ID-109.pdf

Assessment of performance and costs of CO2
based Next Gen Geothermal Power (NGP)
systems
NGP Makes CO2 Work!
3rd European sCO2 conference, Paris, September 2019
Dr. Stefan Glos, Siemens AG
Confidential © Siemens AG 2018
Unrestricted© Siemens AG 2019
Page 2 Gas & Power | 07/2019
Assessment of performance and costs of CO2 based Next
Gen Geothermal Power (NGP) systems
1. CO2-based geothermal power generation
Application range, basic concept, technology description,
potential benefits
2. Thermodynamic Evaluation
Cycle design, performance results, sensitivities,
first component estimations
3. Economic Evaluation
Key approach, calculation results, cost optimization potentials
4. Summary and Outlook
Agenda
Unrestricted© Siemens AG 2019
Page 3 Gas & Power | 07/2019
Application space of sCO2 power cycles
600
100 1000
Power Output [MWe]
Heat
Source
Temperature
[°C]
200
300
400
500
10
700
≈
ORC: WHR/
Geothermal
sCO2: WHR / CCPP
sCO2: CSP & Fossil [SPP/CCPP (Heavy Duty)]
Oxyfuel sCO2: Allam cycle
STEAM
sCO2: NGP (Geothermal)
CARBOSOLA
Focus of this presentation
Unrestricted© Siemens AG 2019
Page 4 Gas & Power | 07/2019
Innovative idea:
CO2-based geothermal power generation
Randolph and Saar, 2011; Saar et al., 2012; Adams et al., 2014;
Adams et al., 2015; Garapati et al., 2015
+ Click here or copy-and-paste URL for more CPG-related publications:
https://geg.ethz.ch/publications-result-code/?code=9hfqZIW
1) CO2 captured at fossil-fueled power plants, cement
manufacturers, etc. is stored underground (standard CCS
or EOR/EGR thus far)
2) CO2 forms a plume and heats up geothermally in the
reservoir
3) CO2 rises buoyantly through production wells and is
expanded in a turbine to generate electric power
4) CO2 is cooled and reinjected with the main CO2 stream
(coming from the CO2 capture facility) through an injection
well
➔Electricity generation 4 times more, compared to
conventional, hydrothermal power generation
➔NGP has a significant larger potential than
Hydrothermal
Unrestricted© Siemens AG 2019
Page 5 Gas & Power | 07/2019
NGP has a significant larger potential than Hydrothermal
1 Geothermal Energy Association
NextGen Geothermal Power
Technical potential
~2000 GWel
Hydrothermal
Technical
potential
~200 GWel
Source:
GEA1, 2016 &
ETH Zurich
with SIEMENS,
2018
NGP and CCS can be materialized worldwide
Unrestricted© Siemens AG 2019
Page 6 Gas & Power | 07/2019
Assessment of performance and costs of CO2 based Next
Gen Geothermal Power (NGP) systems
1. CO2-based geothermal power generation
Application range, Basic concept, technology description,
potential benefits
2. Thermodynamic Evaluation
Cycle design, performance results, sensitivities,
first component estimations
3. Economic Evaluation
Key approach, calculation results, cost optimization potentials
4. Summary and Outlook
Agenda
Unrestricted© Siemens AG 2019
Page 7 Gas & Power | 07/2019
Assessment of NGP Systems
Investigation scope
direct indirect
sCO2 sCO2 brine
with thermosiphon
with supplemental
pumping
sCO2
Isobutane/
R245fa/
R1234ze
sCO2
Isobutane/
R245fa/
R1234ze
Saar, Adams; Subsurface Energy Storage with CO2; 2018
Coordination number 1 (5-spot-system)
Depth 2500 m 3500 m
Well diameter 0,41 m
Reservoir permeability 50 mD 100 mD
Temp. gradient 35 °C/km
Geologic conditions – Base Case
Power Cycle Variants
Unrestricted© Siemens AG 2019
Page 8 Gas & Power | 07/2019
Direct cycle design (NGP)
Turbine
η=82%
Pturbine
Ppump
(optional)
Qcondenser
Tambient=15°C
ΔT=7K
(1)
(2)
(3)
(4)
(5)
(6)
Heat source
Heat sink
Injection-/ production well
Turbomachinery work
Pumping work
Cap Rock
Reservoir
Qreservoir
depth z
Treservoir
Surface
Example for direct sCO2 (pumped)
(1)
(2)
(4)
(5)
(6)
245 bar
102 °C
60 bar
22 °C
x=0,79
276 bar
50 °C
ρ ≈ 800 kg m-3
(injection well)
ρ ≈ 500 kg m-3
(production well)
∆𝑝 =
𝜇 ∙ 𝐿
𝜌 ∙ 𝐴
∙
ሶ
𝑚
κ
= S ∙
ሶ
𝑚
κ
= 𝑀 ∙ ሶ
𝑚
(Darcy‘s law)
k = reservoir permeability
M = mean spec. inverse mobility
Unrestricted© Siemens AG 2019
Page 9 Gas & Power | 07/2019
3,24
2,76
1,33 0,95 1,23
1,59
1,31
1,26
0,73
0,79
2,86
0,10
0,12
1,67
1,17
0,85
0,73
0
1
2
3
4
5
6
7
Pumped
CO2
Thermosiphon
CO2
Pumped
brine
(CO2)
Pumped
brine
(Isobutane)
Single Pressure
Pumped
brine
(Isobutane)
Dual Pressure
Power
[MWe]
Production/ Injection Pump
ORC Pump
Condenser/Cooler
PNet
η th
η ex
Calculation results for base case conditions
Hydrothermal (brine based)
NGP (CO2 based)
Reservoir conditions:
NPG base case
Depth 2500 m
Temp. gradient 35 K/km
Reservoir
permeability
50 mD
injection-/
production
well diameter
0,41 m
Assumptions:
Tambient 15°C
∆T-Pinch
Condenser
7 K
∆T-Pinch HX 5 K
➢ ~ 2,5-3,4 times higher PNet compared to
brine based systems at base case conditions
x3,4
x2,5
Unrestricted© Siemens AG 2019
Page 10 Gas & Power | 07/2019
Impact of depth and permeability
0,95
7,19
1,82
12,34
0,73
3,30
1,39
5,52
0,10
0,94
0,19
1,56
0,85
5,91
1,55
9,56
0
5
10
15
20
25
30
50 mD
2500 m
50 mD
3500 m
100 mD
2500 m
100 mD
3500 m
Power
[MWe]
Production/ Injection Pump
ORC Pump
Condenser/Cooler
PNet
η thermal
η Ex
Pumped brine (Isobutane)
 NGP base case
conditions
➢ Performance differences strongly depending on reservoir conditions
Pumped CO2
3,24
8,45
4,41
10,18
1,59
2,69
2,03
3,08
1,67
5,63
1,78
5,86
0
5
10
15
20
25
30
50 mD
2500 m
50 mD
3500 m
100 mD
2500 m
100 mD
3500 m
Power
[MWe]
 
