Common symbols used in set theory

S

Common Use in Education

SET and Symbols
1
Common Symbols Used in Set Theory
Symbols save time and space when writing. Here are the most common set symbols
In the examples C = {1, 2, 3, 4} and D = {3, 4, 5}
Symbol Meaning Example
{ } Set: a collection of elements {1, 2, 3, 4}
A ∪ B Union: in A or B (or both) C ∪ D = {1, 2, 3, 4, 5}
A ∩ B Intersection: in both A and B C ∩ D = {3, 4}
A ⊆ B Subset: every element of A is in B. {3, 4, 5} ⊆ D
A ⊂ B Proper Subset: every element of A is in B,
but B has more elements. {3, 5} ⊂ D
A ⊄ B Not a Subset: A is not a subset of B {1, 6} ⊄ C
A ⊇ B Superset: A has same elements as B, or more {1, 2, 3} ⊇ {1, 2, 3}
A ⊃ B Proper Superset: A has B's elements and more {1, 2, 3, 4} ⊃ {1, 2, 3}
A ⊅ B Not a Superset: A is not a superset of B {1, 2, 6} ⊅ {1, 9}
Ac Complement: elements not in A Dc = {1, 2, 6, 7}
When set universal = {1, 2, 3, 4, 5, 6, 7}
A − B Difference: in A but not in B {1, 2, 3, 4} − {3, 4} = {1, 2}
a ∈ A Element of: a is in A 3 ∈ {1, 2, 3, 4}
b ∉ A Not element of: b is not in A 6 ∉ {1, 2, 3, 4}
∅ Empty set = {} {1, 2} ∩ {3, 4} = Ø
set universal Universal Set: set of all possible values
(in the area of interest)
P(A) Power Set: all subsets of A P({1, 2}) = { {}, {1}, {2}, {1, 2} }
A = B Equality: both sets have the same members {3, 4, 5} = {5, 3, 4}
A×B Cartesian Product
(set of ordered pairs from A and B) {1, 2} × {3, 4}
SET and Symbols
2
= {(1, 3), (1, 4), (2, 3), (2, 4)}
|A| Cardinality: the number of elements of set A |{3, 4}| = 2
| Such that { n | n > 0 } = {1, 2, 3,...}
: Such that { n : n > 0 } = {1, 2, 3,...}
∀ For All ∀x>1, x2>x
∃ There Exists ∃ x | x2>x
∴ Therefore a=b ∴ b=a
Natural Numbers Natural Numbers {1, 2, 3,...} or {0, 1, 2, 3,...}
Integers Integers {..., −3, −2, −1, 0, 1, 2, 3, ...}
Rational Numbers Rational Numbers
Algebraic Numbers Algebraic Numbers
Real Numbers Real Numbers
Imaginary Numbers Imaginary Numbers 3i
Complex Numbers Complex Numbers 2 + 5i

Recomendados

Set Theory - CSE101 CSE GUB BD por
Set Theory - CSE101 CSE GUB BDSet Theory - CSE101 CSE GUB BD
Set Theory - CSE101 CSE GUB BDMd. Shahidul Islam Prodhan
35 vistas19 diapositivas
Universal Set and Subset using Venn Diagram por
Universal Set and Subset using Venn DiagramUniversal Set and Subset using Venn Diagram
Universal Set and Subset using Venn DiagramFree Math Powerpoints
1.7K vistas15 diapositivas
Introduction of set por
Introduction of set Introduction of set
Introduction of set VishalVishwakarma59
398 vistas10 diapositivas
Ppt geo-d3-set operations por
Ppt geo-d3-set operationsPpt geo-d3-set operations
Ppt geo-d3-set operationsJay Vaughn Pelonio
71 vistas16 diapositivas
Types Of Set por
Types Of SetTypes Of Set
Types Of SetPkwebbs
1.1K vistas31 diapositivas
Set Operations Topic Including Union , Intersection, Disjoint etc De Morgans ... por
Set Operations Topic Including Union , Intersection, Disjoint etc De Morgans ...Set Operations Topic Including Union , Intersection, Disjoint etc De Morgans ...
Set Operations Topic Including Union , Intersection, Disjoint etc De Morgans ...Abu Bakar Soomro
3.1K vistas27 diapositivas

