SlideShare una empresa de Scribd logo
República Bolivariana De Venezuela
Ministerio Del Poder Polar Para La Educación Superior
Universidad Politécnica Territorial Andrés Eloy Blanco
Barquisimeto – Estado Lara
Unidad nro.2
Números reales y plano numérico
Estudiante: Luisanny Ocanto.
Cédula de Identidad: 30.591217
Curso: Matemática Básica
Sección: CO0101
Docente: Prof. María Carruido
Marzo, 2021.
Definición de conjunto:
un conjunto es una colección de elementos con características similares
considerada en sí misma como un objeto. Los elementos de un conjunto, pueden
ser las siguientes: personas, números, colores, letras, figuras, etc. Se dice que
un elemento (o miembro) pertenece al conjunto si está definido como incluido de
algún modo dentro de él.
El conjunto de los números reales se forma al combinar el conjunto de números
racionales y el conjunto de números irracionales. El conjunto de números reales
consiste en todos los números que tienen un lugar en la recta numérica.
Las operaciones con conjuntos también conocidas como álgebra de conjuntos, nos
permiten realizar operaciones sobre los conjuntos para obtener otro conjunto. De
las operaciones con conjuntos veremos las siguientes unión, intersección,
diferencia, diferencia simétrica y complemento.
Operaciones con conjuntos:
‒ Unión o reunión de conjuntos.
Es la operación que nos permite unir dos o más conjuntos para formar otro conjunto
que contendrá a todos los elementos que queremos unir, pero sin que se repitan.
Es decir, dado un conjunto A y un conjunto B, la unión de los conjuntos A y B será
otro conjunto formado por todos los elementos de A, con todos los elementos de B
sin repetir ningún elemento. El símbolo que se usa para indicar la operación de
unión es el siguiente: ∪. Cuando usamos diagramas de Ven, para representar la
unió de conjuntos, se sombrean los conjuntos que se unen o se forma uno nuevo.
Luego se escribe por fuera la operación de unión.
Ejemplo: 1.
Dados dos conjuntos A= {1,2,3,4,5,6,7,} y B= {8,9,10,11} la unión de estos conjuntos
será A∪B= {1,2,3,4,5,6,7,8,9,10,11}. Usando diagramas de Ven se tendría lo
siguiente:
‒ Intersección de conjuntos.
Es la operación que nos permite formar un conjunto, sólo con los elementos
comunes involucrados en la operación. Es decir, dados dos conjuntos A y B, la de
intersección de los conjuntos A y B, estará formado por los elementos de A y los
elementos de B que sean comunes, los elementos no comunes A y B, será
excluidos. El símbolo que se usa para indicar la operación de intersección es el
siguiente: ∩.
Ejemplo: 1.
Dados dos conjuntos A= {1,2,3,4,5} y B= {4,5,6,7,8,9} la intersección de estos
conjuntos será A∩B={4,5}. Usando diagramas de Ven se tendría lo siguiente:
‒ Diferencia de conjuntos.
Es la operación que nos permite formar un conjunto, en donde de dos conjuntos el
conjunto resultante es el que tendrá todos los elementos que pertenecen al primero,
pero no al segundo. Es decir, dados dos conjuntos A y B, la diferencia de los
conjuntos entra A y B, estará formado por todos los elementos de A que no
pertenezcan a B. El símbolo que se usa para esta operación es el mismo que se
usa para la resta o sustracción, que es el siguiente: -.
Ejemplo: 1.
Dados dos conjuntos A= {1,2,3,4,5} y B= {4,5,6,7,8,9} la diferencia de estos
conjuntos será A-B= {1,2,3}. Usando diagramas de Ven se tendría lo siguiente:
‒ Diferencia de simétrica de conjuntos.
Es la operación que nos permite formar un conjunto, en donde de dos conjuntos el
conjunto resultante es el que tendrá todos los elementos que no sean comunes a
ambos conjuntos. Es decir, dados dos conjuntos A y B, la diferencia simétrica estará
formado por todos los elementos no comunes a los conjuntos A y B. El símbolo que
se usa para indicar la operación de diferencia simétrica es el siguiente: △.
Ejemplo:
Dados dos conjuntos A= {1,2,3,4,5} y B= {4,5,6,7,8,9} la diferencia simétrica de
estos conjuntos será A △ B= {1,2,3,6,7,8,9}. Usando diagramas de Ven se tendría
lo siguiente:
‒ Complemento de un conjunto.
Es la operación que nos permite formar un conjunto con todos los elementos del
conjunto de referencia o universal, que no están en el conjunto. Es decir dado un
conjunto A que está incluido en el conjunto universal U, entonces el conjunto
complemento de A es el conjunto formado por todos los elementos del conjunto
universal pero sin considerar a los elementos que pertenezcan al conjunto A. En
esta operación el complemento de un conjunto se denota con un apostrofe sobre el
conjunto que se opera, algo como esto A' en donde el conjunto A es el conjunto del
cual se hace la operación de complemento.
Ejemplo
Dado el conjunto Universal U={1,2,3,4,5,6,7,8,9} y el conjunto A={1,2,9}, el conjunto
A' estará formado por los siguientes elementos A'={3,4,5,6,7,8}. Usando diagramas
de Ven se tendría lo siguiente:
Números Reales
Los números reales son cualquier número que corresponda a un punto en la recta
real y pueden clasificarse en números naturales, enteros, racionales e irracionales.
En otras palabras, cualquier número real está comprendido entre menos infinito y
más infinito y podemos representarlo en la recta real.
Los números reales son todos los números que encontramos más frecuentemente
dado que los números complejos no se encuentran de manera accidental, sino que
tienen que buscarse expresamente.
Los números reales se representan mediante la letra R
