SlideShare una empresa de Scribd logo
1 de 25
Benemérita Escuela Normal
Manuel Ávila Camacho
Lic. En educación preescolar
3° semestre
PROCESAMIENTO DE LA INFORMACIÓN ESTADÍSTICA
TEHUA XÓCHITL MUÑOZ CARRILLO
TÉCNICAS DE MUESTREO
GLORIA ISABEL LÓPEZ MARTÍNEZ
PERLA VERÓNICA SERRANO AGUILAR
¿Qué es el muestreo estadístico?
 El muestreo estadístico es un enfoque sistemático para seleccionar
unos cuentos elementos (muestra) de un grupo de datos
(población) a fin de hacer algunas inferencias sobre el grupo total.
 Ventajas:
 Costo reducido
 Mayor rapidez (tiempo de recolección menor)
 Mas posibilidades
 Mayor exactitud
Técnicas de muestreo
Muestreo no probabilístico
 El muestreo no probabilístico es una técnica de
muestreo donde las muestras se recogen en un
proceso que no brinda a todos los individuos de
la población iguales oportunidades de ser
seleccionados.
 Los sujetos en una muestra no probabilística
generalmente son seleccionados en función
de su accesibilidad o a criterio personal e
intencional del investigador.
Desventajas
 La desventaja del método de muestreo no
probabilístico es que no se toman pruebas de
una porción desconocida de la población. Esto
implica que la muestra puede representar a
toda la población con precisión o no. Por lo
tanto, los resultados de la investigación no
pueden ser utilizados
en generalizaciones respecto de toda la
población.
Conveniencia
 Las muestras son seleccionadas porque es
accesible para el investigador
 Es la más fácil, la más barata y la que menos
tiempo lleva
Ejemplo:
 Un profesor que realiza una investigación en una universidad puede
usar estudiantes voluntarios para que constituyan la muestra,
¿existe alguna razón? Sí, los tiene al alcance y participarán como
sujetos a un costo bajo o sin ningún costo.
De juicio o criterio
 El tamaño de muestra como la elección de los
elementos esta sujetos al juicio del investigador,
el cual se rige por el conocimiento y
experiencias que tiene sobre el tema.
 Acudir a expertos en busca de ayuda para la
determinación de una muestra representativa.
Por cuotas
 La muestra reunida tiene la misma proporción
de individuos que toda la población con
respecto al fenómeno enfocado, las
características o los rasgos conocidos.
 Las bases de la cuota generalmente son la
edad, el género, la educación, la etnia, la
religión y el nivel socioeconómico.
 Consiste en dividir a la población en subgrupos
o cuotas según ciertas características
Ejemplo
 20 individuos de 25 a 40 años de sexo femenino y residentes de
Zacatecas.
 Una vez determinada la cuota se eligen los números que se
encuentren que cumplan estas características.
Bola de nieve
 Este tipo de técnica de muestreo funciona en
cadena. Luego de observar al primer sujeto, el
investigador le pide ayuda a él para identificar
a otras personas que tengan un rasgo de interés
similar.
Ejemplo:
 Para obtener sujetos para un estudio que quiere analizar una
enfermedad rara, el investigador puede elegir utilizar el muestreo
de bola de nieve, ya que será difícil obtener sujetos. También es
posible que los pacientes con la misma enfermedad tengan un
grupo de apoyo, y si uno de sus miembros es tu primer sujeto, lo más
probable es que allí encuentres más sujetos para el estudio
Muestreo probabilístico
 Técnica de muestreo en virtud de la cual las
muestras son recogidas en un proceso que
brinda a todos los individuos de la población las
mismas oportunidades de ser seleccionados.
Ventaja
 Ausencia de sesgos de muestreo, si la selección
aleatoria se hace correctamente, la muestra
será representativa de toda la población.
 Se necesita calcular el tamaño de muestra
proporcional a la población.
Mediante la siguiente formula
Tenemos una población de 136 millones de brasileños entre 15 y 65 años,
queremos saber qué % de ellos vive en un piso de propiedad, con un
margen de error del 5% y un nivel de confianza del 95%. Supondremos que
no tenemos ninguna información previa sobre cuál puede ser el % de
propietarios que podemos obtener en la encuesta.
Usaremos p=50% pues no tengo información previa sobre el resultado
esperado:
 N=
1,96^2 ∗ 0,5 ∗ (1 – 0,5)
0,05^2
= 384,16 -> 384
Aleatorio
 En esta técnica, cada miembro de la población
tiene la misma probabilidad de ser
seleccionado como sujeto. Todo el proceso de
toma de muestras se realiza en un paso, en
donde cada sujeto es seleccionado
independientemente de los otros miembros de
la población.
 Es aquel en el que todas las posibles muestras a
seleccionar tienen la misma probabilidad de ser
escogidas.
Aleatorio estratificado
 El investigador divide a toda la población en
diferentes subgrupos o estratos. Luego,
selecciona aleatoriamente a los sujetos finales
de los diferentes estratos en forma proporcional.
 Los estratos más comunes utilizados en el
muestreo aleatorio estratificado son la edad, el
género, el nivel socioeconómico, la religión, la
nacionalidad y el nivel de estudios alcanzado.
Ejemplo:
 :
Si se tiene que seleccionar una muestra de 20 personas, de una comunidad de 500
habitantes, con el fin de hacerles una encuesta sobre los servicios de salud que
reciben. Los habitantes están repartidos en 5 colonias, en donde el tamaño de cada
estrato es:
Estrato Colonia Tamaño
Frecuencia
Relativa
No. de muestras por
estrato
1 San Miguel 100 0.20 8
2 San Rafael 150 0.30 12
3 San Vicente 050 0.10 4
4 San Marcos 125 0.25 10
5 San Pedro 075 0.15 6
TOTAL 500 1.00 40
Los habitantes de cada colonia están registrados y se les asignará un número, por ejemplo,
en el estrato 1 hay 100 habitantes entonces se numerará de 001 a 100, en el estrato 2 hay
150 y se numerará de 001 a 150 y así sucesivamente se hará con los demás estratos.
÷
×
Muestreo sistemático
 En el muestreo aleatorio sistemático, el
investigador primero escoge aleatoriamente la
primera pieza o sujeto de la población. A
continuación, el investigador seleccionará a
cada enésimo sujeto de la lista.
 Número de inicio
 Intervalo
 Está menos expuesto a errores
Ejemplo
 Se eligen elementos a partir de intervalos
 Tengo una población de 100 personas de la cual voy a elegir 25
personas aleatoriamente se va a elegir una persona cada intervalo.
 x/n
 Población/personas. 4
 Se elige una persona cada 4
Conglomerados
 En lugar de seleccionar a todos los sujetos de la
población inmediatamente, el investigador
realiza varios pasos para reunir su muestra de la
población.
1)Dividir a toda la población en diferentes
conglomerados
2)Selecciona una serie de conglomerados en función
de su investigación, a través de un muestreo aleatorio
simple o sistemático.
3)Luego de los conglomerados seleccionados el
investigador puede incluir a todos los estudiantes
secundarios como sujetos o seleccionar un número de
sujetos de cada conglomerado a través de un
muestreo aleatorio simple o sistemático
Ejemplo
 Si se va a realizar una encuesta sobre las políticas y leyes del
municipio, se podría dividir el municipio en distritos, por ejemplo en
13 distritos, de esos tres se toma al azar el 4, 5, 9 y 11, y solo
concentrándonos en estos distritos, tomamos una muestra aleatoria
de habitantes de cada uno de esos distritos, para entrevistarlos.