Más contenido relacionado

La actualidad más candente

How to Prove and Apply De Morgan's Laws por
How to Prove and Apply De Morgan's LawsHow to Prove and Apply De Morgan's Laws
How to Prove and Apply De Morgan's LawsDon Sevcik
7.2K vistas7 diapositivas
Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ... por
Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ...Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ...
Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ...Amr Rashed
1K vistas123 diapositivas
Set Theory por
Set TheorySet Theory
Set Theoryitutor
35K vistas19 diapositivas
Basic mathematics code 303102 bca 1st semester exam. 2014 por
Basic mathematics    code   303102  bca     1st semester     exam.       2014Basic mathematics    code   303102  bca     1st semester     exam.       2014
Basic mathematics code 303102 bca 1st semester exam. 2014umesh singh
1.6K vistas2 diapositivas
Set in discrete mathematics por
Set in discrete mathematicsSet in discrete mathematics
Set in discrete mathematicsUniversity of Potsdam
1.9K vistas26 diapositivas
Mtk3013 chapter 2-3 por
Mtk3013   chapter 2-3Mtk3013   chapter 2-3
Mtk3013 chapter 2-3khairunnasirahmad
641 vistas30 diapositivas

La actualidad más candente(18)

How to Prove and Apply De Morgan's Laws por Don Sevcik
How to Prove and Apply De Morgan's LawsHow to Prove and Apply De Morgan's Laws
How to Prove and Apply De Morgan's Laws
Don Sevcik7.2K vistas
Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ... por Amr Rashed
Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ...Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ...
Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ...
Amr Rashed1K vistas
Set Theory por itutor
Set TheorySet Theory
Set Theory
itutor35K vistas
Basic mathematics code 303102 bca 1st semester exam. 2014 por umesh singh
Basic mathematics    code   303102  bca     1st semester     exam.       2014Basic mathematics    code   303102  bca     1st semester     exam.       2014
Basic mathematics code 303102 bca 1st semester exam. 2014
umesh singh1.6K vistas
Relations & functions.pps por indu psthakur
Relations  &  functions.ppsRelations  &  functions.pps
Relations & functions.pps
indu psthakur27.5K vistas
Discrete Math Ch5 counting + proofs por Amr Rashed
Discrete Math Ch5 counting + proofsDiscrete Math Ch5 counting + proofs
Discrete Math Ch5 counting + proofs
Amr Rashed240 vistas
Patrick Londa's POTW solution por patricklonda1
Patrick Londa's POTW solutionPatrick Londa's POTW solution
Patrick Londa's POTW solution
patricklonda144 vistas
Generalized formula for Square Numbers in Hyper Dimensions por Kumaran K
Generalized formula for Square Numbers in Hyper DimensionsGeneralized formula for Square Numbers in Hyper Dimensions
Generalized formula for Square Numbers in Hyper Dimensions
Kumaran K2.1K vistas
Simplifying algebraic expressions por manswag123
Simplifying algebraic expressionsSimplifying algebraic expressions
Simplifying algebraic expressions
manswag1236.4K vistas
Simplifying algebraic expression por julienorman80065
Simplifying algebraic expressionSimplifying algebraic expression
Simplifying algebraic expression
julienorman800651.3K vistas
Sets and Functions By Saleh ElShehabey por ravingeek
Sets and Functions By Saleh ElShehabeySets and Functions By Saleh ElShehabey
Sets and Functions By Saleh ElShehabey
ravingeek5.6K vistas