Unrestricted© Siemens AG 2019
Page 11 Gas & Power | 07/2019
Impact of ambient temperature
Direct CO2 (NGP)
6,09
3,24
1,75
2,94
1,59
0,57
2,98
1,67
0
2
4
6
8
10
12
14
5 °C 15 °C 25 °C
Power
[MWe]
Indirect (brine /Isobutane)
1,76
0,95 0,61
1,14
0,73
0,29
0,15
0,10
0,06
1,58
0,85
0,38
0
2
4
6
8
10
12
14
5 °C 15 °C 25 °C
Power
[MWe]
Production/ Injection Pump
ORC Pump
Condenser/Cooler
PNet
η thermal
η Ex
➢ Higher sensitivity of NGP system
to cooling conditions
➢ NGP system achieves for lower ambient
temperatures even higher net output
Unrestricted© Siemens AG 2019
Page 12 Gas & Power | 07/2019
Turbine dimension – Base case
NGP (Pumped CO2)
1666 mm
Pumped brine (Isobutane)
1738 mm
Pumped CO2
Brine
(Isobutane)
ሶ
𝑉t𝑢𝑟𝑏𝑖𝑛𝑒,𝑖𝑛𝑙𝑒𝑡 [m³/s] 1,3 2,3
ሶ
𝑉t𝑢𝑟𝑏𝑖𝑛𝑒,outlet [m³/s] 2,2 7,7
∆ℎ [kJ/kg] 14,5 41,2
∆𝑝 [bar] 58 7
p in 10 bar
Tin 69°C
p out 61 bar
Tout 23 °C
p out 3 bar
Tout 33 °C
p in 119 bar
Tin 60 °C
➢ Lower volumetric flow in CO2 turbine
➢ Lower enthalpy difference
➢ Higher pressure levels
Unrestricted© Siemens AG 2019
Page 13 Gas & Power | 07/2019
Turbine dimension – Base case
➢ Low enthalpy drop & high pressure difference
➢ High bending forces
➢ Large chord length and root sizes
Unrestricted© Siemens AG 2019
Page 14 Gas & Power | 07/2019
Assessment of performance and costs of CO2 based Next
Gen Geothermal Power (NGP) systems
1. CO2-based geothermal power generation
Application range, Basic concept, technology description,
potential benefits
2. Thermodynamic Evaluation
Cycle design, performance results, sensitivities,
first component estimations
3. Economic Evaluation
Key approach, calculation results, cost optimization potentials
4. Summary and Outlook
Agenda
Unrestricted© Siemens AG 2019
Page 15 Gas & Power | 07/2019
CO2-based geothermal power generation
Key approach for cost assessment
• No significant thermal decline during lifetime
• Operating lifetime: 25 years (No significant thermal decline)
• Wellfield size: 5 x 5 km (25x injection wells + 36x production wells)
• Surface piping: 65km (Ø ~1 – 1,2m)
• Turbine train design for 60°C/ 115bar
• Location: USA
Total Capex + Operation and Maintenance Costs
EPA // GETEM *)
Siemens AG
Surface power
plant
Lazard’s Analysis
Levelized
Cost of
Electricity
(LCOE)
• Corporate tax rate
• Interest rates
• Cost escalation
• Depreciation schedule
• Etc.
*) EPA: United States Environmental Protection Agency, 2008
GETEM: Geothermal Electricity Technology Evaluation Model
Well field
(1) (2)
Reservoir
depth
2,5 km 3,5 km
Reservoir
permeability
50 mD 100 mD
52 MW 157 MW
Unrestricted© Siemens AG 2019
Page 16 Gas & Power | 07/2019
https://www.lazard.com/media/450784/l
azards-levelized-cost-of-energy-
version-120-vfinal.pdf
https://www.lazard.com/perspective/lev
