Chapter 1 - Introduction.pptx

1
Note to Students and Instructors on the Power Point
Presentation
The presentation is intended to be used along with the text. It
helps minimize the instructor from writing out all the equations.
Many equations need to be further elaborated by the instructor.
Chapter 1 – Introduction
3
In this chapter, we
• Define heat transfer
• Show the relationship between thermodynamics and heat transfer
• Define the three modes of heat transfer – conduction, convection,
and radiation
• Give a brief introduction to each mode of heat transfer
• Briefly describe a few cases where heat transfer plays an important
role
• Suggest a methodology for the solution of heat transfer problems
• Define some of the significant terms used in the book.
4
Heat transfer is energy transfer resulting only from temperature
differences.
1.1 Relationship between
thermodynamics and heat
transfer.
First law of thermodynamics
is a statement of
conservation of energy and
deals with equilibrium
states. Consider a spherical
copper ball initially at a
uniform temperature
suddenly immersed in water
as shown in the figure.
5
Applying the first law of thermodynamics we find that the final
temperature of the ball and water is 36.7 oC. But the first law will not
give the time required to go from the initial state to the final state.
In the study of heat transfer we attempt to the additional questions of
the temperature distribution and the heat transfer rate as functions of
time.
1.2 Modes of Heat Transfer
Heat transfer is a surface phenomenon – heat transfer occurs from (or
to) a surface.
Three modes of heat transfer are generally recognized.
Conduction: Heat transfer in a solid or a stationary fluid
Convection: Heat transfer in a in motion. Two modes of convection:
In forced convection fluid motion occurs due to an external force and
the motion continues with or without heat transfer
In natural convection fluid motion is caused solely by temperature
differences
6
Both conduction and convection require a material medium.
Radiation does not require a material medium.
In conduction and convection one can determine the heat transfer rate
from an elemental area by knowing the conditions of the material in
the immediate vicinity of the area.
In radiation one needs to know the entire field that the area sees.
The heat transport in conduction and convection is much, much
slower than in radiation.
7
8
1.3 Conduction
Conduction heat transfer is heat transfer in solids and fluids without
macroscopic motion.
Conductive heat transfer generally occurs in solids though it may
occur in fluids without macroscopic motion or with rigid body
motion.
The basis for analysis of conduction is the first law of
thermodynamics in conjuction with Fourier’s Law of Conduction.
Fourier’s law: conductive heat flux at a point in a given direction is
proportional to the magnitude of the temperature gradient in that
direction and is positive in the direction of decreasing temperature.
''
x
T
q k
x

 

(1.3.1)
9
In steady state, no part of the
solid stores energy, and the
heat transfer rate across every
cross section perpendicular to
the x-direction is uniform. As
the cross sectional area is
uniform, the heat flux is also
uniform, Integrating Eq. (1.3.2)
Figure 1.3.1
''
x
T
q k
x

 