Se puede definir a los números reales como aquellos números que tienen expansión
decimal periódica o tienen expansión decimal no periódica. Por ejemplo:
a)3 es un número real ya que 3 = 3,00000000000….
b) ½ es un número real ya que ½ = 0,5000000000….
c) 1/3 es un número real ya que 1/3 = 0,3333333333333….
d) 2es un número real ya que 2=1,4142135623730950488016887242097….
e)0,1234567891011121314151617181920212223…. Es un número real.
f)1,01001000100001000001000000100000001
g) N también es real
Ejercicio:
Escribir las siguientes expresiones sin exponentes: a) (−4)3. b) −5 3. c) 3 −2. d) (−6)
−1. e) −( 2 5) −3. f) (4 3) −1
Solución a) (−4)3 = [(−4) · (−4)] · (−4) = 16 · (−4) = −64.
b) −5 3 = − [(5 · 5) · 5] = −(25 · 5) = −125.
c) 3 −2 = 1 3 2 = 1 9.
d) (−6) −1 = 1 (−6) = − 1 6.
e) −( 2 5) −3 = −( 5 2) 3 = − 75 8.
f) (4 3) −1 = 3 4
Desigualdades:
En matemáticas, una desigualdad es una relación de orden que se da entre dos
valores cuando estos son distintos (en caso de ser iguales, lo que se tiene es
una igualdad).
Si los valores en cuestión son elementos de un conjunto ordenado, como
los enteros o los reales, entonces pueden ser comparados.
Los enunciados a b y a b, junto con las expresiones a b (a b o a b) y
a b (a b o a b) se conocen como desigualdades. Las primeras se llaman
desigualdades estrictas y las segundas, desigualdades no estrictas o amplias.
En numerosas oportunidades y situaciones cotidianas surge la necesidad de
comparar dos cantidades y establecer una relación entre ellas. Las desigualdades
se comportan muy bien con respecto a la suma, pero se debe tener cuidado en el
caso de la división y la multiplicación.
Ejemplos.
Como 2 < 5 entonces 2 + 4 < 5 + 4, es decir, 6 < 9.
· Como 8 > 3 entonces 8 - 4 > 3 - 4, esto es, 4 > - 1
· Como 7 < 10 entonces 7.3 < 10.3, es decir, 21 < 30
· Como 7 < 10 entonces 7. (- 3) > 10. (- 3), esto es - 21 > - 30
En los diferentes ejemplos se observa que:
· al sumar un mismo número a ambos miembros de una desigualdad, el sentido de
la misma se mantiene
· al restar un mismo número a ambos miembros de una desigualdad, el sentido de
la misma se mantiene
· la multiplicación por un número positivo mantiene el sentido de la desigualdad,
· la multiplicación por un número negativo invierte el sentido de la desigualdad.
Se pueden enunciar algunas propiedades relacionadas con las desigualdades.
Sean a, b y c números reales cualesquiera:
· Si a < b entonces a + c < b + c
· Si a < b y c > 0 entonces a.c < b.c
· Si a < b y c < 0 entonces a.c > b.c Cuando se verifica que a < b y b < c,
decimos que b está comprendido entre a y c. En símbolos a < b < c.
Todas las definiciones y propiedades son también válidas para las
desigualdades >, £ y ³.
Valor absoluto
El valor absoluto es un concepto que está presente en diversos contextos de la
Física y las Matemáticas, por ejemplo, en las nociones de magnitud, distancia,
y norma. En casos más complejos es un concepto muy útil, como en las
definiciones de cuaterniones, anillos ordenados, cuerpos o espacios
vectoriales.
El valor absoluto o módulo de un número real cualquiera es el mismo número,
pero con signo positivo. En otras palabras, es el valor numérico sin tener en
cuenta su signo, ya sea positivo o negativo. Por ejemplo, el valor absoluto del
número −4−4 se representa como |−4||−4| y equivale a 44, y el valor absoluto
de 44 se representa como |4||4|, lo cual también equivale a 44.
En la recta numérica se representa como valor absoluto a la distancia que
existe de un punto al origen. Por ejemplo, si se recorren 4 unidades del cero
hacia la izquierda o hacia la derecha, llegamos a −4−4 o a 44, respectivamente;
el valor absoluto de cualquiera de dichos valores es 44.
valor absoluto de un número real a, se escribe |a|, es el mismo número a cuando
es positivo o cero, y opuesto de a, si a es negativo.
|5| = 5 |-5 |= 5 |0| = 0
|x| = 2 x = −2 x = 2
|x|< 2 −2 < x < 2 x (−2, 2 )
|x|> 2 x < −2 o x > 2 (−∞, −2 ) (2, +∞)
|x −2 |< 5 − 5 < x − 2 < 5
− 5 + 2 < x < 5 + 2 − 3 < x < 7
Desigualdades con valor absoluto
Una desigualdad de valor absoluto es una desigualdad que tiene un signo de valor
absoluto con una variable dentro.
Desigualdades de valor absoluto (<):
La desigualdad | x | < 4 significa que la distancia entre x y 0 es menor que 4.
Así, x > -4 Y x < 4. El conjunto solución es .
Cuando se resuelven desigualdes de valor absoluto, hay dos casos a considerar.
Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva.
Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa.
La solución es la intersección de las soluciones de estos dos casos.
En otras palabras, para cualesquiera números reales a y b, si | a | < b ,
entonces a < b Y a > - b
Desigualdades de valor absoluto (>):
La desigualdad | x | > 4 significa que la distancia entre x y 0 es mayor que 4.
Así, x < -4 O x > 4. El conjunto solución es .
Cuando se resuelven desigualdes de valor absoluto, hay dos casos a considerar.
Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva.
Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa.
En otras palabras, para cualesquiera números reales a y b, si | a | > b ,
entonces a > b O a < - b .
bibliografía
https://www.varsitytutors.com/hotmath/hotmath_help/spanish/topics/absolute-
value-
inequalities#:~:text=La%20desigualdad%20%7C%20x%20%7C%20%3C%204,0%
20es%20menor%20que%204.&text=Caso%202%3A%20La%20expresi%C3%B3n
%20dentro,soluciones%20de%20estos%20dos%20casos.