elized-cost-of-energy-and-levelized-
cost-of-storage-2018/
Solar Thermal & Soratge
Conv. Geothermal(brine)
Nuclear
Emission free full dispatchable technologies
Unrestricted© Siemens AG 2019
Page 17 Gas & Power | 07/2019
Levelized Cost of Electricity (LCOE) – first results
NGP system compared to other technologies
Wind: offshore
Nuclear/ Coal: fully depreciated
facilities
Very first cost estimation
➢ Estimated LCOE for 160 MW power plant within range of conventional technologies
➢ Focus on geologically more favorable locations can almost quarter costs
(A) 78
(B) 68
(A) (B) (C)
Surface size: 2x2km 3x3km 5x5km
# of wells: 15 25 61
depth: 4km 4 km 5km
Permeability: 100mD
600MW
Source LCOE other technologies:
Lazard (2018): Levelized Cost of
Energy Analysis, Version 12.0
(A) 58
(B) 49
(C) 43
600MW
(C) 43
Unrestricted© Siemens AG 2019
Page 18 Gas & Power | 07/2019
Summary
CO2
G CO2
• Agreement of thermodynamic simulations of NGP
systems with published data
• Significant more power (than conventional technology)
• Surface power plant layout less complex with respect to
equipment
• Cost competitive (compared to solar energy with storage)
• NGP can push the profitability of capturing carbon dioxide
and transform CCS to CCU
… create a huge market potential.
Unrestricted© Siemens AG 2019
Page 19 Gas & Power | 07/2019
Outlook
CO2
G CO2
• Identification of partner for subsurface portion and
project development
• Accelrate R&D / Proof of concept / Realization of NGP
demonstrator
• Realization of commercial projects
Assessment of performance and costs of CO2
based Next Gen Geothermal Power (NGP)
systems
Thank you for your attention !
3rd European sCO2 conference, Paris, September 2019
Dr. Stefan Glos, Siemens AG
Confidential © Siemens AG 2018
Frei verwendbar © Siemens AG 2018
Glos / Sudhoff GP PGO PR R&D SU
Page 21
Backup
Unrestricted© Siemens AG 2019
Page 22 Gas & Power | 07/2019
LCOE Calculation
Different financial boundary conditions
0
1
2
3
4
5
6
7
8
0 20 40 60 80 100 120 LCOE [$/MWh]
Lazard
USA
MENA
Conv. Geo.
(US location)
CSP&Storage
(US location)
Direct Cooling,
ambient 12°C
Direct Cooling,
ambient 15°C
Cooling Tower,
ambient 15°C
Direct Cooling,
ambient 26°C
Air Cooling,
ambient 30°C MENA
MENA
US Location
US Location
North Sea
Finacial Model
Locationl
➢ For the same location and the same financial model LCO 40% lower
➢ Even for MENA region with Air Cooling LCOE lower than CSP + Storage
Unrestricted© Siemens AG 2019
Page 23 Gas & Power | 07/2019
LCOE Calculation
Different financial approaches - Assumptions
Assumption Lazard USA
(Siemens assumptions)
MENA
(Siemens assumptions) your boundaries
Cost of Debt 8% 2,6% 3,2%
Combined Tax Rate 40% 23% 5%
Depreciation
schedule
MACRS 5-years MACRS 5-years
Declining Balance
(20%)
1 de 23

