SlideShare una empresa de Scribd logo
ALUMNO :
FERMÍN CHAVEZ REYES
 En  esta presentación les explicare como
  paso a paso, para que realices las
  frecuencias.
 El objetivo de la presentación es mostrar
  detalladamente las operaciones para así
  lograr terminar las frecuencias .
  ya que tenemos los datos reales ahora si
  con los datos determinados reales .
 Empezamos con los frecuencia absoluta
  (fi)
 en la frecuencia absoluta de los datos
  reales vamos a colorear del limite inferior
  al limite superior así como se muestra en
  el ejemplo
1.444   1.413   1.484   1.555   1.467   1.516   1.482   1.519   1.533    1.53   1.506   1.553   1.537   1.432   1.498   1.492   1.492   1.484   1.484
1.488   1.424   1.547    1.49   1.558   1.531   1.577   1.484   1.545   1.531   1.571   1.494   1.496   1.473   1.467    1.49   1.483   1.504   1.528
 1.51   1.469   1.554   1.456   1.511   1.435   1.487   1.562   1.546   1.528    1.49   1.549   1.431   1.474   1.492   1.549   1.474   1.489   1.547
1.489   1.524   1.394   1.539   1.515    1.48   1.437   1.506   1.506   1.449    1.54   1.512   1.489   1.458   1.501   1.506   1.494   1.512   1.503
1.566   1.499   1.471   1.522   1.561   1.513    1.44   1.529   1.487   1.505   1.507   1.481   1.532   1.448   1.468   1.479   1.515   1.564   1.501
1.545   1.512   1.492   1.576   1.445   1.535   1.533   1.424   1.511   1.528   1.483   1.482   1.447   1.461   1.441   1.491   1.507   1.456   1.491
1.534   1.487   1.476   1.498   1.515   1.469    1.54   1.545   1.554   1.466   1.519   1.441   1.479   1.521   1.504    1.55   1.527   1.424   1.531
1.423   1.551   1.508   1.529   1.526   1.503   1.481    1.45   1.494   1.537   1.528   1.515   1.503    1.49   1.569   1.501   1.551   1.482   1.578
1.488   1.481   1.543   1.494   1.491   1.453    1.49   1.539   1.472   1.424   1.551   1.454    1.51   1.489   1.462    1.52   1.541   1.492   1.469
1.532   1.502   1.497   1.526   1.523   1.535   1.499   1.548    1.46   1.518   1.509    1.49   1.547   1.479    1.46   1.485   1.467   1.553   1.458
 1.49   1.496   1.486   1.469   1.521    1.53   1.496    1.51   1.479   1.494   1.434   1.474   1.458   1.484   1.502   1.459    1.48   1.485   1.496
1.544   1.443   1.493   1.488   1.559   1.512   1.526   1.474   1.483   1.463   1.484    1.45   1.489   1.461   1.512   1.462   1.514   1.495   1.483
1.457   1.463   1.538   1.478   1.482   1.499   1.505   1.469   1.467   1.554   1.481   1.508   1.455   1.496   1.524   1.488   1.516   1.538   1.531
1.475    1.46   1.518   1.495   1.441   1.467   1.512   1.469   1.528   1.488   1.498   1.454   1.411   1.491   1.473   1.501   1.508   1.515   1.492
 Ahora que ya tenemos todos coloreamos y
 los datos los tenemos colocados en la
 tabla de la frecuencia absoluta así
 quedaría como en siguiente ejemplo.
fi
      3
      9
     19
     38
     77
     50
     37
     27
      6
    ya que tenemos el (fi ) ahora podemos
    sacar la frecuencia acumulada (fai) la
    frecuencia acumulada se determina
    sumando el (fi) mas el dato anterior como
    en la siguiente tabla lo indica.
3     3
 9    12
19    31
38    69
77   146
50   196
37   233
27   260
 6   266
 Ahora  que ya tenemos el fi y el fai
 Para determinar el fri o la frecuencia
  relativa solamente necesitamos hacer una
  operación simple
 Solamente tenemos que dividir el (fi) /# de
  datos en este problema vendría siendo
  300 datos así como en el ejemplo
  siguiente.
 3/300=0.011278195