(1.3.2)
2
1
''
0
T L
x
T
kdT q dx
 
  (1.3.3)
'' 1 2
x
x x x x
A
T T
q q dA kA
L

 
 (1.3.4)
'' 1 2
x
T T
q k
L


10
Thermal conductivity k is a property of the material and is always
positive. It varies from about 0.0262 W/m K for air to about 2300
W/m K for carbon (type IIa diamond), i.e., by a factor of 100 000.
The negative sign in Fourier’s law satisfies the second law of
thermodynamics. For heat transfer to be positive in the x-direction
the temperature gradient in that direction should be negative i.e.,
heat transfer occurs in the direction of decreasing temperature.
11
(1.3.4) Convection
When there is a temperature gradient in a fluid in bulk motion
heat transfer occurs by two mechanisms.
Molecular motion – conduction
Bulk motion of fluid packets
Total heat transfer is the sum of the two.
Convective heat transfer coefficient is defined by Eq. (1.4.1.)
''
( )
c c s f
q h T T
  (1.4.1)
12
The convective heat transfer coefficient is always positive.
With uniform surface temperature Ts and Tf if the heat flux is local
we obtain the local heat transfer coefficient.
If the heat flux is the average over an area we get the average heat
transfer coefficient.
The choice of the reference temperature Tf is arbitrary. With each
correlation the choice of the reference temperature for defining the
convective heat transfer coefficient should be stated.
However, by convention the reference temperature for external
flows such of an semi-infinite fluid flow over a flat plate, cylinder,
sphere and so on, the reference temperature is the temperature of the
fluid far away from the surface, known as the free stream
temperature usually denoted by T. In internal flows the reference
temperature is usually the bulk temperature Tb. A detailed definition
of the bulk temperature is given under internal flows.
13
Convection is subdivided into forced and natural convection.
In forced convection the fluid flow continues whether there is heat
transfer or not. In natural convection the fluid flow is caused solely
be temperature differences due to heat transfer, in the presence of a
body force.
Some representative values of the convective heat transfer
coefficients in each mode is given in Table 1.4.1.
In natural heat transfer, radiative heat transfer may form significant
part of the total heat transfer.
14
1.5 Radiation
All materials emit energy by radiation in the form electro-magnetic
waves or photons.
The maximum radiative heat flux that can be emitted by a solid
surface at a defined surface temperature, the black body emissive
power is given by the Stefan-Boltzmann law,
(1.5.1)
A surface that emits the maximum energy flux is an ideal radiator,
also known as a black surface. The emitted energy flux of any real
surface is less than the maximum.
15
Consider the radiative heat transfer
from a convex surface completely
enclosed by a second much larger
surface as shown in Figure 1.5.1.
The two surfaces are separated by
medium that does not participate in
radiation.
No part of the inner surface can see
any other part of itself – no part is
concave. In this case the heat
radiative transfer rate is given by:
(1.5.2)
(1.5.3)
16
Analogous to the convective heat transfer coefficient we may define
a radiative heat transfer coefficient employing Eq. (1.5.3) for this
case.
(1.5.4)
From Eq. (1.5.4) it is clear that the radiative heat transfer
coefficient is a function of the temperatures of the two surfaces and
the emissivity of the inner surface. However, in many cases the
variation of the coefficient with temperatures is such that an
average value can be used.
1.6 Surface heat transfer coefficient
In many cases of natural convection the radiative heat transfer rate is
a significant part of the total heat rate. In such cases a surface heat
transfer coefficient – the ratio of the total heat flux to a chactraristic
temperature difference.
17
In such cases the surface heat transfer coefficient is given by:
h = hc + hr
1.9 Terminology
Pure substance: Contains only one type of molecules.
Uniform: The value of a parameter does not vary spatially.
Homogeneous mixture: Contains more than one phase of a pure
substance so mixed that every volumetric element contains the same
proportion of molecules of different substances or phases. Examples:
Air or steam and water droplets.
In a uniform state, the properties of a homogeneous substance the
thermodynamic (density, internal energy…) and transport properties
viscosity, thermal conductivity…) are spatially independent.
Isotropic substance: Properties are direction independent.
One-dimensional: Variable of interest varies with only one spatial
coordinate.
18
1.9 Terminology (continued)
Steady State: Variable of interest does not change with time.
Transient or dynamic state: Variable is time dependent.
Control Mass (also system, closed system): focus is on an
identifiable mass.
Control Volume (open system): A region in space. Can be moving,
deformable or rigid.
Uncertainty: Indicates that a value of a variable cannot be treated as
exact.
Causes of uncertainty:
Uncertainties in the values measured with instruments.
Actual measurement in an environment that is not identical to where
original measurements were made.
Lack of repeatability in the measured values. Two ways of indicating
uncertainties.
19
Uncertainty (continued)
1. Express the value of a variable as x y

2. Express the value of x as % 100 /
x z z y x
 
1.10 Methodology in the solution of heat transfer problems
Balance of mass
Control Mass: Mass remains constant.
Control Volume:
Rate of change of mass within the CV + net rate of mass flow
rate out = 0
Balance of linear momentum: In a specified direction
Control Mass:
Rate of change of momentum = sum of all the forces on the mass
Control Volume:
Rate of change of linear momentum of the mass in the CV + net
rate of momentum flow out = sum of all the forces on the
material in the CV
20
Balance of Energy (First Law of Thermodynamics)
Assumption: changes in kinetic and potential energies are negligible.
Control Mass
Rate of change of internal energy of the mass = net rate of heat
transfer to the mass – net rate of work transfer from the mass +
rate of internal energy generation.
Control Volume
Rate of change of internal energy of the mass in the CV + net rate
of enthalpy flow out of the CV = Net rate of heat transfer to the
CV – net rate of work transfer from the CV + rate of internal
energy generation in the CV.
21
1.12 Some suggestions for solving problems
1. Read the problem statement carefully and translate them into
a sketch.
2. Transfer all the information in the problem statement to the
sketch.
3. List all assumptions. Some assumptions may need to be
made while solving the problems.
4. Find and list all the required properties.
5. Conceptualize the solution by writing all the steps.
6. Apply your analysis in symbolic form. Substitute the
numerical values at the end.
7. Present your solution in a neat and orderly manner.
8. For some problems defend every step of the solution.
9. The purpose of solving problems is to ensure a good
understanding of the material and the analysis.
1 de 21

