Se ha denunciado esta presentación.
Se está descargando tu SlideShare. ×

U-Net: Convolutional Networks for Biomedical Image Segmentation

Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Cargando en…3
×

Eche un vistazo a continuación

1 de 19 Anuncio
Anuncio

Más Contenido Relacionado

Más reciente (20)

Anuncio

U-Net: Convolutional Networks for Biomedical Image Segmentation

  1. 1. U-Net: Convolutional Networks for Biomedical Image Segmentation GBJ
  2. 2. 목차 1. Introduction 2. Method 3. Experiments 4. Results 5. Conclusion 6. Reference
  3. 3. Introduction • Data Augmentation • U Architecture(Contracting & Expanding) • Copy & Crop • 기존 Patch(Sliding Window) 방식 대비 효율적 • Medical 분야의 적은 이미지 데이터를 가지고 효율적인 모델 생성을 하고자 함
  4. 4. Model Architecture
  5. 5. Model Architecture Contracting Path • 3×3 Convolution • 2×2 Max-Pooling
  6. 6. Model Architecture Expanding Path • 3×3 Convolution • 2×2 Up-Convolution
  7. 7. Model Architecture Skip Architecture
  8. 8. Overlap-Tile Mirroring Missing Context
  9. 9. Overlap-Tile
  10. 10. Data Augmentation Elastic Deformation(3×3) • Elastic Deformation(3×3) • Shift • Rotation • Gray Value
  11. 11. Loss Function
  12. 12. Softmax
  13. 13. Weight Map • 𝑥 ∶ 세포 사이에 존재하는 픽셀 • 𝑤 𝑥 ∶ 𝑥 위치의 픽셀에 가중치 부여 • 𝑤𝑐 𝑥 ∶ 𝑥 위치의 해당 클래스 빈도 수 반영 • 𝑑1, 𝑑2 : 𝑥에서 가장 가까운 세포까지의 거리 2개(𝑑1이 제일 가까움) • 세포 사이 간격이 좁을수록 weight가 커짐
  14. 14. Training • Large Input Tiles • SGD • High Momentum(0.99) • Framework : Caffe
  15. 15. Results
  16. 16. Results
  17. 17. Conclusion • Elastic Deformation 덕분에 적은 Annotation Image로 합리적인 실험 가능 • Nvidia Titan GPU(6GB)로 10시간의 학습 시간이 소요됨 • U-Net 아키텍처가 다양한 Task에서 적용 가능할 것
  18. 18. Reference • https://arxiv.org/abs/1505.04597 • https://89douner.tistory.com/297 • https://modulabs-biomedical.github.io/FCN • https://modulabs-biomedical.github.io/U_Net • https://www.youtube.com/watch?v=n_FDGMr4MxE&t=763s&ab_channel=%EB%8F%99%EB %B9%88%EB%82%98
  19. 19. Thank You

×