Más contenido relacionado

La actualidad más candente (8)

Muestreo probabilístico
Muestreo probabilísticoMuestreo probabilístico
Muestreo probabilístico
 
00020972
0002097200020972
00020972
 
Socioestadistica - 17. probabilísticos - Jorge Canales Fuster
Socioestadistica - 17. probabilísticos - Jorge Canales FusterSocioestadistica - 17. probabilísticos - Jorge Canales Fuster
Socioestadistica - 17. probabilísticos - Jorge Canales Fuster
 
Elaboración de muestreo
Elaboración de muestreoElaboración de muestreo
Elaboración de muestreo
 
METODOS DE MUESTREO
METODOS DE MUESTREOMETODOS DE MUESTREO
METODOS DE MUESTREO
 
Muestra
MuestraMuestra
Muestra
 
Tipos de muestreo
Tipos de muestreoTipos de muestreo
Tipos de muestreo
 
Clase 1 16 01-2021
Clase 1 16 01-2021Clase 1 16 01-2021
Clase 1 16 01-2021
 

Destacado

Las razas lemurianas por Víctor salazar
Las razas lemurianas por  Víctor salazarLas razas lemurianas por  Víctor salazar
Las razas lemurianas por Víctor salazarIván Martín González
 
Presentacion cesar velozo_dept.cordillera
Presentacion cesar velozo_dept.cordilleraPresentacion cesar velozo_dept.cordillera
Presentacion cesar velozo_dept.cordilleravelozoc
 
Aei.junio2014.gazeta
Aei.junio2014.gazetaAei.junio2014.gazeta
Aei.junio2014.gazetalibreacceso
 