Similar a Common symbols used in set theory

2 》set operation.pdf por
2 》set operation.pdf2 》set operation.pdf
2 》set operation.pdfHamayonHelali
13 vistas13 diapositivas
Set Difference por
Set DifferenceSet Difference
Set DifferenceReymart Bargamento
601 vistas8 diapositivas
Sets por
SetsSets
SetsJam Malajacan
2.7K vistas10 diapositivas
POWERPOINT (SETS & FUNCTIONS).pdf por
POWERPOINT (SETS & FUNCTIONS).pdfPOWERPOINT (SETS & FUNCTIONS).pdf
POWERPOINT (SETS & FUNCTIONS).pdfMaryAnnBatac1
103 vistas52 diapositivas
Final maths presentation on sets por
Final maths presentation on setsFinal maths presentation on sets
Final maths presentation on setsRahul Avicii
6K vistas15 diapositivas
Sets ppt por
Sets pptSets ppt
Sets pptClint Higgs
188 vistas8 diapositivas

Similar a Common symbols used in set theory(20)

Último

231112 (WR) v1 ChatGPT OEB 2023.pdf por
231112 (WR) v1  ChatGPT OEB 2023.pdf231112 (WR) v1  ChatGPT OEB 2023.pdf
231112 (WR) v1 ChatGPT OEB 2023.pdfWilfredRubens.com
144 vistas21 diapositivas
The Accursed House by Émile Gaboriau por
The Accursed House  by Émile GaboriauThe Accursed House  by Émile Gaboriau
The Accursed House by Émile GaboriauDivyaSheta
158 vistas15 diapositivas
11.28.23 Social Capital and Social Exclusion.pptx por
11.28.23 Social Capital and Social Exclusion.pptx11.28.23 Social Capital and Social Exclusion.pptx
11.28.23 Social Capital and Social Exclusion.pptxmary850239
281 vistas25 diapositivas
JiscOAWeek_LAIR_slides_October2023.pptx por
JiscOAWeek_LAIR_slides_October2023.pptxJiscOAWeek_LAIR_slides_October2023.pptx
JiscOAWeek_LAIR_slides_October2023.pptxJisc
79 vistas8 diapositivas
Gopal Chakraborty Memorial Quiz 2.0 Prelims.pptx por
Gopal Chakraborty Memorial Quiz 2.0 Prelims.pptxGopal Chakraborty Memorial Quiz 2.0 Prelims.pptx
Gopal Chakraborty Memorial Quiz 2.0 Prelims.pptxDebapriya Chakraborty
598 vistas81 diapositivas
Class 10 English notes 23-24.pptx por
Class 10 English notes 23-24.pptxClass 10 English notes 23-24.pptx
Class 10 English notes 23-24.pptxTARIQ KHAN
107 vistas53 diapositivas

Último(20)

The Accursed House by Émile Gaboriau por DivyaSheta
The Accursed House  by Émile GaboriauThe Accursed House  by Émile Gaboriau
The Accursed House by Émile Gaboriau
DivyaSheta158 vistas
11.28.23 Social Capital and Social Exclusion.pptx por mary850239
11.28.23 Social Capital and Social Exclusion.pptx11.28.23 Social Capital and Social Exclusion.pptx
11.28.23 Social Capital and Social Exclusion.pptx
mary850239281 vistas
JiscOAWeek_LAIR_slides_October2023.pptx por Jisc
JiscOAWeek_LAIR_slides_October2023.pptxJiscOAWeek_LAIR_slides_October2023.pptx
JiscOAWeek_LAIR_slides_October2023.pptx
Jisc79 vistas
Class 10 English notes 23-24.pptx por TARIQ KHAN
Class 10 English notes 23-24.pptxClass 10 English notes 23-24.pptx
Class 10 English notes 23-24.pptx
TARIQ KHAN107 vistas
Scope of Biochemistry.pptx por shoba shoba
Scope of Biochemistry.pptxScope of Biochemistry.pptx
Scope of Biochemistry.pptx
shoba shoba124 vistas
Lecture: Open Innovation por Michal Hron
Lecture: Open InnovationLecture: Open Innovation
Lecture: Open Innovation
Michal Hron96 vistas
Psychology KS4 por WestHatch
Psychology KS4Psychology KS4
Psychology KS4
WestHatch68 vistas
Drama KS5 Breakdown por WestHatch
Drama KS5 BreakdownDrama KS5 Breakdown
Drama KS5 Breakdown
WestHatch71 vistas
AI Tools for Business and Startups por Svetlin Nakov
AI Tools for Business and StartupsAI Tools for Business and Startups
AI Tools for Business and Startups
Svetlin Nakov101 vistas
UWP OA Week Presentation (1).pptx por Jisc
UWP OA Week Presentation (1).pptxUWP OA Week Presentation (1).pptx
UWP OA Week Presentation (1).pptx
Jisc74 vistas
Solar System and Galaxies.pptx por DrHafizKosar
Solar System and Galaxies.pptxSolar System and Galaxies.pptx
Solar System and Galaxies.pptx
DrHafizKosar85 vistas
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively por PECB
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks EffectivelyISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively
PECB 545 vistas
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx por ISSIP
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptxEIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx
ISSIP317 vistas