Recomendados

Chap01_lecture_notes.pptChap01_lecture_notes.ppt
Chap01_lecture_notes.pptShoebAhmedSyed2
5 vistas20 diapositivas
ch6.pptch6.ppt
ch6.pptAbodAbod11
10 vistas20 diapositivas
BASIC OF HEAT TRANSFERBASIC OF HEAT TRANSFER
BASIC OF HEAT TRANSFERRamesh Thiagarajan
338 vistas45 diapositivas
HMT.pdfHMT.pdf
HMT.pdfAreebullahKhan1
13 vistas27 diapositivas
Fuels and CombustionFuels and Combustion
Fuels and CombustionYuri Melliza
146 vistas7 diapositivas

Más contenido relacionado

Similar a Chapter 1 - Introduction.pptx

Heat_All.pdfHeat_All.pdf
Heat_All.pdfHossam Abdelmeguid
27 vistas38 diapositivas
1.pdf1.pdf
1.pdfKhalidALALI27
5 vistas13 diapositivas
basics of HMTbasics of HMT
basics of HMTgajanand sharma
328 vistas39 diapositivas
Heat transferHeat transfer
Heat transferALOKANSU
170 vistas219 diapositivas

Similar a Chapter 1 - Introduction.pptx(20)

Heat_All.pdfHeat_All.pdf
Heat_All.pdf
Hossam Abdelmeguid27 vistas
1.pdf1.pdf
1.pdf
KhalidALALI275 vistas
basics of HMTbasics of HMT
basics of HMT
gajanand sharma328 vistas
Heat transferHeat transfer
Heat transfer
ALOKANSU170 vistas
lecture-1-mechanismsof HT_524.pptlecture-1-mechanismsof HT_524.ppt
lecture-1-mechanismsof HT_524.ppt
ShoebAhmedSyed215 vistas
Chapter1.pdfChapter1.pdf
Chapter1.pdf
tilahunyeshiye22 vistas
Si heat 4e_chap01_lectureSi heat 4e_chap01_lecture
Si heat 4e_chap01_lecture
Syarul Ammar1.1K vistas
Chapter 1INTRODUCTION AND BASIC CONCEPTSChapter 1INTRODUCTION AND BASIC CONCEPTS
Chapter 1 INTRODUCTION AND BASIC CONCEPTS
Abdul Moiz Dota1.1K vistas
Heat transfer Chapter 1.pptxHeat transfer Chapter 1.pptx
Heat transfer Chapter 1.pptx
QUEENEFAYETHTAGANAS15 vistas
Heat Transfer.pdfHeat Transfer.pdf
Heat Transfer.pdf
zainulabideen76282510 vistas
1 Heat_4e_Chap01_lecture.ppt1 Heat_4e_Chap01_lecture.ppt
1 Heat_4e_Chap01_lecture.ppt
MarfelAditiaManurung43 vistas
Heat and mass transferHeat and mass transfer
Heat and mass transfer
ALOKANSU1.7K vistas
Document (32).docxDocument (32).docx
Document (32).docx
RajeshGHOSH612 vistas
Heat transfer- Pharmaceutical EngineeringHeat transfer- Pharmaceutical Engineering
Heat transfer- Pharmaceutical Engineering
Sanchit Dhankhar330 vistas
Transport phenomenaTransport phenomena
Transport phenomena
Zin Eddine Dadach22.5K vistas
Lecture 1Lecture 1
Lecture 1
Nyakorema Boniphace669 vistas