Más contenido relacionado

La actualidad más candente

Numeros reales
Numeros realesNumeros reales
Numeros reales
AnaGabrielaOsorioMer
 
Números reales
Números realesNúmeros reales
Números reales
MayerliCaizalez
 
Números Reales
Números RealesNúmeros Reales
Números Reales
OsgleeManbel
 
Conjuntos
ConjuntosConjuntos
Conjuntos
BarbaraMendoza5
 
Números Reales
Números RealesNúmeros Reales
Números Reales
TrapMusicFans
 
Numeros reales
Numeros realesNumeros reales
Numeros reales
JeanAlvarez24
 
Numeros reales suarez genesis
Numeros reales suarez genesis Numeros reales suarez genesis
Numeros reales suarez genesis
Genesis Suarez
 
Números Reales
Números RealesNúmeros Reales
Números Reales
SaraithCoronado
 
Numeros reales y plano numerico
Numeros reales y plano numericoNumeros reales y plano numerico
Numeros reales y plano numerico
ReirisFernandez
 
Números reales
Números realesNúmeros reales
Números reales
SarayMogolln
 
El conjunto jose miguel medina
El conjunto jose miguel medinaEl conjunto jose miguel medina
El conjunto jose miguel medina
josemiguelmedinaquin
 
Conjuntos numéricos
Conjuntos numéricos Conjuntos numéricos
Conjuntos numéricos
MarisabelAcua
 
Numeros reales y_plano_numerico.
Numeros reales y_plano_numerico.Numeros reales y_plano_numerico.
Numeros reales y_plano_numerico.
Aryeliz Rodriguez
 
Numeros reales y_plano_numerico
Numeros reales y_plano_numericoNumeros reales y_plano_numerico
Numeros reales y_plano_numerico
Yoselin Sivira
 
Conjuntos
ConjuntosConjuntos
Matemática
MatemáticaMatemática
Matemática
JosuSnchez26
 
Matematicas
MatematicasMatematicas
Matematicas
Maikel Daza
 
Matematica unidad II andrelis perez
Matematica unidad II andrelis perezMatematica unidad II andrelis perez
Matematica unidad II andrelis perez
ANDRELISPEREZ
 
Unidad II
Unidad IIUnidad II
Unidad II
DenysVargas
 
Presentacion (luisana viscaya)
Presentacion (luisana viscaya)Presentacion (luisana viscaya)
Presentacion (luisana viscaya)
LuisanaViscaya
 

La actualidad más candente (20)

Numeros reales
Numeros realesNumeros reales
Numeros reales
 
Números reales
Números realesNúmeros reales
Números reales
 
Números Reales
Números RealesNúmeros Reales
Números Reales
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Números Reales
Números RealesNúmeros Reales
Números Reales
 
Numeros reales
Numeros realesNumeros reales
Numeros reales
 
Numeros reales suarez genesis
Numeros reales suarez genesis Numeros reales suarez genesis
Numeros reales suarez genesis
 
Números Reales
Números RealesNúmeros Reales
Números Reales
 
Numeros reales y plano numerico
Numeros reales y plano numericoNumeros reales y plano numerico
Numeros reales y plano numerico
 
Números reales
Números realesNúmeros reales
Números reales
 
El conjunto jose miguel medina
El conjunto jose miguel medinaEl conjunto jose miguel medina
El conjunto jose miguel medina
 
Conjuntos numéricos
Conjuntos numéricos Conjuntos numéricos
Conjuntos numéricos
 
Numeros reales y_plano_numerico.
Numeros reales y_plano_numerico.Numeros reales y_plano_numerico.
Numeros reales y_plano_numerico.
 
Numeros reales y_plano_numerico
Numeros reales y_plano_numericoNumeros reales y_plano_numerico
Numeros reales y_plano_numerico
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Matemática
MatemáticaMatemática
Matemática
 
Matematicas
MatematicasMatematicas
Matematicas
 
Matematica unidad II andrelis perez
Matematica unidad II andrelis perezMatematica unidad II andrelis perez
Matematica unidad II andrelis perez
 
Unidad II
Unidad IIUnidad II
Unidad II
 
Presentacion (luisana viscaya)
Presentacion (luisana viscaya)Presentacion (luisana viscaya)
Presentacion (luisana viscaya)
 

Similar a Unidad 2 de matematica

Numeros reales y plano numerico
Numeros reales y plano numericoNumeros reales y plano numerico
Numeros reales y plano numerico
sanmaryrojas
 
KAREN RODRIGUES UNIDAD 2 MATEMATICAS 0104.docx
KAREN RODRIGUES UNIDAD 2 MATEMATICAS 0104.docxKAREN RODRIGUES UNIDAD 2 MATEMATICAS 0104.docx
KAREN RODRIGUES UNIDAD 2 MATEMATICAS 0104.docx
karen706784
 
OPERACIONES DE CONJUNTOS MATEMATICA PAHOLA Y YANIRA.pdf
OPERACIONES DE CONJUNTOS MATEMATICA PAHOLA Y YANIRA.pdfOPERACIONES DE CONJUNTOS MATEMATICA PAHOLA Y YANIRA.pdf
OPERACIONES DE CONJUNTOS MATEMATICA PAHOLA Y YANIRA.pdf
yaniratorcates1
 
NUMEROS REALES.pptx
NUMEROS REALES.pptxNUMEROS REALES.pptx
NUMEROS REALES.pptx
AbdielysRiera
 
Operaciones matemáticas
Operaciones matemáticas Operaciones matemáticas
Operaciones matemáticas
OrianaCoronel1
 
Castillo Yessica, IN0123.pdf
Castillo Yessica, IN0123.pdfCastillo Yessica, IN0123.pdf
Castillo Yessica, IN0123.pdf
YessicaCastillo29
 
Conjunto y Numeros Naturales Javivi Calles.pptx
Conjunto y Numeros Naturales Javivi Calles.pptxConjunto y Numeros Naturales Javivi Calles.pptx
Conjunto y Numeros Naturales Javivi Calles.pptx
javiv3
 
30.803.004.pptx
30.803.004.pptx30.803.004.pptx
30.803.004.pptx
AgenteTPMv
 
Conjuntos numericos y operaciones.docx
Conjuntos numericos y operaciones.docxConjuntos numericos y operaciones.docx
Conjuntos numericos y operaciones.docx
danielsanchezaf24
 
Presentación1.pptx
Presentación1.pptxPresentación1.pptx
Presentación1.pptx
MariangelTorrellas
 