Common symbols used in set theory

  • 1. SET and Symbols 1 Common Symbols Used in Set Theory Symbols save time and space when writing. Here are the most common set symbols In the examples C = {1, 2, 3, 4} and D = {3, 4, 5} Symbol Meaning Example { } Set: a collection of elements {1, 2, 3, 4} A ∪ B Union: in A or B (or both) C ∪ D = {1, 2, 3, 4, 5} A ∩ B Intersection: in both A and B C ∩ D = {3, 4} A ⊆ B Subset: every element of A is in B. {3, 4, 5} ⊆ D A ⊂ B Proper Subset: every element of A is in B, but B has more elements. {3, 5} ⊂ D A ⊄ B Not a Subset: A is not a subset of B {1, 6} ⊄ C A ⊇ B Superset: A has same elements as B, or more {1, 2, 3} ⊇ {1, 2, 3} A ⊃ B Proper Superset: A has B's elements and more {1, 2, 3, 4} ⊃ {1, 2, 3} A ⊅ B Not a Superset: A is not a superset of B {1, 2, 6} ⊅ {1, 9} Ac Complement: elements not in A Dc = {1, 2, 6, 7} When set universal = {1, 2, 3, 4, 5, 6, 7} A − B Difference: in A but not in B {1, 2, 3, 4} − {3, 4} = {1, 2} a ∈ A Element of: a is in A 3 ∈ {1, 2, 3, 4} b ∉ A Not element of: b is not in A 6 ∉ {1, 2, 3, 4} ∅ Empty set = {} {1, 2} ∩ {3, 4} = Ø set universal Universal Set: set of all possible values (in the area of interest) P(A) Power Set: all subsets of A P({1, 2}) = { {}, {1}, {2}, {1, 2} } A = B Equality: both sets have the same members {3, 4, 5} = {5, 3, 4} A×B Cartesian Product (set of ordered pairs from A and B) {1, 2} × {3, 4}
  • 2. SET and Symbols 2 = {(1, 3), (1, 4), (2, 3), (2, 4)} |A| Cardinality: the number of elements of set A |{3, 4}| = 2 | Such that { n | n > 0 } = {1, 2, 3,...} : Such that { n : n > 0 } = {1, 2, 3,...} ∀ For All ∀x>1, x2>x ∃ There Exists ∃ x | x2>x ∴ Therefore a=b ∴ b=a Natural Numbers Natural Numbers {1, 2, 3,...} or {0, 1, 2, 3,...} Integers Integers {..., −3, −2, −1, 0, 1, 2, 3, ...} Rational Numbers Rational Numbers Algebraic Numbers Algebraic Numbers Real Numbers Real Numbers Imaginary Numbers Imaginary Numbers 3i Complex Numbers Complex Numbers 2 + 5i