Chapter 1 - Introduction.pptx

  • 1. 1 Note to Students and Instructors on the Power Point Presentation The presentation is intended to be used along with the text. It helps minimize the instructor from writing out all the equations. Many equations need to be further elaborated by the instructor.
  • 2. Chapter 1 – Introduction
  • 3. 3 In this chapter, we • Define heat transfer • Show the relationship between thermodynamics and heat transfer • Define the three modes of heat transfer – conduction, convection, and radiation • Give a brief introduction to each mode of heat transfer • Briefly describe a few cases where heat transfer plays an important role • Suggest a methodology for the solution of heat transfer problems • Define some of the significant terms used in the book.
  • 4. 4 Heat transfer is energy transfer resulting only from temperature differences. 1.1 Relationship between thermodynamics and heat transfer. First law of thermodynamics is a statement of conservation of energy and deals with equilibrium states. Consider a spherical copper ball initially at a uniform temperature suddenly immersed in water as shown in the figure.
  • 5. 5 Applying the first law of thermodynamics we find that the final temperature of the ball and water is 36.7 oC. But the first law will not give the time required to go from the initial state to the final state. In the study of heat transfer we attempt to the additional questions of the temperature distribution and the heat transfer rate as functions of time. 1.2 Modes of Heat Transfer Heat transfer is a surface phenomenon – heat transfer occurs from (or to) a surface. Three modes of heat transfer are generally recognized. Conduction: Heat transfer in a solid or a stationary fluid Convection: Heat transfer in a in motion. Two modes of convection: In forced convection fluid motion occurs due to an external force and the motion continues with or without heat transfer In natural convection fluid motion is caused solely by temperature differences
  • 6. 6 Both conduction and convection require a material medium. Radiation does not require a material medium. In conduction and convection one can determine the heat transfer rate from an elemental area by knowing the conditions of the material in the immediate vicinity of the area. In radiation one needs to know the entire field that the area sees. The heat transport in conduction and convection is much, much slower than in radiation.
  • 7. 7
  • 8. 8 1.3 Conduction Conduction heat transfer is heat transfer in solids and fluids without macroscopic motion. Conductive heat transfer generally occurs in solids though it may occur in fluids without macroscopic motion or with rigid body motion. The basis for analysis of conduction is the first law of thermodynamics in conjuction with Fourier’s Law of Conduction. Fourier’s law: conductive heat flux at a point in a given direction is proportional to the magnitude of the temperature gradient in that direction and is positive in the direction of decreasing temperature. '' x T q k x     (1.3.1)
  • 9. 9 In steady state, no part of the solid stores energy, and the heat transfer rate across every cross section perpendicular to the x-direction is uniform. As the cross sectional area is uniform, the heat flux is also uniform, Integrating Eq. (1.3.2) Figure 1.3.1 '' x T q k x     (1.3.2) 2 1 '' 0 T L x T kdT q dx     (1.3.3) '' 1 2 x x x x x A T T q q dA kA L     (1.3.4) '' 1 2 x T T q k L  
  • 10. 10 Thermal conductivity k is a property of the material and is always positive. It varies from about 0.0262 W/m K for air to about 2300 W/m K for carbon (type IIa diamond), i.e., by a factor of 100 000. The negative sign in Fourier’s law satisfies the second law of thermodynamics. For heat transfer to be positive in the x-direction the temperature gradient in that direction should be negative i.e., heat transfer occurs in the direction of decreasing temperature.
  • 11. 11 (1.3.4) Convection When there is a temperature gradient in a fluid in bulk motion heat transfer occurs by two mechanisms. Molecular motion – conduction Bulk motion of fluid packets Total heat transfer is the sum of the two. Convective heat transfer coefficient is defined by Eq. (1.4.1.) '' ( ) c c s f q h T T   (1.4.1)
  • 12. 12 The convective heat transfer coefficient is always positive. With uniform surface temperature Ts and Tf if the heat flux is local we obtain the local heat transfer coefficient. If the heat flux is the average over an area we get the average heat transfer coefficient. The choice of the reference temperature Tf is arbitrary. With each correlation the choice of the reference temperature for defining the convective heat transfer coefficient should be stated. However, by convention the reference temperature for external flows such of an semi-infinite fluid flow over a flat plate, cylinder, sphere and so on, the reference temperature is the temperature of the fluid far away from the surface, known as the free stream temperature usually denoted by T. In internal flows the reference temperature is usually the bulk temperature Tb. A detailed definition of the bulk temperature is given under internal flows.
