝑌1 + 𝐸2 𝑌2 + 𝐸3 𝑌3 + 𝐸4 𝑌4
𝐸1 + 𝐸2 + 𝐸3 + 𝐸4
𝑌 =
63.26075
30.086
𝑌 = 2.102𝑚
VenerosonccoS
70Práctica y teoría resuelto de mecánica de suelos II
4. Se tiene una cimentación cuadrada con excentricidad. Calcular
(𝑞 𝑎𝑑𝑚 , 𝑄 𝑎𝑑𝑚 )
Solución
Primero analizamos que formula vamos a utilizar
Formula general (Meyerhof)
𝑞 𝑢
,
= 𝑐𝑁𝑐 𝐹𝑐𝑠 𝐹𝑐𝑑 𝐹𝑐𝑖 + 𝑞𝑁 𝑞 𝐹𝑞𝑠 𝐹𝑞𝑑 𝐹𝑞𝑖 +
1
2
𝛾𝐵,
𝑁 𝛾 𝐹𝛾𝑠 𝐹𝛾𝑑 𝐹𝛾𝑖
Como la cohesión es cero usaremos la formula simplificada
𝑞 𝑢
,
= 𝑞𝑁 𝑞 𝐹𝑞𝑠 𝐹𝑞𝑑 𝐹𝑞𝑖 +
1
2
𝛾𝐵,
𝑁 𝛾 𝐹𝛾𝑠 𝐹𝛾𝑑 𝐹𝛾𝑖
Hallamos la carga
𝑞 = 𝛾 ∗ ℎ ⟹ 𝑞 = (17)(0.8) = 13.6
𝐾𝑁
𝑚2
⟹ 𝑞 = 13.6
𝐾𝑁
𝑚2
Los valores de (𝑵 𝒒 , 𝑵 𝜸) para ∅ = 𝟑𝟐 (ver la tabla 11.1) del libro de Braja M
Das “pagina 395”
𝑁 𝑞 = 23.18
𝑁 𝛾 = 30.22
Hallamos el valor de (𝑩,
)
𝐵,
= 𝐵 − 2𝑒 ⟹ 𝐵,
= 1.50 − 2(0.10) = 1.3 ⟹ 𝐵,
= 1.3
VenerosonccoS
71Práctica y teoría resuelto de mecánica de suelos II
Como se trata de una cimentación cuadrada
𝐹𝑞𝑠 = 1 + (
𝐵,
𝐿,
) 𝑡𝑎𝑛∅ ⟹ 𝐹𝑞𝑠 = 1 + (
1.3
1.5
)tan(32) = 1.54 ⟹ 𝐹𝑞𝑠 = 1.54
𝐹𝛾𝑠 = 1 − 0.4(
𝐵,
𝐿,
) ⟹ 𝐹𝛾𝑠 = 1 − 0.4 (
1.3
1.5
) = 0.65 ⟹ 𝐹𝛾𝑠 = 0.65
𝐹𝑞𝑑 = 1 + 2𝑡𝑎𝑛∅(1 − 𝑠𝑒𝑛∅)2
(
𝐷𝑓
𝐵
)
𝐹𝑞𝑑 = 1 + 2tan(32)(1 − 𝑠𝑒𝑛32)2
(
0.8
1.5
) = 1.15 ⟹ 𝐹𝑞𝑑 = 1.15
𝐹𝛾𝑑 = 1… … … 𝑑𝑒 𝑙𝑎 𝑡𝑎𝑏𝑙𝑎 11.2
Todos los valores calculados reemplazamos en la formula
𝑞 𝑢
,
= 𝑞𝑁 𝑞 𝐹𝑞𝑠 𝐹𝑞𝑑 𝐹𝑞𝑖 +
1
2
𝛾𝐵,
𝑁 𝛾 𝐹𝛾𝑠 𝐹𝛾𝑑 𝐹𝛾𝑖
𝑞 𝑢
,
= (13.6)(23.18)(1.54)(1.15)(1)+
1
2
(17)(1.3)(30.22)(0.65)(1)(1)
𝑞 𝑢
,
= 775.35
𝐾𝑁
𝑚2
Hallamos (𝒒 𝒂𝒅𝒎𝒊𝒔𝒊𝒃𝒍𝒆)
𝑞 𝑎𝑑𝑚 =
𝑞 𝑢
,
𝐹𝑠
⟹ 𝑞 𝑎𝑑𝑚 =
775.35
4
= 193.837
𝐾𝑁
𝑚2
Hallamos 𝑸 𝒂𝒅𝒎)
𝑄 𝑎𝑑𝑚 = 𝑞 𝑎𝑑𝑚( 𝐴,)
𝑄 𝑎𝑑𝑚 = 193.837(1.30∗ 1.50)
𝑄 𝑎𝑑𝑚 = 377.98
𝐾𝑁
𝑚2
Nota 1: cuando no hay ángulo de inclinación los valores de (𝐹𝑞𝑖 , 𝐹𝛾𝑖) son igual a la
unidad (1)
Nota 2: para una cimentación continua los valores de (𝐹𝑞𝑠, 𝐹𝛾𝑠) son iguales a la
unidad (1)
VenerosonccoS
72Práctica y teoría resuelto de mecánica de suelos II
5. Se tiene una cimentación cuadrada con excentricidad. Calcular
(𝑞 𝑎𝑑𝑚 , 𝑄 𝑎𝑑𝑚 ). El nivel freático está a una profundidad de 0.50 m
Solución
Primero analizamos que formula vamos a utilizar
Formula general (Meyerhof)
𝑞 𝑢
,
= 𝑐𝑁𝑐 𝐹𝑐𝑠 𝐹𝑐𝑑 𝐹𝑐𝑖 + 𝑞𝑁 𝑞 𝐹𝑞𝑠 𝐹𝑞𝑑 𝐹𝑞𝑖 +
1
2
𝛾𝐵,
𝑁 𝛾 𝐹𝛾𝑠 𝐹𝛾𝑑 𝐹𝛾𝑖
Como la cohesión es cero usaremos la formula simplificada
𝑞 𝑢
,
= 𝑞𝑁 𝑞 𝐹𝑞𝑠 𝐹𝑞𝑑 𝐹𝑞𝑖 +
1
2
𝛾𝐵,
𝑁 𝛾 𝐹𝛾𝑠 𝐹𝛾𝑑 𝐹𝛾𝑖
Hallamos la carga
𝑞 = 𝛾 ∗ ℎ + ( 𝛾𝑠𝑎𝑡 − 𝛾𝑤 ) ∗ ℎ ⟹ 𝑞 = (17.5)(0.50)+ (19.5 − 9.81) ∗ 0.40
𝑞 = 12.626
𝐾𝑁
𝑚2
Los valores de (𝑵 𝒒 , 𝑵 𝜸) para ∅ = 𝟑𝟓 (ver la tabla 11.1) del libro de Braja M
Das “pagina 395”
𝑁 𝑞 = 33.30
𝑁 𝛾 = 48.03
Hallamos el valor de (𝑩,
)
𝐵,
= 𝐵 − 2𝑒 ⟹ 𝐵,
= 1.60 − 2(0.15) = 1.3 ⟹ 𝐵,
= 1.3
VenerosonccoS
73Práctica y teoría resuelto de mecánica de suelos II
Como se trata de una cimentación cuadrada
𝐹𝑞𝑠 = 1 + (
𝐵,
𝐿,
) 𝑡𝑎𝑛∅ ⟹ 𝐹𝑞𝑠 = 1 + (
1.30
1.60
)tan(35) = 1.568 ⟹ 𝐹𝑞𝑠 = 1.568
𝐹𝛾𝑠 = 1 − 0.4(
𝐵,
𝐿,
) ⟹ 𝐹𝛾𝑠 = 1 − 0.4 (
1.30
1.60
) = 0.675 ⟹ 𝐹𝛾𝑠 = 0.675
𝐹𝑞𝑑 = 1 + 2𝑡𝑎𝑛∅(1 − 𝑠𝑒𝑛∅)2
(
𝐷𝑓
𝐵
)
𝐹𝑞𝑑 = 1 + 2tan(35)(1 − 𝑠𝑒𝑛32)2
(
0.90
1.60
) = 1.143 ⟹ 𝐹𝑞𝑑 = 1.143
𝐹𝛾𝑑 = 1… … … 𝑑𝑒 𝑙𝑎 𝑡𝑎𝑏𝑙𝑎 11.2
Hallamos "𝜸"
𝛾 =
(17.5)(0.50) + (19.5)(0.40)
0.90
= 18.388 ⟹ 𝛾 = 18.388
Todos los valores calculados reemplazamos en la formula
𝑞 𝑢
,
= 𝑞𝑁 𝑞 𝐹𝑞𝑠 𝐹𝑞𝑑 𝐹𝑞𝑖 +
1
2
𝛾𝐵,
𝑁 𝛾 𝐹𝛾𝑠 𝐹𝛾𝑑 𝐹𝛾𝑖
𝑞 𝑢
,
= (12.626)(33.30)(1.568)(1.143)(1)+
1
2
(18.388)(1.30)(48.03)(0.675)(1)(1)
𝑞 𝑢
,
= 1141.026
𝐾𝑁
𝑚2
Hallamos (𝒒 𝒂𝒅𝒎𝒊𝒔𝒊𝒃𝒍𝒆)
𝑞 𝑎𝑑𝑚 =
𝑞 𝑢
,
𝐹𝑠
⟹ 𝑞 𝑎𝑑𝑚 =
1141.026
4
= 285.2565
𝐾𝑁
𝑚2
Hallamos 𝑸 𝒂𝒅𝒎)
𝑄 𝑎𝑑𝑚 = 𝑞 𝑎𝑑𝑚( 𝐴,)
𝑄 𝑎𝑑𝑚 = 285.2565(1.30∗ 1.60)
𝑄 𝑎𝑑𝑚 = 593.333
𝐾𝑁
𝑚2
Nota 1: cuando no hay ángulo de inclinación los valores de (𝐹𝑞𝑖 , 𝐹𝛾𝑖) son igual a la
unidad (1)
Nota 2: para una cimentación continua los valores de (𝐹𝑞𝑠, 𝐹𝛾𝑠) son iguales a la
unidad (1)
VenerosonccoS
74Práctica y teoría resuelto de mecánica de suelos II
Tablas
Gráfica No 2.- Factor de influencia para carga uniformemente distribuida (Boussinesq)
Berry, p.63
VenerosonccoS
75Práctica y teoría resuelto de mecánica de suelos II
Gráfica 1.- Factores de influencia para carga lineal (Fadum).
Juárez E. y Rico A., (1980), Anexo II-d
VenerosonccoS
76Práctica y teoría resuelto de mecánica de suelos II
METODO APROXIMADO PARA CÁLCULO DE ASIENTOS EN TERRENO
ESTRATIFICADO
(METODO DE STEINBRENNER)
VenerosonccoS
77Práctica y teoría resuelto de mecánica de suelos II
VenerosonccoS
78Práctica y teoría resuelto de mecánica de suelos II
VenerosonccoS
79Práctica y teoría resuelto de mecánica de suelos II
VenerosonccoS
80Práctica y teoría resuelto de mecánica de suelos II

Más contenido relacionado

La actualidad más candente

Asentamiento y consolidación de suelos
Asentamiento y consolidación de suelosAsentamiento y consolidación de suelos
Asentamiento y consolidación de suelosdiegoupt
 
Mecanica de suelos_(problemas_resueltos)
Mecanica de suelos_(problemas_resueltos)Mecanica de suelos_(problemas_resueltos)
Mecanica de suelos_(problemas_resueltos)Geillyn Castro
 
Muro de contencion ejmplos
Muro de contencion ejmplosMuro de contencion ejmplos
Muro de contencion ejmplosVictorDy
 
Diseño de Cimentaciones Carlos Magdaleno
Diseño de Cimentaciones  Carlos MagdalenoDiseño de Cimentaciones  Carlos Magdaleno
Diseño de Cimentaciones Carlos MagdalenoAdan Vazquez Rodriguez
 
Solucionario mecánica de fluidos e hidráulica 02
Solucionario mecánica de fluidos e hidráulica 02Solucionario mecánica de fluidos e hidráulica 02
Solucionario mecánica de fluidos e hidráulica 02sap200
 
Empujes activo y pasivo
Empujes activo y pasivoEmpujes activo y pasivo
Empujes activo y pasivoJoe Ticahuanca
 
Gravedad especifica de los solidos
Gravedad especifica de los solidosGravedad especifica de los solidos
Gravedad especifica de los solidosBrumel Chuquillanqui
 
Informe de-mecanica-de-suelos-laboratorio-numero-2- ENSAYO DE LÍMITE LÍQUIDO...
Informe de-mecanica-de-suelos-laboratorio-numero-2-  ENSAYO DE LÍMITE LÍQUIDO...Informe de-mecanica-de-suelos-laboratorio-numero-2-  ENSAYO DE LÍMITE LÍQUIDO...
Informe de-mecanica-de-suelos-laboratorio-numero-2- ENSAYO DE LÍMITE LÍQUIDO...Angelo Alvarez Sifuentes
 
Informe del-ensayo-del-cono-de-arena-densidad-en-campo
Informe del-ensayo-del-cono-de-arena-densidad-en-campoInforme del-ensayo-del-cono-de-arena-densidad-en-campo
Informe del-ensayo-del-cono-de-arena-densidad-en-campoAnghelo Salazar Tello
 
Informe de corte directo n.t.p 339.171
Informe de corte  directo n.t.p 339.171Informe de corte  directo n.t.p 339.171
Informe de corte directo n.t.p 339.171Yoner Chávez
 
trazado de carreteras
 trazado de carreteras trazado de carreteras
trazado de carreterasEstiben Gomez
 
Cap v diseño de la seccion transversal
Cap v diseño de la seccion transversalCap v diseño de la seccion transversal
Cap v diseño de la seccion transversalEstiben Gomez
 

La actualidad más candente (20)

Asentamiento y consolidación de suelos
Asentamiento y consolidación de suelosAsentamiento y consolidación de suelos
Asentamiento y consolidación de suelos
 
Mecanica de suelos_(problemas_resueltos)
Mecanica de suelos_(problemas_resueltos)Mecanica de suelos_(problemas_resueltos)
Mecanica de suelos_(problemas_resueltos)
 
Diseño de mezclas
Diseño de mezclasDiseño de mezclas
Diseño de mezclas
 
Muro de contencion ejmplos
Muro de contencion ejmplosMuro de contencion ejmplos
Muro de contencion ejmplos
 
Diseño de Cimentaciones Carlos Magdaleno
Diseño de Cimentaciones  Carlos MagdalenoDiseño de Cimentaciones  Carlos Magdaleno
Diseño de Cimentaciones Carlos Magdaleno
 
Solucionario mecánica de fluidos e hidráulica 02
Solucionario mecánica de fluidos e hidráulica 02Solucionario mecánica de fluidos e hidráulica 02
Solucionario mecánica de fluidos e hidráulica 02
 
Empujes activo y pasivo
Empujes activo y pasivoEmpujes activo y pasivo
Empujes activo y pasivo
 
Teoria de boussinesq
Teoria de boussinesqTeoria de boussinesq
Teoria de boussinesq
 
Gravedad especifica de los solidos
Gravedad especifica de los solidosGravedad especifica de los solidos
Gravedad especifica de los solidos
 
Informe de-mecanica-de-suelos-laboratorio-numero-2- ENSAYO DE LÍMITE LÍQUIDO...
Informe de-mecanica-de-suelos-laboratorio-numero-2-  ENSAYO DE LÍMITE LÍQUIDO...Informe de-mecanica-de-suelos-laboratorio-numero-2-  ENSAYO DE LÍMITE LÍQUIDO...
Informe de-mecanica-de-suelos-laboratorio-numero-2- ENSAYO DE LÍMITE LÍQUIDO...
 
EJERCICIOS DE CIMENTACIÓN
EJERCICIOS DE CIMENTACIÓNEJERCICIOS DE CIMENTACIÓN
EJERCICIOS DE CIMENTACIÓN
 
Informe del-ensayo-del-cono-de-arena-densidad-en-campo
Informe del-ensayo-del-cono-de-arena-densidad-en-campoInforme del-ensayo-del-cono-de-arena-densidad-en-campo
Informe del-ensayo-del-cono-de-arena-densidad-en-campo
 
Resalto hidraulico
Resalto hidraulico Resalto hidraulico
Resalto hidraulico
 
Ejercicios canales
Ejercicios canalesEjercicios canales
Ejercicios canales
 
perfil estatigrafico-Mecanica de suelos I
 perfil estatigrafico-Mecanica de suelos I perfil estatigrafico-Mecanica de suelos I
perfil estatigrafico-Mecanica de suelos I
 
Informe de corte directo n.t.p 339.171
Informe de corte  directo n.t.p 339.171Informe de corte  directo n.t.p 339.171
Informe de corte directo n.t.p 339.171
 
Teoria capacidad de carga terzaghi
Teoria capacidad de carga terzaghiTeoria capacidad de carga terzaghi
Teoria capacidad de carga terzaghi
 
trazado de carreteras
 trazado de carreteras trazado de carreteras
trazado de carreteras
 
Cap v diseño de la seccion transversal
Cap v diseño de la seccion transversalCap v diseño de la seccion transversal
Cap v diseño de la seccion transversal
 
CONSISTENCIA Y COMPACIDAD
CONSISTENCIA Y COMPACIDADCONSISTENCIA Y COMPACIDAD
CONSISTENCIA Y COMPACIDAD
 

Destacado

167820324 texto-guia-mecanica-suelos-ii-umss
167820324 texto-guia-mecanica-suelos-ii-umss167820324 texto-guia-mecanica-suelos-ii-umss
167820324 texto-guia-mecanica-suelos-ii-umssEdson Cossio
 
70 problemas de ha
70 problemas de ha70 problemas de ha
70 problemas de haoscar torres
 
Lecture 24 conversion cycle -the traditional manufacturing environment accou...
Lecture 24  conversion cycle -the traditional manufacturing environment accou...Lecture 24  conversion cycle -the traditional manufacturing environment accou...
Lecture 24 conversion cycle -the traditional manufacturing environment accou...Habib Ullah Qamar
 
Incremetno de esfuerzos verticales bajo diferentes condiciones de carga
Incremetno de esfuerzos verticales bajo diferentes condiciones de cargaIncremetno de esfuerzos verticales bajo diferentes condiciones de carga
Incremetno de esfuerzos verticales bajo diferentes condiciones de cargaSergio Celestino
 
Mecanica de suelos juarez badillo
Mecanica de suelos   juarez badilloMecanica de suelos   juarez badillo
Mecanica de suelos juarez badilloAlex Car
 
MTH101 - Calculus and Analytical Geometry- Lecture 43
MTH101 - Calculus and Analytical Geometry- Lecture 43MTH101 - Calculus and Analytical Geometry- Lecture 43
MTH101 - Calculus and Analytical Geometry- Lecture 43Bilal Ahmed
 
How to Make Awesome SlideShares: Tips & Tricks
How to Make Awesome SlideShares: Tips & TricksHow to Make Awesome SlideShares: Tips & Tricks
How to Make Awesome SlideShares: Tips & TricksSlideShare
 
Getting Started With SlideShare
Getting Started With SlideShareGetting Started With SlideShare
Getting Started With SlideShareSlideShare
 

Destacado (16)

167820324 texto-guia-mecanica-suelos-ii-umss
167820324 texto-guia-mecanica-suelos-ii-umss167820324 texto-guia-mecanica-suelos-ii-umss
167820324 texto-guia-mecanica-suelos-ii-umss
 
Esfuerzos en suelos 2013
Esfuerzos en suelos   2013Esfuerzos en suelos   2013
Esfuerzos en suelos 2013
 
70 problemas de ha
70 problemas de ha70 problemas de ha
70 problemas de ha
 
Ensayo triaxial
Ensayo triaxialEnsayo triaxial
Ensayo triaxial
 
Ingenieria geotecnica junio_2013
Ingenieria geotecnica junio_2013Ingenieria geotecnica junio_2013
Ingenieria geotecnica junio_2013
 
Capacidad portante del_suelo_usando_spt. (1)
Capacidad portante del_suelo_usando_spt. (1)Capacidad portante del_suelo_usando_spt. (1)
Capacidad portante del_suelo_usando_spt. (1)
 
Tesis efecto de sitio managua_2013
Tesis efecto de sitio managua_2013Tesis efecto de sitio managua_2013
Tesis efecto de sitio managua_2013
 
Lecture 24 conversion cycle -the traditional manufacturing environment accou...
Lecture 24  conversion cycle -the traditional manufacturing environment accou...Lecture 24  conversion cycle -the traditional manufacturing environment accou...
Lecture 24 conversion cycle -the traditional manufacturing environment accou...
 
