SlideShare a Scribd company logo
Enviar búsqueda
Cargar
ID-109.pdf
Denunciar
Compartir
S
ssuserc8975b
Seguir
•
0 recomendaciones
•
3 vistas
1
de
23
ID-109.pdf
•
0 recomendaciones
•
3 vistas
Denunciar
Compartir
Descargar ahora
Descargar para leer sin conexión
Ingeniería
Geothermal
Leer más
S
ssuserc8975b
Seguir
Recomendados
Cutting Cost of CO2 Capture in Process Industry (CO2stCap) Project overview &... por
Cutting Cost of CO2 Capture in Process Industry (CO2stCap) Project overview &...
Global CCS Institute
1.1K vistas
•
46 diapositivas
Carbon Capture por
Carbon Capture
AmericanMillwright
556 vistas
•
20 diapositivas
EDF Carbon Capture & Storage por
EDF Carbon Capture & Storage
kene2008
399 vistas
•
15 diapositivas
Presentation D Urosevic Iasme 08 por
Presentation D Urosevic Iasme 08
guestc95d9e
181 vistas
•
16 diapositivas
Presentation Durosevic IASME 08 por
Presentation Durosevic IASME 08
victoriagroup
234 vistas
•
16 diapositivas
A perspective on transition engineering options from capture-readiness to ful... por
A perspective on transition engineering options from capture-readiness to ful...
UK Carbon Capture and Storage Research Centre
827 vistas
•
29 diapositivas
Más contenido relacionado
Similar a ID-109.pdf
Global CCS Institute Presentation por
Global CCS Institute Presentation
Global CCS Institute
927 vistas
•
19 diapositivas
Future possibilities for utilization of solar energy serc 2009 05-20 por
Future possibilities for utilization of solar energy serc 2009 05-20
Stefan Larsson
809 vistas
•
87 diapositivas
Electricity Production By Waste Materials por
Electricity Production By Waste Materials
IRJET Journal
112 vistas
•
4 diapositivas
Energy Systems Optimization por
Energy Systems Optimization
AristotelisGiannopoulos
11.2K vistas
•
20 diapositivas
Introduction of CO2 Reduction Technologies in Steelworks por
Introduction of CO2 Reduction Technologies in Steelworks
Energy-Education-Resource-Center
481 vistas
•
68 diapositivas
C2 - ENGINEERING THE ENERGY TRANSITION por
C2 - ENGINEERING THE ENERGY TRANSITION
Iceland Geothermal
169 vistas
•
23 diapositivas
Similar a ID-109.pdf
(20)
Global CCS Institute Presentation por Global CCS Institute
Global CCS Institute Presentation
Global CCS Institute
•
927 vistas
Future possibilities for utilization of solar energy serc 2009 05-20 por Stefan Larsson
Future possibilities for utilization of solar energy serc 2009 05-20
Stefan Larsson
•
809 vistas
Electricity Production By Waste Materials por IRJET Journal
Electricity Production By Waste Materials
IRJET Journal
•
112 vistas
Energy Systems Optimization por AristotelisGiannopoulos
Energy Systems Optimization
AristotelisGiannopoulos
•
11.2K vistas
Introduction of CO2 Reduction Technologies in Steelworks por Energy-Education-Resource-Center
Introduction of CO2 Reduction Technologies in Steelworks
Energy-Education-Resource-Center
•
481 vistas
C2 - ENGINEERING THE ENERGY TRANSITION por Iceland Geothermal
C2 - ENGINEERING THE ENERGY TRANSITION
Iceland Geothermal
•
169 vistas
Impacts of green hydrogen on the Italian power system by 2030 por IEA-ETSAP
Impacts of green hydrogen on the Italian power system by 2030
IEA-ETSAP
•
134 vistas
Eor Brd Ppt 25 Aug09 por princeslea79
Eor Brd Ppt 25 Aug09
princeslea79
•
355 vistas
Carbon Capture and Storage por AshokaNarayanan3
Carbon Capture and Storage
AshokaNarayanan3
•
51 vistas
Renewable Natural Gas por Kyle Snyder 🚀
Renewable Natural Gas
Kyle Snyder 🚀
•
194 vistas
ITM Power: Interim Results Jan 2012 por Rebecca Markillie
ITM Power: Interim Results Jan 2012
Rebecca Markillie
•
340 vistas
Co2 capture-technologies por Dzung Le
Co2 capture-technologies
Dzung Le
•
192 vistas
184_presentation_20210606_132102.pptx por ArockiaFenil1
184_presentation_20210606_132102.pptx
ArockiaFenil1
•
3 vistas
Costs of capturing CO2 from industrial sources - Morgan Summers, National Ene... por Global CCS Institute
Costs of capturing CO2 from industrial sources - Morgan Summers, National Ene...