PROCLAMATION DE L'ETAT D'URGENCE
PROCLAMATION DE L'ETAT D'URGENCEPROCLAMATION DE L'ETAT D'URGENCE
PROCLAMATION DE L'ETAT D'URGENCElaurentlamothe
 
Lectura critica en internet martina teran y gaston cebe
Lectura critica en internet martina teran y gaston cebeLectura critica en internet martina teran y gaston cebe
Lectura critica en internet martina teran y gaston cebemartuteran
 
Conectados con las estrellas 2
Conectados con las estrellas 2Conectados con las estrellas 2
Conectados con las estrellas 2oswaldodiazpereira
 
Presentación1
Presentación1Presentación1
Presentación1sannti12
 
Vistas De Un Dibujo Tecnico
Vistas De Un Dibujo TecnicoVistas De Un Dibujo Tecnico
Vistas De Un Dibujo Tecniconicoleulloagoni
 
Pizarra Digital Interactiva
Pizarra Digital InteractivaPizarra Digital Interactiva
Pizarra Digital InteractivaBarbaraCF09
 
Rapport de situation #2 INONDATIONS DANS LES DEPARTEMENTS DU NORD
Rapport de situation #2 INONDATIONS DANS LES DEPARTEMENTS DU NORDRapport de situation #2 INONDATIONS DANS LES DEPARTEMENTS DU NORD
Rapport de situation #2 INONDATIONS DANS LES DEPARTEMENTS DU NORDlaurentlamothe
 

Destacado (20)

Las razas lemurianas por Víctor salazar
Las razas lemurianas por  Víctor salazarLas razas lemurianas por  Víctor salazar
Las razas lemurianas por Víctor salazar
 
Presentacion cesar velozo_dept.cordillera
Presentacion cesar velozo_dept.cordilleraPresentacion cesar velozo_dept.cordillera
Presentacion cesar velozo_dept.cordillera
 
Zaruma
ZarumaZaruma
Zaruma
 
Diapositiva ♥
Diapositiva ♥Diapositiva ♥
Diapositiva ♥
 
Tutorial de Slideshare
Tutorial de SlideshareTutorial de Slideshare
Tutorial de Slideshare
 
Aei.junio2014.gazeta
Aei.junio2014.gazetaAei.junio2014.gazeta
Aei.junio2014.gazeta
 
PROCLAMATION DE L'ETAT D'URGENCE
PROCLAMATION DE L'ETAT D'URGENCEPROCLAMATION DE L'ETAT D'URGENCE
PROCLAMATION DE L'ETAT D'URGENCE
 
Aula virtual
Aula virtualAula virtual
Aula virtual
 
Sebastian
SebastianSebastian
Sebastian
 
Lectura critica en internet martina teran y gaston cebe
Lectura critica en internet martina teran y gaston cebeLectura critica en internet martina teran y gaston cebe
Lectura critica en internet martina teran y gaston cebe
 
Projet de loi esr
Projet de loi esrProjet de loi esr
Projet de loi esr
 
Conectados con las estrellas 2
Conectados con las estrellas 2Conectados con las estrellas 2
Conectados con las estrellas 2
 
Historia del internet
Historia del internetHistoria del internet
Historia del internet
 
Presentación1
Presentación1Presentación1
Presentación1
 
Vistas De Un Dibujo Tecnico
Vistas De Un Dibujo TecnicoVistas De Un Dibujo Tecnico
Vistas De Un Dibujo Tecnico
 
Trabajo final
Trabajo finalTrabajo final
Trabajo final
 
Pizarra Digital Interactiva
Pizarra Digital InteractivaPizarra Digital Interactiva
Pizarra Digital Interactiva
 
G&S 22@ barcelona
G&S 22@ barcelonaG&S 22@ barcelona
G&S 22@ barcelona
 
Rapport de situation #2 INONDATIONS DANS LES DEPARTEMENTS DU NORD
Rapport de situation #2 INONDATIONS DANS LES DEPARTEMENTS DU NORDRapport de situation #2 INONDATIONS DANS LES DEPARTEMENTS DU NORD
Rapport de situation #2 INONDATIONS DANS LES DEPARTEMENTS DU NORD
 
taller 2
taller 2taller 2
taller 2
 

Similar a Técnicas de-muestreo (20)

elmuestreo.pdf
elmuestreo.pdfelmuestreo.pdf
elmuestreo.pdf
 
El muestreo (1)
El muestreo (1)El muestreo (1)
El muestreo (1)
 
(268083723) el muestreo
(268083723) el muestreo(268083723) el muestreo
(268083723) el muestreo
 