Incremetno de esfuerzos verticales bajo diferentes condiciones de carga
Incremetno de esfuerzos verticales bajo diferentes condiciones de cargaIncremetno de esfuerzos verticales bajo diferentes condiciones de carga
Incremetno de esfuerzos verticales bajo diferentes condiciones de carga
 
Fundaciones superficiales 02
Fundaciones superficiales 02Fundaciones superficiales 02
Fundaciones superficiales 02
 
7. permeabilidad en suelossss
7. permeabilidad en suelossss7. permeabilidad en suelossss
7. permeabilidad en suelossss
 
Mecanica de suelos juarez badillo
Mecanica de suelos   juarez badilloMecanica de suelos   juarez badillo
Mecanica de suelos juarez badillo
 
Esfuerzo en una masa de suelo
Esfuerzo en una masa de sueloEsfuerzo en una masa de suelo
Esfuerzo en una masa de suelo
 
MTH101 - Calculus and Analytical Geometry- Lecture 43
MTH101 - Calculus and Analytical Geometry- Lecture 43MTH101 - Calculus and Analytical Geometry- Lecture 43
MTH101 - Calculus and Analytical Geometry- Lecture 43
 
How to Make Awesome SlideShares: Tips & Tricks
How to Make Awesome SlideShares: Tips & TricksHow to Make Awesome SlideShares: Tips & Tricks
How to Make Awesome SlideShares: Tips & Tricks
 
Getting Started With SlideShare
Getting Started With SlideShareGetting Started With SlideShare
Getting Started With SlideShare
 

Similar a Solucionariodelosexamenesdemecanicadesuelosii

solucionariodelosexamenesdemecanicadesuelosii-mascalculosdeexel-160331033301.pdf
solucionariodelosexamenesdemecanicadesuelosii-mascalculosdeexel-160331033301.pdfsolucionariodelosexamenesdemecanicadesuelosii-mascalculosdeexel-160331033301.pdf
solucionariodelosexamenesdemecanicadesuelosii-mascalculosdeexel-160331033301.pdfRICARDOPATIORENDON1
 
Unidad 6 Esfuerzos en el suelo - primera parte (1).pdf
Unidad 6 Esfuerzos en el suelo - primera parte (1).pdfUnidad 6 Esfuerzos en el suelo - primera parte (1).pdf
Unidad 6 Esfuerzos en el suelo - primera parte (1).pdfLuisRodrguez459885
 
Asentamiento de las_edificaciones-libre
Asentamiento de las_edificaciones-libreAsentamiento de las_edificaciones-libre
Asentamiento de las_edificaciones-libreGerardo Lira Vargas
 
S1 - Funciones reales de varias variables reales_ Plano tangente_ Recta norma...
S1 - Funciones reales de varias variables reales_ Plano tangente_ Recta norma...S1 - Funciones reales de varias variables reales_ Plano tangente_ Recta norma...
S1 - Funciones reales de varias variables reales_ Plano tangente_ Recta norma...JazminValcarcel1
 
Ejercicio Juarez Badillo.pdf
Ejercicio Juarez Badillo.pdfEjercicio Juarez Badillo.pdf
Ejercicio Juarez Badillo.pdfRafael Ortiz
 
Asignacion1julian
Asignacion1julianAsignacion1julian
Asignacion1julian17941232
 
Elementos de una cuadratica.pptx
Elementos de una cuadratica.pptxElementos de una cuadratica.pptx
Elementos de una cuadratica.pptxRafaelAvilaCepeda
 
Ejercicios resueltos de la guía # 5
Ejercicios resueltos de la guía # 5Ejercicios resueltos de la guía # 5
Ejercicios resueltos de la guía # 5JoshGarca3
 
“INTEGRALES DE SUPERFICIE. INTEGRALES DE FLUJO”
“INTEGRALES DE SUPERFICIE. INTEGRALES DE FLUJO”“INTEGRALES DE SUPERFICIE. INTEGRALES DE FLUJO”
“INTEGRALES DE SUPERFICIE. INTEGRALES DE FLUJO”FrancoPagani
 
Mat ii er 811 caidalibre
Mat ii er 811 caidalibreMat ii er 811 caidalibre
Mat ii er 811 caidalibreAnell Aguilar
 

Similar a Solucionariodelosexamenesdemecanicadesuelosii (20)

solucionariodelosexamenesdemecanicadesuelosii-mascalculosdeexel-160331033301.pdf
solucionariodelosexamenesdemecanicadesuelosii-mascalculosdeexel-160331033301.pdfsolucionariodelosexamenesdemecanicadesuelosii-mascalculosdeexel-160331033301.pdf
solucionariodelosexamenesdemecanicadesuelosii-mascalculosdeexel-160331033301.pdf
 
MECANICA_DE_SUELOS_II (1).pdf
MECANICA_DE_SUELOS_II (1).pdfMECANICA_DE_SUELOS_II (1).pdf
MECANICA_DE_SUELOS_II (1).pdf
 
MECANICA_DE_SUELOS_II.pdf
MECANICA_DE_SUELOS_II.pdfMECANICA_DE_SUELOS_II.pdf
MECANICA_DE_SUELOS_II.pdf
 
Ejercicios
EjerciciosEjercicios
Ejercicios
 
Unidad 6 Esfuerzos en el suelo - primera parte (1).pdf
Unidad 6 Esfuerzos en el suelo - primera parte (1).pdfUnidad 6 Esfuerzos en el suelo - primera parte (1).pdf
Unidad 6 Esfuerzos en el suelo - primera parte (1).pdf
 
Segundotrabajoanalisis
SegundotrabajoanalisisSegundotrabajoanalisis
Segundotrabajoanalisis
 
Asentamiento de las_edificaciones-libre
Asentamiento de las_edificaciones-libreAsentamiento de las_edificaciones-libre
Asentamiento de las_edificaciones-libre
 
415114934 prob-mecanica-de-fluidos
415114934 prob-mecanica-de-fluidos415114934 prob-mecanica-de-fluidos
415114934 prob-mecanica-de-fluidos
 
Semana 6x
Semana 6xSemana 6x
Semana 6x
 
S1 - Funciones reales de varias variables reales_ Plano tangente_ Recta norma...
S1 - Funciones reales de varias variables reales_ Plano tangente_ Recta norma...S1 - Funciones reales de varias variables reales_ Plano tangente_ Recta norma...
S1 - Funciones reales de varias variables reales_ Plano tangente_ Recta norma...
 
Guia int de_linea_teo_de_green_02_15
Guia int de_linea_teo_de_green_02_15Guia int de_linea_teo_de_green_02_15
Guia int de_linea_teo_de_green_02_15
 
Ejercicio Juarez Badillo.pdf
Ejercicio Juarez Badillo.pdfEjercicio Juarez Badillo.pdf
Ejercicio Juarez Badillo.pdf
 
MF 2 Fuerzas líquidas
MF 2 Fuerzas líquidasMF 2 Fuerzas líquidas
MF 2 Fuerzas líquidas
 
Asignacion1julian
Asignacion1julianAsignacion1julian
Asignacion1julian
 
Elementos de una cuadratica.pptx
Elementos de una cuadratica.pptxElementos de una cuadratica.pptx
Elementos de una cuadratica.pptx
 
Informe fluidos2
Informe fluidos2Informe fluidos2
Informe fluidos2
 
Ejercicios resueltos de la guía # 5
Ejercicios resueltos de la guía # 5Ejercicios resueltos de la guía # 5
Ejercicios resueltos de la guía # 5
 
“INTEGRALES DE SUPERFICIE. INTEGRALES DE FLUJO”
“INTEGRALES DE SUPERFICIE. INTEGRALES DE FLUJO”“INTEGRALES DE SUPERFICIE. INTEGRALES DE FLUJO”
“INTEGRALES DE SUPERFICIE. INTEGRALES DE FLUJO”
 
Mat ii er 811 caidalibre
Mat ii er 811 caidalibreMat ii er 811 caidalibre
Mat ii er 811 caidalibre
 
Nuevo documento de microsoft office word
Nuevo documento de microsoft office wordNuevo documento de microsoft office word
Nuevo documento de microsoft office word
 

Más de oscar torres

Problemas con conjuntos
Problemas con  conjuntosProblemas con  conjuntos
Problemas con conjuntososcar torres
 
Concreto armado-i-juan-ortega-garcia
Concreto armado-i-juan-ortega-garciaConcreto armado-i-juan-ortega-garcia
Concreto armado-i-juan-ortega-garciaoscar torres
 
Ds 003-2016-vivienda
Ds 003-2016-viviendaDs 003-2016-vivienda
Ds 003-2016-viviendaoscar torres
 
Topic05a seismic hazardanalysishandouts
Topic05a seismic hazardanalysishandoutsTopic05a seismic hazardanalysishandouts
Topic05a seismic hazardanalysishandoutsoscar torres
 
examen ceprunsa 2017 fase 1
examen ceprunsa 2017 fase 1examen ceprunsa 2017 fase 1
examen ceprunsa 2017 fase 1oscar torres
 
razonamiento matematico
razonamiento matematicorazonamiento matematico
razonamiento matematicooscar torres
 
CALCULO MATEMATICO
CALCULO MATEMATICOCALCULO MATEMATICO
CALCULO MATEMATICOoscar torres
 
Dinamica lineal y circular
Dinamica lineal y circularDinamica lineal y circular
Dinamica lineal y circularoscar torres
 
Circunferencia basico
Circunferencia basicoCircunferencia basico
Circunferencia basicooscar torres
 
Ejemplos de cálculo escaleras 2011
Ejemplos de cálculo escaleras 2011Ejemplos de cálculo escaleras 2011
Ejemplos de cálculo escaleras 2011oscar torres
 
Pucp tesis diseño de un sistema de agua potable para la comunidad nativa de t...
Pucp tesis diseño de un sistema de agua potable para la comunidad nativa de t...Pucp tesis diseño de un sistema de agua potable para la comunidad nativa de t...
Pucp tesis diseño de un sistema de agua potable para la comunidad nativa de t...oscar torres
 
Redes de tuberias con elementos finitos, andahuaylas
Redes de tuberias con elementos finitos, andahuaylasRedes de tuberias con elementos finitos, andahuaylas
Redes de tuberias con elementos finitos, andahuaylasoscar torres
 
Formulario final concreto armado (2)
Formulario final concreto armado (2)Formulario final concreto armado (2)
Formulario final concreto armado (2)oscar torres
 
Momento resistente ca1 2015
Momento resistente ca1 2015Momento resistente ca1 2015
Momento resistente ca1 2015oscar torres
 

Más de oscar torres (20)

Problemas con conjuntos
Problemas con  conjuntosProblemas con  conjuntos
Problemas con conjuntos
 
Quintos
QuintosQuintos
Quintos
 
Concreto armado-i-juan-ortega-garcia
Concreto armado-i-juan-ortega-garciaConcreto armado-i-juan-ortega-garcia
Concreto armado-i-juan-ortega-garcia
 
Ds 003-2016-vivienda
Ds 003-2016-viviendaDs 003-2016-vivienda
Ds 003-2016-vivienda
 
Topic05a seismic hazardanalysishandouts
Topic05a seismic hazardanalysishandoutsTopic05a seismic hazardanalysishandouts
Topic05a seismic hazardanalysishandouts
 
examen ceprunsa 2017 fase 1
examen ceprunsa 2017 fase 1examen ceprunsa 2017 fase 1
examen ceprunsa 2017 fase 1
 
CALCULO RAPIDO
CALCULO RAPIDOCALCULO RAPIDO
CALCULO RAPIDO
 
AREAS
AREASAREAS
AREAS
 
CHARLA DE CEMENTO
CHARLA DE CEMENTOCHARLA DE CEMENTO
CHARLA DE CEMENTO
 
EXAMEN CEPRUNSA
EXAMEN CEPRUNSAEXAMEN CEPRUNSA
EXAMEN CEPRUNSA
 
razonamiento matematico
razonamiento matematicorazonamiento matematico
razonamiento matematico
 
CALCULO MATEMATICO
CALCULO MATEMATICOCALCULO MATEMATICO
CALCULO MATEMATICO
 
Dinamica lineal y circular
Dinamica lineal y circularDinamica lineal y circular
Dinamica lineal y circular
 
Circunferencia basico
Circunferencia basicoCircunferencia basico
Circunferencia basico
 
Ley de coulomb
Ley de coulombLey de coulomb
Ley de coulomb
 
Ejemplos de cálculo escaleras 2011
Ejemplos de cálculo escaleras 2011Ejemplos de cálculo escaleras 2011
Ejemplos de cálculo escaleras 2011
 
Pucp tesis diseño de un sistema de agua potable para la comunidad nativa de t...
Pucp tesis diseño de un sistema de agua potable para la comunidad nativa de t...Pucp tesis diseño de un sistema de agua potable para la comunidad nativa de t...
Pucp tesis diseño de un sistema de agua potable para la comunidad nativa de t...
 
Redes de tuberias con elementos finitos, andahuaylas
Redes de tuberias con elementos finitos, andahuaylasRedes de tuberias con elementos finitos, andahuaylas
Redes de tuberias con elementos finitos, andahuaylas
 
Formulario final concreto armado (2)
Formulario final concreto armado (2)Formulario final concreto armado (2)
Formulario final concreto armado (2)
 
Momento resistente ca1 2015
Momento resistente ca1 2015Momento resistente ca1 2015
Momento resistente ca1 2015
 

Último

Trabajo Mecanismos de cuatro barras.pdf
Trabajo  Mecanismos de cuatro barras.pdfTrabajo  Mecanismos de cuatro barras.pdf
Trabajo Mecanismos de cuatro barras.pdfIvanIsraelPiaColina
 
Sistema de 4 barras articuladas bb_2.pdf
Sistema de 4 barras articuladas bb_2.pdfSistema de 4 barras articuladas bb_2.pdf
Sistema de 4 barras articuladas bb_2.pdfLuisMarioMartnez1
 
SISTEMA ARTICULADO DE CUATRO BARRAS .pdf
SISTEMA ARTICULADO DE CUATRO BARRAS .pdfSISTEMA ARTICULADO DE CUATRO BARRAS .pdf
SISTEMA ARTICULADO DE CUATRO BARRAS .pdfIvanIsraelPiaColina
 
Presentación de proyecto y resumen de conceptos (3).pdf
Presentación de proyecto y resumen de conceptos (3).pdfPresentación de proyecto y resumen de conceptos (3).pdf
Presentación de proyecto y resumen de conceptos (3).pdflisCuenca
 
Responsabilidad de padres con sus hijos (1).pptx
Responsabilidad de padres con sus hijos (1).pptxResponsabilidad de padres con sus hijos (1).pptx
Responsabilidad de padres con sus hijos (1).pptxROSARIODELPILARMERIN
 
Circuitos_basicos_de_neumatica miquel carulla .pdf
Circuitos_basicos_de_neumatica  miquel carulla .pdfCircuitos_basicos_de_neumatica  miquel carulla .pdf
Circuitos_basicos_de_neumatica miquel carulla .pdfJosueUlin1
 
Redes GSM en la tecnología en la segunda
Redes GSM en la tecnología en la segundaRedes GSM en la tecnología en la segunda
Redes GSM en la tecnología en la segundaanonimussecreto
 
METRADOS EN OBRAS DE PAVIMENTACION- ACTUALIZADA.pptx
METRADOS EN OBRAS DE PAVIMENTACION- ACTUALIZADA.pptxMETRADOS EN OBRAS DE PAVIMENTACION- ACTUALIZADA.pptx
METRADOS EN OBRAS DE PAVIMENTACION- ACTUALIZADA.pptxEdwardRodriguezPalom1
 
Tema 1 ECONOMIA del MECANIZADO.pptx.mfse
Tema 1 ECONOMIA del MECANIZADO.pptx.mfseTema 1 ECONOMIA del MECANIZADO.pptx.mfse
Tema 1 ECONOMIA del MECANIZADO.pptx.mfseyohepirell
 
Seccion hidraulicamente optima uptc.pptx
Seccion hidraulicamente optima uptc.pptxSeccion hidraulicamente optima uptc.pptx
Seccion hidraulicamente optima uptc.pptxSIABATOORDUZVICTORHU
 
ESTABILIZACION DE TALUDES CON ESCOLLERAS
ESTABILIZACION DE TALUDES CON ESCOLLERASESTABILIZACION DE TALUDES CON ESCOLLERAS
ESTABILIZACION DE TALUDES CON ESCOLLERASMiguelRojasbrandan1
 
TR-514 (3) - BIS copia seguridad DOS COLUMNAS 2024 20.5 PREFERIDO.wbk.wbk SEG...
TR-514 (3) - BIS copia seguridad DOS COLUMNAS 2024 20.5 PREFERIDO.wbk.wbk SEG...TR-514 (3) - BIS copia seguridad DOS COLUMNAS 2024 20.5 PREFERIDO.wbk.wbk SEG...
TR-514 (3) - BIS copia seguridad DOS COLUMNAS 2024 20.5 PREFERIDO.wbk.wbk SEG...FRANCISCOJUSTOSIERRA
 
guia-diseno-instalaciones-electricas.pdf
guia-diseno-instalaciones-electricas.pdfguia-diseno-instalaciones-electricas.pdf
guia-diseno-instalaciones-electricas.pdfguillermo ruiz
 
sin respuestas Mecánica y m.a.s julio 4.pdf
sin respuestas Mecánica y m.a.s julio 4.pdfsin respuestas Mecánica y m.a.s julio 4.pdf
sin respuestas Mecánica y m.a.s julio 4.pdfNatalyGarca26
 
Procedimeiento y secuencias para el diseño mecánico de ejes
Procedimeiento y secuencias para el diseño mecánico de ejesProcedimeiento y secuencias para el diseño mecánico de ejes
Procedimeiento y secuencias para el diseño mecánico de ejesRubén Cortes Zavala
 
Mecanismo de cuatro barras articuladas!!
Mecanismo de cuatro barras articuladas!!Mecanismo de cuatro barras articuladas!!
Mecanismo de cuatro barras articuladas!!shotter2005
 