Global CCS Institute
•
2.1K vistas
Glier_Defense_Online_Publication por Justin Glier
Glier_Defense_Online_Publication
Justin Glier
•
196 vistas
LNG Facility GHG Mitigation Options - Government of Nova Scotia por Marcellus Drilling News
LNG Facility GHG Mitigation Options - Government of Nova Scotia
Marcellus Drilling News
•
746 vistas
EPRI Low CO2 Emission Coal R&D For Kpic por Jeffrey Phillips
EPRI Low CO2 Emission Coal R&D For Kpic
Jeffrey Phillips
•
787 vistas
Overview of Current Directions in Carbon Capture R&D por Global CCS Institute
Overview of Current Directions in Carbon Capture R&D
Global CCS Institute
•
1.7K vistas
Power-to-Gas Storing Renewable Energy in the Gas Grid por ITM Power
Power-to-Gas Storing Renewable Energy in the Gas Grid
ITM Power
•
2K vistas
Power-to-gas storing renewable energy in the gas grid por Rebecca Markillie
Power-to-gas storing renewable energy in the gas grid
Rebecca Markillie
•
1.2K vistas
Último
Robotics in construction enterprise por
Robotics in construction enterprise
Khalid Abdel Naser Abdel Rahim
5 vistas
•
1 diapositiva
Design_Discover_Develop_Campaign.pptx por
Design_Discover_Develop_Campaign.pptx
ShivanshSeth6
56 vistas
•
20 diapositivas
Programmable Logic Devices : SPLD and CPLD por
Programmable Logic Devices : SPLD and CPLD
Usha Mehta
27 vistas
•
54 diapositivas
Basic Design Flow for Field Programmable Gate Arrays por
Basic Design Flow for Field Programmable Gate Arrays
Usha Mehta
10 vistas
•
21 diapositivas
BCIC - Manufacturing Conclave - Technology-Driven Manufacturing for Growth por
BCIC - Manufacturing Conclave - Technology-Driven Manufacturing for Growth
Innomantra
22 vistas
•
4 diapositivas
Global airborne satcom market report por
Global airborne satcom market report
defencereport78
8 vistas
•
13 diapositivas
Último
(20)
Robotics in construction enterprise por Khalid Abdel Naser Abdel Rahim
Robotics in construction enterprise
Khalid Abdel Naser Abdel Rahim
•
5 vistas
Design_Discover_Develop_Campaign.pptx por ShivanshSeth6
Design_Discover_Develop_Campaign.pptx
ShivanshSeth6
•
56 vistas
Programmable Logic Devices : SPLD and CPLD por Usha Mehta
Programmable Logic Devices : SPLD and CPLD
Usha Mehta
•
27 vistas
Basic Design Flow for Field Programmable Gate Arrays por Usha Mehta
Basic Design Flow for Field Programmable Gate Arrays
Usha Mehta
•
10 vistas
BCIC - Manufacturing Conclave - Technology-Driven Manufacturing for Growth por Innomantra
BCIC - Manufacturing Conclave - Technology-Driven Manufacturing for Growth
Innomantra
•
22 vistas
Global airborne satcom market report por defencereport78
Global airborne satcom market report
defencereport78
•
8 vistas
dummy.pptx por JamesLamp
dummy.pptx
JamesLamp
•
7 vistas
2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx por lwang78
2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx
lwang78
•
314 vistas
GPS Survery Presentation/ Slides por OmarFarukEmon1
GPS Survery Presentation/ Slides
OmarFarukEmon1
•
7 vistas
Pitchbook Repowerlab.pdf por VictoriaGaleano
Pitchbook Repowerlab.pdf
VictoriaGaleano
•
9 vistas
IRJET-Productivity Enhancement Using Method Study.pdf por SahilBavdhankar
IRJET-Productivity Enhancement Using Method Study.pdf
SahilBavdhankar
•
10 vistas
Trust Metric-Based Anomaly Detection via Deep Deterministic Policy Gradient R... por IJCNCJournal
Trust Metric-Based Anomaly Detection via Deep Deterministic Policy Gradient R...