Recomendados

Cutting Cost of CO2 Capture in Process Industry (CO2stCap) Project overview &... por
Cutting Cost of CO2 Capture in Process Industry (CO2stCap) Project overview &...Cutting Cost of CO2 Capture in Process Industry (CO2stCap) Project overview &...
Cutting Cost of CO2 Capture in Process Industry (CO2stCap) Project overview &...Global CCS Institute
1.1K vistas46 diapositivas
Carbon Capture por
Carbon CaptureCarbon Capture
Carbon CaptureAmericanMillwright
556 vistas20 diapositivas
EDF Carbon Capture & Storage por
EDF Carbon Capture & StorageEDF Carbon Capture & Storage
EDF Carbon Capture & Storagekene2008
399 vistas15 diapositivas
Presentation D Urosevic Iasme 08 por
Presentation D Urosevic Iasme 08Presentation D Urosevic Iasme 08
Presentation D Urosevic Iasme 08guestc95d9e
181 vistas16 diapositivas
Presentation Durosevic IASME 08 por
Presentation Durosevic IASME 08Presentation Durosevic IASME 08
Presentation Durosevic IASME 08victoriagroup
234 vistas16 diapositivas
A perspective on transition engineering options from capture-readiness to ful... por
A perspective on transition engineering options from capture-readiness to ful...A perspective on transition engineering options from capture-readiness to ful...
A perspective on transition engineering options from capture-readiness to ful...UK Carbon Capture and Storage Research Centre
827 vistas29 diapositivas

Más contenido relacionado

Similar a ID-109.pdf

Global CCS Institute Presentation por
Global CCS Institute PresentationGlobal CCS Institute Presentation
Global CCS Institute PresentationGlobal CCS Institute
927 vistas19 diapositivas
Future possibilities for utilization of solar energy serc 2009 05-20 por
Future possibilities for utilization of solar energy serc 2009 05-20Future possibilities for utilization of solar energy serc 2009 05-20
Future possibilities for utilization of solar energy serc 2009 05-20Stefan Larsson
809 vistas87 diapositivas
Electricity Production By Waste Materials por
Electricity Production By Waste MaterialsElectricity Production By Waste Materials
Electricity Production By Waste MaterialsIRJET Journal
112 vistas4 diapositivas
Energy Systems Optimization por
Energy Systems OptimizationEnergy Systems Optimization
Energy Systems OptimizationAristotelisGiannopoulos
11.2K vistas20 diapositivas
Introduction of CO2 Reduction Technologies in Steelworks por
Introduction of  CO2 Reduction Technologies in SteelworksIntroduction of  CO2 Reduction Technologies in Steelworks
Introduction of CO2 Reduction Technologies in SteelworksEnergy-Education-Resource-Center
481 vistas68 diapositivas
C2 - ENGINEERING THE ENERGY TRANSITION por
C2 - ENGINEERING THE  ENERGY TRANSITIONC2 - ENGINEERING THE  ENERGY TRANSITION
C2 - ENGINEERING THE ENERGY TRANSITIONIceland Geothermal
169 vistas23 diapositivas

Similar a ID-109.pdf(20)

Future possibilities for utilization of solar energy serc 2009 05-20 por Stefan Larsson
Future possibilities for utilization of solar energy serc 2009 05-20Future possibilities for utilization of solar energy serc 2009 05-20
Future possibilities for utilization of solar energy serc 2009 05-20
Stefan Larsson809 vistas
Electricity Production By Waste Materials por IRJET Journal
Electricity Production By Waste MaterialsElectricity Production By Waste Materials
Electricity Production By Waste Materials
IRJET Journal112 vistas
Impacts of green hydrogen on the Italian power system by 2030 por IEA-ETSAP
Impacts of green hydrogen on the Italian power system by 2030Impacts of green hydrogen on the Italian power system by 2030
Impacts of green hydrogen on the Italian power system by 2030
IEA-ETSAP134 vistas
Eor Brd Ppt 25 Aug09 por princeslea79
Eor Brd Ppt 25 Aug09Eor Brd Ppt 25 Aug09
Eor Brd Ppt 25 Aug09
princeslea79355 vistas
Co2 capture-technologies por Dzung Le
Co2 capture-technologiesCo2 capture-technologies
Co2 capture-technologies
Dzung Le192 vistas
184_presentation_20210606_132102.pptx por ArockiaFenil1
184_presentation_20210606_132102.pptx184_presentation_20210606_132102.pptx
184_presentation_20210606_132102.pptx
ArockiaFenil13 vistas
Costs of capturing CO2 from industrial sources - Morgan Summers, National Ene... por Global CCS Institute
Costs of capturing CO2 from industrial sources - Morgan Summers, National Ene...Costs of capturing CO2 from industrial sources - Morgan Summers, National Ene...
Costs of capturing CO2 from industrial sources - Morgan Summers, National Ene...
Global CCS Institute2.1K vistas
Glier_Defense_Online_Publication por Justin Glier
Glier_Defense_Online_PublicationGlier_Defense_Online_Publication
Glier_Defense_Online_Publication
Justin Glier196 vistas
LNG Facility GHG Mitigation Options - Government of Nova Scotia por Marcellus Drilling News
LNG Facility GHG Mitigation Options - Government of Nova ScotiaLNG Facility GHG Mitigation Options - Government of Nova Scotia
LNG Facility GHG Mitigation Options - Government of Nova Scotia
EPRI Low CO2 Emission Coal R&D For Kpic por Jeffrey Phillips
EPRI Low CO2 Emission Coal R&D For KpicEPRI Low CO2 Emission Coal R&D For Kpic
EPRI Low CO2 Emission Coal R&D For Kpic
Jeffrey Phillips787 vistas
Overview of Current Directions in Carbon Capture R&D por Global CCS Institute
Overview of Current Directions in Carbon Capture R&DOverview of Current Directions in Carbon Capture R&D
Overview of Current Directions in Carbon Capture R&D
Global CCS Institute1.7K vistas
Power-to-Gas Storing Renewable Energy in the Gas Grid por ITM Power
Power-to-Gas Storing Renewable Energy in the Gas GridPower-to-Gas Storing Renewable Energy in the Gas Grid
Power-to-Gas Storing Renewable Energy in the Gas Grid
ITM Power2K vistas
Power-to-gas storing renewable energy in the gas grid por Rebecca Markillie
Power-to-gas storing renewable energy in the gas gridPower-to-gas storing renewable energy in the gas grid
Power-to-gas storing renewable energy in the gas grid
Rebecca Markillie1.2K vistas