Elmuestreo
ElmuestreoElmuestreo
Elmuestreo
 
Elmuestreo
ElmuestreoElmuestreo
Elmuestreo
 
Elmuestreo
ElmuestreoElmuestreo
Elmuestreo
 
Elmuestreo
ElmuestreoElmuestreo
Elmuestreo
 
Elmuestreo
ElmuestreoElmuestreo
Elmuestreo
 
El muestreo
El muestreoEl muestreo
El muestreo
 
Elmuestreo
ElmuestreoElmuestreo
Elmuestreo
 
Elmuestreo
ElmuestreoElmuestreo
Elmuestreo
 
Willy valverde muestreo
Willy valverde   muestreoWilly valverde   muestreo
Willy valverde muestreo
 
El muestreo
El muestreoEl muestreo
El muestreo
 
21 muestra o_analisis_muestral
21 muestra o_analisis_muestral21 muestra o_analisis_muestral
21 muestra o_analisis_muestral
 
Muestreo bioestadisticppt
Muestreo bioestadisticpptMuestreo bioestadisticppt
Muestreo bioestadisticppt
 
Tipos de muestreo
Tipos de muestreoTipos de muestreo
Tipos de muestreo
 
Analisis metodos de muestreo
Analisis metodos de muestreoAnalisis metodos de muestreo
Analisis metodos de muestreo
 
Población y Muestra
Población y MuestraPoblación y Muestra
Población y Muestra
 
El muestreo
El muestreoEl muestreo
El muestreo
 
Muestreo Estadístico
Muestreo EstadísticoMuestreo Estadístico
Muestreo Estadístico
 

Más de Perla Aguilar Serrano (20)

La historia, los hombres y el tiempo presentación 11 feb
La historia, los hombres y el tiempo presentación 11 febLa historia, los hombres y el tiempo presentación 11 feb
La historia, los hombres y el tiempo presentación 11 feb
 
Basesteoricasdelmuestreo
BasesteoricasdelmuestreoBasesteoricasdelmuestreo
Basesteoricasdelmuestreo
 
Bases teóricas de las pruebas de hipótesis
Bases teóricas de las pruebas de hipótesisBases teóricas de las pruebas de hipótesis
Bases teóricas de las pruebas de hipótesis
 
Distribución normal
Distribución normalDistribución normal
Distribución normal
 
Tipos de-variables
Tipos de-variablesTipos de-variables
Tipos de-variables
 
Teoría de la medición en equipo
Teoría de la medición en equipoTeoría de la medición en equipo
Teoría de la medición en equipo
 
Probabilidad clasica
Probabilidad clasicaProbabilidad clasica
Probabilidad clasica
 
Datos bivariados
Datos bivariadosDatos bivariados
Datos bivariados
 
Métodos de conteo
Métodos de conteoMétodos de conteo
Métodos de conteo
 
Ji cuadrada
Ji cuadradaJi cuadrada
Ji cuadrada
 
Medidas de posiciã³n
Medidas de posiciã³nMedidas de posiciã³n
Medidas de posiciã³n
 
Medidas de tendencia central
Medidas de tendencia centralMedidas de tendencia central
Medidas de tendencia central
 
Pedagigía progresista
Pedagigía progresistaPedagigía progresista
Pedagigía progresista
 
Las concepciones de los profesores
Las concepciones de los profesores Las concepciones de los profesores
Las concepciones de los profesores
 
Bases psicologicas
Bases psicologicasBases psicologicas
Bases psicologicas
 
Preguntas
PreguntasPreguntas
Preguntas
 
Trabajo docente 2
Trabajo docente 2Trabajo docente 2
Trabajo docente 2
 
Trabajo docente
Trabajo docenteTrabajo docente
Trabajo docente
 
Trabajo docente
Trabajo docenteTrabajo docente
Trabajo docente
 
Peso
PesoPeso
Peso
 

Último

Vínculo afectivo (labor expositivo de grupo )
Vínculo afectivo (labor expositivo de grupo )Vínculo afectivo (labor expositivo de grupo )
Vínculo afectivo (labor expositivo de grupo )portafoliodigitalyos
 
Evaluación de los Factores Internos de la Organización
Evaluación de los Factores Internos de la OrganizaciónEvaluación de los Factores Internos de la Organización
Evaluación de los Factores Internos de la OrganizaciónJonathanCovena1
 
ANTOLOGIA COMPLETA ANITA LA ABEJITA PARA LA LECTOESCRITURA EN PRIMER GRADO.pdf
ANTOLOGIA COMPLETA ANITA LA ABEJITA PARA LA LECTOESCRITURA EN PRIMER GRADO.pdfANTOLOGIA COMPLETA ANITA LA ABEJITA PARA LA LECTOESCRITURA EN PRIMER GRADO.pdf
ANTOLOGIA COMPLETA ANITA LA ABEJITA PARA LA LECTOESCRITURA EN PRIMER GRADO.pdflvela1316
 