 Así
    sucesivamente con los demás datos
 hasta que se llene la tabla
fi        fa       fri
      3          3 0.011278195
      9         12 0.033834586
     19         31 0.071428571
     38         69 0.142857143
     77        146 0.289473684
     50        196 0.187969925
     37        233 0.139097744
     27        260 0.101503759
      6        266 0.022556391
 Ya  que tenemos la mayoría de la tabla
  casi lista ya nadamas nos falta la
  frecuencia acumulada
 Esta frecuencia se puede determinar con
  el fri así como determinamos la frecuencia
  fai así como en el ejemplo lo indica.
fri          frai
 0.011278195 0.0112782
 0.033834586 0.04511278
 0.071428571 0.11654135
 0.142857143 0.2593985
 0.289473684 0.54887218
 0.187969925 0.73684211
 0.139097744 0.87593985
 0.101503759 0.97744361
 0.022556391          1
Ya que terminas con todos los datos de las
 frecuencias ahora nadamas checamos
 que estemos bien en todos los datos de la
 tabla .
fi        fa       fri         frai
      3          3 0.011278195 0.0112782
      9         12 0.033834586 0.04511278
     19         31 0.071428571 0.11654135
     38         69 0.142857143 0.2593985
     77        146 0.289473684 0.54887218
     50        196 0.187969925 0.73684211
     37        233 0.139097744 0.87593985
     27        260 0.101503759 0.97744361
      6        266 0.022556391          1
 Así terminamos con una explicación breve
  de cómo determinar las frecuencias en la
  tabla espero que sea de su ayuda
 Gracias por su atención


 Un    cordial saludo.

Más contenido relacionado

Similar a Trabajo de frecuencias

FRECUENCIAS
FRECUENCIASFRECUENCIAS
FRECUENCIAS
Roza Meza
 
FRECUENCIAS
FRECUENCIASFRECUENCIAS
FRECUENCIAS
Roza Meza
 
Trabajo de frecuencias
Trabajo de frecuenciasTrabajo de frecuencias
Trabajo de frecuencias
ricardo_gpe
 
Intervalos aparentes
Intervalos aparentesIntervalos aparentes
Intervalos aparentes
LauraAnguiano25
 
Intervalos Aparentes
Intervalos AparentesIntervalos Aparentes
Intervalos Aparentes
brandonreyes999
 
Intervalos aparentes
Intervalos aparentesIntervalos aparentes
Intervalos aparentes
Feer ChaVez Reiies
 
estadistica
estadisticaestadistica
estadistica
ricardo_gpe
 
estadi
estadiestadi
estadi
ricardo_gpe
 
Blog lic. mata tabla estadisticas tres
Blog lic. mata tabla estadisticas tresBlog lic. mata tabla estadisticas tres
Blog lic. mata tabla estadisticas tres
Fer Echavarria
 
Blog lic. mata tabla estadisticas tres
Blog lic. mata tabla estadisticas tresBlog lic. mata tabla estadisticas tres
Blog lic. mata tabla estadisticas tres
Fer Echavarria
 
INTERVALOS APARENTES
INTERVALOS APARENTESINTERVALOS APARENTES
INTERVALOS APARENTES
Roza Meza
 
INTERVALOS APARENTES
INTERVALOS APARENTESINTERVALOS APARENTES
INTERVALOS APARENTES
Roza Meza
 
Iris
IrisIris
Trabajo de yadira de intervalos
Trabajo de yadira de intervalosTrabajo de yadira de intervalos
Trabajo de yadira de intervalos
Yadira Azpilcueta
 
Trabajo de yadira de intervalos
Trabajo de yadira de intervalosTrabajo de yadira de intervalos
Trabajo de yadira de intervalos
Feer ChaVez Reiies
 
Castañeda martinez elias
Castañeda martinez eliasCastañeda martinez elias
Castañeda martinez elias
Elias Mtz
 
Trabajodeyadiradeintervalos 120219185344-phpapp02
Trabajodeyadiradeintervalos 120219185344-phpapp02Trabajodeyadiradeintervalos 120219185344-phpapp02
Trabajodeyadiradeintervalos 120219185344-phpapp02
Yadira Azpilcueta
 
Intervalosaparentes 120218190057-phpapp02hhhh
Intervalosaparentes 120218190057-phpapp02hhhhIntervalosaparentes 120218190057-phpapp02hhhh
Intervalosaparentes 120218190057-phpapp02hhhh
karemlucero
 