Reino Fungí (1) corregida actividad para la clase de ciencias dirigida a todo...
Reino Fungí (1) corregida actividad para la clase de ciencias dirigida a todo...Reino Fungí (1) corregida actividad para la clase de ciencias dirigida a todo...
Reino Fungí (1) corregida actividad para la clase de ciencias dirigida a todo...JanEndLiamParlovRG
 
ESFUERZO EN VIGAS SESIÓN 5 PROBLEMA RESUELTOS.pdf
ESFUERZO EN VIGAS SESIÓN 5 PROBLEMA RESUELTOS.pdfESFUERZO EN VIGAS SESIÓN 5 PROBLEMA RESUELTOS.pdf
ESFUERZO EN VIGAS SESIÓN 5 PROBLEMA RESUELTOS.pdfSegundo Silva Maguiña
 

Último (20)

Trabajo Mecanismos de cuatro barras.pdf
Trabajo  Mecanismos de cuatro barras.pdfTrabajo  Mecanismos de cuatro barras.pdf
Trabajo Mecanismos de cuatro barras.pdf
 
Sistema de 4 barras articuladas bb_2.pdf
Sistema de 4 barras articuladas bb_2.pdfSistema de 4 barras articuladas bb_2.pdf
Sistema de 4 barras articuladas bb_2.pdf
 
SISTEMA ARTICULADO DE CUATRO BARRAS .pdf
SISTEMA ARTICULADO DE CUATRO BARRAS .pdfSISTEMA ARTICULADO DE CUATRO BARRAS .pdf
SISTEMA ARTICULADO DE CUATRO BARRAS .pdf
 
ESTRATEGIA comercial de productos en mineria.pptx
ESTRATEGIA comercial de productos en mineria.pptxESTRATEGIA comercial de productos en mineria.pptx
ESTRATEGIA comercial de productos en mineria.pptx
 
Presentación de proyecto y resumen de conceptos (3).pdf
Presentación de proyecto y resumen de conceptos (3).pdfPresentación de proyecto y resumen de conceptos (3).pdf
Presentación de proyecto y resumen de conceptos (3).pdf
 
Responsabilidad de padres con sus hijos (1).pptx
Responsabilidad de padres con sus hijos (1).pptxResponsabilidad de padres con sus hijos (1).pptx
Responsabilidad de padres con sus hijos (1).pptx
 
Circuitos_basicos_de_neumatica miquel carulla .pdf
Circuitos_basicos_de_neumatica  miquel carulla .pdfCircuitos_basicos_de_neumatica  miquel carulla .pdf
Circuitos_basicos_de_neumatica miquel carulla .pdf
 
Redes GSM en la tecnología en la segunda
Redes GSM en la tecnología en la segundaRedes GSM en la tecnología en la segunda
Redes GSM en la tecnología en la segunda
 
METRADOS EN OBRAS DE PAVIMENTACION- ACTUALIZADA.pptx
METRADOS EN OBRAS DE PAVIMENTACION- ACTUALIZADA.pptxMETRADOS EN OBRAS DE PAVIMENTACION- ACTUALIZADA.pptx
METRADOS EN OBRAS DE PAVIMENTACION- ACTUALIZADA.pptx
 
Tema 1 ECONOMIA del MECANIZADO.pptx.mfse
Tema 1 ECONOMIA del MECANIZADO.pptx.mfseTema 1 ECONOMIA del MECANIZADO.pptx.mfse
Tema 1 ECONOMIA del MECANIZADO.pptx.mfse
 
Seccion hidraulicamente optima uptc.pptx
Seccion hidraulicamente optima uptc.pptxSeccion hidraulicamente optima uptc.pptx
Seccion hidraulicamente optima uptc.pptx
 
ESTABILIZACION DE TALUDES CON ESCOLLERAS
ESTABILIZACION DE TALUDES CON ESCOLLERASESTABILIZACION DE TALUDES CON ESCOLLERAS
ESTABILIZACION DE TALUDES CON ESCOLLERAS
 
TR-514 (3) - BIS copia seguridad DOS COLUMNAS 2024 20.5 PREFERIDO.wbk.wbk SEG...
TR-514 (3) - BIS copia seguridad DOS COLUMNAS 2024 20.5 PREFERIDO.wbk.wbk SEG...TR-514 (3) - BIS copia seguridad DOS COLUMNAS 2024 20.5 PREFERIDO.wbk.wbk SEG...
TR-514 (3) - BIS copia seguridad DOS COLUMNAS 2024 20.5 PREFERIDO.wbk.wbk SEG...
 
guia-diseno-instalaciones-electricas.pdf
guia-diseno-instalaciones-electricas.pdfguia-diseno-instalaciones-electricas.pdf
guia-diseno-instalaciones-electricas.pdf
 
sin respuestas Mecánica y m.a.s julio 4.pdf
sin respuestas Mecánica y m.a.s julio 4.pdfsin respuestas Mecánica y m.a.s julio 4.pdf
sin respuestas Mecánica y m.a.s julio 4.pdf
 
Procedimeiento y secuencias para el diseño mecánico de ejes
Procedimeiento y secuencias para el diseño mecánico de ejesProcedimeiento y secuencias para el diseño mecánico de ejes
Procedimeiento y secuencias para el diseño mecánico de ejes
 
Mecanismo de cuatro barras articuladas!!
Mecanismo de cuatro barras articuladas!!Mecanismo de cuatro barras articuladas!!
Mecanismo de cuatro barras articuladas!!
 
Regularización de planos playa Las Ventanas
Regularización de planos playa Las VentanasRegularización de planos playa Las Ventanas
Regularización de planos playa Las Ventanas
 
Reino Fungí (1) corregida actividad para la clase de ciencias dirigida a todo...
Reino Fungí (1) corregida actividad para la clase de ciencias dirigida a todo...Reino Fungí (1) corregida actividad para la clase de ciencias dirigida a todo...
Reino Fungí (1) corregida actividad para la clase de ciencias dirigida a todo...
 
ESFUERZO EN VIGAS SESIÓN 5 PROBLEMA RESUELTOS.pdf
ESFUERZO EN VIGAS SESIÓN 5 PROBLEMA RESUELTOS.pdfESFUERZO EN VIGAS SESIÓN 5 PROBLEMA RESUELTOS.pdf
ESFUERZO EN VIGAS SESIÓN 5 PROBLEMA RESUELTOS.pdf
 