Definición de Conjuntos.docx UNIDAD 2 YESSENIA DAZA 30353142.docx
Definición de Conjuntos.docx UNIDAD 2 YESSENIA DAZA 30353142.docxDefinición de Conjuntos.docx UNIDAD 2 YESSENIA DAZA 30353142.docx
Definición de Conjuntos.docx UNIDAD 2 YESSENIA DAZA 30353142.docx
YesseniaDaza1
 
Presentación1 2023.pptx
Presentación1 2023.pptxPresentación1 2023.pptx
Presentación1 2023.pptx
JanethIsturizVelasqu
 
informe de numeros naturales katerine rojas.pptx
informe de numeros naturales katerine rojas.pptxinforme de numeros naturales katerine rojas.pptx
informe de numeros naturales katerine rojas.pptx
KaterineRojas16
 
DESIGUALDADES.pptx
DESIGUALDADES.pptxDESIGUALDADES.pptx
DESIGUALDADES.pptx
Néstor Peña
 
Presentación2.pptx
Presentación2.pptxPresentación2.pptx
Presentación2.pptx
AnyelizRodriguez1
 
Conjuntos
Conjuntos Conjuntos
Conjuntos
mariagil126
 
Matemáticas.pdf
Matemáticas.pdfMatemáticas.pdf
Matemáticas.pdf
DaryelisSalas
 
Números Reales, Inecuaciones y Desigualdades.pptx
Números Reales, Inecuaciones y Desigualdades.pptxNúmeros Reales, Inecuaciones y Desigualdades.pptx
Números Reales, Inecuaciones y Desigualdades.pptx
Javierlisuarez
 
DOC-20230216-WA0003..pptx
DOC-20230216-WA0003..pptxDOC-20230216-WA0003..pptx
DOC-20230216-WA0003..pptx
CarlosAlfredoRojasPe
 
Unidad ii matemáticas
Unidad ii matemáticasUnidad ii matemáticas
Unidad ii matemáticas
Tatiana Bello
 

Similar a Unidad 2 de matematica (20)

Numeros reales y plano numerico
Numeros reales y plano numericoNumeros reales y plano numerico
Numeros reales y plano numerico
 
KAREN RODRIGUES UNIDAD 2 MATEMATICAS 0104.docx
KAREN RODRIGUES UNIDAD 2 MATEMATICAS 0104.docxKAREN RODRIGUES UNIDAD 2 MATEMATICAS 0104.docx
KAREN RODRIGUES UNIDAD 2 MATEMATICAS 0104.docx
 
OPERACIONES DE CONJUNTOS MATEMATICA PAHOLA Y YANIRA.pdf
OPERACIONES DE CONJUNTOS MATEMATICA PAHOLA Y YANIRA.pdfOPERACIONES DE CONJUNTOS MATEMATICA PAHOLA Y YANIRA.pdf
OPERACIONES DE CONJUNTOS MATEMATICA PAHOLA Y YANIRA.pdf
 
NUMEROS REALES.pptx
NUMEROS REALES.pptxNUMEROS REALES.pptx
NUMEROS REALES.pptx
 
Operaciones matemáticas
Operaciones matemáticas Operaciones matemáticas
Operaciones matemáticas
 
Castillo Yessica, IN0123.pdf
Castillo Yessica, IN0123.pdfCastillo Yessica, IN0123.pdf
Castillo Yessica, IN0123.pdf
 
Conjunto y Numeros Naturales Javivi Calles.pptx
Conjunto y Numeros Naturales Javivi Calles.pptxConjunto y Numeros Naturales Javivi Calles.pptx
Conjunto y Numeros Naturales Javivi Calles.pptx
 
30.803.004.pptx
30.803.004.pptx30.803.004.pptx
30.803.004.pptx
 
Conjuntos numericos y operaciones.docx
Conjuntos numericos y operaciones.docxConjuntos numericos y operaciones.docx
Conjuntos numericos y operaciones.docx
 
Presentación1.pptx
Presentación1.pptxPresentación1.pptx
Presentación1.pptx
 
Definición de Conjuntos.docx UNIDAD 2 YESSENIA DAZA 30353142.docx
Definición de Conjuntos.docx UNIDAD 2 YESSENIA DAZA 30353142.docxDefinición de Conjuntos.docx UNIDAD 2 YESSENIA DAZA 30353142.docx
Definición de Conjuntos.docx UNIDAD 2 YESSENIA DAZA 30353142.docx
 
Presentación1 2023.pptx
Presentación1 2023.pptxPresentación1 2023.pptx
Presentación1 2023.pptx
 
informe de numeros naturales katerine rojas.pptx
informe de numeros naturales katerine rojas.pptxinforme de numeros naturales katerine rojas.pptx
informe de numeros naturales katerine rojas.pptx
 
DESIGUALDADES.pptx
DESIGUALDADES.pptxDESIGUALDADES.pptx
DESIGUALDADES.pptx
 
Presentación2.pptx
Presentación2.pptxPresentación2.pptx
Presentación2.pptx
 
Conjuntos
Conjuntos Conjuntos
Conjuntos
 
Matemáticas.pdf
Matemáticas.pdfMatemáticas.pdf
Matemáticas.pdf
 
Números Reales, Inecuaciones y Desigualdades.pptx
Números Reales, Inecuaciones y Desigualdades.pptxNúmeros Reales, Inecuaciones y Desigualdades.pptx
Números Reales, Inecuaciones y Desigualdades.pptx
 
DOC-20230216-WA0003..pptx
DOC-20230216-WA0003..pptxDOC-20230216-WA0003..pptx
DOC-20230216-WA0003..pptx
 
Unidad ii matemáticas
Unidad ii matemáticasUnidad ii matemáticas
Unidad ii matemáticas
 

Último

fase intensiva taller intensivo de CTE julio
fase intensiva taller intensivo de CTE juliofase intensiva taller intensivo de CTE julio
fase intensiva taller intensivo de CTE julio
leydijazminguevaragu
 