Intervalos aparentes
Intervalos aparentesIntervalos aparentes
Intervalos aparentes
Khriiz Rmz
 
Histograma 2
Histograma 2Histograma 2
Histograma 2
sontorito0o
 

Similar a Trabajo de frecuencias (20)

FRECUENCIAS
FRECUENCIASFRECUENCIAS
FRECUENCIAS
 
FRECUENCIAS
FRECUENCIASFRECUENCIAS
FRECUENCIAS
 
Trabajo de frecuencias
Trabajo de frecuenciasTrabajo de frecuencias
Trabajo de frecuencias
 
Intervalos aparentes
Intervalos aparentesIntervalos aparentes
Intervalos aparentes
 
Intervalos Aparentes
Intervalos AparentesIntervalos Aparentes
Intervalos Aparentes
 
Intervalos aparentes
Intervalos aparentesIntervalos aparentes
Intervalos aparentes
 
estadistica
estadisticaestadistica
estadistica
 
estadi
estadiestadi
estadi
 
Blog lic. mata tabla estadisticas tres
Blog lic. mata tabla estadisticas tresBlog lic. mata tabla estadisticas tres
Blog lic. mata tabla estadisticas tres
 
Blog lic. mata tabla estadisticas tres
Blog lic. mata tabla estadisticas tresBlog lic. mata tabla estadisticas tres
Blog lic. mata tabla estadisticas tres
 
INTERVALOS APARENTES
INTERVALOS APARENTESINTERVALOS APARENTES
INTERVALOS APARENTES
 
INTERVALOS APARENTES
INTERVALOS APARENTESINTERVALOS APARENTES
INTERVALOS APARENTES
 
Iris
IrisIris
Iris
 
Trabajo de yadira de intervalos
Trabajo de yadira de intervalosTrabajo de yadira de intervalos
Trabajo de yadira de intervalos
 
Trabajo de yadira de intervalos
Trabajo de yadira de intervalosTrabajo de yadira de intervalos
Trabajo de yadira de intervalos
 
Castañeda martinez elias
Castañeda martinez eliasCastañeda martinez elias
Castañeda martinez elias
 
Trabajodeyadiradeintervalos 120219185344-phpapp02
Trabajodeyadiradeintervalos 120219185344-phpapp02Trabajodeyadiradeintervalos 120219185344-phpapp02
Trabajodeyadiradeintervalos 120219185344-phpapp02
 
Intervalosaparentes 120218190057-phpapp02hhhh
Intervalosaparentes 120218190057-phpapp02hhhhIntervalosaparentes 120218190057-phpapp02hhhh
Intervalosaparentes 120218190057-phpapp02hhhh
 
Intervalos aparentes
Intervalos aparentesIntervalos aparentes
Intervalos aparentes
 
Histograma 2
Histograma 2Histograma 2
Histograma 2
 

Más de Feer ChaVez Reiies

Libro mata
Libro mataLibro mata
Libro mata
Feer ChaVez Reiies
 
Trabajo de estadística
Trabajo de  estadísticaTrabajo de  estadística
Trabajo de estadística
Feer ChaVez Reiies
 
Trabajo de estadística
Trabajo de  estadísticaTrabajo de  estadística
Trabajo de estadística
Feer ChaVez Reiies
 
Trabajo de estadística
Trabajo de  estadísticaTrabajo de  estadística
Trabajo de estadística
Feer ChaVez Reiies
 
Trabajo de estadística
Trabajo de  estadísticaTrabajo de  estadística
Trabajo de estadística
Feer ChaVez Reiies
 
Trabajo de estadística
Trabajo de estadísticaTrabajo de estadística
Trabajo de estadística
Feer ChaVez Reiies
 
Distribución de probabilidad. 1
Distribución de probabilidad. 1Distribución de probabilidad. 1
Distribución de probabilidad. 1
Feer ChaVez Reiies
 
Distribución de probabilidad. eliza
Distribución de probabilidad. elizaDistribución de probabilidad. eliza
Distribución de probabilidad. eliza
Feer ChaVez Reiies
 
Trabajo de estadística
Trabajo de estadísticaTrabajo de estadística
Trabajo de estadística
Feer ChaVez Reiies
 
Medidas de tendencia y dispersión
Medidas de tendencia y dispersiónMedidas de tendencia y dispersión
Medidas de tendencia y dispersiónFeer ChaVez Reiies
 