Solucionariodelosexamenesdemecanicadesuelosii

  • 1. MECANICA DE SUELOS II Sandro venero soncco En el presente documento dispondremos a desarrollar las preguntas de teoría y práctica de mecánica de suelos II
  • 2. VenerosonccoS 1Práctica y teoría resuelto de mecánica de suelos II 01.¡Qué es esfuerzo efectivo? a) Es la suma de las componentes verticales de las fuerzas desarrolladas en los puntos de contacto de las partículas sólidas por área de sección transversal unitaria. b) Es el esfuerzo que absorbe las partículas sólidas del suelo. c) es la fracción del esfuerzo normal absorbida por el esqueleto del suelo en los puntos de contacto de las partículas. RESPUESTA d) Todas las anteriores son correctas e) Ninguna anterior 02.¿Por qué es importante conocer el esfuerzo cortante máximo? a) Para el cálculo de la estabilidad de cimentos. RESPUESTA b) Para el cálculo de esfuerzos normales c) Para calcular los esfuerzos verticales d) Todas las anteriores. e) Ninguna anterior. 03.El conocimiento de los esfuerzos verticales es de gran importancia para: a) La elasticidad b) Los principios de la deformación c) La consolidación d) Los asentamientos e) Más de una es correcta. RESPUESTA 04.Describe los parámetros de la siguiente fórmula: 𝜎𝑛 = 𝜎𝑒 + ∑ 𝜎𝑧𝑖 𝑛 𝑖=1 𝜎𝑛 : Son los esfuerzos verticales totales por debajo de la superficie del suelo cuando actúan sobrecargas en la superficie 𝜎𝑒: Esfuerzos efectivos de la masa de suelo ∑ 𝜎𝑧𝑖 𝑛 𝑖=1 : Es la sumatoria de los esfuerzos provocados por las cargas existentes sobre la superficie del suelo 05.¿Qué entiendes por esfuerzo total vertical? Es la suma del esfuerzo efectivo y el esfuerzo producido por una carga, que actúan en la estructura del suelo
  • 3. VenerosonccoS 2Práctica y teoría resuelto de mecánica de suelos II 06.¿Qué entiendes por esfuerzos Geostáticos? El esfuerzo geos tatico es el resultado de la suma del esfuerzo efectivo más la presión neutra 07.¿Qué es presión de poro? a) Es la presión hidrostática que actúa encima del suelo b) Es la presión intersticial hidrostática que actúa sobre el suelo y se presenta cuando existe un nivel de capilaridad. RESPUESTA c) Es la presión intersticial hidrostática que actúa sobre el suelo y se presenta cuando existe un nivel de freático. d) Es la diferencia del esfuerzo efectivo y el esfuerzo total. e) Más de una respuesta es correcta. 08.Calcule el esfuerzo efectivo en el punto A. N.S.C: nivel de saturación capilar N.F: nivel freático 𝜎𝑒 = 𝛾ℎ + 𝛾𝑠𝑎𝑡1 ℎ𝑐 + 𝛾𝑠𝑎𝑡2ℎ𝑤 − 𝛾𝑤ℎ𝑤 𝜎𝑒 = 𝛾ℎ + 𝛾𝑠𝑎𝑡1 ℎ𝑐 + ℎ𝑤( 𝛾𝑠𝑎𝑡2 − 𝛾𝑤) 𝝈 𝒆 = 𝜸𝒉 + 𝜸 𝒔𝒂𝒕, 𝒉𝒄 + 𝒉𝒘𝜸, --------RESPUESTA 𝛾, : Peso específico sumergido 09.¿Cuáles son los pasos para usar la carta de Newmark para el cálculo de esfuerzos verticales correspondiente a cargas encima de la superficie terrestre? I. Ubicar el punto indicado sobre el centro de la carta de Newmark II. Dibujar a escala la gráfica (escala de la gráfica es equivalente a la profundidad) III. Sumar el número de áreas que están dentro de la grafica IV. Reemplazar los valores en la siguiente formula: ∆𝜎 = ( 𝑉𝐼) ∗ ( 𝑞) ∗ ( 𝑁°)
  • 4. VenerosonccoS 3Práctica y teoría resuelto de mecánica de suelos II Dónde: 𝑉𝐼: 𝑣𝑎𝑙𝑜𝑟 𝑑𝑒 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑖𝑎 𝑞: 𝑐𝑎𝑟𝑔𝑎 𝑁°: 𝑛𝑢𝑚𝑒𝑟𝑜 𝑑𝑒 𝑎𝑟𝑒𝑎𝑠 10.Dibuje los diagramas de esfuerzos totales, esfuerzos efectivos y presión de poro del ejercicio 8 11.Demostrar 𝛾 𝑚 =( 1+𝑤 1+𝑒 ) 𝛾 𝑠 𝛾 𝑚 = 𝑊 𝑉 𝛾 𝑚 = 𝑊𝑤 + 𝑊𝑠 𝑉𝑉 + 𝑉𝑠 𝛾 𝑚 = 𝑊𝑤 + 𝑊𝑠 𝑊𝑠 ∗ 𝑊𝑠 1 𝑉𝑉 + 𝑉𝑠 𝑉𝑠 ∗ 𝑉𝑠 1 𝛾 𝑚 = 𝑊 + 1 𝑒 + 1 ∗ 𝑊𝑠 𝑉𝑠 𝛾 𝑚 = ( 𝑊 + 1 𝑒 + 1 )𝛾𝑠 12.Demostrar 𝛾𝑠𝑎𝑡=( 𝛾 𝑠+𝑒 1 +𝑒 ) 𝛾𝑠𝑎𝑡 = 𝑊𝑠 + 𝑊𝑤 + 𝑊𝑝𝑜𝑟𝑜𝑠 𝑙𝑙𝑒𝑛𝑜𝑠 𝑑𝑒 𝑎𝑔𝑢𝑎 𝑉 𝛾𝑠𝑎𝑡 = 𝑊𝑠 + 𝑉𝑉 𝑉𝑉 + 𝑉𝑠
  • 5. VenerosonccoS 4Práctica y teoría resuelto de mecánica de suelos II 𝛾𝑠𝑎𝑡 = (𝑊𝑠 + 𝑉𝑉 ) 𝑉𝑠 (𝑉𝑉 + 𝑉𝑠) 𝑉𝑠 𝛾𝑠𝑎𝑡 = ( 𝛾𝑠 + 𝑒 1 + 𝑒 )
  • 6. VenerosonccoS 5Práctica y teoría resuelto de mecánica de suelos II 1) Determinar y graficar los Diagramas de esfuerzos totales, neutrales y efectivos del perfil del suelo que se indica.  00.00 a -8.40 Arena mal graduada medianamente densa (Encima del nivel freático w = 6,5%) Relación de vacíos = 0,40 G = 2,60 N = 0,1128 ; D10 = 0,0006  -8,40 a -16,40 Limo inorgánico; n = 0,55; G = 2,67  -16,40 a -18,20 Arcilla inorgánica; e = 0,61; G = 2,79.  -18,20 a -20,00 Arena mal graduada; Gw = 100%; w = 25%; d = 1,60 gr/cm3.  El nivel freático está a -5.70 Solución
  • 7. VenerosonccoS 6Práctica y teoría resuelto de mecánica de suelos II Determinamos la altura del acenso capilar Usaremos la siguiente formula 𝒉 𝒄 = 𝑵 𝒆∗𝑫 𝟏𝟎 𝒉 𝒄 = 𝑵 𝒆 ∗ 𝑫 𝟏𝟎 ⟹ ℎ 𝑐 = 0.1128 0.40 ∗ 0.0006 = 47 𝑐𝑚 ⟹ ℎ 𝑐 = 4.7 𝑚 Calculamos los pesos específicos en cada fase Para el estrato I Para peso específico seco usaremos la formula siguiente 𝛾 𝑚 = ( 1 + 𝑊 1 + 𝑒 ) 𝛾𝑠 = (1 + 𝑤) 𝐺𝑠 𝛾𝑤 1 + 𝑒 ⟹ 𝛾 𝑚 = (1 + 0.65)(2.60)(1) 1 + 0.40 = 1.98 𝑡𝑛 𝑚3 𝛾 𝑚 = 1.98 𝑡𝑛 𝑚3 Para el peso específico saturado usaremos la formula siguiente 𝛾𝑠𝑎𝑡 = ( 𝛾𝑠 + 𝑒 1 + 𝑒 ) = 𝐺𝑠 𝛾𝑤 + 𝑒 1 + 𝑒 ⟹ 𝛾𝑠𝑎𝑡 = 2.60(1) + 0.40 1 + 0.40 = 2.14 𝑡𝑛 𝑚3 ⟹ 𝛾𝑠𝑎𝑡 = 2.14 𝑡𝑛 𝑚3 𝛾𝑠𝑎𝑡 = ( 𝛾𝑠 + 𝑒 1 + 𝑒 ) = 𝐺𝑠 𝛾𝑤 + 𝑒 1 + 𝑒 ⟹ 𝛾𝑠𝑎𝑡 = 2.60(1) + 0.40 1 + 0.40 = 2.14 𝑡𝑛 𝑚3 ⟹ 𝛾𝑠𝑎𝑡 = 2.14 𝑡𝑛 𝑚3
  • 8. VenerosonccoS 7Práctica y teoría resuelto de mecánica de suelos II Para el estrato II En este caso primero hallamos “e” para luego calcular (𝛾𝑠𝑎𝑡 ) 𝑒 = 𝑛 1 − 𝑛 ⟹ 𝑒 = 0.55 1 − 0.55 = 1.22 ⟹ 𝑒 = 1.22 𝛾𝑠𝑎𝑡 = ( 𝛾𝑠 + 𝑒 1 + 𝑒 ) = 𝐺𝑠 𝛾𝑤 + 𝑒 1 + 𝑒 ⟹ 𝛾𝑠𝑎𝑡 = 2.67(1) + 1.22 1 + 1.22 = 1.75 𝑡𝑛 𝑚3 ⟹ 𝛾𝑠𝑎𝑡 = 1.75 𝑡𝑛 𝑚3 Para el estrato III 𝛾𝑠𝑎𝑡 = ( 𝛾𝑠 + 𝑒 1 + 𝑒 ) = 𝐺𝑠 𝛾𝑤 + 𝑒 1 + 𝑒 ⟹ 𝛾𝑠𝑎𝑡 = 2.79(1) + 0.61 1 + 0.61 = 2.11 𝑡𝑛 𝑚3 ⟹ 𝛾𝑠𝑎𝑡 = 2.11 𝑡𝑛 𝑚3 Para el estrato IV  25% = 𝑊 𝑊 𝑊 𝑆 ⟹ 𝑊𝑆 = 4𝑊𝑊  𝛾 𝑊 = 𝑊 𝑊 𝑉 𝑊 ⟹ 𝑉𝑊 = 𝑊𝑊  𝛾𝑑 = 𝑊 𝑆 𝑉 ⟹ 1.6𝑉 = 𝑊 𝑊 ⟹ 𝑉 = 2.5𝑊𝑊 ⟹ 0.4𝑉 = 𝑊𝑊 Para ( 𝛾𝑠 ) 𝛾𝑠 = 𝑊𝑆 𝑉𝑆 = 1.6𝑉 0.4𝑉 = 2.67 Para calculara (e) 𝑒 = 𝑉𝑉 𝑉𝑆 = 0.4𝑉 0.6𝑉 = 0.67 Ahora reemplazamos los valores en la formula siguiente para hallar el peso específico saturado
  • 9. VenerosonccoS 8Práctica y teoría resuelto de mecánica de suelos II 𝛾𝑠𝑎𝑡 = ( 𝛾𝑠 + 𝑒 1 + 𝑒 ) = 2.67(1)+ 0.67 1 + 0.67 = 2 𝑡𝑛 𝑚3 ⟹ 𝛾𝑠𝑎𝑡 = 2 𝑡𝑛 𝑚3 Ahora calculamos los esfuerzos totales (𝜎𝑡), la presión de poros (𝑢) y los esfuerzos efectivos (𝜎𝑒) Formula del esfuerzo total 𝜎𝑡 = 𝛾ℎ Fórmula para la presión de poro 𝑢 = 𝛾𝑤 ℎ 𝑤 Formula del esfuerzo efectivo 𝜎𝑒 = 𝜎𝑡 − 𝑢 Para el punto “A” calculamos (𝝈𝒕),( 𝒖) 𝒚 (𝝈 𝒆) 𝜎𝑡 = 1.98 ∗ 1 = 1.98 𝑡𝑛 𝑚2 𝑢 = −𝛾𝑤 ℎ 𝑤 = −1 ∗ 4.7 = −4.7 𝑡𝑛 𝑚2 𝜎𝑒 = 1.98 − (−4.7) = 6.68 𝑡𝑛/𝑚2 La presión de poro es negativo debido a que el agua asciende por capilaridad (esto se da solamente en el punto “A”) Para el punto “B” calculamos (𝝈𝒕),( 𝒖) 𝒚 (𝝈 𝒆) 𝜎𝑡 = 1.98 + 2.14 ∗ (4.7) = 12.04 𝑡𝑛 𝑚2 𝑢 = 𝛾𝑤 ℎ 𝑤 = 1 ∗ (0) = 0 𝑡𝑛 𝑚2 𝜎𝑒 = 12.04 − 0 = 12.04 𝑡𝑛/𝑚2 Para el punto “C” calculamos (𝝈𝒕),( 𝒖) 𝒚 (𝝈 𝒆) 𝜎𝑡 = 12.04 + 2.14 ∗ (2.7) = 17.82 𝑡𝑛 𝑚2 𝑢 = 𝛾𝑤 ℎ 𝑤 = 1 ∗ (2.7) = 2.7 𝑡𝑛 𝑚2 𝜎𝑒 = 17.82 − 2.7 = 15.12 𝑡𝑛/𝑚2
  • 10. VenerosonccoS 9Práctica y teoría resuelto de mecánica de suelos II Para el punto “D” calculamos (𝝈𝒕),( 𝒖) 𝒚 (𝝈 𝒆) 𝜎𝑡 = 17.82 + 1.75 ∗ (8) = 31.82 𝑡𝑛 𝑚2 𝑢 = 𝛾𝑤 ℎ 𝑤 = 1 ∗ (10.7) = 10.7 𝑡𝑛 𝑚2 𝜎𝑒 = 31.82 − 10.7 = 21.12 𝑡𝑛/𝑚2 Para el punto “E” calculamos (𝝈𝒕),( 𝒖) 𝒚 (𝝈 𝒆) 𝜎𝑡 = 31.82 + 2.11 ∗ (1.8) = 35.62 𝑡𝑛 𝑚2 𝑢 = 𝛾𝑤 ℎ 𝑤 = 1 ∗ (12.5) = 12.5 𝑡𝑛 𝑚2 𝜎𝑒 = 35.62 − 12.5 = 23.12 𝑡𝑛/𝑚2 Para el punto “F” calculamos (𝝈𝒕),( 𝒖) 𝒚 (𝝈 𝒆) 𝜎𝑡 = 35.62 + 2 ∗ (1.8) = 39.22 𝑡𝑛 𝑚2 𝑢 = 𝛾𝑤 ℎ 𝑤 = 1 ∗ (14.3) = 14.3 𝑡𝑛 𝑚2 𝜎𝑒 = 39.22 − 14.3 = 24.92 𝑡𝑛/𝑚2 Grafica
  • 11. VenerosonccoS 10Práctica y teoría resuelto de mecánica de suelos II 2) Calcular los esfuerzos verticales totales (  e + z ) debajo de los puntos A y B, en el medio del estrato de arcilla CL. del edificio, que se muestra en la figura. El nivel de saturación por capilaridad llega hasta – 2,00 Solución
  • 12. VenerosonccoS 11Práctica y teoría resuelto de mecánica de suelos II Ahora calculamos los esfuerzos totales (𝜎𝑡), la presión de poros (𝑢) y los esfuerzos efectivos (𝜎𝑒) PUNTO “A” (edificio “A”) Para el punto “A” calculamos (𝝈𝒕),( 𝒖) 𝒚 (𝝈 𝒆) 𝜎𝑡 = 1.5 ∗ (2) + 1.95 ∗ (2) + 2.17 ∗ (7)+ 1.97 ∗ (2.5) = 27.015 𝑡𝑛 𝑚2 𝑢 = 𝛾𝑤 ℎ 𝑤 = 1 ∗ (9.5) = 9.5 𝑡𝑛 𝑚2 𝜎𝑒 = 27.015 − 9.5 = 17.515 𝑡𝑛/𝑚2 Calculamos (𝝈 𝒁𝑨) Sabemos que 𝜎𝑍𝐴 = 𝑊 ∗ 𝑊0 Dónde:
  • 13. VenerosonccoS 12Práctica y teoría resuelto de mecánica de suelos II 𝑊: 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑚𝑜𝑠 𝑐𝑜𝑛 𝑙𝑜𝑠 𝑑𝑎𝑡𝑜𝑠 𝑑𝑒𝑙 𝑒𝑑𝑖𝑓𝑖𝑐𝑖𝑜 (𝐴) 𝑊0: 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑚𝑜𝑠 𝑑𝑒 𝑙𝑎 𝑡𝑎𝑏𝑙𝑎 Calculamos (𝑾) 𝑊 = 9 ∗ (1.3) − (1.5 ∗ (2)+ 1.95 ∗ (2)) = 4.8 𝑡𝑛 𝑚2 Calculamos (𝑾 𝟎) Usaremos la siguiente formula 𝑚 = 𝑋 𝑍 𝑛 = 𝑌 𝑍 Dónde: 𝑍: 𝑒𝑠 𝑙𝑎 𝑝𝑟𝑜𝑓𝑢𝑛𝑑𝑖𝑑𝑎𝑑 Para el punto “A” Z es igual a 9.5 m Calculamos el valor de “m” 𝑚 = 9.40 9.5 = 0.99 Calculamos el valor de “n” 𝑛 = 30 9.5 = 3.15 Con los valores de “m” y “n” hallamos en la tabla en valor de (𝑊0) 𝑚 = 0.99 𝑛 = 3.15 } = 𝑊0 = 0.203
  • 14. VenerosonccoS 13Práctica y teoría resuelto de mecánica de suelos II Teniendo los valores de (𝑊 , 𝑊0 ) reemplazamos en la formula (𝜎𝑍𝐴 = 𝑊 ∗ 𝑊0 ) 𝜎𝑍𝐴 = 𝑊 ∗ 𝑊0 ⟹ 𝜎𝑍𝐴 = 4.8 ∗ 0.203 = 0.973 𝑡𝑛/𝑚2 PUNTO “B” (edificio “B”) Calculamos (𝝈 𝒁) Sabemos que 𝜎𝑍 = 𝑊 ∗ 𝑊0 Calculamos (𝑾) 𝑊 = 13 ∗ (1.6) − (1.5 ∗ (2)+ 1.95 ∗ (2)) = 13.9 𝑡𝑛 𝑚2 Calculamos (𝑾 𝟎) Usaremos la siguiente formula 𝑚 = 𝑋 𝑍 𝑛 = 𝑌 𝑍 Dónde: 𝑍: 𝑒𝑠 𝑙𝑎 𝑝𝑟𝑜𝑓𝑢𝑛𝑑𝑖𝑑𝑎𝑑 Calculamos el valor de “m” Primero calculamos para todo (edificio) 𝑚 = 18.80 9.5 = 1.97 Calculamos el valor de “n” 𝑛 = 30 9.5 = 3.15
  • 15. VenerosonccoS 14Práctica y teoría resuelto de mecánica de suelos II Con los valores de “m” y “n” hallamos en la tabla en valor de (𝑊0) (todo el edificio) 𝑚 = 1.97 𝑛 = 3.15 } = 𝑊0 = 0.239 Calculamos para la mitad (edificio) Calculamos el valor de “m” 𝑚 = 9.40 9.5 = 0.99 Calculamos el valor de “n” 𝑛 = 30 9.5 = 3.15 Con los valores de “m” y “n” hallamos en la tabla en valor de (𝑊0) (mitad del edificio) 𝑚 = 0.99 𝑛 = 3.15 } = 𝑊0 = 0.203 Ahora restamos los valores de (𝑊0) y reemplazamos en la formula (𝜎𝑍 = 𝑊 ∗ 𝑊0) 𝑊0 = 0.239 − 0.203 = 0.036 𝜎𝑍 = 𝑊 ∗ 𝑊0 ⟹ 𝜎𝑍𝐴 = 13.9 ∗ 0.036 = 0.501 𝑡𝑛/𝑚2 Hallamos (𝜎𝑛𝐴) 𝜎𝑛𝐴 = 17.515 + 0.973 + 0.501 = 18.99 𝑡𝑛/𝑚2 Ahora calculamos los esfuerzos totales (𝜎𝑡), la presión de poros (𝑢) y los esfuerzos efectivos (𝜎𝑒) PUNTO “B” (edificio “B”) La profundidad “Z” para el punto “B” es igual a 10m 𝜎𝑡 = 1.5 ∗ (2) + 1.95 ∗ (2) + 2.17 ∗ (7)+ 1.97 ∗ (3) = 28 𝑡𝑛 𝑚2 𝑢 = 𝛾𝑤 ℎ 𝑤 = 1 ∗ (10) = 10 𝑡𝑛 𝑚2 𝜎𝑒 = 28 − 10 = 18 𝑡𝑛/𝑚2
  • 16. VenerosonccoS 15Práctica y teoría resuelto de mecánica de suelos II Calculamos “m” y “n” 𝐸𝐷1 = 𝑊 = 4.8 𝑡𝑛/𝑚2 𝑚 = 9.40 10 = 0.94 𝑛 = 15 10 = 1,5 Con los valores de “m” y “n” hallamos en la tabla en valor de (𝑊0) 𝑚 = 0.94 𝑛 = 1.5 } = 𝑊0 = 0.189 ∗ 𝟐 = 𝟎. 𝟑𝟕𝟖 Los valores de ( 𝑊 𝑦 𝑊0) reemplazamos en la formula ( 𝜎𝑍 = 𝑊 ∗ 𝑊0 ) 𝜎𝑍 = 𝑊 ∗ 𝑊0 ⟹ 𝜎𝑍 = 4.8 ∗ 0.378 = 1.81 𝑡𝑛 𝑚2 𝜎𝑍 = 13.9 ∗ 0.378 = 5.25 𝑡𝑛 𝑚2 Hallamos (𝜎𝑛𝐵) 𝜎𝑛𝐵 = 18 + 1.81 + 5.25 = 25.06 𝑡𝑛 𝑚2 3) Utilizando el diagrama de Newmark y el Valor de influencia = 0,005. Calcular el esfuerzo z a una profundidad de 19,5 pies debajo del punto “O” Del edificio que transmite una carga distribuida en la superficie de 38,70 kN/m2, cuya figura en planta se muestra
  • 17. VenerosonccoS 16Práctica y teoría resuelto de mecánica de suelos II Solución Para convertir los valores de pies a metros se multiplican por (0.3048) Z=19.5 pies Z=19.5*(0.3048) Z=5.94 m El valor de influencia es de 0.005 y mide 3.9 cm Calculamos los valores en centímetros para graficar en la carta de Newmark Para “1” 3.9cm…………5.94m Xcm…………1.21m X=0.79cm Para “2” 3.9cm…………5.94m Xcm…………1.82m X=1.19cm Para “3” 3.9cm…………5.94m Xcm…………12.19m X=8cm Para “4” 3.9cm…………5.94m Xcm…………6.09m X=4cm Para “5” 3.9cm…………5.94m Xcm…………7.92m X=5.2cm Para “6” 3.9cm…………5.94m Xcm…………2.13m X=1.39cm