IJCNCJournal
•
5 vistas
sam_software_eng_cv.pdf por sammyigbinovia
sam_software_eng_cv.pdf
sammyigbinovia
•
19 vistas
AWS Certified Solutions Architect Associate Exam Guide_published .pdf por Kiran Kumar Malik
AWS Certified Solutions Architect Associate Exam Guide_published .pdf
Kiran Kumar Malik
•
6 vistas
ASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdf por AlhamduKure
ASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdf
AlhamduKure
•
10 vistas
Créativité dans le design mécanique à l’aide de l’optimisation topologique por LIEGE CREATIVE
Créativité dans le design mécanique à l’aide de l’optimisation topologique
LIEGE CREATIVE
•
9 vistas
taylor-2005-classical-mechanics.pdf por ArturoArreola10
taylor-2005-classical-mechanics.pdf
ArturoArreola10
•
37 vistas
Plant Design Report-Oil Refinery.pdf por Safeen Yaseen Ja'far
Plant Design Report-Oil Refinery.pdf
Safeen Yaseen Ja'far
•
9 vistas
Integrating Sustainable Development Goals (SDGs) in School Education por SheetalTank1
Integrating Sustainable Development Goals (SDGs) in School Education
SheetalTank1
•
13 vistas
Module-1, Chapter-2 Data Types, Variables, and Arrays por Demian Antony D'Mello
Module-1, Chapter-2 Data Types, Variables, and Arrays
Demian Antony D'Mello
•
9 vistas
ID-109.pdf
1.
Assessment of performance
and costs of CO2 based Next Gen Geothermal Power (NGP) systems NGP Makes CO2 Work! 3rd European sCO2 conference, Paris, September 2019 Dr. Stefan Glos, Siemens AG Confidential © Siemens AG 2018
2.
Unrestricted© Siemens AG
2019 Page 2 Gas & Power | 07/2019 Assessment of performance and costs of CO2 based Next Gen Geothermal Power (NGP) systems 1. CO2-based geothermal power generation Application range, basic concept, technology description, potential benefits 2. Thermodynamic Evaluation Cycle design, performance results, sensitivities, first component estimations 3. Economic Evaluation Key approach, calculation results, cost optimization potentials 4. Summary and Outlook Agenda
3.
Unrestricted© Siemens AG
2019 Page 3 Gas & Power | 07/2019 Application space of sCO2 power cycles 600 100 1000 Power Output [MWe] Heat Source Temperature [°C] 200 300 400 500 10 700 ≈ ORC: WHR/ Geothermal sCO2: WHR / CCPP sCO2: CSP & Fossil [SPP/CCPP (Heavy Duty)] Oxyfuel sCO2: Allam cycle STEAM sCO2: NGP (Geothermal) CARBOSOLA Focus of this presentation
4.