Mapa mental
Mapa mentalMapa mental
Mapa mental
Feer ChaVez Reiies
 
Mapa mental
Mapa mentalMapa mental
Mapa mental
Feer ChaVez Reiies
 
Trabajo de diagrama de arbol
Trabajo de diagrama de arbolTrabajo de diagrama de arbol
Trabajo de diagrama de arbol
Feer ChaVez Reiies
 
Intervalos reales
Intervalos realesIntervalos reales
Intervalos reales
Feer ChaVez Reiies
 
Intervalos reales
Intervalos realesIntervalos reales
Intervalos reales
Feer ChaVez Reiies
 
Intervalos aparentes
Intervalos aparentesIntervalos aparentes
Intervalos aparentes
Feer ChaVez Reiies
 
Intervalos aparentes
Intervalos aparentesIntervalos aparentes
Intervalos aparentes
Feer ChaVez Reiies
 
Intervalos aparentes
Intervalos aparentesIntervalos aparentes
Intervalos aparentes
Feer ChaVez Reiies
 

Más de Feer ChaVez Reiies (18)

Libro mata
Libro mataLibro mata
Libro mata
 
Trabajo de estadística
Trabajo de  estadísticaTrabajo de  estadística
Trabajo de estadística
 
Trabajo de estadística
Trabajo de  estadísticaTrabajo de  estadística
Trabajo de estadística
 
Trabajo de estadística
Trabajo de  estadísticaTrabajo de  estadística
Trabajo de estadística
 
Trabajo de estadística
Trabajo de  estadísticaTrabajo de  estadística
Trabajo de estadística
 
Trabajo de estadística
Trabajo de estadísticaTrabajo de estadística
Trabajo de estadística
 
Distribución de probabilidad. 1
Distribución de probabilidad. 1Distribución de probabilidad. 1
Distribución de probabilidad. 1
 
Distribución de probabilidad. eliza
Distribución de probabilidad. elizaDistribución de probabilidad. eliza
Distribución de probabilidad. eliza
 
Trabajo de estadística
Trabajo de estadísticaTrabajo de estadística
Trabajo de estadística
 
Medidas de tendencia y dispersión
Medidas de tendencia y dispersiónMedidas de tendencia y dispersión
Medidas de tendencia y dispersión
 
Mapa mental
Mapa mentalMapa mental
Mapa mental
 
Mapa mental
Mapa mentalMapa mental
Mapa mental
 
Trabajo de diagrama de arbol
Trabajo de diagrama de arbolTrabajo de diagrama de arbol
Trabajo de diagrama de arbol
 
Intervalos reales
Intervalos realesIntervalos reales
Intervalos reales
 
Intervalos reales
Intervalos realesIntervalos reales
Intervalos reales
 
Intervalos aparentes
Intervalos aparentesIntervalos aparentes
Intervalos aparentes
 
Intervalos aparentes
Intervalos aparentesIntervalos aparentes
Intervalos aparentes
 
Intervalos aparentes
Intervalos aparentesIntervalos aparentes
Intervalos aparentes
 