  • 18. VenerosonccoS 17Práctica y teoría resuelto de mecánica de suelos II
  • 19. VenerosonccoS 18Práctica y teoría resuelto de mecánica de suelos II 1. ¿A qué se debe el proceso de consolidación secundaria? ¿Y en qué tipos de suelos se presenta? Se produce después de la consolidación primaria, se debe a la alta compresibilidad del suelo, porque las partículas del suelo presentan fluencia viscosa (lenta) que hace que estos se reacomoden. Y se presentan en suelos arcillosos y turbas 2. ¿A qué se debe el proceso de consolidación primaria? ¿Y en qué tipos de suelos se presenta? Se debe a la expulsión del agua que ocupa los espacios vacíos (el agua intersticial se drena) producido a lo largo del tiempo. Y se presenta en suelos como la arcilla saturada 3. Defina los siguientes conceptos. Emplee un croquis en caso sea necesario  Incremento de pre-consolidación: Es el resultado de la diferencia del esfuerzo de pre-consolidación y el esfuerzo efectivo 𝐼𝑃𝐶 = 𝜎𝑐 , − 𝜎𝑒  Relación de pre-consolidación: es el resultado de la división del esfuerzo de pre-consolidación y el esfuerzo efectivo 𝑂𝐶𝑅 = 𝜎𝐶 , 𝜎𝑒  Índice de compresibilidad: es el resultado de la división de la variación de los vacíos y el logaritmo de los esfuerzos efectivo mayor entre el esfuerzo efectivo menor 𝐶 𝐶 = ∆𝑒 log( 𝜎𝑒2 𝜎𝑒1 )
  • 20. VenerosonccoS 19Práctica y teoría resuelto de mecánica de suelos II 4. A partir de curva de compresibilidad del ensayo de consolidación se puede determinar la presión de pre-consolidación por el método de casa grande. Explique el método y dibuje  se toma un punto “a” en la curva donde presenta menor radio  se traza una línea horizontal “ab” desde el punto “a”  se traza una línea tangente “ac” en el punto “a”  se traza una línea bisectriz “ad” del Angulo “bac”  se prolonga la línea “gh” o hasta intersectar la línea bisectriz en el punto “f” la abscisa del punto “f” es el esfuerzo de pre-consolidación 5. ¿En qué teoría se basa el asentamiento instantáneo? En la teoría de la elasticidad, y está presente el simultaneo en construcción de obres civiles 6. ¿Cómo se denomina las presiones verticales en la masa de los suelos saturados? Explique cómo actúa cada uno A la suma del esfuerzo de sobre carga y el esfuerzo geos tatico  esfuerzo de sobre carga: producida por la presión de las estructuras civiles  esfuerzo gestáltico: es la suma del esfuerzo efectivo más la presión de poro  Presión efectiva: es la presión que absorbe las partículas sólidas del suelo  presión de poro: es la presión que genera el agua en los poros 7. ¿Qué entiendes por un suelo pre-consolidado? Y debido a que aspectos se debe La presión de sobrecargas efectiva es menor que la que el suelo experimento en su pasado Es debido a procesos geológicos y/o intervención del hombre 8. ¿Qué entiendes por suelo normalmente consolidado? La presión de sobrecarga efectiva presente es la presión máxima a la que el suelo fue sometido en su pasado
  • 21. VenerosonccoS 20Práctica y teoría resuelto de mecánica de suelos II 1. La zapata típica de una edificación tiene un área de 3.50 x 5.50 m y esta cimentada a 1.70 m de profundidad, transmite una carga de 2.25 kg/cm2.cuyo perfil del suelo es el siguiente Considerar estratos de un metro obligatoriamente
  • 22. VenerosonccoS 21Práctica y teoría resuelto de mecánica de suelos II a) Determinar y graficar los diagramas de los esfuerzos geos taticos, neutrales y efectivos b) Calcular el asentamiento total Solución 𝛾𝑚 = 1.85𝑔𝑟 𝑚3 = 1.85𝑡𝑛 𝑚3 𝛾𝑠𝑎𝑡 = 2.15𝑔𝑟 𝑚3 = 2.15𝑡𝑛 𝑚3 𝑤 = 2.25𝑘𝑔 𝑚2 = 22.5𝑡𝑛 𝑚2 Calculamos: Hc = N e ∗ D10 ⇒ 𝐻𝑐 = 0.115 0.65 ∗ 0.00093 = 190𝑐𝑚 = 𝟏. 𝟗𝒎 Calculando:
  • 23. VenerosonccoS 22Práctica y teoría resuelto de mecánica de suelos II γsat1 = Gs ∗ γw + e 1 + e Antes hallamos “e” 𝑒 = 𝑛 1 − 𝑛 ⇒ 𝑒 = 0.45 1 − 0.45 = 𝟎. 𝟖𝟏 γsat1 = Gs ∗ γw + e 1 + e = 2.45 ∗ 1 + 0.81 1 + 0.81 = 1.80 𝑡𝑛 𝑚2 γsat2 = Gs ∗ γw + e 1 + e = 2.66 ∗ 1 + 0.44 1 + 0.44 = 2.15 𝑡𝑛 𝑚2 Hallamos los esfuerzos geos taticos, neutrales y efectivos a. A una profundidad de 0.8 metros 𝜎𝑡 = 0.8 ∗ (1.85) = 1.48 𝑡𝑛 𝑚2 𝑢 = −𝐻𝑐 ∗ 𝛾𝑤 = −1.9 ∗ 1 = −1.9 𝑡𝑛 𝑚2 𝜎𝑒 = 1.48 − (−1.9) = 3.38 𝑡𝑛/𝑚2 b. A una profundidad de 2.70 metros 𝜎𝑡 = 1.48 + 1.9 ∗ (2.15) = 5.57 𝑡𝑛 𝑚2 𝑢 = 0 = 0 𝑡𝑛 𝑚2 𝜎𝑒 = 5.57 − 0 = 5.57 𝑡𝑛/𝑚2 c. A una profundidad de 5.70 metros 𝜎𝑡 = 5.57 + 3 ∗ (1.80) = 10.97 𝑡𝑛 𝑚2 𝑢 = 3 ∗ 1 = 3 𝑡𝑛 𝑚2 𝜎𝑒 = 10.97 − 3 = 7.97 𝑡𝑛/𝑚2 d. A una profundidad de 8.60 metros 𝜎𝑡 = 10.97 + 2.90 ∗ (2.15) = 17.205 𝑡𝑛 𝑚2 𝑢 = 5.90 ∗ 1 = 5.90 𝑡𝑛 𝑚2 𝜎𝑒 = 17.205 − 5.90 = 11.305 𝑡𝑛 𝑚2 Dibujamos los diagramas de los esfuerzos geos taticos, neutrales y efectivos
  • 24. VenerosonccoS 23Práctica y teoría resuelto de mecánica de suelos II
  • 25. VenerosonccoS 24Práctica y teoría resuelto de mecánica de suelos II N° Hi (m) 𝝈 𝟎 , 𝒕𝒐𝒏 /𝒎𝟐 𝝈 𝒄 , 𝒕𝒐𝒏 /𝒎𝟐 Zi(m) m n W0 Sobrecarga ∆𝝈 ∆𝝈 + 𝝈 𝟎 , 𝝈 𝒄 , formula S(mm) 1 3.20 5.97 7.91 1.50 1.17 1.83 0.209 18.81 24.78 > 7.91 III 72.70 2 4.20 6.76 8.70 2.50 0.7 1.1 0.152 13.68 20.44 > 8.70 III 54.26 3 5.20 7.56 9.50 3.50 0.5 0.78 0.109 9.81 17.37 > 9.50 III 38.93 total 165.89 σ0 1 , = 5.57 + 0.50(1.80 − 1) = 5.97 σ0 2 , = 5.57 + 1.50(1.80 − 1) = 6.77 σ0 3 , = 5.57 + 2.50(1.80 − 1) = 7.56 σe = 5.57 + 0.40(1.80 − 1) = 5.89 3.10-2.70=0.40→ es lo que falta para llegar a 3.10 metros σ0 , = 1.33 ∗ 5.89 = 7.83 IPC = 7.83 − 5.89 = 𝟏. 𝟗𝟒 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭𝐞 𝜎𝑐 1 , = 1.94 + 5.57 = 7.91 𝜎𝑐 2 , = 1.94 + 6.77 = 8.70 𝜎𝑐 3 , = 1.94 + 7.56 = 9.50
  • 26. VenerosonccoS 25Práctica y teoría resuelto de mecánica de suelos II n1 = 2.75 1.50 = 1.83 m1 = 1.75 1.50 = 1.17 n2 = 2.75 2.50 = 1.1 m2 = 1.75 2.50 = 0.7 n3 = 2.75 3.50 = 0.78 m3 = 1.75 3.50 = 0.5 σz = w ∗ w0 w = 22.5ton m2 dato σz 1 = 22.5 ∗ 0.209 ∗ 𝟒 = 18.81 σz 2 = 22.5 ∗ 0.152 ∗ 𝟒 = 13.68 σz 3 = 22.5 ∗ 0.109 ∗ 𝟒 = 9.81 1) ∆𝜎 + 𝜎0 , = 18.81 + 5.97 = 24.78 2) ∆𝜎 + 𝜎0 , = 13.68 + 6.76 = 20.44 3) ∆𝜎 + 𝜎0 , = 9.81 + 7.56 = 17.37 𝑺 = 𝑪 𝒔 𝑯 𝟏 + 𝒆 𝟎 𝐥𝐨𝐠( 𝝈 𝒄 , 𝝈 𝟎 , )+ 𝑪 𝒄 𝑯 𝟏 + 𝒆 𝟎 𝐥𝐨𝐠( 𝝈 𝟎 , + ∆𝝈 𝝈 𝒄 , ) 𝐂𝐬 = 𝟎. 𝟎𝟓 𝐂𝐜 = 𝟎. 𝟐𝟓 𝐞 𝟎 = 𝟎. 𝟖𝟏 𝑆1 = 0.05 ∗ 1 1 + 0.81 log( 7.91 5.57 )+ 0.25 ∗ 1 1 + 0.81 log( 24.78 7.91 ) = 72.70 𝑚𝑚 𝑆2 = 0.05 ∗ 1 1 + 0.81 log( 8.70 6.76 ) + 0.25 ∗ 1 1 + 0.81 log( 20.44 8.70 ) = 54.26 𝑚𝑚 𝑆3 = 0.05 ∗ 1 1 + 0.81 log( 9.50 7.56 ) + 0.25 ∗ 1 1 + 0.81 log( 17.37 9.50 ) = 38.93 𝑚𝑚
  • 27. VenerosonccoS 26Práctica y teoría resuelto de mecánica de suelos II N° Hi (m) 𝝈 𝟎 , 𝒕𝒐𝒏 /𝒎𝟐 𝝈 𝒄 , 𝒕𝒐𝒏 /𝒎𝟐 Zi(m) m n W0 Sobrecarga ∆𝝈 ∆𝝈 + 𝝈 𝟎 , 𝝈 𝒄 , formula S(mm) 4 6.20 8.545 23.169 4.50 0.39 0.61 0.078 7.02 15.565 < 23.169 II 10.85 5 7.20 9.695 24.319 5.50 0.32 0.5 0.059 5.31 15.005 < 24.319 II 7.90 6 8.15 10.787 25.411 6.45 0.27 0.42 0.048 4.32 15.107 < 25.411 II 6.09 total 24.84 σ0 4 , = 7.97 + 0.50(2.15 − 1) = 8.545 σ0 5 , = 7.97 + 0.50(2.15 − 1) = 9.695 σ0 6 , = 7.97 + 0.50(2.15 − 1) = 10.787 σe = 7.97 + 0.55(2.15 − 1) = 8.602 6.25-5.70=0.55→ es lo que falta para llegar a 6.25 metros σ0 , = 2.70 ∗ 8.602 = 23.226 IPC = 23.226 − 8.602 = 𝟏𝟒. 𝟔𝟐𝟒 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭𝐞 𝜎𝑐 4 , = 14.624 + 8.545 = 23.169 𝜎𝑐 5 , = 14.624 + 9.695 = 24.319 𝜎𝑐 6 , = 14.624 + 10.787 = 25.411
  • 28. VenerosonccoS 27Práctica y teoría resuelto de mecánica de suelos II n4 = 2.75 4.50 = 0.61 m4 = 1.75 4.50 = 0.39 n5 = 2.75 5.50 = 0.5 m4 = 1.75 5.50 = 0.32 n6 = 2.75 6.45 = 0.42 m6 = 1.75 6.45 = 0.27 σz = w ∗ w0 w = 22.5ton m2 dato σz 4 = 22.5 ∗ 0.078 ∗ 𝟒 = 7.02 σz 5 = 22.5 ∗ 0.059 ∗ 𝟒 = 5.31 σz 6 = 22.5 ∗ 0.048 ∗ 𝟒 = 4.32 1) ∆𝜎 + 𝜎0 , = 7.02 + 8.545 = 15.565 2) ∆𝜎 + 𝜎0 , = 5.31 + 9.695 = 15.005 3) ∆𝜎 + 𝜎0 , = 4.32 + 10.787 = 15.107 𝑺 = 𝑪 𝒔 𝑯 𝟏 + 𝒆 𝟎 𝐥𝐨𝐠( 𝝈 𝟎 , + ∆𝝈 𝝈 𝒄 , ) 𝐂𝐬 = 𝟎. 𝟎𝟔 𝐂𝐜 = 𝟎. 𝟒𝟐 𝐞 𝟎 = 𝟎. 𝟒𝟒 𝑆4 = 0.06 ∗ 1 1 + 0.44 log( 15.565 8.545 ) = 10.85 𝑚𝑚 𝑆5 = 0.06 ∗ 1 1 + 0.44 log( 15.005 9.695 ) = 7.90 𝑚𝑚 𝑆6 = 0.06 ∗ 1 1 + 0.44 log( 15.107 10.787 ) = 6.09 𝑚𝑚 Asentamiento total 𝑺𝒕𝒐𝒕𝒂𝒍 = 𝑺𝒕𝒐𝒕𝒂𝒍 𝟏 + 𝑺𝒕𝒐𝒕𝒂𝒍 𝟐 𝑺𝒕𝒐𝒕𝒂𝒍 = 𝟏𝟔𝟓. 𝟖𝟗 + 𝟐𝟒. 𝟖𝟒 𝑺𝒕𝒐𝒕𝒂𝒍 = 𝟏𝟗𝟎. 𝟕𝟑 𝒎𝒎
  • 29. VenerosonccoS 28Práctica y teoría resuelto de mecánica de suelos II 0.209 0.152 0.109 0.078 0.059 0.048
  • 30. VenerosonccoS 29Práctica y teoría resuelto de mecánica de suelos II 2. En la figura se muestra el perfil de un suelo. Si se aplica una carga uniformemente distribuida en la superficie del suelo. ¿Cuál será el asentamiento del estrato de arcilla causado por consolidación primaria? PRUEBA DE CONSOLIDACION EN LABORATORIO Presión efectiva (KN/m2) Altura final del espécimen al final de la consolidación (mm) 0 25.81 50 25.58 100 25.39 200 24.67 400 23.61 800 22.41 WS = 106.88gr,GS = 2.69, diametro del especimen = 63.5mm Perfil del suelo Solución Primero calculamos la altura de los solidos (𝑯 𝑺 = 𝑾 𝑺 𝑨𝑮 𝑺 𝜸 𝑾 ) Dónde: 𝐻 𝑆 = 𝑎𝑙𝑡𝑢𝑟𝑎 𝑑𝑒 𝑙𝑜𝑠 𝑠𝑜𝑙𝑖𝑑𝑜𝑠 𝑒𝑛 𝑒𝑙 𝑒𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑑𝑒 𝑠𝑢𝑒𝑙𝑜 𝑊𝑆 = 𝑝𝑒𝑠𝑜 𝑠𝑒𝑐𝑜 𝑑𝑒𝑙 𝑒𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝐴 = 𝑎𝑟𝑒𝑎 𝑑𝑒𝑙 𝑒𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝐺𝑆 = 𝑑𝑒𝑛𝑠𝑖𝑑𝑎𝑑 𝑑𝑒 𝑙𝑜𝑠 𝑠𝑜𝑙𝑖𝑑𝑜𝑠 𝑑𝑒𝑙 𝑠𝑢𝑒𝑙𝑜 𝛾 𝑊 = 𝑝𝑒𝑠𝑜 𝑒𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑜 𝑑𝑒𝑙 𝑎𝑔𝑢𝑎 𝐻 𝑆 = 𝑊𝑆 𝐴𝐺𝑆 𝛾 𝑊 ⟹ 𝐻 𝑆 = 106.88 𝜋 4 (63.5)2(2.69)(1) = 12.55𝑚𝑚 ⟹ 𝐻 𝑆12.55𝑚𝑚
  • 31. VenerosonccoS 30Práctica y teoría resuelto de mecánica de suelos II Hallamos los valores de la altura inicial de vacíos ( 𝑯 𝑽)y la relación de vacíos (𝒆) Formula 𝐻 𝑉 = 𝐻 − 𝐻𝑆 Dónde: 𝐻 𝑉 = 𝑎𝑙𝑡𝑢𝑟𝑎 𝑖𝑛𝑖𝑐𝑖𝑎𝑙 𝑑𝑒 𝑣𝑎𝑐𝑖𝑜𝑠 𝐻 = 𝑎𝑙𝑡𝑢𝑟𝑎 𝑖𝑛𝑖𝑐𝑖𝑎𝑙 𝑑𝑒𝑙 𝑒𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝐻 𝑆 = 𝑎𝑙𝑡𝑢𝑟𝑎 𝑑𝑒 𝑙𝑜𝑠 𝑠𝑜𝑙𝑖𝑑𝑜𝑠 Calculando los valores de (𝐻 𝑉) 𝐻 𝑉1 = 25.81 − 12.55 = 13.26 𝐻 𝑉2 = 25.58 − 12.55 = 13.03 𝐻 𝑉3 = 25.39 − 12.55 = 12.84 𝐻 𝑉4 = 24.67 − 12.55 = 12.12 𝐻 𝑉5 = 23.61 − 12.55 = 11.06 𝐻 𝑉6 = 22.41.12.55 = 9.86 Calculando los valores de (𝑒) Formula 𝑒 = 𝐻 𝑉 𝐻 𝑆 𝑒1 = 13.26 12.55 = 1.06 𝑒2 = 13.03 12.55 = 1.04 𝑒3 = 12.84 12.55 = 1.02 𝑒4 = 12.12 12.55 = 0.97 𝑒5 = 11.06 12.55 = 0.88 𝑒6 = 9.86 12.55 = 0.79 Completamos los valores en la tabla PRUEBA DE CONSOLIDACION EN LABORATORIO Presión efectiva (KN/m2) Altura final del espécimen al final de la consolidación (mm) 𝐇 𝐕 = 𝐇 − 𝐇 𝐒 𝐞 = 𝐇 𝐕 𝐇 𝐒 0 25.81 13.26 1.06 50 25.58 13.03 1.04 100 25.39 12.84 1.02 200 24.67 12.12 0.97 400 23.61 11.06 0.88 800 22.41 9.86 0.79 Calculamos el índice de compresión (𝑪 𝑪) 𝐶 𝐶 = ∆𝑒 log( 𝜎2 𝜎1 ) ⟹ 𝐶 𝐶 = 0.88 − 0.79 log( 800 400 ) = 0.299 = 0.3 ⟹ 𝐶 𝐶 = 0.3
  • 32. VenerosonccoS 31Práctica y teoría resuelto de mecánica de suelos II Calculamos el índice de expansión (𝑪 𝑺) 𝐶 𝑆 = 1 10 ( 𝐶 𝐶)+ 1 5 (𝐶 𝐶) 2 ⟹ 𝐶 𝑆 = 1 10 (0.3) + 1 5 (0.3) 2 = 0.045 ⟹ 𝐶 𝑆 = 0.045 Calculamos el esfuerzo efectivo (𝝈 𝟎 , ) 𝜎0 , = 4.5 ∗ (16.95) + 5.5 ∗ (17.75) + 3.25 ∗ (16.65)− 8.75 ∗ (9.81) 𝜎0 , = 142.175 𝐾𝑁/𝑚2 𝟖. 𝟕𝟓 𝒆𝒔 𝒍𝒂 𝒂𝒍𝒕𝒖𝒓𝒂 𝒅𝒆𝒔𝒅𝒆 𝒆𝒍 𝒏𝒊𝒗𝒆𝒍 𝒇𝒓𝒆𝒂𝒕𝒊𝒄𝒐 𝒂 𝒍𝒂 𝒎𝒊𝒕𝒂𝒅 𝒅𝒆𝒍 𝒆𝒔𝒕𝒓𝒂𝒕𝒐 𝒅𝒆 𝒂𝒓𝒄𝒊𝒍𝒍𝒂 𝟗. 𝟖𝟏 𝒆𝒔 𝒆𝒍 𝒑𝒆𝒔𝒐 𝒆𝒔𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒐 𝒅𝒆𝒍 𝒂𝒈𝒖𝒂 𝒆𝒏 𝑲𝑵/𝒎𝟑 Otra manera de calcular (𝝈 𝟎 , ) 𝜎0 , = 16.95 ∗ (4.5) + (17.75 − 9.81) ∗ (5.5) + (16.65 − 9.81) ∗ (3.25) 𝜎0 , = 142.175 𝐾𝑁/𝑚2 Ahora sumamos (𝜎0 , + ∇𝜎) 𝜎0 , + ∇𝜎 = 142.175 + 58 = 200.175 𝐾𝑁/𝑚2 Analizaremos cuál de las formulas usaremos para calcular (S) Cuando: 𝜎0 , + ∇𝜎 = 𝜎𝑐 , 𝑆 = 𝐶 𝐶 𝐻 1 + 𝑒0 log( 𝜎0 , + ∆𝜎, 𝜎0 , ) Cuando: 𝜎0 , + ∇𝜎 < 𝜎𝑐 , 𝑆 = 𝐶𝑆 𝐻 1 + 𝑒0 log( 𝜎0 , + ∆𝜎, 𝜎0 , )