Revista Universidad de Deusto - Número 155 / Año 2024
Revista Universidad de Deusto - Número 155 / Año 2024Revista Universidad de Deusto - Número 155 / Año 2024
Revista Universidad de Deusto - Número 155 / Año 2024
Universidad de Deusto - Deustuko Unibertsitatea - University of Deusto
 
Flipped Classroom con TIC (1 de julio de 2024)
Flipped Classroom con TIC (1 de julio de 2024)Flipped Classroom con TIC (1 de julio de 2024)
Flipped Classroom con TIC (1 de julio de 2024)
Cátedra Banco Santander
 
Análisis y Evaluación del Impacto Ambiental.pdf
Análisis y Evaluación del Impacto Ambiental.pdfAnálisis y Evaluación del Impacto Ambiental.pdf
Análisis y Evaluación del Impacto Ambiental.pdf
JonathanCovena1
 
678778595-Examen-Final-Innovacion-Social.pptx
678778595-Examen-Final-Innovacion-Social.pptx678778595-Examen-Final-Innovacion-Social.pptx
678778595-Examen-Final-Innovacion-Social.pptx
VALERIOPEREZBORDA
 
PLAN ANUAL DE TRABAJO (PAT) 2024 MINEDU PERÚ
PLAN ANUAL DE TRABAJO (PAT) 2024 MINEDU PERÚPLAN ANUAL DE TRABAJO (PAT) 2024 MINEDU PERÚ
PLAN ANUAL DE TRABAJO (PAT) 2024 MINEDU PERÚ
Ferrer17
 
🔴 (AC-S18) Semana 18 - Tema 01 - Tarea - Proyecto Final (terminado y revisado...
🔴 (AC-S18) Semana 18 - Tema 01 - Tarea - Proyecto Final (terminado y revisado...🔴 (AC-S18) Semana 18 - Tema 01 - Tarea - Proyecto Final (terminado y revisado...
🔴 (AC-S18) Semana 18 - Tema 01 - Tarea - Proyecto Final (terminado y revisado...
FernandoEstebanLlont
 
2024 DIA DEL LOGRO-COMUNICACION - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-COMUNICACION - IE HONORIO DELGADO ESPINOZA2024 DIA DEL LOGRO-COMUNICACION - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-COMUNICACION - IE HONORIO DELGADO ESPINOZA
Sandra Mariela Ballón Aguedo
 
🔴 (AC-S18) Semana 18 -Tema 01Trabajo de Investigación - Contratos y franquici...
🔴 (AC-S18) Semana 18 -Tema 01Trabajo de Investigación - Contratos y franquici...🔴 (AC-S18) Semana 18 -Tema 01Trabajo de Investigación - Contratos y franquici...
🔴 (AC-S18) Semana 18 -Tema 01Trabajo de Investigación - Contratos y franquici...
FernandoEstebanLlont
 
LABERINTOS DE DISCIPLINAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
LABERINTOS DE DISCIPLINAS OLÍMPICAS.  Por JAVIER SOLIS NOYOLALABERINTOS DE DISCIPLINAS OLÍMPICAS.  Por JAVIER SOLIS NOYOLA
LABERINTOS DE DISCIPLINAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
JAVIER SOLIS NOYOLA
 
EJEMPLOS DE FLORA Y FAUNA DE LA COSTA PERUANA
EJEMPLOS DE FLORA Y FAUNA DE LA COSTA PERUANAEJEMPLOS DE FLORA Y FAUNA DE LA COSTA PERUANA
EJEMPLOS DE FLORA Y FAUNA DE LA COSTA PERUANA
dairatuctocastro
 
Sesión Un día en el ministerio de Jesús.pdf
Sesión Un día en el ministerio de Jesús.pdfSesión Un día en el ministerio de Jesús.pdf
Sesión Un día en el ministerio de Jesús.pdf
https://gramadal.wordpress.com/
 
ENFERMERIA TECNICA-FUNDAMENTOS DE SALUD.
ENFERMERIA TECNICA-FUNDAMENTOS DE SALUD.ENFERMERIA TECNICA-FUNDAMENTOS DE SALUD.
ENFERMERIA TECNICA-FUNDAMENTOS DE SALUD.
marluzsagar
 
Presentación sobré la culturas Lima, la cultura Paracas y la cultura Vicús.
Presentación  sobré la culturas Lima,  la  cultura Paracas y la cultura Vicús.Presentación  sobré la culturas Lima,  la  cultura Paracas y la cultura Vicús.
Presentación sobré la culturas Lima, la cultura Paracas y la cultura Vicús.
Juan Luis Cunya Vicente
 
Introducción a la seguridad básica (3 de julio de 2024)
Introducción a la seguridad básica (3 de julio de 2024)Introducción a la seguridad básica (3 de julio de 2024)
Introducción a la seguridad básica (3 de julio de 2024)
Cátedra Banco Santander
 
CULTURA CHIMU CERAMICA UBICACION METALURGIA
CULTURA CHIMU CERAMICA UBICACION METALURGIACULTURA CHIMU CERAMICA UBICACION METALURGIA
CULTURA CHIMU CERAMICA UBICACION METALURGIA
Mariela Vasquez Pelaez
 
🔴 (AC-S18) Semana 18 – TRABAJO FINAL (INFORMATICA APLICADA TERMINADO y revisa...
🔴 (AC-S18) Semana 18 – TRABAJO FINAL (INFORMATICA APLICADA TERMINADO y revisa...🔴 (AC-S18) Semana 18 – TRABAJO FINAL (INFORMATICA APLICADA TERMINADO y revisa...
🔴 (AC-S18) Semana 18 – TRABAJO FINAL (INFORMATICA APLICADA TERMINADO y revisa...
FernandoEstebanLlont
 
CLASES DE TERMINOS UTILIZADOS EN EL ALGEBRA
CLASES DE TERMINOS UTILIZADOS EN EL ALGEBRACLASES DE TERMINOS UTILIZADOS EN EL ALGEBRA
CLASES DE TERMINOS UTILIZADOS EN EL ALGEBRA
lizbetheac4599
 
Semana 1 Derecho a interponer recursos y reparación.
Semana 1 Derecho a interponer recursos y reparación.Semana 1 Derecho a interponer recursos y reparación.
Semana 1 Derecho a interponer recursos y reparación.
SergioAlfrediMontoya
 