TERCER GRADO PROGRAMACION ANUAL CCSS 3° - 2024.docx
TERCER GRADO PROGRAMACION ANUAL CCSS 3° - 2024.docxTERCER GRADO PROGRAMACION ANUAL CCSS 3° - 2024.docx
TERCER GRADO PROGRAMACION ANUAL CCSS 3° - 2024.docxlitaroxselyperezmont
 
CONCLUSIONES DESCRIPTIVAS TIC que ayudaran a tus registrosdocx
CONCLUSIONES DESCRIPTIVAS TIC que ayudaran a tus registrosdocxCONCLUSIONES DESCRIPTIVAS TIC que ayudaran a tus registrosdocx
CONCLUSIONES DESCRIPTIVAS TIC que ayudaran a tus registrosdocxMarlynRocaOnofre
 
Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)
Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)
Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)JonathanCovena1
 
PLAN DE GESTION DEL RIESGO 2023 - 2024.docx
PLAN DE GESTION DEL RIESGO  2023 - 2024.docxPLAN DE GESTION DEL RIESGO  2023 - 2024.docx
PLAN DE GESTION DEL RIESGO 2023 - 2024.docxpily R.T.
 
SISTEMA RESPIRATORIO DEL CUERPO HUMANO triptico.docx
SISTEMA RESPIRATORIO DEL CUERPO HUMANO triptico.docxSISTEMA RESPIRATORIO DEL CUERPO HUMANO triptico.docx
SISTEMA RESPIRATORIO DEL CUERPO HUMANO triptico.docxgesicavillanuevaqf
 
METODOS DE EXTRACCIÓN E IDENTIFICACIÓN - 2024.pdf
METODOS DE EXTRACCIÓN E IDENTIFICACIÓN - 2024.pdfMETODOS DE EXTRACCIÓN E IDENTIFICACIÓN - 2024.pdf
METODOS DE EXTRACCIÓN E IDENTIFICACIÓN - 2024.pdfNilssaRojas1
 
ACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLA
ACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLAACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLA
ACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLAJAVIER SOLIS NOYOLA
 
BIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATR
BIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATRBIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATR
BIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATRDanielGrajeda7
 
a propósito del estado su relevancia y definiciones
a propósito del estado su relevancia y definicionesa propósito del estado su relevancia y definiciones
a propósito del estado su relevancia y definicionessubfabian
 
Cerebelo Anatomía y fisiología Clase presencial
Cerebelo Anatomía y fisiología Clase presencialCerebelo Anatomía y fisiología Clase presencial
Cerebelo Anatomía y fisiología Clase presencialDanita2111
 
proyecto semana de los Jardines, actividades a realizar para resaltar esta fecha
proyecto semana de los Jardines, actividades a realizar para resaltar esta fechaproyecto semana de los Jardines, actividades a realizar para resaltar esta fecha
proyecto semana de los Jardines, actividades a realizar para resaltar esta fechanitoagurto67
 
LA GEOMETRÍA Y LOS SISTEMAS ANGULARES, APRENDER LEYENDO LA BIBLIA
LA GEOMETRÍA Y LOS SISTEMAS ANGULARES, APRENDER LEYENDO LA BIBLIALA GEOMETRÍA Y LOS SISTEMAS ANGULARES, APRENDER LEYENDO LA BIBLIA
LA GEOMETRÍA Y LOS SISTEMAS ANGULARES, APRENDER LEYENDO LA BIBLIASandra Mariela Ballón Aguedo
 
2.15. Calendario Civico Escolar 2024.docx
2.15. Calendario Civico Escolar 2024.docx2.15. Calendario Civico Escolar 2024.docx
2.15. Calendario Civico Escolar 2024.docxCarlosEnriqueArgoteC
 
PROBLEMAS DE GENÉTICA CON ÁRBOLES GENEALÓGICOS.pdf
PROBLEMAS DE GENÉTICA  CON ÁRBOLES GENEALÓGICOS.pdfPROBLEMAS DE GENÉTICA  CON ÁRBOLES GENEALÓGICOS.pdf
PROBLEMAS DE GENÉTICA CON ÁRBOLES GENEALÓGICOS.pdfmihayedo
 
Resumen Acuerdo 05 04 24.pdf por el que se rigen los Consejos Técnicos Escolares
Resumen Acuerdo 05 04 24.pdf por el que se rigen los Consejos Técnicos EscolaresResumen Acuerdo 05 04 24.pdf por el que se rigen los Consejos Técnicos Escolares
Resumen Acuerdo 05 04 24.pdf por el que se rigen los Consejos Técnicos EscolaresLluviaAliciaHernande
 