Último

Robotics in construction enterprise por
Robotics in construction enterpriseRobotics in construction enterprise
Robotics in construction enterpriseKhalid Abdel Naser Abdel Rahim
5 vistas1 diapositiva
Design_Discover_Develop_Campaign.pptx por
Design_Discover_Develop_Campaign.pptxDesign_Discover_Develop_Campaign.pptx
Design_Discover_Develop_Campaign.pptxShivanshSeth6
56 vistas20 diapositivas
Programmable Logic Devices : SPLD and CPLD por
Programmable Logic Devices : SPLD and CPLDProgrammable Logic Devices : SPLD and CPLD
Programmable Logic Devices : SPLD and CPLDUsha Mehta
27 vistas54 diapositivas
Basic Design Flow for Field Programmable Gate Arrays por
Basic Design Flow for Field Programmable Gate ArraysBasic Design Flow for Field Programmable Gate Arrays
Basic Design Flow for Field Programmable Gate ArraysUsha Mehta
10 vistas21 diapositivas
BCIC - Manufacturing Conclave - Technology-Driven Manufacturing for Growth por
BCIC - Manufacturing Conclave -  Technology-Driven Manufacturing for GrowthBCIC - Manufacturing Conclave -  Technology-Driven Manufacturing for Growth
BCIC - Manufacturing Conclave - Technology-Driven Manufacturing for GrowthInnomantra
22 vistas4 diapositivas
Global airborne satcom market report por
Global airborne satcom market reportGlobal airborne satcom market report
Global airborne satcom market reportdefencereport78
8 vistas13 diapositivas

Último(20)

Design_Discover_Develop_Campaign.pptx por ShivanshSeth6
Design_Discover_Develop_Campaign.pptxDesign_Discover_Develop_Campaign.pptx
Design_Discover_Develop_Campaign.pptx
ShivanshSeth656 vistas
Programmable Logic Devices : SPLD and CPLD por Usha Mehta
Programmable Logic Devices : SPLD and CPLDProgrammable Logic Devices : SPLD and CPLD
Programmable Logic Devices : SPLD and CPLD
Usha Mehta27 vistas
Basic Design Flow for Field Programmable Gate Arrays por Usha Mehta
Basic Design Flow for Field Programmable Gate ArraysBasic Design Flow for Field Programmable Gate Arrays
Basic Design Flow for Field Programmable Gate Arrays
Usha Mehta10 vistas
BCIC - Manufacturing Conclave - Technology-Driven Manufacturing for Growth por Innomantra
BCIC - Manufacturing Conclave -  Technology-Driven Manufacturing for GrowthBCIC - Manufacturing Conclave -  Technology-Driven Manufacturing for Growth
BCIC - Manufacturing Conclave - Technology-Driven Manufacturing for Growth
Innomantra 22 vistas
2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx por lwang78
2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx
2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx
lwang78314 vistas
IRJET-Productivity Enhancement Using Method Study.pdf por SahilBavdhankar
IRJET-Productivity Enhancement Using Method Study.pdfIRJET-Productivity Enhancement Using Method Study.pdf
IRJET-Productivity Enhancement Using Method Study.pdf
SahilBavdhankar10 vistas
Trust Metric-Based Anomaly Detection via Deep Deterministic Policy Gradient R... por IJCNCJournal
Trust Metric-Based Anomaly Detection via Deep Deterministic Policy Gradient R...Trust Metric-Based Anomaly Detection via Deep Deterministic Policy Gradient R...
Trust Metric-Based Anomaly Detection via Deep Deterministic Policy Gradient R...
IJCNCJournal5 vistas
AWS Certified Solutions Architect Associate Exam Guide_published .pdf por Kiran Kumar Malik
AWS Certified Solutions Architect Associate Exam Guide_published .pdfAWS Certified Solutions Architect Associate Exam Guide_published .pdf
AWS Certified Solutions Architect Associate Exam Guide_published .pdf
ASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdf por AlhamduKure
ASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdfASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdf
ASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdf
AlhamduKure10 vistas
Créativité dans le design mécanique à l’aide de l’optimisation topologique por LIEGE CREATIVE
Créativité dans le design mécanique à l’aide de l’optimisation topologiqueCréativité dans le design mécanique à l’aide de l’optimisation topologique
Créativité dans le design mécanique à l’aide de l’optimisation topologique
LIEGE CREATIVE9 vistas
taylor-2005-classical-mechanics.pdf por ArturoArreola10
taylor-2005-classical-mechanics.pdftaylor-2005-classical-mechanics.pdf
taylor-2005-classical-mechanics.pdf
ArturoArreola1037 vistas
Integrating Sustainable Development Goals (SDGs) in School Education por SheetalTank1
Integrating Sustainable Development Goals (SDGs) in School EducationIntegrating Sustainable Development Goals (SDGs) in School Education
Integrating Sustainable Development Goals (SDGs) in School Education
SheetalTank113 vistas