  • 13. 13 Convection is subdivided into forced and natural convection. In forced convection the fluid flow continues whether there is heat transfer or not. In natural convection the fluid flow is caused solely be temperature differences due to heat transfer, in the presence of a body force. Some representative values of the convective heat transfer coefficients in each mode is given in Table 1.4.1. In natural heat transfer, radiative heat transfer may form significant part of the total heat transfer.
  • 14. 14 1.5 Radiation All materials emit energy by radiation in the form electro-magnetic waves or photons. The maximum radiative heat flux that can be emitted by a solid surface at a defined surface temperature, the black body emissive power is given by the Stefan-Boltzmann law, (1.5.1) A surface that emits the maximum energy flux is an ideal radiator, also known as a black surface. The emitted energy flux of any real surface is less than the maximum.
  • 15. 15 Consider the radiative heat transfer from a convex surface completely enclosed by a second much larger surface as shown in Figure 1.5.1. The two surfaces are separated by medium that does not participate in radiation. No part of the inner surface can see any other part of itself – no part is concave. In this case the heat radiative transfer rate is given by: (1.5.2) (1.5.3)
  • 16. 16 Analogous to the convective heat transfer coefficient we may define a radiative heat transfer coefficient employing Eq. (1.5.3) for this case. (1.5.4) From Eq. (1.5.4) it is clear that the radiative heat transfer coefficient is a function of the temperatures of the two surfaces and the emissivity of the inner surface. However, in many cases the variation of the coefficient with temperatures is such that an average value can be used. 1.6 Surface heat transfer coefficient In many cases of natural convection the radiative heat transfer rate is a significant part of the total heat rate. In such cases a surface heat transfer coefficient – the ratio of the total heat flux to a chactraristic temperature difference.
  • 17. 17 In such cases the surface heat transfer coefficient is given by: h = hc + hr 1.9 Terminology Pure substance: Contains only one type of molecules. Uniform: The value of a parameter does not vary spatially. Homogeneous mixture: Contains more than one phase of a pure substance so mixed that every volumetric element contains the same proportion of molecules of different substances or phases. Examples: Air or steam and water droplets. In a uniform state, the properties of a homogeneous substance the thermodynamic (density, internal energy…) and transport properties viscosity, thermal conductivity…) are spatially independent. Isotropic substance: Properties are direction independent. One-dimensional: Variable of interest varies with only one spatial coordinate.
  • 18. 18 1.9 Terminology (continued) Steady State: Variable of interest does not change with time. Transient or dynamic state: Variable is time dependent. Control Mass (also system, closed system): focus is on an identifiable mass. Control Volume (open system): A region in space. Can be moving, deformable or rigid. Uncertainty: Indicates that a value of a variable cannot be treated as exact. Causes of uncertainty: Uncertainties in the values measured with instruments. Actual measurement in an environment that is not identical to where original measurements were made. Lack of repeatability in the measured values. Two ways of indicating uncertainties.
  • 19. 19 Uncertainty (continued) 1. Express the value of a variable as x y  2. Express the value of x as % 100 / x z z y x   1.10 Methodology in the solution of heat transfer problems Balance of mass Control Mass: Mass remains constant. Control Volume: Rate of change of mass within the CV + net rate of mass flow rate out = 0 Balance of linear momentum: In a specified direction Control Mass: Rate of change of momentum = sum of all the forces on the mass Control Volume: Rate of change of linear momentum of the mass in the CV + net rate of momentum flow out = sum of all the forces on the material in the CV
  • 20. 20 Balance of Energy (First Law of Thermodynamics) Assumption: changes in kinetic and potential energies are negligible. Control Mass Rate of change of internal energy of the mass = net rate of heat transfer to the mass – net rate of work transfer from the mass + rate of internal energy generation. Control Volume Rate of change of internal energy of the mass in the CV + net rate of enthalpy flow out of the CV = Net rate of heat transfer to the CV – net rate of work transfer from the CV + rate of internal energy generation in the CV.
  • 21. 21 1.12 Some suggestions for solving problems 1. Read the problem statement carefully and translate them into a sketch. 2. Transfer all the information in the problem statement to the sketch. 3. List all assumptions. Some assumptions may need to be made while solving the problems. 4. Find and list all the required properties. 5. Conceptualize the solution by writing all the steps. 6. Apply your analysis in symbolic form. Substitute the numerical values at the end. 7. Present your solution in a neat and orderly manner. 8. For some problems defend every step of the solution. 9. The purpose of solving problems is to ensure a good understanding of the material and the analysis.