PPT II BLOQUE SG 2024 - semana de gestion.pdf
PPT  II BLOQUE SG 2024 - semana de gestion.pdfPPT  II BLOQUE SG 2024 - semana de gestion.pdf
PPT II BLOQUE SG 2024 - semana de gestion.pdf
ISAACMAMANIFLORES2
 

Último (20)

fase intensiva taller intensivo de CTE julio
fase intensiva taller intensivo de CTE juliofase intensiva taller intensivo de CTE julio
fase intensiva taller intensivo de CTE julio
 
Revista Universidad de Deusto - Número 155 / Año 2024
Revista Universidad de Deusto - Número 155 / Año 2024Revista Universidad de Deusto - Número 155 / Año 2024
Revista Universidad de Deusto - Número 155 / Año 2024
 
Flipped Classroom con TIC (1 de julio de 2024)
Flipped Classroom con TIC (1 de julio de 2024)Flipped Classroom con TIC (1 de julio de 2024)
Flipped Classroom con TIC (1 de julio de 2024)
 
Análisis y Evaluación del Impacto Ambiental.pdf
Análisis y Evaluación del Impacto Ambiental.pdfAnálisis y Evaluación del Impacto Ambiental.pdf
Análisis y Evaluación del Impacto Ambiental.pdf
 
678778595-Examen-Final-Innovacion-Social.pptx
678778595-Examen-Final-Innovacion-Social.pptx678778595-Examen-Final-Innovacion-Social.pptx
678778595-Examen-Final-Innovacion-Social.pptx
 
PLAN ANUAL DE TRABAJO (PAT) 2024 MINEDU PERÚ
PLAN ANUAL DE TRABAJO (PAT) 2024 MINEDU PERÚPLAN ANUAL DE TRABAJO (PAT) 2024 MINEDU PERÚ
PLAN ANUAL DE TRABAJO (PAT) 2024 MINEDU PERÚ
 
🔴 (AC-S18) Semana 18 - Tema 01 - Tarea - Proyecto Final (terminado y revisado...
🔴 (AC-S18) Semana 18 - Tema 01 - Tarea - Proyecto Final (terminado y revisado...🔴 (AC-S18) Semana 18 - Tema 01 - Tarea - Proyecto Final (terminado y revisado...
🔴 (AC-S18) Semana 18 - Tema 01 - Tarea - Proyecto Final (terminado y revisado...
 
2024 DIA DEL LOGRO-COMUNICACION - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-COMUNICACION - IE HONORIO DELGADO ESPINOZA2024 DIA DEL LOGRO-COMUNICACION - IE HONORIO DELGADO ESPINOZA
2024 DIA DEL LOGRO-COMUNICACION - IE HONORIO DELGADO ESPINOZA
 
🔴 (AC-S18) Semana 18 -Tema 01Trabajo de Investigación - Contratos y franquici...
🔴 (AC-S18) Semana 18 -Tema 01Trabajo de Investigación - Contratos y franquici...🔴 (AC-S18) Semana 18 -Tema 01Trabajo de Investigación - Contratos y franquici...
🔴 (AC-S18) Semana 18 -Tema 01Trabajo de Investigación - Contratos y franquici...
 
LABERINTOS DE DISCIPLINAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
LABERINTOS DE DISCIPLINAS OLÍMPICAS.  Por JAVIER SOLIS NOYOLALABERINTOS DE DISCIPLINAS OLÍMPICAS.  Por JAVIER SOLIS NOYOLA
LABERINTOS DE DISCIPLINAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
 
EJEMPLOS DE FLORA Y FAUNA DE LA COSTA PERUANA
EJEMPLOS DE FLORA Y FAUNA DE LA COSTA PERUANAEJEMPLOS DE FLORA Y FAUNA DE LA COSTA PERUANA
EJEMPLOS DE FLORA Y FAUNA DE LA COSTA PERUANA
 
Sesión Un día en el ministerio de Jesús.pdf
Sesión Un día en el ministerio de Jesús.pdfSesión Un día en el ministerio de Jesús.pdf
Sesión Un día en el ministerio de Jesús.pdf
 
ENFERMERIA TECNICA-FUNDAMENTOS DE SALUD.
ENFERMERIA TECNICA-FUNDAMENTOS DE SALUD.ENFERMERIA TECNICA-FUNDAMENTOS DE SALUD.
ENFERMERIA TECNICA-FUNDAMENTOS DE SALUD.
 
Presentación sobré la culturas Lima, la cultura Paracas y la cultura Vicús.
Presentación  sobré la culturas Lima,  la  cultura Paracas y la cultura Vicús.Presentación  sobré la culturas Lima,  la  cultura Paracas y la cultura Vicús.
Presentación sobré la culturas Lima, la cultura Paracas y la cultura Vicús.
 
Introducción a la seguridad básica (3 de julio de 2024)
Introducción a la seguridad básica (3 de julio de 2024)Introducción a la seguridad básica (3 de julio de 2024)
Introducción a la seguridad básica (3 de julio de 2024)
 
CULTURA CHIMU CERAMICA UBICACION METALURGIA
CULTURA CHIMU CERAMICA UBICACION METALURGIACULTURA CHIMU CERAMICA UBICACION METALURGIA
CULTURA CHIMU CERAMICA UBICACION METALURGIA
 
🔴 (AC-S18) Semana 18 – TRABAJO FINAL (INFORMATICA APLICADA TERMINADO y revisa...
🔴 (AC-S18) Semana 18 – TRABAJO FINAL (INFORMATICA APLICADA TERMINADO y revisa...🔴 (AC-S18) Semana 18 – TRABAJO FINAL (INFORMATICA APLICADA TERMINADO y revisa...
🔴 (AC-S18) Semana 18 – TRABAJO FINAL (INFORMATICA APLICADA TERMINADO y revisa...
 