ID-109.pdf

  • 1. Assessment of performance and costs of CO2 based Next Gen Geothermal Power (NGP) systems NGP Makes CO2 Work! 3rd European sCO2 conference, Paris, September 2019 Dr. Stefan Glos, Siemens AG Confidential © Siemens AG 2018
  • 2. Unrestricted© Siemens AG 2019 Page 2 Gas & Power | 07/2019 Assessment of performance and costs of CO2 based Next Gen Geothermal Power (NGP) systems 1. CO2-based geothermal power generation Application range, basic concept, technology description, potential benefits 2. Thermodynamic Evaluation Cycle design, performance results, sensitivities, first component estimations 3. Economic Evaluation Key approach, calculation results, cost optimization potentials 4. Summary and Outlook Agenda
  • 3. Unrestricted© Siemens AG 2019 Page 3 Gas & Power | 07/2019 Application space of sCO2 power cycles 600 100 1000 Power Output [MWe] Heat Source Temperature [°C] 200 300 400 500 10 700 ≈ ORC: WHR/ Geothermal sCO2: WHR / CCPP sCO2: CSP & Fossil [SPP/CCPP (Heavy Duty)] Oxyfuel sCO2: Allam cycle STEAM sCO2: NGP (Geothermal) CARBOSOLA Focus of this presentation
  • 4. Unrestricted© Siemens AG 2019 Page 4 Gas & Power | 07/2019 Innovative idea: CO2-based geothermal power generation Randolph and Saar, 2011; Saar et al., 2012; Adams et al., 2014; Adams et al., 2015; Garapati et al., 2015 + Click here or copy-and-paste URL for more CPG-related publications: https://geg.ethz.ch/publications-result-code/?code=9hfqZIW 1) CO2 captured at fossil-fueled power plants, cement manufacturers, etc. is stored underground (standard CCS or EOR/EGR thus far) 2) CO2 forms a plume and heats up geothermally in the reservoir 3) CO2 rises buoyantly through production wells and is expanded in a turbine to generate electric power 4) CO2 is cooled and reinjected with the main CO2 stream (coming from the CO2 capture facility) through an injection well ➔Electricity generation 4 times more, compared to conventional, hydrothermal power generation ➔NGP has a significant larger potential than Hydrothermal
  • 5. Unrestricted© Siemens AG 2019 Page 5 Gas & Power | 07/2019 NGP has a significant larger potential than Hydrothermal 1 Geothermal Energy Association NextGen Geothermal Power Technical potential ~2000 GWel Hydrothermal Technical potential ~200 GWel Source: GEA1, 2016 & ETH Zurich with SIEMENS, 2018 NGP and CCS can be materialized worldwide
  • 6. Unrestricted© Siemens AG 2019 Page 6 Gas & Power | 07/2019 Assessment of performance and costs of CO2 based Next Gen Geothermal Power (NGP) systems 1. CO2-based geothermal power generation Application range, Basic concept, technology description, potential benefits 2. Thermodynamic Evaluation Cycle design, performance results, sensitivities, first component estimations 3. Economic Evaluation Key approach, calculation results, cost optimization potentials 4. Summary and Outlook Agenda
  • 7. Unrestricted© Siemens AG 2019 Page 7 Gas & Power | 07/2019 Assessment of NGP Systems Investigation scope direct indirect sCO2 sCO2 brine with thermosiphon with supplemental pumping sCO2 Isobutane/ R245fa/ R1234ze sCO2 Isobutane/ R245fa/ R1234ze Saar, Adams; Subsurface Energy Storage with CO2; 2018 Coordination number 1 (5-spot-system) Depth 2500 m 3500 m Well diameter 0,41 m Reservoir permeability 50 mD 100 mD Temp. gradient 35 °C/km Geologic conditions – Base Case Power Cycle Variants