Unrestricted© Siemens AG
2019 Page 4 Gas & Power | 07/2019 Innovative idea: CO2-based geothermal power generation Randolph and Saar, 2011; Saar et al., 2012; Adams et al., 2014; Adams et al., 2015; Garapati et al., 2015 + Click here or copy-and-paste URL for more CPG-related publications: https://geg.ethz.ch/publications-result-code/?code=9hfqZIW 1) CO2 captured at fossil-fueled power plants, cement manufacturers, etc. is stored underground (standard CCS or EOR/EGR thus far) 2) CO2 forms a plume and heats up geothermally in the reservoir 3) CO2 rises buoyantly through production wells and is expanded in a turbine to generate electric power 4) CO2 is cooled and reinjected with the main CO2 stream (coming from the CO2 capture facility) through an injection well ➔Electricity generation 4 times more, compared to conventional, hydrothermal power generation ➔NGP has a significant larger potential than Hydrothermal
5.
Unrestricted© Siemens AG
2019 Page 5 Gas & Power | 07/2019 NGP has a significant larger potential than Hydrothermal 1 Geothermal Energy Association NextGen Geothermal Power Technical potential ~2000 GWel Hydrothermal Technical potential ~200 GWel Source: GEA1, 2016 & ETH Zurich with SIEMENS, 2018 NGP and CCS can be materialized worldwide
6.
Unrestricted© Siemens AG
2019 Page 6 Gas & Power | 07/2019 Assessment of performance and costs of CO2 based Next Gen Geothermal Power (NGP) systems 1. CO2-based geothermal power generation Application range, Basic concept, technology description, potential benefits 2. Thermodynamic Evaluation Cycle design, performance results, sensitivities, first component estimations 3. Economic Evaluation Key approach, calculation results, cost optimization potentials 4. Summary and Outlook Agenda
7.
Unrestricted© Siemens AG
2019 Page 7 Gas & Power | 07/2019 Assessment of NGP Systems Investigation scope direct indirect sCO2 sCO2 brine with thermosiphon with supplemental pumping sCO2 Isobutane/ R245fa/ R1234ze sCO2 Isobutane/ R245fa/ R1234ze Saar, Adams; Subsurface Energy Storage with CO2; 2018 Coordination number 1 (5-spot-system) Depth 2500 m 3500 m Well diameter 0,41 m Reservoir permeability 50 mD 100 mD Temp. gradient 35 °C/km Geologic conditions – Base Case Power Cycle Variants
8.
Unrestricted© Siemens AG
2019 Page 8 Gas & Power | 07/2019 Direct cycle design (NGP) Turbine η=82% Pturbine Ppump (optional) Qcondenser Tambient=15°C ΔT=7K (1) (2) (3) (4) (5) (6) Heat source Heat sink Injection-/ production well Turbomachinery work Pumping work Cap Rock Reservoir Qreservoir depth z Treservoir Surface Example for direct sCO2 (pumped) (1) (2) (4) (5) (6) 245 bar 102 °C 60 bar 22 °C x=0,79 276 bar 50 °C ρ ≈ 800 kg m-3 (injection well) ρ ≈ 500 kg m-3 (production well) ∆𝑝 = 𝜇 ∙ 𝐿 𝜌 ∙ 𝐴 ∙ ሶ 𝑚 κ = S ∙ ሶ 𝑚 κ = 𝑀 ∙ ሶ 𝑚 (Darcy‘s law) k = reservoir permeability M = mean spec. inverse mobility
9.
Unrestricted© Siemens AG
2019 Page 9 Gas & Power | 07/2019 3,24 2,76 1,33 0,95 1,23 1,59 1,31 1,26 0,73 0,79 2,86 0,10 0,12 1,67 1,17 0,85 0,73 0 1 2 3 4 5 6 7 Pumped CO2 Thermosiphon CO2 Pumped brine (CO2) Pumped brine (Isobutane) Single Pressure Pumped brine (Isobutane) Dual Pressure Power [MWe] Production/ Injection Pump ORC Pump Condenser/Cooler PNet η th η ex Calculation results for base case conditions Hydrothermal (brine based) NGP (CO2 based) Reservoir conditions: NPG base case Depth 2500 m Temp. gradient 35 K/km Reservoir permeability 50 mD injection-/ production well diameter 0,41 m Assumptions: Tambient 15°C ∆T-Pinch Condenser 7 K ∆T-Pinch HX 5 K ➢ ~ 2,5-3,4 times higher PNet compared to brine based systems at base case conditions x3,4 x2,5
10.