5º PARTE 3 SOY LECTOR -MD EDUCATIVO_240418_155445 (1).pdf
5º PARTE 3 SOY LECTOR -MD EDUCATIVO_240418_155445 (1).pdf5º PARTE 3 SOY LECTOR -MD EDUCATIVO_240418_155445 (1).pdf
5º PARTE 3 SOY LECTOR -MD EDUCATIVO_240418_155445 (1).pdfFlorHernandezNuez
 

Último (20)

Vínculo afectivo (labor expositivo de grupo )
Vínculo afectivo (labor expositivo de grupo )Vínculo afectivo (labor expositivo de grupo )
Vínculo afectivo (labor expositivo de grupo )
 
Evaluación de los Factores Internos de la Organización
Evaluación de los Factores Internos de la OrganizaciónEvaluación de los Factores Internos de la Organización
Evaluación de los Factores Internos de la Organización
 
ANTOLOGIA COMPLETA ANITA LA ABEJITA PARA LA LECTOESCRITURA EN PRIMER GRADO.pdf
ANTOLOGIA COMPLETA ANITA LA ABEJITA PARA LA LECTOESCRITURA EN PRIMER GRADO.pdfANTOLOGIA COMPLETA ANITA LA ABEJITA PARA LA LECTOESCRITURA EN PRIMER GRADO.pdf
ANTOLOGIA COMPLETA ANITA LA ABEJITA PARA LA LECTOESCRITURA EN PRIMER GRADO.pdf
 
TERCER GRADO PROGRAMACION ANUAL CCSS 3° - 2024.docx
TERCER GRADO PROGRAMACION ANUAL CCSS 3° - 2024.docxTERCER GRADO PROGRAMACION ANUAL CCSS 3° - 2024.docx
TERCER GRADO PROGRAMACION ANUAL CCSS 3° - 2024.docx
 
CONCLUSIONES DESCRIPTIVAS TIC que ayudaran a tus registrosdocx
CONCLUSIONES DESCRIPTIVAS TIC que ayudaran a tus registrosdocxCONCLUSIONES DESCRIPTIVAS TIC que ayudaran a tus registrosdocx
CONCLUSIONES DESCRIPTIVAS TIC que ayudaran a tus registrosdocx
 
Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)
Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)
Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)
 
PLAN DE GESTION DEL RIESGO 2023 - 2024.docx
PLAN DE GESTION DEL RIESGO  2023 - 2024.docxPLAN DE GESTION DEL RIESGO  2023 - 2024.docx
PLAN DE GESTION DEL RIESGO 2023 - 2024.docx
 
La historia de la vida estudiantil a 102 años de la fundación de las Normales...
La historia de la vida estudiantil a 102 años de la fundación de las Normales...La historia de la vida estudiantil a 102 años de la fundación de las Normales...
La historia de la vida estudiantil a 102 años de la fundación de las Normales...
 
SISTEMA RESPIRATORIO DEL CUERPO HUMANO triptico.docx
SISTEMA RESPIRATORIO DEL CUERPO HUMANO triptico.docxSISTEMA RESPIRATORIO DEL CUERPO HUMANO triptico.docx
SISTEMA RESPIRATORIO DEL CUERPO HUMANO triptico.docx
 
METODOS DE EXTRACCIÓN E IDENTIFICACIÓN - 2024.pdf
METODOS DE EXTRACCIÓN E IDENTIFICACIÓN - 2024.pdfMETODOS DE EXTRACCIÓN E IDENTIFICACIÓN - 2024.pdf
METODOS DE EXTRACCIÓN E IDENTIFICACIÓN - 2024.pdf
 
ACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLA
ACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLAACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLA
ACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLA
 
BIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATR
BIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATRBIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATR
BIENESTAR TOTAL - LA EXPERIENCIA DEL CLIENTE CON ATR
 
a propósito del estado su relevancia y definiciones
a propósito del estado su relevancia y definicionesa propósito del estado su relevancia y definiciones
a propósito del estado su relevancia y definiciones
 
Cerebelo Anatomía y fisiología Clase presencial
Cerebelo Anatomía y fisiología Clase presencialCerebelo Anatomía y fisiología Clase presencial
Cerebelo Anatomía y fisiología Clase presencial
 
proyecto semana de los Jardines, actividades a realizar para resaltar esta fecha
proyecto semana de los Jardines, actividades a realizar para resaltar esta fechaproyecto semana de los Jardines, actividades a realizar para resaltar esta fecha
proyecto semana de los Jardines, actividades a realizar para resaltar esta fecha
 