  • 8. Unrestricted© Siemens AG 2019 Page 8 Gas & Power | 07/2019 Direct cycle design (NGP) Turbine η=82% Pturbine Ppump (optional) Qcondenser Tambient=15°C ΔT=7K (1) (2) (3) (4) (5) (6) Heat source Heat sink Injection-/ production well Turbomachinery work Pumping work Cap Rock Reservoir Qreservoir depth z Treservoir Surface Example for direct sCO2 (pumped) (1) (2) (4) (5) (6) 245 bar 102 °C 60 bar 22 °C x=0,79 276 bar 50 °C ρ ≈ 800 kg m-3 (injection well) ρ ≈ 500 kg m-3 (production well) ∆𝑝 = 𝜇 ∙ 𝐿 𝜌 ∙ 𝐴 ∙ ሶ 𝑚 κ = S ∙ ሶ 𝑚 κ = 𝑀 ∙ ሶ 𝑚 (Darcy‘s law) k = reservoir permeability M = mean spec. inverse mobility
  • 9. Unrestricted© Siemens AG 2019 Page 9 Gas & Power | 07/2019 3,24 2,76 1,33 0,95 1,23 1,59 1,31 1,26 0,73 0,79 2,86 0,10 0,12 1,67 1,17 0,85 0,73 0 1 2 3 4 5 6 7 Pumped CO2 Thermosiphon CO2 Pumped brine (CO2) Pumped brine (Isobutane) Single Pressure Pumped brine (Isobutane) Dual Pressure Power [MWe] Production/ Injection Pump ORC Pump Condenser/Cooler PNet η th η ex Calculation results for base case conditions Hydrothermal (brine based) NGP (CO2 based) Reservoir conditions: NPG base case Depth 2500 m Temp. gradient 35 K/km Reservoir permeability 50 mD injection-/ production well diameter 0,41 m Assumptions: Tambient 15°C ∆T-Pinch Condenser 7 K ∆T-Pinch HX 5 K ➢ ~ 2,5-3,4 times higher PNet compared to brine based systems at base case conditions x3,4 x2,5
  • 10. Unrestricted© Siemens AG 2019 Page 10 Gas & Power | 07/2019 Impact of depth and permeability 0,95 7,19 1,82 12,34 0,73 3,30 1,39 5,52 0,10 0,94 0,19 1,56 0,85 5,91 1,55 9,56 0 5 10 15 20 25 30 50 mD 2500 m 50 mD 3500 m 100 mD 2500 m 100 mD 3500 m Power [MWe] Production/ Injection Pump ORC Pump Condenser/Cooler PNet η thermal η Ex Pumped brine (Isobutane)  NGP base case conditions ➢ Performance differences strongly depending on reservoir conditions Pumped CO2 3,24 8,45 4,41 10,18 1,59 2,69 2,03 3,08 1,67 5,63 1,78 5,86 0 5 10 15 20 25 30 50 mD 2500 m 50 mD 3500 m 100 mD 2500 m 100 mD 3500 m Power [MWe]  
  • 11. Unrestricted© Siemens AG 2019 Page 11 Gas & Power | 07/2019 Impact of ambient temperature Direct CO2 (NGP) 6,09 3,24 1,75 2,94 1,59 0,57 2,98 1,67 0 2 4 6 8 10 12 14 5 °C 15 °C 25 °C Power [MWe] Indirect (brine /Isobutane) 1,76 0,95 0,61 1,14 0,73 0,29 0,15 0,10 0,06 1,58 0,85 0,38 0 2 4 6 8 10 12 14 5 °C 15 °C 25 °C Power [MWe] Production/ Injection Pump ORC Pump Condenser/Cooler PNet η thermal η Ex ➢ Higher sensitivity of NGP system to cooling conditions ➢ NGP system achieves for lower ambient temperatures even higher net output
  • 12. Unrestricted© Siemens AG 2019 Page 12 Gas & Power | 07/2019 Turbine dimension – Base case NGP (Pumped CO2) 1666 mm Pumped brine (Isobutane) 1738 mm Pumped CO2 Brine (Isobutane) ሶ 𝑉t𝑢𝑟𝑏𝑖𝑛𝑒,𝑖𝑛𝑙𝑒𝑡 [m³/s] 1,3 2,3 ሶ 𝑉t𝑢𝑟𝑏𝑖𝑛𝑒,outlet [m³/s] 2,2 7,7 ∆ℎ [kJ/kg] 14,5 41,2 ∆𝑝 [bar] 58 7 p in 10 bar Tin 69°C p out 61 bar Tout 23 °C p out 3 bar Tout 33 °C p in 119 bar Tin 60 °C ➢ Lower volumetric flow in CO2 turbine ➢ Lower enthalpy difference ➢ Higher pressure levels
  • 13. Unrestricted© Siemens AG 2019 Page 13 Gas & Power | 07/2019 Turbine dimension – Base case ➢ Low enthalpy drop & high pressure difference ➢ High bending forces ➢ Large chord length and root sizes
  • 14. Unrestricted© Siemens AG 2019 Page 14 Gas & Power | 07/2019 Assessment of performance and costs of CO2 based Next Gen Geothermal Power (NGP) systems 1. CO2-based geothermal power generation Application range, Basic concept, technology description, potential benefits 2. Thermodynamic Evaluation Cycle design, performance results, sensitivities, first component estimations 3. Economic Evaluation Key approach, calculation results, cost optimization potentials 4. Summary and Outlook Agenda