Unrestricted© Siemens AG
2019 Page 10 Gas & Power | 07/2019 Impact of depth and permeability 0,95 7,19 1,82 12,34 0,73 3,30 1,39 5,52 0,10 0,94 0,19 1,56 0,85 5,91 1,55 9,56 0 5 10 15 20 25 30 50 mD 2500 m 50 mD 3500 m 100 mD 2500 m 100 mD 3500 m Power [MWe] Production/ Injection Pump ORC Pump Condenser/Cooler PNet η thermal η Ex Pumped brine (Isobutane) NGP base case conditions ➢ Performance differences strongly depending on reservoir conditions Pumped CO2 3,24 8,45 4,41 10,18 1,59 2,69 2,03 3,08 1,67 5,63 1,78 5,86 0 5 10 15 20 25 30 50 mD 2500 m 50 mD 3500 m 100 mD 2500 m 100 mD 3500 m Power [MWe]
11.
Unrestricted© Siemens AG
2019 Page 11 Gas & Power | 07/2019 Impact of ambient temperature Direct CO2 (NGP) 6,09 3,24 1,75 2,94 1,59 0,57 2,98 1,67 0 2 4 6 8 10 12 14 5 °C 15 °C 25 °C Power [MWe] Indirect (brine /Isobutane) 1,76 0,95 0,61 1,14 0,73 0,29 0,15 0,10 0,06 1,58 0,85 0,38 0 2 4 6 8 10 12 14 5 °C 15 °C 25 °C Power [MWe] Production/ Injection Pump ORC Pump Condenser/Cooler PNet η thermal η Ex ➢ Higher sensitivity of NGP system to cooling conditions ➢ NGP system achieves for lower ambient temperatures even higher net output
12.
Unrestricted© Siemens AG
2019 Page 12 Gas & Power | 07/2019 Turbine dimension – Base case NGP (Pumped CO2) 1666 mm Pumped brine (Isobutane) 1738 mm Pumped CO2 Brine (Isobutane) ሶ 𝑉t𝑢𝑟𝑏𝑖𝑛𝑒,𝑖𝑛𝑙𝑒𝑡 [m³/s] 1,3 2,3 ሶ 𝑉t𝑢𝑟𝑏𝑖𝑛𝑒,outlet [m³/s] 2,2 7,7 ∆ℎ [kJ/kg] 14,5 41,2 ∆𝑝 [bar] 58 7 p in 10 bar Tin 69°C p out 61 bar Tout 23 °C p out 3 bar Tout 33 °C p in 119 bar Tin 60 °C ➢ Lower volumetric flow in CO2 turbine ➢ Lower enthalpy difference ➢ Higher pressure levels
13.
Unrestricted© Siemens AG
2019 Page 13 Gas & Power | 07/2019 Turbine dimension – Base case ➢ Low enthalpy drop & high pressure difference ➢ High bending forces ➢ Large chord length and root sizes
14.
Unrestricted© Siemens AG
2019 Page 14 Gas & Power | 07/2019 Assessment of performance and costs of CO2 based Next Gen Geothermal Power (NGP) systems 1. CO2-based geothermal power generation Application range, Basic concept, technology description, potential benefits 2. Thermodynamic Evaluation Cycle design, performance results, sensitivities, first component estimations 3. Economic Evaluation Key approach, calculation results, cost optimization potentials 4. Summary and Outlook Agenda
15.