Trabajo de frecuencias

  • 2.  En esta presentación les explicare como paso a paso, para que realices las frecuencias.  El objetivo de la presentación es mostrar detalladamente las operaciones para así lograr terminar las frecuencias .
  • 3.  ya que tenemos los datos reales ahora si con los datos determinados reales .  Empezamos con los frecuencia absoluta (fi)  en la frecuencia absoluta de los datos reales vamos a colorear del limite inferior al limite superior así como se muestra en el ejemplo
  • 4. 1.444 1.413 1.484 1.555 1.467 1.516 1.482 1.519 1.533 1.53 1.506 1.553 1.537 1.432 1.498 1.492 1.492 1.484 1.484 1.488 1.424 1.547 1.49 1.558 1.531 1.577 1.484 1.545 1.531 1.571 1.494 1.496 1.473 1.467 1.49 1.483 1.504 1.528 1.51 1.469 1.554 1.456 1.511 1.435 1.487 1.562 1.546 1.528 1.49 1.549 1.431 1.474 1.492 1.549 1.474 1.489 1.547 1.489 1.524 1.394 1.539 1.515 1.48 1.437 1.506 1.506 1.449 1.54 1.512 1.489 1.458 1.501 1.506 1.494 1.512 1.503 1.566 1.499 1.471 1.522 1.561 1.513 1.44 1.529 1.487 1.505 1.507 1.481 1.532 1.448 1.468 1.479 1.515 1.564 1.501 1.545 1.512 1.492 1.576 1.445 1.535 1.533 1.424 1.511 1.528 1.483 1.482 1.447 1.461 1.441 1.491 1.507 1.456 1.491 1.534 1.487 1.476 1.498 1.515 1.469 1.54 1.545 1.554 1.466 1.519 1.441 1.479 1.521 1.504 1.55 1.527 1.424 1.531 1.423 1.551 1.508 1.529 1.526 1.503 1.481 1.45 1.494 1.537 1.528 1.515 1.503 1.49 1.569 1.501 1.551 1.482 1.578 1.488 1.481 1.543 1.494 1.491 1.453 1.49 1.539 1.472 1.424 1.551 1.454 1.51 1.489 1.462 1.52 1.541 1.492 1.469 1.532 1.502 1.497 1.526 1.523 1.535 1.499 1.548 1.46 1.518 1.509 1.49 1.547 1.479 1.46 1.485 1.467 1.553 1.458 1.49 1.496 1.486 1.469 1.521 1.53 1.496 1.51 1.479 1.494 1.434 1.474 1.458 1.484 1.502 1.459 1.48 1.485 1.496 1.544 1.443 1.493 1.488 1.559 1.512 1.526 1.474 1.483 1.463 1.484 1.45 1.489 1.461 1.512 1.462 1.514 1.495 1.483 1.457 1.463 1.538 1.478 1.482 1.499 1.505 1.469 1.467 1.554 1.481 1.508 1.455 1.496 1.524 1.488 1.516 1.538 1.531 1.475 1.46 1.518 1.495 1.441 1.467 1.512 1.469 1.528 1.488 1.498 1.454 1.411 1.491 1.473 1.501 1.508 1.515 1.492
  • 5.  Ahora que ya tenemos todos coloreamos y los datos los tenemos colocados en la tabla de la frecuencia absoluta así quedaría como en siguiente ejemplo.
  • 6. fi 3 9 19 38 77 50 37 27 6
  • 7. ya que tenemos el (fi ) ahora podemos sacar la frecuencia acumulada (fai) la frecuencia acumulada se determina sumando el (fi) mas el dato anterior como en la siguiente tabla lo indica.
  • 8. 3 3 9 12 19 31 38 69 77 146 50 196 37 233 27 260 6 266
  • 9.  Ahora que ya tenemos el fi y el fai  Para determinar el fri o la frecuencia relativa solamente necesitamos hacer una operación simple  Solamente tenemos que dividir el (fi) /# de datos en este problema vendría siendo 300 datos así como en el ejemplo siguiente.
  • 10.  3/300=0.011278195  Así sucesivamente con los demás datos hasta que se llene la tabla
  • 11. fi fa fri 3 3 0.011278195 9 12 0.033834586 19 31 0.071428571 38 69 0.142857143 77 146 0.289473684 50 196 0.187969925 37 233 0.139097744 27 260 0.101503759 6 266 0.022556391
  • 12.  Ya que tenemos la mayoría de la tabla casi lista ya nadamas nos falta la frecuencia acumulada  Esta frecuencia se puede determinar con el fri así como determinamos la frecuencia fai así como en el ejemplo lo indica.
  • 13. fri frai 0.011278195 0.0112782 0.033834586 0.04511278 0.071428571 0.11654135 0.142857143 0.2593985 0.289473684 0.54887218 0.187969925 0.73684211 0.139097744 0.87593985 0.101503759 0.97744361 0.022556391 1
  • 14. Ya que terminas con todos los datos de las frecuencias ahora nadamas checamos que estemos bien en todos los datos de la tabla .
  • 15. fi fa fri frai 3 3 0.011278195 0.0112782 9 12 0.033834586 0.04511278 19 31 0.071428571 0.11654135 38 69 0.142857143 0.2593985 77 146 0.289473684 0.54887218 50 196 0.187969925 0.73684211 37 233 0.139097744 0.87593985 27 260 0.101503759 0.97744361 6 266 0.022556391 1
  • 16.  Así terminamos con una explicación breve de cómo determinar las frecuencias en la tabla espero que sea de su ayuda  Gracias por su atención  Un cordial saludo.