  • 33. VenerosonccoS 32Práctica y teoría resuelto de mecánica de suelos II Cuando: 𝜎0 , + ∇𝜎 > 𝜎𝑐 , 𝑆 = 𝐶𝑆 𝐻 1 + 𝑒0 log 𝜎𝑐 , 𝜎0 , + 𝐶 𝐶 𝐻 1 + 𝑒0 log( 𝜎0 , + ∆𝜎, 𝜎0 , ) En el problema cumple la siguiente condición 𝜎0 , + ∇𝜎 > 𝜎𝑐 , Por lo tanto utilizaremos la formula siguiente 𝑆 = 𝐶𝑆 𝐻 1 + 𝑒0 log 𝜎𝑐 , 𝜎0 , + 𝐶 𝐶 𝐻 1 + 𝑒0 log( 𝜎0 , + ∆𝜎, 𝜎0 , ) 𝑆 = 0.045 ∗ (6.5) 1 + 0.87 log ( 145 142.175 )+ ( 0.3 ∗ 6.5 1 + 0.87 )log( 142.175 + 58 145 ) 𝑆 = 0.1473 𝑆 = 147.3𝑚𝑚 El 145 hallamos a partir de la gráfica de la hoja logarítmica (relación de vacíos vs presión efectiva)
  • 34. VenerosonccoS 33Práctica y teoría resuelto de mecánica de suelos II 3. Un árearectangularflexible de10,50m de longitud por5,4m de ancho,aplica una presión uniforme de 68 KN/m2 en la superficie de un estrato de 18 m de arcilla saturada que reposa sobre un lecho rocoso. Calcular el asentamiento diferencial inmediato entre el centro y una esquina del área cargada si las propiedades de arcilla son: El módulo de elasticidad no drenada es 3550 KN/m2 y la relación de poisson es 0,44 Solución Datos 𝑞 = 68 𝐾𝑁/𝑚2 𝐿 = 10.5𝑚 𝐵 = 5.4𝑚 𝐷 = 18𝑚 𝐸 = 3550 𝐾𝑁 𝑚2 𝑢 = 0.44 Calculamos (𝜹𝒊) en una esquina del área cargada 𝐿 𝐵 = 10.5 5.4 = 2} ⟹ 𝐹1 = 0.425 𝐿 𝐵 = 18 5.4 = 3.3} ⟹ 𝐹2 = 0.08
  • 35. VenerosonccoS 34Práctica y teoría resuelto de mecánica de suelos II Calculamos el factor de influencia (𝑰 𝑺) 𝐼𝑆 = 𝐹1 + ( 1 − 2𝑢 1 − 𝑢 ) 𝐹2 ⟹ 𝐼𝑆 = 0.425 + ( 1 − 2(0.44) 1 − 0.44 )0.08 = 0.442 ⟹ 𝐼𝑆 = 0.442 Calculamos el asentamiento (𝜹𝒊) 𝛿𝑖 = 𝑞𝐵(1 − 𝑢2 ) 𝐸 𝐼𝑆 ⟹ 𝛿𝑖 = (68)(5.4)(1− 0.442) 3550 (0.442) = 36.868 𝑚𝑚 𝛿𝑖 = 36.868𝑚𝑚 Calculamos (𝜹𝒊) en el centro 𝐿 𝐵 = 5.25 2.7 = 2} ⟹ 𝐹1 = 0.58 𝐿 𝐵 = 18 2.7 = 6.7} ⟹ 𝐹2 = 0.045 Calculamos el factor de influencia (𝑰 𝑺) 𝐼𝑆 = 𝐹1 + ( 1 − 2𝑢 1 − 𝑢 ) 𝐹2 ⟹ 𝐼𝑆 = 0.58 + ( 1 − 2(0.44) 1 − 0.44 )0.045 = 0.59 ⟹ 𝐼𝑆 = 0.59 Calculamos el asentamiento (𝜹𝒊) 𝛿𝑖 = 𝑞𝐵(1 − 𝑢2 ) 𝐸 𝐼𝑆 ⟹ 𝛿𝑖 = (68)(2.7)(1− 0.442) 3550 (0.59) = 0.024606 = 24.606𝑚𝑚 Como el (𝛿𝑖)queremos calcular en el centro multiplicamos por 4 𝛿𝑖 = 24.606(4) = 98.425𝑚𝑚 𝛿𝑖 = 98.425𝑚𝑚
  • 36. VenerosonccoS 35Práctica y teoría resuelto de mecánica de suelos II Calculamos (∆𝜹𝒊) ∆𝛿𝑖 = 98.425 − 36.868 = 61.557𝑚𝑚 ∆𝛿𝑖 = 61.557𝑚𝑚 Si fuera rígida seria 𝛿𝑖 = 0.8(61.557) 𝛿𝑖 = 49.2456𝑚𝑚 Tabla para hallar los valores de 𝑭 𝟏 𝒚 𝑭 𝟐
  • 37. VenerosonccoS 36Práctica y teoría resuelto de mecánica de suelos II 1. Indique que representa los puntos A, B,Y C en el diagrama de la muestra A: esfuerzo normal y esfuerzo cortante en el plano de falla B: esfuerzo normal y esfuerzo cortante maximo C: no existe 2. Cual sera la resistencia al corte de una arena saturada en la prueba triaxial no drenada (Cu) 𝝉 = 𝑪 𝒄𝒖 + 𝝈𝒕𝒂𝒏∅ 𝒄𝒖 3. Cual sera la resistencia al corte de una arena saturada en la prueba triaxial no drenada (UU) 𝝉 = 𝑪 𝒄𝒖 4. Que es la Sensitividad de un suelo Es la resistencia a compresión simple es considerablemente reducida cuando los suelos se prueba después de ser remoldados sin ningún cambio en el contenido de agua 5. En un plano de suelo el esfuerzo tensional de los esfuerzos totales es: esfuerzo normal 2.98 ton/m2, esfuerzo tangencial 1.99ton/m2, si la presión de poro es 0.07 kg/m2. Cuanto valdrán los esfuerzos efectivos normales y tangenciales 𝟏. 𝟗𝟗 = 𝟐. 𝟗𝟖𝒕𝒐𝒏∅ 𝒕𝒂𝒏−𝟏 ( 𝟏.𝟗𝟗 𝟐.𝟗𝟖 ) = ∅ → ∅ = 𝟑𝟑. 𝟕𝟑° 𝟎. 𝟎𝟕 𝒌𝒎 𝒎𝟐 = 𝟎. 𝟎𝟕 𝟏𝟎𝟎𝟎 ∗ 𝟏𝟎𝟎𝟎 𝟏𝟎−𝟒 = 𝟕𝟎𝟎𝒌𝒈 → 𝟕𝟎𝟎 𝟏𝟎𝟎𝟎 = 𝟎. 𝟕𝒕𝒐𝒏/𝒎𝟐 𝝈, = 𝟐. 𝟗𝟖 − 𝟎. 𝟕 = 𝟐. 𝟐𝟖𝒕𝒐𝒏 𝒎𝟐
  • 38. VenerosonccoS 37Práctica y teoría resuelto de mecánica de suelos II 𝝉, = 𝟐. 𝟐𝟖𝒕𝒐𝒏 ∗ 𝟑𝟑. 𝟕𝟑° = 𝟏. 𝟓𝟐𝒕𝒐𝒏/𝒎𝟐 6. Cuáles son los parámetros de resistencia al corte y deformación de los suelos y como se determina Los parámetros son: esfuerzos totales (∅, 𝐶) y esfuerzos efectivos (∅, , 𝐶, ) Se determinan mediante los siguientes ensayos  Corte directo, compresión y ensayo Triaxiales 7. De qué manera se pueden obtener parámetros de resistencia al corte a mediano plazo de un suelo Se puede determinar mediante pruebas; corte directo, consolidado no drenado (CU), no consolidado no drenado (UU) 8. Describa el ensayo triaxial (UU) y grafique la distribución de los esfuerzos totales y efectivos Etapa 01: La muestra del suelo se somete a esfuerzos efectivos hidrostáticos 𝜎3 y no se permite consolidar ni drenar (válvula de drenaje cerrada) produciéndose una presión de poro neutral 𝜇1 Etapa 02: la muestra se lleva a la falla con aplicación de un esfuerzo desviador 𝑃,, actuante manteniendo la válvula de drenaje cerrado de modo que se desarrolla en el agua 9. Describa el ensayo triaxial (CU) y grafique la distribución de los esfuerzos totales y efectivos Etapa 01: la muestra del suelo es sometido a esfuerzos hidrostáticos 𝜎3 y se espera que se consolide manteniendo la válvula de drenaje abierta hasta que la presión de poro sea cero Etapa 02: la muestra se lleva a la falla con aplicación de un esfuerzo desviador axial 𝑃, actuante con la válvula de drenaje cerrada (sin drenar la muestra) de modo que no se permite ninguna consolidación adicional al espécimen produciéndose una presión de poro 𝜇 o sea que los esfuerzos efectivos ya no son iguales a los esfuerzos totales
  • 39. VenerosonccoS 38Práctica y teoría resuelto de mecánica de suelos II 10.Describa el ensayo triaxial (CD) y grafique la distribución de los esfuerzos totales y efectivos Etapa 01: la muestra del suelo es sometido a esfuerzos hidrostáticos 𝜎3 y luego se espera a que se consolide manteniendo la válvula de drenaje abierta hasta que la presión de poro sea igual a cero Etapa 02: la muestra se lleva a la falla con incrementos P permitiendo su completa consolidación bajo cada incremento de carga y manteniendo siempre la válvula de drenaje abierta 11.Qué ventajas representa la medición de la presión de poro en la prueba triaxial (CU) Representa un ahorro de tiempo considerable en comparación con la prueba triaxial CD que requiere mayor tiempo, el precio es más económico 12.Que representa un punto cualquiera en el círculo de Mohr Representa el lugar geométrico del esfuerzo normal y cortante en un plano de falla 13.Que se entiende por cohesión aparente y en qué tipo de suelos se presenta Se genera debido a una fuerza provocado por la tensión superficial del agua existente en la masa del suelo y se presenta en las arenas húmedas 14.Que se entiende por cohesión verdadera y en qué tipo de suelos se presenta La cohesión verdadera es la atracción eléctrica molecular entre las partículas de los suelos finos y se presenta en los suelos finos 15.De qué factores depende la resistencia al corte en los suelos cohesivos a) El grado de saturación (contenido de agua W%) b) Condiciones de drenaje c) El grado de consolidación d) Origen mineralógico (caolín son diferentes)
  • 40. VenerosonccoS 39Práctica y teoría resuelto de mecánica de suelos II e) Condiciones de carga (ensayo de laboratorio) 16.De qué depende la resistencia al corte en los suelos friccionantes granulares a) La granulometría de los suelos (como ordenamiento) b) Tamaño de partículas de los suelos c) Forma de las partículas de los suelos d) El grado de compactación de los suelos e) Relación de vacíos inicial f) Estructura del suelo g) El grado de saturación (va a depender de las condiciones de drenaje) h) Componentes mineralógicos en las partículas i) Tipo de carga (ensayos de laboratorio) 1) Se llevaron a cabo tres ensayos Triaxiales consolidados sin drenar con los siguientes resultados ENSAYO PRESION DE CAMARA KPa ESFUERZO DESVIADOR KPa PRESION DE PORO KPa 1 0 145.5 0 2 68 288.8 58.3 3 145.5 382.0 108.5 Se pide calcular los parámetros de resistencia al esfuerzo Solución Calculamos los valores para la siguiente tabla que usaremos para la solución del ejercicio Hallamos los valores de ( 𝛔) σ1 = 0 + 145.5 = 145.5 σ2 = 288.8 + 68 = 356.8
  • 41. VenerosonccoS 40Práctica y teoría resuelto de mecánica de suelos II σ3 = 382.0 + 145.5 = 527.5 Hallamos los valores de ( 𝛔 𝟏 , ) σ1−1 , = 145.5 − 0 = 145.5 σ1−2 , = 356.8 − 58.3 = 298.5 σ1−3 , = 527.5 − 108.5 = 419 Hallamos los valores de ( 𝛔 𝟑 , ) σ3−1 , = 0 − 0 = 0 σ3−2 , = 68 − 58.3 = 9.7 σ3−3 , = 145.5 − 108.5 = 37 Los resultados obtenidos colocamos en la tabla siguiente tabla 1-primero 2-segundo NUMERO 𝝈 𝟏 𝝈 𝟑 𝝈 𝟏 , 𝝈 𝟑 , 1 145.5 0 145.5 0 2 356.8 68 298.5 9.7 3 527.5 145.5 419 37 1-primero Para el ensayo 1-2 (−)145.5 = 0 ∗ tan (45 + ∅ 2 ) + 2𝐶 ∗ tan(45 + ∅ 2 ) 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛 01 356.8 = 68 ∗ tan (45 + ∅ 2 ) + 2𝐶 ∗ tan (45 + ∅ 2 ) 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛 02 211.3 = 68 ∗ tan (45 + ∅ 2)… … … …… … …… … …… … … . .I De laecuación I hallamos el Angulo de fricción ( ∅) 211.3 68 = 3.107352941 ⟹ √3.107352941 = 1.762768544 ⇒ 𝑡𝑎𝑛−1(1.762768544) = 60.43421518 ⟹ 60.43421518 − 45 = 15.43421518 ⇒ 15.43421518 ∗ 2 = 30.86843035 ∅ = 30.868 De laecuación01 hallamosel Angulode cohesión(C) 145.5 = 0 ∗ tan (45 + ∅ 2 ) + 2𝐶 ∗ tan (45 + ∅ 2 )
  • 42. VenerosonccoS 41Práctica y teoría resuelto de mecánica de suelos II 𝐶 = 145.5 − 0 ∗ tan(45 + ∅ 2 ) 2 2 ∗ tan(45 + ∅ 2 ) 𝐶 = 145.5 − 0 ∗ tan(45 + 30.868 2 )2 2 ∗ tan( 30.868 2 ) 𝐶 = 41.270 Para el ensayo 2-3 (−)356.8 = 68 ∗ tan (45 + ∅ 2 ) + 2𝐶 ∗ tan (45 + ∅ 2 ) 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛 03 527.5 = 145.5 ∗ tan (45 + ∅ 2 ) + 2𝐶 ∗ tan (45 + ∅ 2 ) 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛 04 170.7 = 77.5 ∗ 𝑡𝑎𝑛 (45 + ∅ 2 ) …… … …… … …… . … … …… … …. . 𝐼𝐼 De la ecuación 𝐼𝐼 hallamos el Angulo de fricción ( ∅) 170.7 77.5 = 2.202580645 ⟹ √2.202580645 = 1.484109378 ⟹ 𝑡𝑎𝑛−1(1.484109378) = 56.02772171 ⟹ 56.02772171− 45 = 11.02772171 ⟹ 11.02772171 ∗ 2 = 22.05544342 ∅ = 22.055 De la ecuación 03 hallamos el Angulo de cohesión (C) 356.8 = 68 ∗ tan (45 + ∅ 2 ) + 2𝐶 ∗ tan(45 + ∅ 2 ) 𝐶 = 356.8− 68 ∗ tan(45 + ∅ 2 ) 2 2 ∗ tan(45 + ∅ 2) 𝐶 = 356.8− 68 ∗ tan(45 + 22.055 2 ) 2 2 ∗ tan(45 + 22.055 2 ) 𝐶 = 69.748 Para el ensayo 1-3
  • 43. VenerosonccoS 42Práctica y teoría resuelto de mecánica de suelos II (−)145.5 = 0 ∗ tan(45 + ∅ 2 ) + 2𝐶 ∗ tan (45 + ∅ 2 ) 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛 05 527.5 = 145.5 ∗ tan (45 + ∅ 2 ) + 2𝐶 ∗ tan (45 + ∅ 2 ) 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛 06 382 = 145.5 ∗ tan (45 + ∅ 2 )… … …… … …… … … …… … …. . III De la ecuación 𝐼𝐼𝐼 hallamos el Angulo de fricción ( ∅) 382 145.5 = 2.625429553 ⟹ √2.625429553 = 1.620317732 ⟹ 𝑡𝑎𝑛−1(1.620317732) = 58.31865442 ⟹ 58.31865442− 45 = 13.31865442 ⟹ 13.31865442 ∗ 2 = 26.637 ∅ = 26.637 De la ecuación 05 hallamos el Angulo de cohesión (C) 145.5 = 0 ∗ tan (45 + ∅ 2 ) + 2𝐶 ∗ tan (45 + ∅ 2 ) 𝐶 = 145.5 − 0 ∗ tan(45 + ∅ 2 ) 2 2 ∗ tan (45 + ∅ 2 ) 𝐶 = 145.5 − 0 ∗ tan(45 + 26.637 2 ) 2 2 ∗ tan (45 + 26.637 2 ) 𝐶 = 44.898 Promediode losángulosde fricción ∅ yángulosde cohesión(C) (1-primero) ∅ = 26.52 𝐶 = 51.972 2-segundo Para el ensayo 1-3 (−)145.5 = 0 ∗ tan (45 + ∅ 2 ) + 2𝐶 ∗ tan (45 + ∅ 2 ) 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛 01− 1 298.5 = 9.7 ∗ tan (45 + ∅ 2 ) + 2𝐶 ∗ tan (45 + ∅ 2 ) 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛 02 − 2 153 = 9.7 ∗ tan (45 + ∅ 2 ) … …… … …… … …… … … …… . . IV De la ecuación 𝐼𝑉 hallamos el Angulo de fricción ( ∅)