CLASES DE TERMINOS UTILIZADOS EN EL ALGEBRA
CLASES DE TERMINOS UTILIZADOS EN EL ALGEBRACLASES DE TERMINOS UTILIZADOS EN EL ALGEBRA
CLASES DE TERMINOS UTILIZADOS EN EL ALGEBRA
 
Semana 1 Derecho a interponer recursos y reparación.
Semana 1 Derecho a interponer recursos y reparación.Semana 1 Derecho a interponer recursos y reparación.
Semana 1 Derecho a interponer recursos y reparación.
 
PPT II BLOQUE SG 2024 - semana de gestion.pdf
PPT  II BLOQUE SG 2024 - semana de gestion.pdfPPT  II BLOQUE SG 2024 - semana de gestion.pdf
PPT II BLOQUE SG 2024 - semana de gestion.pdf
 

Unidad 2 de matematica

  • 1. República Bolivariana De Venezuela Ministerio Del Poder Polar Para La Educación Superior Universidad Politécnica Territorial Andrés Eloy Blanco Barquisimeto – Estado Lara Unidad nro.2 Números reales y plano numérico Estudiante: Luisanny Ocanto. Cédula de Identidad: 30.591217 Curso: Matemática Básica Sección: CO0101 Docente: Prof. María Carruido Marzo, 2021.
  • 2. Definición de conjunto: un conjunto es una colección de elementos con características similares considerada en sí misma como un objeto. Los elementos de un conjunto, pueden ser las siguientes: personas, números, colores, letras, figuras, etc. Se dice que un elemento (o miembro) pertenece al conjunto si está definido como incluido de algún modo dentro de él. El conjunto de los números reales se forma al combinar el conjunto de números racionales y el conjunto de números irracionales. El conjunto de números reales consiste en todos los números que tienen un lugar en la recta numérica. Las operaciones con conjuntos también conocidas como álgebra de conjuntos, nos permiten realizar operaciones sobre los conjuntos para obtener otro conjunto. De las operaciones con conjuntos veremos las siguientes unión, intersección, diferencia, diferencia simétrica y complemento. Operaciones con conjuntos: ‒ Unión o reunión de conjuntos. Es la operación que nos permite unir dos o más conjuntos para formar otro conjunto que contendrá a todos los elementos que queremos unir, pero sin que se repitan. Es decir, dado un conjunto A y un conjunto B, la unión de los conjuntos A y B será otro conjunto formado por todos los elementos de A, con todos los elementos de B sin repetir ningún elemento. El símbolo que se usa para indicar la operación de unión es el siguiente: ∪. Cuando usamos diagramas de Ven, para representar la unió de conjuntos, se sombrean los conjuntos que se unen o se forma uno nuevo. Luego se escribe por fuera la operación de unión. Ejemplo: 1. Dados dos conjuntos A= {1,2,3,4,5,6,7,} y B= {8,9,10,11} la unión de estos conjuntos será A∪B= {1,2,3,4,5,6,7,8,9,10,11}. Usando diagramas de Ven se tendría lo siguiente:
  • 3. ‒ Intersección de conjuntos. Es la operación que nos permite formar un conjunto, sólo con los elementos comunes involucrados en la operación. Es decir, dados dos conjuntos A y B, la de intersección de los conjuntos A y B, estará formado por los elementos de A y los elementos de B que sean comunes, los elementos no comunes A y B, será excluidos. El símbolo que se usa para indicar la operación de intersección es el siguiente: ∩. Ejemplo: 1. Dados dos conjuntos A= {1,2,3,4,5} y B= {4,5,6,7,8,9} la intersección de estos conjuntos será A∩B={4,5}. Usando diagramas de Ven se tendría lo siguiente: ‒ Diferencia de conjuntos. Es la operación que nos permite formar un conjunto, en donde de dos conjuntos el conjunto resultante es el que tendrá todos los elementos que pertenecen al primero, pero no al segundo. Es decir, dados dos conjuntos A y B, la diferencia de los conjuntos entra A y B, estará formado por todos los elementos de A que no pertenezcan a B. El símbolo que se usa para esta operación es el mismo que se usa para la resta o sustracción, que es el siguiente: -.
  • 4. Ejemplo: 1. Dados dos conjuntos A= {1,2,3,4,5} y B= {4,5,6,7,8,9} la diferencia de estos conjuntos será A-B= {1,2,3}. Usando diagramas de Ven se tendría lo siguiente: ‒ Diferencia de simétrica de conjuntos. Es la operación que nos permite formar un conjunto, en donde de dos conjuntos el conjunto resultante es el que tendrá todos los elementos que no sean comunes a ambos conjuntos. Es decir, dados dos conjuntos A y B, la diferencia simétrica estará formado por todos los elementos no comunes a los conjuntos A y B. El símbolo que se usa para indicar la operación de diferencia simétrica es el siguiente: △. Ejemplo: Dados dos conjuntos A= {1,2,3,4,5} y B= {4,5,6,7,8,9} la diferencia simétrica de estos conjuntos será A △ B= {1,2,3,6,7,8,9}. Usando diagramas de Ven se tendría lo siguiente: ‒ Complemento de un conjunto. Es la operación que nos permite formar un conjunto con todos los elementos del conjunto de referencia o universal, que no están en el conjunto. Es decir dado un conjunto A que está incluido en el conjunto universal U, entonces el conjunto complemento de A es el conjunto formado por todos los elementos del conjunto universal pero sin considerar a los elementos que pertenezcan al conjunto A. En esta operación el complemento de un conjunto se denota con un apostrofe sobre el