Unrestricted© Siemens AG
2019 Page 15 Gas & Power | 07/2019 CO2-based geothermal power generation Key approach for cost assessment • No significant thermal decline during lifetime • Operating lifetime: 25 years (No significant thermal decline) • Wellfield size: 5 x 5 km (25x injection wells + 36x production wells) • Surface piping: 65km (Ø ~1 – 1,2m) • Turbine train design for 60°C/ 115bar • Location: USA Total Capex + Operation and Maintenance Costs EPA // GETEM *) Siemens AG Surface power plant Lazard’s Analysis Levelized Cost of Electricity (LCOE) • Corporate tax rate • Interest rates • Cost escalation • Depreciation schedule • Etc. *) EPA: United States Environmental Protection Agency, 2008 GETEM: Geothermal Electricity Technology Evaluation Model Well field (1) (2) Reservoir depth 2,5 km 3,5 km Reservoir permeability 50 mD 100 mD 52 MW 157 MW
16.
Unrestricted© Siemens AG
2019 Page 16 Gas & Power | 07/2019 https://www.lazard.com/media/450784/l azards-levelized-cost-of-energy- version-120-vfinal.pdf https://www.lazard.com/perspective/lev elized-cost-of-energy-and-levelized- cost-of-storage-2018/ Solar Thermal & Soratge Conv. Geothermal(brine) Nuclear Emission free full dispatchable technologies
17.
Unrestricted© Siemens AG
2019 Page 17 Gas & Power | 07/2019 Levelized Cost of Electricity (LCOE) – first results NGP system compared to other technologies Wind: offshore Nuclear/ Coal: fully depreciated facilities Very first cost estimation ➢ Estimated LCOE for 160 MW power plant within range of conventional technologies ➢ Focus on geologically more favorable locations can almost quarter costs (A) 78 (B) 68 (A) (B) (C) Surface size: 2x2km 3x3km 5x5km # of wells: 15 25 61 depth: 4km 4 km 5km Permeability: 100mD 600MW Source LCOE other technologies: Lazard (2018): Levelized Cost of Energy Analysis, Version 12.0 (A) 58 (B) 49 (C) 43 600MW (C) 43
18.
Unrestricted© Siemens AG
2019 Page 18 Gas & Power | 07/2019 Summary CO2 G CO2 • Agreement of thermodynamic simulations of NGP systems with published data • Significant more power (than conventional technology) • Surface power plant layout less complex with respect to equipment • Cost competitive (compared to solar energy with storage) • NGP can push the profitability of capturing carbon dioxide and transform CCS to CCU … create a huge market potential.
19.
Unrestricted© Siemens AG
2019 Page 19 Gas & Power | 07/2019 Outlook CO2 G CO2 • Identification of partner for subsurface portion and project development • Accelrate R&D / Proof of concept / Realization of NGP demonstrator • Realization of commercial projects
20.
Assessment of performance
and costs of CO2 based Next Gen Geothermal Power (NGP) systems Thank you for your attention ! 3rd European sCO2 conference, Paris, September 2019 Dr. Stefan Glos, Siemens AG Confidential © Siemens AG 2018
21.
Frei verwendbar ©
Siemens AG 2018 Glos / Sudhoff GP PGO PR R&D SU Page 21 Backup
22.
Unrestricted© Siemens AG
2019 Page 22 Gas & Power | 07/2019 LCOE Calculation Different financial boundary conditions 0 1 2 3 4 5 6 7 8 0 20 40 60 80 100 120 LCOE [$/MWh] Lazard USA MENA Conv. Geo. (US location) CSP&Storage (US location) Direct Cooling, ambient 12°C Direct Cooling, ambient 15°C Cooling Tower, ambient 15°C Direct Cooling, ambient 26°C Air Cooling, ambient 30°C MENA MENA US Location US Location North Sea Finacial Model Locationl ➢ For the same location and the same financial model LCO 40% lower ➢ Even for MENA region with Air Cooling LCOE lower than CSP + Storage
23.
Unrestricted© Siemens AG
2019 Page 23 Gas & Power | 07/2019 LCOE Calculation Different financial approaches - Assumptions Assumption Lazard USA (Siemens assumptions) MENA (Siemens assumptions) your boundaries Cost of Debt 8% 2,6% 3,2% Combined Tax Rate 40% 23% 5% Depreciation schedule MACRS 5-years MACRS 5-years Declining Balance (20%)