  • 44. VenerosonccoS 43Práctica y teoría resuelto de mecánica de suelos II 153 9.7 = 15.77319588 ⟹ √15.77319588 = 3.971548297 ⟹ 𝑡𝑎𝑛−1(3.971548297) = 75.86721844 ⟹ 75.8672184− 45 = 30.86721844 ⟹ 30.86721844 ∗ 2 = 61.73443687 ∅ = 61.734 De la ecuación 01 − 1 hallamos el Angulo de cohesión (C) 145.5 = 0 ∗ tan (45 + ∅ 2 ) + 2𝐶 ∗ tan (45 + ∅ 2 ) 𝐶 = 145.5 − 0 ∗ tan(45 + ∅ 2 ) 2 2 ∗ tan (45 + ∅ 2 ) 𝐶 = 145.5 − 0 ∗ tan(45 + 61.734 2 ) 2 2 ∗ tan (45 + 61.734 2 ) 𝐶 = 18.318 Para el ensayo 2-3 (−)298.5 = 9.7 ∗ tan(45 + ∅ 2 ) + 2𝐶 ∗ tan (45 + ∅ 2 ) 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛 03− 3 419 = 37 ∗ tan (45 + ∅ 2 ) + 2𝐶 ∗ tan(45 + ∅ 2 ) 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛 04 − 4 120.5 = 27.3 ∗ tan (45 + ∅ 2 )… … …… … … …… … …… … …… . . V De la ecuación 𝑉 hallamos el Angulo de fricción ( ∅) 120.5 27.3 = 4.413919414 ⟹ √4.413919414 = 2.100932987 ⟹ 𝑡𝑎𝑛−1(2.100932987) = 64.54653236 ⟹ 64.54653236− 45 = 19.54653236 ⟹ 19.54653236 ∗ 2 = 39.09306472 ∅ = 39.093 De la ecuación 03 − 3 hallamos el Angulo de cohesión (C) 298.5 = 9.7 ∗ tan (45 + ∅ 2 ) + 2𝐶 ∗ tan (45 + ∅ 2 )
  • 45. VenerosonccoS 44Práctica y teoría resuelto de mecánica de suelos II 𝐶 = 298.5 − 9.7 ∗ tan (45 + ∅ 2 ) 2 2 ∗ tan (45 + ∅ 2 ) 𝐶 = 298.5 − 9.7 ∗ tan (45 + 39.093 2 ) 2 2 ∗ tan (45 + 39.093 2 ) 𝐶 = 60.850 Para el ensayo 1-3 (−)145.5 = 0 ∗ tan (45 + ∅ 2 ) + 2𝐶 ∗ tan (45 + ∅ 2 ) 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛 05 − 5 419 = 37 ∗ tan (45 + ∅ 2 ) + 2𝐶 ∗ tan(45 + ∅ 2 ) 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛 06 − 6 273.5 = 37 ∗ tan (45 + ∅ 2 ) … …… … … …… … …… … …… . . VI De la ecuación 𝑉𝐼 hallamos el Angulo de fricción ( ∅) 273.5 37 = 7.391891892 ⟹ √7.391891892 = 2.718803393 ⟹ 𝑡𝑎𝑛−1(2.718803393) = 69.80603031 ⟹ 69.80603031− 45 = 24.80603031 ⟹ 24.80603031 ∗ 2 = 49.61206062 ∅ = 49.612 Promediode losángulosde fricción ∅ yángulosde cohesión(C) (2-segundo) ∅ = 50.146 𝐶 = 35.308 Respuestas (1-primero) ∅ = 26.52 𝐶 = 51.972 (2-segundo) ∅ = 50.146
  • 46. VenerosonccoS 45Práctica y teoría resuelto de mecánica de suelos II 𝐶 = 35.308 2) A continuación de dan los resultados de cuatro pruebas de corte directo con drenaje sobre una arcilla normalmente saturada  Diámetro del espécimen=59mm  Altura del espécimen=28mm PRUEBA N° FUERZA NORMAL (N) FUERZA CORTANTE EN LA FALLA (N) ESFUERZO NORMAL (𝝈) ESFUERZO CORTANTE EN LA FALLA (𝝉) 1 276 125.6 2 412.25 175.64 3 480 209.1 4 547.65 249.3 a) Dibuje una gráfica de esfuerzo cortante en la falla versus el esfuerzo normal b) Determinar el ángulo de fricción drenado a partir de la grafica Solución Hallamos los esfuerzos normales (σ) Usaremos la siguiente fórmula para calcular los esfuerzos normales 𝝈 = 𝒇𝒖𝒆𝒓𝒛𝒂 𝒏𝒐𝒓𝒎𝒂𝒍 ∗ 𝟏𝟎−𝟑 𝑲𝑵 𝝅 𝟒 ∗ (𝑫) 𝟐 ∗ 𝟏𝟎−𝟔 𝑲𝑵 Primero hallamos el área para el problema 𝐴 = 𝜋 4 ∗ ( 𝐷)2 ⟹ 𝐴 = 𝜋 4 ∗ (59)2 = 2733.971 𝑚𝑚 𝐴 = 2733.971 𝑚𝑚 𝜎1 = 276 ∗ 10−3 2733.971 ∗ 10−6 = 100.95 𝜎2 = 412.25 ∗ 10−3 2733.971 ∗ 10−6 = 150.78 𝜎3 = 480 ∗ 10−3 2733.971 ∗ 10−6 = 175.56
  • 47. VenerosonccoS 46Práctica y teoría resuelto de mecánica de suelos II 𝜎4 = 547.65 ∗ 10−3 2733.971 ∗ 10−6 = 200.31 Hallamos los esfuerzos cortantes en la falla (𝜏) Usaremos la siguiente fórmula para calcular los esfuerzos cortantes en la falla 𝝉 = 𝒇𝒖𝒆𝒓𝒛𝒂 𝒄𝒐𝒓𝒕𝒂𝒏𝒕𝒆∗ 𝟏𝟎−𝟑 𝑲𝑵 𝝅 𝟒 ∗ (𝑫) 𝟐 ∗ 𝟏𝟎−𝟔 𝑲𝑵 𝜏1 = 125.6 ∗ 10−3 2733.971 ∗ 10−6 = 45.94 𝜏2 = 175.64 ∗ 10−3 2733.971 ∗ 10−6 = 64.24 𝜏3 = 209.1 ∗ 10−3 2733.971 ∗ 10−6 = 76.48 𝜏4 = 249.3 ∗ 10−3 2733.971 ∗ 10−6 = 91.18 Los resultados obtenidos los completamos en la tabla siguiente del problema PRUEBA N° FUERZA NORMAL (N) FUERZA CORTANTE EN LA FALLA (N) ESFUERZO NORMAL (𝝈) ESFUERZO CORTANTE EN LA FALLA (𝝉) 1 276 125.6 100.95 45.94 2 412.25 175.64 150.78 64.24 3 480 209.1 175.56 76.48 4 547.65 249.3 200.31 91.18 Con los datos calculados dibujamos la gráfica en la hoja logarítmica
  • 48. VenerosonccoS 47Práctica y teoría resuelto de mecánica de suelos II Hallamos (∅) ∅1 = 𝑡𝑎𝑛−1 ( 45.94 100.95 ) = 24° 28, 9.05,, ∅2 = 𝑡𝑎𝑛−1 ( 64.24 150.78 ) = 23° 4, 35.35,, ∅1 = 𝑡𝑎𝑛−1 ( 76.48 175.56 ) = 23° 32, 22.58,, ∅1 = 𝑡𝑎𝑛−1 ( 91.18 200.31 ) = 23° 53, 24.03,, Promedio de los (∅) ∅ = 23° 44, 37.75,, ∅ = 23.74 Comprobar en la gráfica con un transportador el promedio calculado del ángulo de fricción (∅) 3) A un cilindro de suelo cemento al que no se le ha aplicado esfuerzo principal menor (𝜎3 = 0) se le aplica un esfuerzo principal mayor (𝜎1) que se incrementa lentamente. Si la envolvente de falla pasa por el punto cuyas
  • 49. VenerosonccoS 48Práctica y teoría resuelto de mecánica de suelos II coordenadas son (0.2) con una pendiente hacia arriba y hacia la derecha de 20° calcular a) La máxima carga axial cuando se produce la falla b) Los esfuerzos normales y cortantes en el plano de falla c) El ángulo del plano de falla Solución Solución grafica Solución analítica  2𝜃 = 90° + ∅ ⟹ 𝜃 = 45 + ∅ 2 ⟹ 𝜃 = 45 + 20 2 = 55°  Ecuación línea de falla 𝜏 = 𝜎𝑡𝑎𝑛∅ + 𝑐 𝜏 = 𝜎𝑡𝑎𝑛∅ + 2 En el momento de falla 𝜏𝑓 = 𝜎𝑓 𝑡𝑎𝑛20° + 2 … …… … (1)
  • 50. VenerosonccoS 49Práctica y teoría resuelto de mecánica de suelos II Por ecuación 𝜏𝑓 = 𝜎1 − 𝜎3 2 𝑠𝑒𝑛2𝜃 𝜏𝑓 = 𝜎1 2 𝑠𝑒𝑛2(55°) ⟹ 𝜏𝑓 = 𝜎1 1 2 𝑠𝑒𝑛2(55°) = 0.47𝜎1 ⟹ 𝜏𝑓 = 0.47𝜎1 … …… … . (2) 𝜎𝑓 = 𝜎1 + 𝜎3 2 + 𝜎1 − 𝜎3 2 𝑐𝑜𝑠2𝜃 𝜎𝑓 = 𝜎1 2 + 𝜎1 2 𝑐𝑜𝑠2(55°) ⟹ 𝜎𝑓 = 𝜎1 2 + 𝜎1 2 cos(110°) 𝜎𝑓 = 𝜎1 2 (1 + cos(110°)) ⟹ 𝜎𝑓 = 𝜎1 1 2 (1 + cos(110°)) = 0.329𝜎1 … …… … . (3) Reemplazando (2) y (3) en (1) 𝜏𝑓 = 𝜎𝑓 𝑡𝑎𝑛20° + 2 … …… … (1) 0.47𝜎1 = 2 + 0.329𝜎1 𝑡𝑎𝑛20° 0.47𝜎1 − 0.329𝜎1 𝑡𝑎𝑛20° = 2 𝜎1(0.47 − 0.329𝜎1 𝑡𝑎𝑛20°) = 2 𝜎1(0.350) = 2 𝜎1 (𝑓) = 2 0.350 = 5.71… …. 𝑓𝑎𝑙𝑙𝑎 𝜎𝑓 = 0.329(5.71) = 2.684 𝜏𝑓 = 0.47(5.71) = 1.871
  • 51. VenerosonccoS 50Práctica y teoría resuelto de mecánica de suelos II 17.Que entiendes por estado de equilibrio activo  extensión del relleno  elemento de contención es presionado por el relleno 18.Que entiendes por estado de equilibrio pasivo  contracción del terreno  elemento de contención presiona al terreno 19.Grafique Ud. los círculos de Mohr de los estados de equilibrio plástico activo y pasivo para una arena limpia 20.En qué casos se presenta el empuje pasivo –ponga un ejemplo  contracción del terreno  elemento de contención presiona al terreno
  • 52. VenerosonccoS 51Práctica y teoría resuelto de mecánica de suelos II 21.En qué casos se presenta el empuje activo –ponga un ejemplo  extensión del relleno  elemento de contención es presionado por el relleno 22. Que entiendes por esfuerzo admisible y como se calcula en los casos de a) Suelos puramente cohesivos b) Suelos puramente friccionantes Es el esfuerzo con el cual se diseña las cimentaciones de las estructuras 𝑎) 𝑞 𝑎𝑑𝑚 = 𝐶𝑁𝑐 𝐹𝑆 + 𝛾, 𝐷𝐹𝑁𝑞 𝑏) 𝑞 𝑎𝑑𝑚 = 𝑞𝑐 𝐹𝑠 23.Que es profundidad activa de cimentación Es la profundidad hasta donde surten los efectos de falla por corte de cimentación 24.Para determinar la capacidad de carga de los suelos, en qué casos y en qué tipo de suelo se aplica en criterio de falla localizada Se da generalmente en terrenos de arena de densidad suelta a media. En este tipo de falla, las superficies de falla, a diferencia de la falla por corte General, terminan en algún lugar dentro del suelo.
  • 53. VenerosonccoS 52Práctica y teoría resuelto de mecánica de suelos II 25.Cuál es la razón por la que la teoría de capacidad de carga de Terzaghi es solo aplicable a cimentaciones superficiales Debido a que para Terzaghi la cimentación es superficial si la profundidad DF de la cimentación es menor o igual al ancho de la misma 26.Indique tres diferencias entre las teorías de capacidad de carga de Terzaghi y Meyerhof Terzaghi: 1) ∅ 𝑛𝑜 𝑠𝑒 𝑐𝑜𝑟𝑟𝑖𝑔𝑒 2) 𝑞𝑐 = 𝛾1 𝐷𝐹𝑁𝑞 + 0.5𝛾2 𝑁𝛾 3) 𝑒𝑠 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑑𝑜𝑟 4) 𝑞𝑢 = 𝑐𝑁𝑐 + 𝑞𝑁𝑞 + 1 2⁄ 𝛾𝐵𝑁𝛾 5) 𝐷𝑓 𝐵⁄ ≤ 1 Meyerhof: 1) ∅ 𝑐𝑜𝑟𝑟𝑒𝑔𝑖𝑑𝑜 𝑒𝑠 ∅ 𝑟 2) 𝑞𝑐 = 𝑑0 1 𝛾1 𝐷𝐹𝑁𝑞 + 0.5𝑑𝛾𝐺𝑁𝛾 3) 𝑛𝑜 𝑒𝑠 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑑𝑜𝑟 4) 𝑞𝑢 = 𝑐𝑁𝑐𝐹𝑐𝑠𝐹𝑐𝑑𝐹𝑐𝑖 + 𝑞𝑁𝑞𝐹𝑞𝑠𝐹𝑞𝑑𝐹𝑞𝑖 + 1 2⁄ 𝛾𝐵𝑁𝛾𝐹𝛾𝑠𝐹𝛾𝑑𝐹𝛾𝑖 27.Grafique Ud. los círculos de Mohr de los estados de equilibrio plástico y pasivo para un suelo cohesivo friccionantes
  • 54. VenerosonccoS 53Práctica y teoría resuelto de mecánica de suelos II 28.En qué tipo de suelos y en qué casos se aplica el criterio de falla generalizada Se da cuando la carga sobre la fundación alcanza la carga última de apoyo, qu, y la fundación tiene un asentamiento grande sin ningún incremento mayor de carga. Se presenta en arenas densas y arcillas rígidas 29.En la teoría de capacidad de carga por corte- cuáles son los tipos clásicos de falla localizada que se presentan bajo las cimentaciones El tipo de falla depende de la compresibilidad del suelo, por lo tanto si una zapata que se apoya sobre arena compactada, falla normalmente por corte general, mientras que la misma zapata sobre una arena densa falla por puzonamineto
  • 55. VenerosonccoS 54Práctica y teoría resuelto de mecánica de suelos II 1. Diseñar un muro a gravedad para salvar un desnivel de 2,80 m, si la profundidad de cimentación es de 70 cm y la capacidad admisible del suelo es 10 ton/m2. El suelo está constituido por una arcilla arenosa de peso específico 1,80 ton /m3 con un ángulo de fricción de 30° (Peso específico del concreto 2350 kg/m3) Solución Datos:  Capacidad admisible del suelo 10 tn/m2  Peso específico del suelo 1.80 tn/m2  Angulo de fricción 30°  Peso específico del concreto 2350kg/m3………………..2.30 tn7m3  Corona 0.30 ….sabemos por teoría  Profundidad de cimentación 0.70 m
  • 56. VenerosonccoS 55Práctica y teoría resuelto de mecánica de suelos II Diseño del muro Por teoría sabemos
  • 57. VenerosonccoS 56Práctica y teoría resuelto de mecánica de suelos II En el problema utilizaremos 0.15H y 0.55H por seguridad (también podemos trabajar con los otros valores) Para la altura de la zapata 0.15H ⟹ 0.15(2.80) = 0.42 Trabajamos con el valor entero (0.40) Para la base de la zapata 0.55H ⟹ 0.55(2.80) = 1.54 Trabajamos con el valor entero (1.50) Para el talón y la punta de la zapata 0.15H ⟹ 0.15(2.80) = 0.42 Trabajamos con el valor entero (0.40) Pre diseño
  • 58. VenerosonccoS 57Práctica y teoría resuelto de mecánica de suelos II Calculo de pesos Tabla para completar datos
  • 59. VenerosonccoS 58Práctica y teoría resuelto de mecánica de suelos II grafico N° Base b(m) Altura h(m) W mat tn/m3 W (t) Brazo (m) Momento (t.m) W1 1 1.50 0.40 2.30 W2 1 0.30 2.40 2.30 W3 0.50 0.40 2.40 2.30 W4 0.50 0.40 2.40 1.80 W5 1 0.40 2.40 1.80 Datos obtenidos del muro BASE: En el cuadro anotamos la base de cada figura (triangulo, rectángulo) ALTURA: En el cuadro anotamos la altura de cada figura (triangulo, rectángulo) W mat tn/m3: Es el peso específico del material. Como podemos ver el (W1, W2, W3) están dentro del muro de concreto por lo tanto el peso específico para (W1, W2, W3) es de 2.30 tn/m3, y el peso específico para (W4, W5) será de 1.80 tn/m3 por que están dentro del material de relleno (suelo) Calculamos (W (t)) Para calcular W (t) tener en cuenta la figura si es un triángulo o un rectángulo Para un rectángulo 𝐴 = 𝑏 ∗ ℎ Para un triangulo 𝐴 = 𝑏 ∗ ℎ 2 𝐰𝐭 = 𝐛 ∗ 𝐡 ∗ 𝐩𝐞𝐬𝐨 𝐞𝐬𝐩𝐞𝐜𝐢𝐟𝐢𝐜𝐨 𝐝𝐞𝐥 𝐦𝐚𝐭𝐞𝐫𝐢𝐚𝐥 𝐞𝐧 𝐜𝐚𝐝𝐚 𝐟𝐢𝐠𝐮𝐫𝐚 wt1▭ = (1.50)(0.40)(2.30) = 1.38 wt2▭ = (0.30)(2.40)(2.30) = 1.656 wt3△ = (0.40)(2.40) 2 (2.30) = 1.104 wt4△ = (0.40)(2.40) 2 (1.80) = 0.864 wt5▭ = (0.40)(2.40)(1.80) = 1.728 Calculamos los brazos
  • 60. VenerosonccoS 59Práctica y teoría resuelto de mecánica de suelos II Para calcular los brazos tener en cuenta la figura si es un triángulo o un rectángulo Tomar un punto de referencia en la figura (muro), del punto de referencia a la mitad de cada figura (en el caso de los triángulos a la tercera parte de la figura) 𝐵1▭ = 1.50 2 = 0.75 𝐵2▭ = 0.40 + 0.30 2 = 0.55 𝐵3△ = 0.40 + 0.30 + 0.40 3 = 0.83 𝐵4△ = 0.40 + 0.30 + 2(0.40) 3 = 0.97 𝐵5▭ = 0.40 + 0.30 + 0.40 + 0.40 2 = 1.30 Calculo de momentos