LA GEOMETRÍA Y LOS SISTEMAS ANGULARES, APRENDER LEYENDO LA BIBLIA
LA GEOMETRÍA Y LOS SISTEMAS ANGULARES, APRENDER LEYENDO LA BIBLIALA GEOMETRÍA Y LOS SISTEMAS ANGULARES, APRENDER LEYENDO LA BIBLIA
LA GEOMETRÍA Y LOS SISTEMAS ANGULARES, APRENDER LEYENDO LA BIBLIA
 
2.15. Calendario Civico Escolar 2024.docx
2.15. Calendario Civico Escolar 2024.docx2.15. Calendario Civico Escolar 2024.docx
2.15. Calendario Civico Escolar 2024.docx
 
PROBLEMAS DE GENÉTICA CON ÁRBOLES GENEALÓGICOS.pdf
PROBLEMAS DE GENÉTICA  CON ÁRBOLES GENEALÓGICOS.pdfPROBLEMAS DE GENÉTICA  CON ÁRBOLES GENEALÓGICOS.pdf
PROBLEMAS DE GENÉTICA CON ÁRBOLES GENEALÓGICOS.pdf
 
Resumen Acuerdo 05 04 24.pdf por el que se rigen los Consejos Técnicos Escolares
Resumen Acuerdo 05 04 24.pdf por el que se rigen los Consejos Técnicos EscolaresResumen Acuerdo 05 04 24.pdf por el que se rigen los Consejos Técnicos Escolares
Resumen Acuerdo 05 04 24.pdf por el que se rigen los Consejos Técnicos Escolares
 
5º PARTE 3 SOY LECTOR -MD EDUCATIVO_240418_155445 (1).pdf
5º PARTE 3 SOY LECTOR -MD EDUCATIVO_240418_155445 (1).pdf5º PARTE 3 SOY LECTOR -MD EDUCATIVO_240418_155445 (1).pdf
5º PARTE 3 SOY LECTOR -MD EDUCATIVO_240418_155445 (1).pdf
 