  • 5. conjunto que se opera, algo como esto A' en donde el conjunto A es el conjunto del cual se hace la operación de complemento. Ejemplo Dado el conjunto Universal U={1,2,3,4,5,6,7,8,9} y el conjunto A={1,2,9}, el conjunto A' estará formado por los siguientes elementos A'={3,4,5,6,7,8}. Usando diagramas de Ven se tendría lo siguiente: Números Reales Los números reales son cualquier número que corresponda a un punto en la recta real y pueden clasificarse en números naturales, enteros, racionales e irracionales. En otras palabras, cualquier número real está comprendido entre menos infinito y más infinito y podemos representarlo en la recta real. Los números reales son todos los números que encontramos más frecuentemente dado que los números complejos no se encuentran de manera accidental, sino que tienen que buscarse expresamente. Los números reales se representan mediante la letra R Se puede definir a los números reales como aquellos números que tienen expansión decimal periódica o tienen expansión decimal no periódica. Por ejemplo: a)3 es un número real ya que 3 = 3,00000000000…. b) ½ es un número real ya que ½ = 0,5000000000…. c) 1/3 es un número real ya que 1/3 = 0,3333333333333…. d) 2es un número real ya que 2=1,4142135623730950488016887242097…. e)0,1234567891011121314151617181920212223…. Es un número real. f)1,01001000100001000001000000100000001 g) N también es real Ejercicio: Escribir las siguientes expresiones sin exponentes: a) (−4)3. b) −5 3. c) 3 −2. d) (−6) −1. e) −( 2 5) −3. f) (4 3) −1 Solución a) (−4)3 = [(−4) · (−4)] · (−4) = 16 · (−4) = −64. b) −5 3 = − [(5 · 5) · 5] = −(25 · 5) = −125. c) 3 −2 = 1 3 2 = 1 9.
  • 6. d) (−6) −1 = 1 (−6) = − 1 6. e) −( 2 5) −3 = −( 5 2) 3 = − 75 8. f) (4 3) −1 = 3 4 Desigualdades: En matemáticas, una desigualdad es una relación de orden que se da entre dos valores cuando estos son distintos (en caso de ser iguales, lo que se tiene es una igualdad). Si los valores en cuestión son elementos de un conjunto ordenado, como los enteros o los reales, entonces pueden ser comparados. Los enunciados a b y a b, junto con las expresiones a b (a b o a b) y a b (a b o a b) se conocen como desigualdades. Las primeras se llaman desigualdades estrictas y las segundas, desigualdades no estrictas o amplias. En numerosas oportunidades y situaciones cotidianas surge la necesidad de comparar dos cantidades y establecer una relación entre ellas. Las desigualdades se comportan muy bien con respecto a la suma, pero se debe tener cuidado en el caso de la división y la multiplicación. Ejemplos. Como 2 < 5 entonces 2 + 4 < 5 + 4, es decir, 6 < 9. · Como 8 > 3 entonces 8 - 4 > 3 - 4, esto es, 4 > - 1 · Como 7 < 10 entonces 7.3 < 10.3, es decir, 21 < 30 · Como 7 < 10 entonces 7. (- 3) > 10. (- 3), esto es - 21 > - 30 En los diferentes ejemplos se observa que: · al sumar un mismo número a ambos miembros de una desigualdad, el sentido de la misma se mantiene · al restar un mismo número a ambos miembros de una desigualdad, el sentido de la misma se mantiene · la multiplicación por un número positivo mantiene el sentido de la desigualdad,
  • 7. · la multiplicación por un número negativo invierte el sentido de la desigualdad. Se pueden enunciar algunas propiedades relacionadas con las desigualdades. Sean a, b y c números reales cualesquiera: · Si a < b entonces a + c < b + c · Si a < b y c > 0 entonces a.c < b.c · Si a < b y c < 0 entonces a.c > b.c Cuando se verifica que a < b y b < c, decimos que b está comprendido entre a y c. En símbolos a < b < c. Todas las definiciones y propiedades son también válidas para las desigualdades >, £ y ³. Valor absoluto El valor absoluto es un concepto que está presente en diversos contextos de la Física y las Matemáticas, por ejemplo, en las nociones de magnitud, distancia, y norma. En casos más complejos es un concepto muy útil, como en las definiciones de cuaterniones, anillos ordenados, cuerpos o espacios vectoriales. El valor absoluto o módulo de un número real cualquiera es el mismo número, pero con signo positivo. En otras palabras, es el valor numérico sin tener en cuenta su signo, ya sea positivo o negativo. Por ejemplo, el valor absoluto del número −4−4 se representa como |−4||−4| y equivale a 44, y el valor absoluto de 44 se representa como |4||4|, lo cual también equivale a 44. En la recta numérica se representa como valor absoluto a la distancia que existe de un punto al origen. Por ejemplo, si se recorren 4 unidades del cero hacia la izquierda o hacia la derecha, llegamos a −4−4 o a 44, respectivamente; el valor absoluto de cualquiera de dichos valores es 44. valor absoluto de un número real a, se escribe |a|, es el mismo número a cuando es positivo o cero, y opuesto de a, si a es negativo. |5| = 5 |-5 |= 5 |0| = 0
  • 8. |x| = 2 x = −2 x = 2 |x|< 2 −2 < x < 2 x (−2, 2 ) |x|> 2 x < −2 o x > 2 (−∞, −2 ) (2, +∞) |x −2 |< 5 − 5 < x − 2 < 5 − 5 + 2 < x < 5 + 2 − 3 < x < 7 Desigualdades con valor absoluto Una desigualdad de valor absoluto es una desigualdad que tiene un signo de valor absoluto con una variable dentro. Desigualdades de valor absoluto (<): La desigualdad | x | < 4 significa que la distancia entre x y 0 es menor que 4. Así, x > -4 Y x < 4. El conjunto solución es . Cuando se resuelven desigualdes de valor absoluto, hay dos casos a considerar. Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva. Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa. La solución es la intersección de las soluciones de estos dos casos. En otras palabras, para cualesquiera números reales a y b, si | a | < b , entonces a < b Y a > - b Desigualdades de valor absoluto (>): La desigualdad | x | > 4 significa que la distancia entre x y 0 es mayor que 4. Así, x < -4 O x > 4. El conjunto solución es . Cuando se resuelven desigualdes de valor absoluto, hay dos casos a considerar. Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva. Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa.
  • 9. En otras palabras, para cualesquiera números reales a y b, si | a | > b , entonces a > b O a < - b . bibliografía https://www.varsitytutors.com/hotmath/hotmath_help/spanish/topics/absolute- value- inequalities#:~:text=La%20desigualdad%20%7C%20x%20%7C%20%3C%204,0% 20es%20menor%20que%204.&text=Caso%202%3A%20La%20expresi%C3%B3n %20dentro,soluciones%20de%20estos%20dos%20casos.