  • 61. VenerosonccoS 60Práctica y teoría resuelto de mecánica de suelos II M = w(t) ∗ (brazo) M1 = (1.38)(0.75) = 1.035 M2 = (1.656)(0.55) = 0.911 M3 = (1.104)(0.83) = 0.920 M4 = (0.864)(0.97) = 0.838 M5 = (1.728)(1.30) = 2.246 Los valores calculamos colocamos en la tabla grafico N° Base b(m) Altura h(m) W mat tn/m3 W (t) Brazo (m) Momento (t.m) W1 1 1.50 0.40 2.30 1.38 0.75 1.035 W2 1 0.30 2.40 2.30 1.656 0.55 0.911 W3 0.50 0.40 2.40 2.30 1.104 0.83 0.920 W4 0.50 0.40 2.40 1.80 0.864 0.97 0.838 W5 1 0.40 2.40 1.80 1.728 1.30 2.246 Datos obtenidos del muro 6.73 5.944 Calculo de empujes Cah = 1 − sen∅ 1 + sen∅ ⟹ Cah = 1 − sen(30) 1 + sen(30) = 0.33 ⟹ Cah = 0.33 Cph = 1 + sen∅ 1 − sen∅ ⟹ Cah = 1 + sen(30) 1 − sen(30) = 3 ⟹ Cah = 3 Empuje activo Eah = 1 2 (Cah)(γ)(h2) ⟹ Eah = 1 2 (0.33)(1.80)(2.802) = 2.350 tn Eah = 2.350 tn Eap = 1 2 (Cph)(γ)(h2) ⟹ Eah = 1 2 (3)(1.80)(0.72) = 1.323 tn Eap = 1.323 tn Seguridad al volcamiento
  • 62. VenerosonccoS 61Práctica y teoría resuelto de mecánica de suelos II  Momento de estabilización (Me)=5944  Momento de volcamiento (Mv) MV = Eah ( h 3 ) ⟹ MV = 2.350( 2.80 3 ) = 2.193 tn FSV = Me MV ≥ 2.00 FSV = 5.944 2.193 = 2.71 > 2.00 Seguridad al deslizamiento TABLA Material factor Arena o gruesa sin limo 0.50-0.70 Materiales granulares gruesos con limo 0.45 Arena o grava fina 0.40-0.60 Arcillas densas 0.30-0.50 Arcillas blandas o limo 0.20-0.30 FSD = Fr + EP ∑ Fd = f(∑V) + EP ∑ Fd ⟹ FSD = (0.50)(6.73)+ 1.323 2.350 = 2.00 tn ∑ 𝑉 = 6.73 𝑡𝑛 (𝑠𝑢𝑚𝑎𝑡𝑜𝑟𝑖𝑎 𝑑𝑒 𝑙𝑎𝑠 𝑓𝑢𝑎𝑟𝑧𝑎𝑠 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑒𝑠, 𝑝𝑒𝑠𝑜 𝑑𝑒𝑙 𝑚𝑢𝑟𝑜 𝑦 𝑟𝑒𝑙𝑙𝑒𝑛𝑜) 𝑓 = 0.50 …… … 𝑡𝑎𝑏𝑙𝑎 𝐸 𝑃 = 1.323 𝑡𝑛 ⟹ empuje pasivo ∑ 𝐸𝑑 = 2.350 𝑡𝑛 ⟹ empuje actvo Sumatoria de las fuerzas a favor del deslizamiento Seguridad ante la falla por capacidad de carga Calculo de excentricidad e = B 2 − Me − MV ∑ V Excentricidad: la resultante a todos los pesos [c°-suelo]
  • 63. VenerosonccoS 62Práctica y teoría resuelto de mecánica de suelos II Me = 5.944 tn MV = 2.193 tn ∑ V = 6.75 tn e = 1.50 2 − 5.944 − 2.193 6.73 = 0.193 m = 19.3 cm B 6 = 1.50 6 = 0.25 cm e < B 6 qmax = ∑ V B (1 + 6e B ) ⟹ qmax = 6.73 1.50 (1 + 6(0.193) 1.50 = 7.95 𝑡𝑛 𝑚2 < 10 𝑡𝑛 𝑚2 qmin = ∑ V B (1 − 6e B ) ⟹ qmax = 6.73 1.50 (1 − 6(0.193) 1.50 = 1.022 𝑡𝑛 𝑚2
  • 64. VenerosonccoS 63Práctica y teoría resuelto de mecánica de suelos II 2. Calcular el empuje activo que actúa sobre el muro mostrado en la figura. Dibujar los diagramas de esfuerzos y calcular el punto de aplicación de la resultante del empuje actico Solución Coeficientes activos del plano de falla Utilizaremos la siguiente fórmula para (Suelos friccionantes) 𝐾𝐴 = 𝑡𝑎𝑛2 (45 − ∅ 2 ) 𝐾𝐴1 = 𝑡𝑎𝑛2 (45 − 35 2 ) = 0.270 ⟹ 𝐾𝐴1 = 0.270 𝐾𝐴2 = 𝑡𝑎𝑛2 (45 − 30 2 ) = 0.333 ⟹ 𝐾𝐴1 = 0.333 Diagramas de esfuerzos horizontales Para suelos friccionantes 𝜎𝐻 = 𝐾𝐴 𝜎, 𝑉 En la superficie 𝜎𝑉 = 6 𝑡𝑛 𝑚2 𝑢 = 0 𝜎, 𝑉 = 6 𝑡𝑛 𝑚2 𝜎𝐻 = (𝐾 𝐴1)𝜎, 𝑉 ⟹ 𝜎𝐻 = 0.270 ∗ 6 = 1.62 𝑡𝑛 𝑚2 ⟹ 𝜎𝐻 = 1.62 𝑡𝑛 𝑚2 Cambio de estrato 𝜎𝑉 = 6 ∗ +4 ∗ (1.7) = 12.8 𝑡𝑛/𝑚2 𝑢 = 0 𝜎, 𝑉 = 12.8 𝑡𝑛 𝑚2
  • 65. VenerosonccoS 64Práctica y teoría resuelto de mecánica de suelos II 𝜎𝐻 = (𝐾 𝐴1)𝜎, 𝑉 ⟹ 𝜎𝐻 = 0.270 ∗ 12.8 = 3.456 𝑡𝑛 𝑚2 ⟹ 𝜎𝐻 = 3.456 𝑡𝑛 𝑚2 𝜎, 𝑉 = 12.8 𝑡𝑛 𝑚2 𝜎𝐻 = (𝐾 𝐴2)𝜎, 𝑉 ⟹ 𝜎𝐻 = 0.333 ∗ 12.8 = 4.262 𝑡𝑛 𝑚2 ⟹ 𝜎𝐻 = 4.262 𝑡𝑛 𝑚2 En el nivel freático 𝜎𝑉 = 12.8 + 3 ∗ (1.96) = 18.68 𝑡𝑛/𝑚2 𝑢 = 0 𝜎, 𝑉 = 18.68 𝑡𝑛 𝑚2 𝜎𝐻 = (𝐾 𝐴2)𝜎, 𝑉 ⟹ 𝜎𝐻 = 0.333 ∗ 18.68 = 6.220 𝑡𝑛 𝑚2 ⟹ 𝜎𝐻 = 6.220 𝑡𝑛 𝑚2 En la base 𝑢 = 𝛾𝑤 ∗ ℎ 𝑤 ⟹ 𝑢 = 1 ∗ 1 = 1 𝑡𝑛 𝑚2 ⟹ 𝑢 = 1 𝑡𝑛 𝑚2 𝜎𝑉 = 18.68 + 1 ∗ (2.075) = 20.755 𝑡𝑛 𝑚2 ⟹ 𝜎𝑉 = 20.755 𝑡𝑛 𝑚2 𝜎, 𝑉 = 20.755 − 1 = 19.755 ⟹ 𝜎, 𝑉 = 19.755 𝜎𝐻 = (𝐾 𝐴2)𝜎, 𝑉 ⟹ 𝜎𝐻 = 0.333 ∗ 19.755 = 6.578 𝑡𝑛 𝑚2 ⟹ 𝜎𝐻 = 6.578 𝑡𝑛 𝑚2 Esfuerzo hidrostático 𝜎 𝐻𝑖 = 𝛾𝑤 ∗ ℎ 𝑤 ⟹ 𝜎 𝐻𝑖 = 1 ∗ 1 = 1 𝑡𝑛 𝑚2 ⟹ 𝜎 𝐻𝑖 = 1 𝑡𝑛 𝑚2 𝜎𝐻 = 6.578 + 1 = 7.578 𝑡𝑛/𝑚2 Calculo de empujes
  • 66. VenerosonccoS 65Práctica y teoría resuelto de mecánica de suelos II 𝐸1 = 1.62 ∗ 4 = 6.48 𝑡𝑛 𝑚 𝑌1 = 4 + 4 2 = 6𝑚 𝐸2 = (3.456 − 1.62) ∗ 4 2 = 3.672 𝑡𝑛 𝑚 𝑌2 = 4 + 4 3 = 5.33𝑚 𝐸3 = 4.262 ∗ 3 = 12.786 𝑡𝑛 𝑚 𝑌3 = 1 + 3 2 = 2.5𝑚 𝐸4 = (6.220 − 4.262) ∗ 3 2 = 2.937 𝑡𝑛 𝑚 𝑌4 = 1 + 3 3 = 2𝑚 𝐸5 = 6.220 ∗ 1 = 6.220 𝑡𝑛 𝑚 𝑌5 = 1 2 = 0.5𝑚 𝐸6 = (6.578 − 6.220) ∗ 1 2 = 0.179 𝑡𝑛 𝑚 𝑌6 = 1 3 = 0.33𝑚 𝐸7 = (7.578 − 6.578) ∗ 1 2 = 0.5 𝑡𝑛 𝑚 𝑌7 = 1 3 = 0.33𝑚 Respuestas 𝐸𝐴 = 𝐸1 + 𝐸2 + 𝐸3 + 𝐸4 + 𝐸5 + 𝐸6 + 𝐸7 𝐸𝐴 = 6.48 + 3.672 + 12.786 + 2.937 + 6.220 + 0.179 + 0.5 𝐸𝐴 = 32.774 𝑡𝑛 𝑚 𝑌 = 𝐸1 𝑌1 + 𝐸2 𝑌2 + 𝐸3 𝑌3 + 𝐸4 𝑌4 + 𝐸5 𝑌5 + 𝐸6 𝑌6 + 𝐸7 𝑌7 𝐸1 + 𝐸2 + 𝐸3 + 𝐸4 + 𝐸5 + 𝐸6 + 𝐸7 𝑌 = 99.62483 32.774 𝑌 = 3.039𝑚
  • 67. VenerosonccoS 66Práctica y teoría resuelto de mecánica de suelos II 3. Calcular el empuje activo e indicar su ubicación para un muro liso de 9 m de alto y espaldón vertical que soporta una carga uniformemente distribuida muy extensa de 4500 kg/m2 sobre el relleno horizontal considerando la presencia del nivel freático a 3m de profundidad y que el suelo está saturado por capilaridad hasta la superficie, las propiedades del suelos son: Angulo de fricción interna=19°, cohesión=0,35kg/cm2, peso específico de los sólidos= 2,70 ton/m3, relación de vacíos= 0,63. Solución Datos:  Altura de muro 9m  Soporta una carga de 4.5 tn/m2  Nivel freático está a 3m de profundidad  Angulo de fricción 19°  Cohesión 3.5 tn/m2  Peso específico de los sólidos 2.70 tn/m2  Relación de vacíos 0.63 Calculo de las propiedades volumétricas 𝛾𝑠𝑎𝑡 = 𝛾𝑠 + 𝑒 1 + 𝑒 ⟹ 𝛾𝑠𝑎𝑡 = 2.70 + 0.63 1 + 0.63 = 2.04 𝑡𝑛 𝑚3 ⟹ 𝛾𝑠𝑎𝑡 = 2.04 𝑡𝑛 𝑚3
  • 68. VenerosonccoS 67Práctica y teoría resuelto de mecánica de suelos II Esfuerzos horizontales (Relleno de suelo) (Cohesivo-friccionantes) Fórmulas para suelos (Cohesivo-friccionantes) σH = KAσV , − 2C√KA KA = tan2 (45 − ∅ 2 ) KA = tan2 (45 − ∅ 2 ) ⟹ KA = tan2 (45 − 19 2 ) = 0.508 ⟹ KA = 0.508 En la superficie 𝑢 = −γw ∗ h ⟹ −1 ∗ 3 = −3 tn m3 ⟹ 𝑢 = −3 tn m3 σV = 4.5 tn m2 σV , = σV − u σV , = 4.5 − (−3) = 7.5 tn m2 ⟹ σV , = 7.5 tn m2 σH = KAσV , − 2C√KA σH = 0.508(7.5) − 2(3.5)(√0.508) ⟹ σH = −1.179 tn m2 En el nivel freático σV = 4.5 + 3(2.04) ⟹ σV = 10.62𝑡𝑛 𝑚2 σV , = σV − 𝑢 ⟹ σV , = 10.62𝑡𝑛 𝑚2 𝑢: 𝑒𝑠 𝑐𝑒𝑟𝑜 σH = KAσV , − 2C√KA σH = 0.508(10.62) − 2(3.5)(√0.508) ⟹ σH = 0.405𝑡𝑛 𝑚2
  • 69. VenerosonccoS 68Práctica y teoría resuelto de mecánica de suelos II En la base 𝑢 = γw ∗ h ⟹ 1 ∗ 6 = 6 tn m3 ⟹ 𝑢 = 6 tn m3 σV = 10.62 + 2.04(6) = 22.86 𝑡𝑛/𝑚2 ⟹ σV = 22.86 10.62𝑡𝑛 𝑚2 σV , = 22.86 − 6 = 16.36 𝑡𝑛 𝑚2 σH = KAσV , − 2C√KA σH = 0.508(16.86) − 2(3.5)(√0.508) = 3.575 𝑡𝑛 𝑚2 ⟹ σH = 3.575 𝑡𝑛 𝑚2 Esfuerzo hidrostático σHi = 𝛾𝑤∗ ℎ 𝑤 ⟹ σHi = 1 ∗ 6 = 6 𝑡𝑛 𝑚2 ⟹ σHi = 6 𝑡𝑛 𝑚2 Calculo de empujes Calculando “h” Semejanza de triángulos
  • 70. VenerosonccoS 69Práctica y teoría resuelto de mecánica de suelos II 1.179 3 − ℎ = 0.405 ℎ 1.179ℎ = 0.405(3− ℎ) 1.179ℎ = 1.215 − 0.405ℎ 1.179ℎ + 0.405ℎ = 1.215 1.584ℎ = 1.215 ℎ = 0.767 𝑚 𝐸1 = 0.405 ∗ 0.767 2 = 0.155 𝑡𝑛 𝑚 ⟹ 𝐸1 = 0.155 𝑡𝑛 𝑚 𝑌1 = 6 + 0.767 3 = 6.25𝑚 ⟹ 𝑌1 = 6.25𝑚 𝐸2 = 0.405 ∗ 6 = 2.43 𝑡𝑛 𝑚 ⟹ 𝐸1 = 2.43 𝑡𝑛 𝑚 𝑌2 = 6 2 = 3𝑚 ⟹ 𝑌2 = 3𝑚 𝐸3 = (3.575 − 0.405) ∗ 6 2 = 9.51 𝑡𝑛 𝑚 ⟹ 𝐸1 = 9.51 𝑡𝑛 𝑚 𝑌3 = 6 3 = 2𝑚 ⟹ 𝑌3 = 2𝑚 𝐸4 = (9.572 − 3.575) ∗ 6 2 = 17.991 𝑡𝑛 𝑚 ⟹ 𝐸1 = 17.991 𝑡𝑛 𝑚 𝑌4 = 6 3 = 2𝑚 ⟹ 𝑌4 = 2𝑚 𝐸𝐴 = 𝐸1 + 𝐸2 + 𝐸3 + 𝐸4 𝐸𝐴 = 0.155 + 2.43 + 9.51 + 17.991 = 30.086 𝑡𝑛 𝑚2 𝐸𝐴 = 30.086 𝑡𝑛 𝑚 𝑌 = 𝐸1 𝑌1 + 𝐸2 𝑌2 + 𝐸3 𝑌3 + 𝐸4 𝑌4 𝐸1 + 𝐸2 + 𝐸3 + 𝐸4 𝑌 = 63.26075 30.086 𝑌 = 2.102𝑚
  • 71. VenerosonccoS 70Práctica y teoría resuelto de mecánica de suelos II 4. Se tiene una cimentación cuadrada con excentricidad. Calcular (𝑞 𝑎𝑑𝑚 , 𝑄 𝑎𝑑𝑚 ) Solución Primero analizamos que formula vamos a utilizar Formula general (Meyerhof) 𝑞 𝑢 , = 𝑐𝑁𝑐 𝐹𝑐𝑠 𝐹𝑐𝑑 𝐹𝑐𝑖 + 𝑞𝑁 𝑞 𝐹𝑞𝑠 𝐹𝑞𝑑 𝐹𝑞𝑖 + 1 2 𝛾𝐵, 𝑁 𝛾 𝐹𝛾𝑠 𝐹𝛾𝑑 𝐹𝛾𝑖 Como la cohesión es cero usaremos la formula simplificada 𝑞 𝑢 , = 𝑞𝑁 𝑞 𝐹𝑞𝑠 𝐹𝑞𝑑 𝐹𝑞𝑖 + 1 2 𝛾𝐵, 𝑁 𝛾 𝐹𝛾𝑠 𝐹𝛾𝑑 𝐹𝛾𝑖 Hallamos la carga 𝑞 = 𝛾 ∗ ℎ ⟹ 𝑞 = (17)(0.8) = 13.6 𝐾𝑁 𝑚2 ⟹ 𝑞 = 13.6 𝐾𝑁 𝑚2 Los valores de (𝑵 𝒒 , 𝑵 𝜸) para ∅ = 𝟑𝟐 (ver la tabla 11.1) del libro de Braja M Das “pagina 395” 𝑁 𝑞 = 23.18 𝑁 𝛾 = 30.22 Hallamos el valor de (𝑩, ) 𝐵, = 𝐵 − 2𝑒 ⟹ 𝐵, = 1.50 − 2(0.10) = 1.3 ⟹ 𝐵, = 1.3
  • 72. VenerosonccoS 71Práctica y teoría resuelto de mecánica de suelos II Como se trata de una cimentación cuadrada 𝐹𝑞𝑠 = 1 + ( 𝐵, 𝐿, ) 𝑡𝑎𝑛∅ ⟹ 𝐹𝑞𝑠 = 1 + ( 1.3 1.5 )tan(32) = 1.54 ⟹ 𝐹𝑞𝑠 = 1.54 𝐹𝛾𝑠 = 1 − 0.4( 𝐵, 𝐿, ) ⟹ 𝐹𝛾𝑠 = 1 − 0.4 ( 1.3 1.5 ) = 0.65 ⟹ 𝐹𝛾𝑠 = 0.65 𝐹𝑞𝑑 = 1 + 2𝑡𝑎𝑛∅(1 − 𝑠𝑒𝑛∅)2 ( 𝐷𝑓 𝐵 ) 𝐹𝑞𝑑 = 1 + 2tan(32)(1 − 𝑠𝑒𝑛32)2 ( 0.8 1.5 ) = 1.15 ⟹ 𝐹𝑞𝑑 = 1.15 𝐹𝛾𝑑 = 1… … … 𝑑𝑒 𝑙𝑎 𝑡𝑎𝑏𝑙𝑎 11.2 Todos los valores calculados reemplazamos en la formula 𝑞 𝑢 , = 𝑞𝑁 𝑞 𝐹𝑞𝑠 𝐹𝑞𝑑 𝐹𝑞𝑖 + 1 2 𝛾𝐵, 𝑁 𝛾 𝐹𝛾𝑠 𝐹𝛾𝑑 𝐹𝛾𝑖 𝑞 𝑢 , = (13.6)(23.18)(1.54)(1.15)(1)+ 1 2 (17)(1.3)(30.22)(0.65)(1)(1) 𝑞 𝑢 , = 775.35 𝐾𝑁 𝑚2 Hallamos (𝒒 𝒂𝒅𝒎𝒊𝒔𝒊𝒃𝒍𝒆) 𝑞 𝑎𝑑𝑚 = 𝑞 𝑢 , 𝐹𝑠 ⟹ 𝑞 𝑎𝑑𝑚 = 775.35 4 = 193.837 𝐾𝑁 𝑚2 Hallamos 𝑸 𝒂𝒅𝒎) 𝑄 𝑎𝑑𝑚 = 𝑞 𝑎𝑑𝑚( 𝐴,) 𝑄 𝑎𝑑𝑚 = 193.837(1.30∗ 1.50) 𝑄 𝑎𝑑𝑚 = 377.98 𝐾𝑁 𝑚2 Nota 1: cuando no hay ángulo de inclinación los valores de (𝐹𝑞𝑖 , 𝐹𝛾𝑖) son igual a la unidad (1) Nota 2: para una cimentación continua los valores de (𝐹𝑞𝑠, 𝐹𝛾𝑠) son iguales a la unidad (1)
  • 73. VenerosonccoS 72Práctica y teoría resuelto de mecánica de suelos II 5. Se tiene una cimentación cuadrada con excentricidad. Calcular (𝑞 𝑎𝑑𝑚 , 𝑄 𝑎𝑑𝑚 ). El nivel freático está a una profundidad de 0.50 m Solución Primero analizamos que formula vamos a utilizar Formula general (Meyerhof) 𝑞 𝑢 , = 𝑐𝑁𝑐 𝐹𝑐𝑠 𝐹𝑐𝑑 𝐹𝑐𝑖 + 𝑞𝑁 𝑞 𝐹𝑞𝑠 𝐹𝑞𝑑 𝐹𝑞𝑖 + 1 2 𝛾𝐵, 𝑁 𝛾 𝐹𝛾𝑠 𝐹𝛾𝑑 𝐹𝛾𝑖 Como la cohesión es cero usaremos la formula simplificada 𝑞 𝑢 , = 𝑞𝑁 𝑞 𝐹𝑞𝑠 𝐹𝑞𝑑 𝐹𝑞𝑖 + 1 2 𝛾𝐵, 𝑁 𝛾 𝐹𝛾𝑠 𝐹𝛾𝑑 𝐹𝛾𝑖 Hallamos la carga 𝑞 = 𝛾 ∗ ℎ + ( 𝛾𝑠𝑎𝑡 − 𝛾𝑤 ) ∗ ℎ ⟹ 𝑞 = (17.5)(0.50)+ (19.5 − 9.81) ∗ 0.40 𝑞 = 12.626 𝐾𝑁 𝑚2 Los valores de (𝑵 𝒒 , 𝑵 𝜸) para ∅ = 𝟑𝟓 (ver la tabla 11.1) del libro de Braja M Das “pagina 395” 𝑁 𝑞 = 33.30 𝑁 𝛾 = 48.03 Hallamos el valor de (𝑩, ) 𝐵, = 𝐵 − 2𝑒 ⟹ 𝐵, = 1.60 − 2(0.15) = 1.3 ⟹ 𝐵, = 1.3
  • 74. VenerosonccoS 73Práctica y teoría resuelto de mecánica de suelos II Como se trata de una cimentación cuadrada 𝐹𝑞𝑠 = 1 + ( 𝐵, 𝐿, ) 𝑡𝑎𝑛∅ ⟹ 𝐹𝑞𝑠 = 1 + ( 1.30 1.60 )tan(35) = 1.568 ⟹ 𝐹𝑞𝑠 = 1.568 𝐹𝛾𝑠 = 1 − 0.4( 𝐵, 𝐿, ) ⟹ 𝐹𝛾𝑠 = 1 − 0.4 ( 1.30 1.60 ) = 0.675 ⟹ 𝐹𝛾𝑠 = 0.675 𝐹𝑞𝑑 = 1 + 2𝑡𝑎𝑛∅(1 − 𝑠𝑒𝑛∅)2 ( 𝐷𝑓 𝐵 ) 𝐹𝑞𝑑 = 1 + 2tan(35)(1 − 𝑠𝑒𝑛32)2 ( 0.90 1.60 ) = 1.143 ⟹ 𝐹𝑞𝑑 = 1.143 𝐹𝛾𝑑 = 1… … … 𝑑𝑒 𝑙𝑎 𝑡𝑎𝑏𝑙𝑎 11.2 Hallamos "𝜸" 𝛾 = (17.5)(0.50) + (19.5)(0.40) 0.90 = 18.388 ⟹ 𝛾 = 18.388 Todos los valores calculados reemplazamos en la formula 𝑞 𝑢 , = 𝑞𝑁 𝑞 𝐹𝑞𝑠 𝐹𝑞𝑑 𝐹𝑞𝑖 + 1 2 𝛾𝐵, 𝑁 𝛾 𝐹𝛾𝑠 𝐹𝛾𝑑 𝐹𝛾𝑖 𝑞 𝑢 , = (12.626)(33.30)(1.568)(1.143)(1)+ 1 2 (18.388)(1.30)(48.03)(0.675)(1)(1) 𝑞 𝑢 , = 1141.026 𝐾𝑁 𝑚2 Hallamos (𝒒 𝒂𝒅𝒎𝒊𝒔𝒊𝒃𝒍𝒆) 𝑞 𝑎𝑑𝑚 = 𝑞 𝑢 , 𝐹𝑠 ⟹ 𝑞 𝑎𝑑𝑚 = 1141.026 4 = 285.2565 𝐾𝑁 𝑚2 Hallamos 𝑸 𝒂𝒅𝒎) 𝑄 𝑎𝑑𝑚 = 𝑞 𝑎𝑑𝑚( 𝐴,) 𝑄 𝑎𝑑𝑚 = 285.2565(1.30∗ 1.60) 𝑄 𝑎𝑑𝑚 = 593.333 𝐾𝑁 𝑚2 Nota 1: cuando no hay ángulo de inclinación los valores de (𝐹𝑞𝑖 , 𝐹𝛾𝑖) son igual a la unidad (1) Nota 2: para una cimentación continua los valores de (𝐹𝑞𝑠, 𝐹𝛾𝑠) son iguales a la unidad (1)
  • 75. VenerosonccoS 74Práctica y teoría resuelto de mecánica de suelos II Tablas Gráfica No 2.- Factor de influencia para carga uniformemente distribuida (Boussinesq) Berry, p.63
  • 76. VenerosonccoS 75Práctica y teoría resuelto de mecánica de suelos II Gráfica 1.- Factores de influencia para carga lineal (Fadum). Juárez E. y Rico A., (1980), Anexo II-d
  • 77. VenerosonccoS 76Práctica y teoría resuelto de mecánica de suelos II METODO APROXIMADO PARA CÁLCULO DE ASIENTOS EN TERRENO ESTRATIFICADO (METODO DE STEINBRENNER)
  • 78. VenerosonccoS 77Práctica y teoría resuelto de mecánica de suelos II
  • 79. VenerosonccoS 78Práctica y teoría resuelto de mecánica de suelos II
  • 80. VenerosonccoS 79Práctica y teoría resuelto de mecánica de suelos II
  • 81. VenerosonccoS 80Práctica y teoría resuelto de mecánica de suelos II