Técnicas de-muestreo

  • 1. Benemérita Escuela Normal Manuel Ávila Camacho Lic. En educación preescolar 3° semestre PROCESAMIENTO DE LA INFORMACIÓN ESTADÍSTICA TEHUA XÓCHITL MUÑOZ CARRILLO TÉCNICAS DE MUESTREO GLORIA ISABEL LÓPEZ MARTÍNEZ PERLA VERÓNICA SERRANO AGUILAR
  • 2. ¿Qué es el muestreo estadístico?  El muestreo estadístico es un enfoque sistemático para seleccionar unos cuentos elementos (muestra) de un grupo de datos (población) a fin de hacer algunas inferencias sobre el grupo total.  Ventajas:  Costo reducido  Mayor rapidez (tiempo de recolección menor)  Mas posibilidades  Mayor exactitud
  • 4. Muestreo no probabilístico  El muestreo no probabilístico es una técnica de muestreo donde las muestras se recogen en un proceso que no brinda a todos los individuos de la población iguales oportunidades de ser seleccionados.
  • 5.  Los sujetos en una muestra no probabilística generalmente son seleccionados en función de su accesibilidad o a criterio personal e intencional del investigador.
  • 6. Desventajas  La desventaja del método de muestreo no probabilístico es que no se toman pruebas de una porción desconocida de la población. Esto implica que la muestra puede representar a toda la población con precisión o no. Por lo tanto, los resultados de la investigación no pueden ser utilizados en generalizaciones respecto de toda la población.
  • 7. Conveniencia  Las muestras son seleccionadas porque es accesible para el investigador  Es la más fácil, la más barata y la que menos tiempo lleva
  • 8. Ejemplo:  Un profesor que realiza una investigación en una universidad puede usar estudiantes voluntarios para que constituyan la muestra, ¿existe alguna razón? Sí, los tiene al alcance y participarán como sujetos a un costo bajo o sin ningún costo.
  • 9. De juicio o criterio  El tamaño de muestra como la elección de los elementos esta sujetos al juicio del investigador, el cual se rige por el conocimiento y experiencias que tiene sobre el tema.  Acudir a expertos en busca de ayuda para la determinación de una muestra representativa.
  • 10. Por cuotas  La muestra reunida tiene la misma proporción de individuos que toda la población con respecto al fenómeno enfocado, las características o los rasgos conocidos.  Las bases de la cuota generalmente son la edad, el género, la educación, la etnia, la religión y el nivel socioeconómico.  Consiste en dividir a la población en subgrupos o cuotas según ciertas características
  • 11. Ejemplo  20 individuos de 25 a 40 años de sexo femenino y residentes de Zacatecas.  Una vez determinada la cuota se eligen los números que se encuentren que cumplan estas características.
  • 12. Bola de nieve  Este tipo de técnica de muestreo funciona en cadena. Luego de observar al primer sujeto, el investigador le pide ayuda a él para identificar a otras personas que tengan un rasgo de interés similar.
  • 13. Ejemplo:  Para obtener sujetos para un estudio que quiere analizar una enfermedad rara, el investigador puede elegir utilizar el muestreo de bola de nieve, ya que será difícil obtener sujetos. También es posible que los pacientes con la misma enfermedad tengan un grupo de apoyo, y si uno de sus miembros es tu primer sujeto, lo más probable es que allí encuentres más sujetos para el estudio
  • 14. Muestreo probabilístico  Técnica de muestreo en virtud de la cual las muestras son recogidas en un proceso que brinda a todos los individuos de la población las mismas oportunidades de ser seleccionados.
  • 15. Ventaja  Ausencia de sesgos de muestreo, si la selección aleatoria se hace correctamente, la muestra será representativa de toda la población.
  • 16.  Se necesita calcular el tamaño de muestra proporcional a la población. Mediante la siguiente formula
  • 17. Tenemos una población de 136 millones de brasileños entre 15 y 65 años, queremos saber qué % de ellos vive en un piso de propiedad, con un margen de error del 5% y un nivel de confianza del 95%. Supondremos que no tenemos ninguna información previa sobre cuál puede ser el % de propietarios que podemos obtener en la encuesta. Usaremos p=50% pues no tengo información previa sobre el resultado esperado:  N= 1,96^2 ∗ 0,5 ∗ (1 – 0,5) 0,05^2 = 384,16 -> 384
  • 18. Aleatorio  En esta técnica, cada miembro de la población tiene la misma probabilidad de ser seleccionado como sujeto. Todo el proceso de toma de muestras se realiza en un paso, en donde cada sujeto es seleccionado independientemente de los otros miembros de la población.  Es aquel en el que todas las posibles muestras a seleccionar tienen la misma probabilidad de ser escogidas.
  • 19. Aleatorio estratificado  El investigador divide a toda la población en diferentes subgrupos o estratos. Luego, selecciona aleatoriamente a los sujetos finales de los diferentes estratos en forma proporcional.  Los estratos más comunes utilizados en el muestreo aleatorio estratificado son la edad, el género, el nivel socioeconómico, la religión, la nacionalidad y el nivel de estudios alcanzado.
  • 20. Ejemplo:  : Si se tiene que seleccionar una muestra de 20 personas, de una comunidad de 500 habitantes, con el fin de hacerles una encuesta sobre los servicios de salud que reciben. Los habitantes están repartidos en 5 colonias, en donde el tamaño de cada estrato es: Estrato Colonia Tamaño Frecuencia Relativa No. de muestras por estrato 1 San Miguel 100 0.20 8 2 San Rafael 150 0.30 12 3 San Vicente 050 0.10 4 4 San Marcos 125 0.25 10 5 San Pedro 075 0.15 6 TOTAL 500 1.00 40 Los habitantes de cada colonia están registrados y se les asignará un número, por ejemplo, en el estrato 1 hay 100 habitantes entonces se numerará de 001 a 100, en el estrato 2 hay 150 y se numerará de 001 a 150 y así sucesivamente se hará con los demás estratos. ÷ ×
  • 21. Muestreo sistemático  En el muestreo aleatorio sistemático, el investigador primero escoge aleatoriamente la primera pieza o sujeto de la población. A continuación, el investigador seleccionará a cada enésimo sujeto de la lista.  Número de inicio  Intervalo  Está menos expuesto a errores
  • 22. Ejemplo  Se eligen elementos a partir de intervalos  Tengo una población de 100 personas de la cual voy a elegir 25 personas aleatoriamente se va a elegir una persona cada intervalo.  x/n  Población/personas. 4  Se elige una persona cada 4
  • 23. Conglomerados  En lugar de seleccionar a todos los sujetos de la población inmediatamente, el investigador realiza varios pasos para reunir su muestra de la población.
  • 24. 1)Dividir a toda la población en diferentes conglomerados 2)Selecciona una serie de conglomerados en función de su investigación, a través de un muestreo aleatorio simple o sistemático. 3)Luego de los conglomerados seleccionados el investigador puede incluir a todos los estudiantes secundarios como sujetos o seleccionar un número de sujetos de cada conglomerado a través de un muestreo aleatorio simple o sistemático
  • 25. Ejemplo  Si se va a realizar una encuesta sobre las políticas y leyes del municipio, se podría dividir el municipio en distritos, por ejemplo en 13 distritos, de esos tres se toma al azar el 4, 5, 9 y 11, y solo concentrándonos en estos distritos, tomamos una muestra aleatoria de habitantes de cada uno de esos distritos, para entrevistarlos. 