  • 15. Unrestricted© Siemens AG 2019 Page 15 Gas & Power | 07/2019 CO2-based geothermal power generation Key approach for cost assessment • No significant thermal decline during lifetime • Operating lifetime: 25 years (No significant thermal decline) • Wellfield size: 5 x 5 km (25x injection wells + 36x production wells) • Surface piping: 65km (Ø ~1 – 1,2m) • Turbine train design for 60°C/ 115bar • Location: USA Total Capex + Operation and Maintenance Costs EPA // GETEM *) Siemens AG Surface power plant Lazard’s Analysis Levelized Cost of Electricity (LCOE) • Corporate tax rate • Interest rates • Cost escalation • Depreciation schedule • Etc. *) EPA: United States Environmental Protection Agency, 2008 GETEM: Geothermal Electricity Technology Evaluation Model Well field (1) (2) Reservoir depth 2,5 km 3,5 km Reservoir permeability 50 mD 100 mD 52 MW 157 MW
  • 16. Unrestricted© Siemens AG 2019 Page 16 Gas & Power | 07/2019 https://www.lazard.com/media/450784/l azards-levelized-cost-of-energy- version-120-vfinal.pdf https://www.lazard.com/perspective/lev elized-cost-of-energy-and-levelized- cost-of-storage-2018/ Solar Thermal & Soratge Conv. Geothermal(brine) Nuclear Emission free full dispatchable technologies
  • 17. Unrestricted© Siemens AG 2019 Page 17 Gas & Power | 07/2019 Levelized Cost of Electricity (LCOE) – first results NGP system compared to other technologies Wind: offshore Nuclear/ Coal: fully depreciated facilities Very first cost estimation ➢ Estimated LCOE for 160 MW power plant within range of conventional technologies ➢ Focus on geologically more favorable locations can almost quarter costs (A) 78 (B) 68 (A) (B) (C) Surface size: 2x2km 3x3km 5x5km # of wells: 15 25 61 depth: 4km 4 km 5km Permeability: 100mD 600MW Source LCOE other technologies: Lazard (2018): Levelized Cost of Energy Analysis, Version 12.0 (A) 58 (B) 49 (C) 43 600MW (C) 43
  • 18. Unrestricted© Siemens AG 2019 Page 18 Gas & Power | 07/2019 Summary CO2 G CO2 • Agreement of thermodynamic simulations of NGP systems with published data • Significant more power (than conventional technology) • Surface power plant layout less complex with respect to equipment • Cost competitive (compared to solar energy with storage) • NGP can push the profitability of capturing carbon dioxide and transform CCS to CCU … create a huge market potential.
  • 19. Unrestricted© Siemens AG 2019 Page 19 Gas & Power | 07/2019 Outlook CO2 G CO2 • Identification of partner for subsurface portion and project development • Accelrate R&D / Proof of concept / Realization of NGP demonstrator • Realization of commercial projects
  • 20. Assessment of performance and costs of CO2 based Next Gen Geothermal Power (NGP) systems Thank you for your attention ! 3rd European sCO2 conference, Paris, September 2019 Dr. Stefan Glos, Siemens AG Confidential © Siemens AG 2018
  • 21. Frei verwendbar © Siemens AG 2018 Glos / Sudhoff GP PGO PR R&D SU Page 21 Backup
  • 22. Unrestricted© Siemens AG 2019 Page 22 Gas & Power | 07/2019 LCOE Calculation Different financial boundary conditions 0 1 2 3 4 5 6 7 8 0 20 40 60 80 100 120 LCOE [$/MWh] Lazard USA MENA Conv. Geo. (US location) CSP&Storage (US location) Direct Cooling, ambient 12°C Direct Cooling, ambient 15°C Cooling Tower, ambient 15°C Direct Cooling, ambient 26°C Air Cooling, ambient 30°C MENA MENA US Location US Location North Sea Finacial Model Locationl ➢ For the same location and the same financial model LCO 40% lower ➢ Even for MENA region with Air Cooling LCOE lower than CSP + Storage
  • 23. Unrestricted© Siemens AG 2019 Page 23 Gas & Power | 07/2019 LCOE Calculation Different financial approaches - Assumptions Assumption Lazard USA (Siemens assumptions) MENA (Siemens assumptions) your boundaries Cost of Debt 8% 2,6% 3,2% Combined Tax Rate 40% 23% 5% Depreciation schedule MACRS 5-years MACRS 5-years Declining Balance (20%)