We have 2 variables Response variable = Final grade -- Quantit.pdf

We have 2 variables: Response variable = Final grade <-- Quantitative (specifically \"interval\") Explanatory variable = Gender <-- Categorical (specifically \"nominal\") * To numerically describe the final grades... If the data is symmetric, we want to use the MEAN and STANDARD DEVIATION to describe the center and spread of the observations respectively. If the data is skewed, we want to use the MEDIAN and IQR to describe the center and spread of the observations respectively. * To graphically describe the final grades... We can either construct (1) separate histograms based on gender using the same classes, and/or (2) side-by-side boxplots. Solution We have 2 variables: Response variable = Final grade <-- Quantitative (specifically \"interval\") Explanatory variable = Gender <-- Categorical (specifically \"nominal\") * To numerically describe the final grades... If the data is symmetric, we want to use the MEAN and STANDARD DEVIATION to describe the center and spread of the observations respectively. If the data is skewed, we want to use the MEDIAN and IQR to describe the center and spread of the observations respectively. * To graphically describe the final grades... We can either construct (1) separate histograms based on gender using the same classes, and/or (2) side-by-side boxplots..

We have 2 variables:
Response variable = Final grade <-- Quantitative (specifically "interval")
Explanatory variable = Gender <-- Categorical (specifically "nominal")
* To numerically describe the final grades...
If the data is symmetric, we want to use the MEAN and STANDARD DEVIATION to describe
the center and spread of the observations respectively.
If the data is skewed, we want to use the MEDIAN and IQR to describe the center and spread of
the observations respectively.
* To graphically describe the final grades...
We can either construct (1) separate histograms based on gender using the same classes, and/or
(2) side-by-side boxplots.
Solution
We have 2 variables:
Response variable = Final grade <-- Quantitative (specifically "interval")
Explanatory variable = Gender <-- Categorical (specifically "nominal")
* To numerically describe the final grades...
If the data is symmetric, we want to use the MEAN and STANDARD DEVIATION to describe
the center and spread of the observations respectively.
If the data is skewed, we want to use the MEDIAN and IQR to describe the center and spread of
the observations respectively.
* To graphically describe the final grades...
We can either construct (1) separate histograms based on gender using the same classes, and/or
(2) side-by-side boxplots.

Recomendados

Describing quantitative data with numbers por
Describing quantitative data with numbersDescribing quantitative data with numbers
Describing quantitative data with numbersUlster BOCES
1.7K vistas34 diapositivas
Discriminant analysis por
Discriminant analysisDiscriminant analysis
Discriminant analysisDr. Ravneet Kaur
1.1K vistas3 diapositivas
Central Tendency - Overview por
Central Tendency - Overview Central Tendency - Overview
Central Tendency - Overview Sr Edith Bogue
2.9K vistas21 diapositivas
Lecture. Introduction to Statistics (Measures of Dispersion).pptx por
Lecture. Introduction to Statistics (Measures of Dispersion).pptxLecture. Introduction to Statistics (Measures of Dispersion).pptx
Lecture. Introduction to Statistics (Measures of Dispersion).pptxNabeelAli89
16 vistas18 diapositivas
Measures of dispersion por
Measures of dispersionMeasures of dispersion
Measures of dispersionShiwani Agrawal
398 vistas10 diapositivas
Stat11t chapter3 por
Stat11t chapter3Stat11t chapter3
Stat11t chapter3raylenepotter
4.9K vistas88 diapositivas

Más contenido relacionado

Similar a We have 2 variables Response variable = Final grade -- Quantit.pdf

SAMPLING and SAMPLING DISTRIBUTION por
SAMPLING and SAMPLING DISTRIBUTIONSAMPLING and SAMPLING DISTRIBUTION
SAMPLING and SAMPLING DISTRIBUTIONRia Micor
798 vistas17 diapositivas
Measures of dispersion or variation por
Measures of dispersion or variationMeasures of dispersion or variation
Measures of dispersion or variationRaj Teotia
19.5K vistas33 diapositivas
BMS.ppt por
BMS.pptBMS.ppt
BMS.pptMrRSaravananAsstProf
30 vistas22 diapositivas
Principal component analysis and lda por
Principal component analysis and ldaPrincipal component analysis and lda
Principal component analysis and ldaSuresh Pokharel
3.3K vistas36 diapositivas
Module 2 lesson 3 notes por
Module 2 lesson 3 notesModule 2 lesson 3 notes
Module 2 lesson 3 notesCumberland County Schools
471 vistas5 diapositivas
Descriptions of data statistics for research por
Descriptions of data   statistics for researchDescriptions of data   statistics for research
Descriptions of data statistics for researchHarve Abella
4.5K vistas32 diapositivas

Similar a We have 2 variables Response variable = Final grade -- Quantit.pdf(20)

SAMPLING and SAMPLING DISTRIBUTION por Ria Micor
SAMPLING and SAMPLING DISTRIBUTIONSAMPLING and SAMPLING DISTRIBUTION
SAMPLING and SAMPLING DISTRIBUTION
Ria Micor798 vistas
Measures of dispersion or variation por Raj Teotia
Measures of dispersion or variationMeasures of dispersion or variation
Measures of dispersion or variation
Raj Teotia19.5K vistas
Principal component analysis and lda por Suresh Pokharel
Principal component analysis and ldaPrincipal component analysis and lda
Principal component analysis and lda
Suresh Pokharel3.3K vistas
Descriptions of data statistics for research por Harve Abella
Descriptions of data   statistics for researchDescriptions of data   statistics for research
Descriptions of data statistics for research
Harve Abella4.5K vistas
CHAPTER 2 - NORM, CORRELATION AND REGRESSION.ppt por kriti137049
CHAPTER 2  - NORM, CORRELATION AND REGRESSION.pptCHAPTER 2  - NORM, CORRELATION AND REGRESSION.ppt
CHAPTER 2 - NORM, CORRELATION AND REGRESSION.ppt
kriti13704944 vistas
Descriptive Statistics por guest290abe
Descriptive StatisticsDescriptive Statistics
Descriptive Statistics
guest290abe27.8K vistas
Analysis-and-Interpreting-Statistical-Data-1.pptx por JANICEASISTIN1
Analysis-and-Interpreting-Statistical-Data-1.pptxAnalysis-and-Interpreting-Statistical-Data-1.pptx
Analysis-and-Interpreting-Statistical-Data-1.pptx
JANICEASISTIN1155 vistas
Empirics of standard deviation por Adebanji Ayeni
Empirics of standard deviationEmpirics of standard deviation
Empirics of standard deviation
Adebanji Ayeni449 vistas
Class1.ppt por Gautam G
Class1.pptClass1.ppt
Class1.ppt
Gautam G7 vistas
Data Representations por bujols
Data RepresentationsData Representations
Data Representations
bujols4.7K vistas
LESSON-8-ANALYSIS-INTERPRETATION-AND-USE-OF-TEST-DATA.pptx por MarjoriAnneDelosReye
LESSON-8-ANALYSIS-INTERPRETATION-AND-USE-OF-TEST-DATA.pptxLESSON-8-ANALYSIS-INTERPRETATION-AND-USE-OF-TEST-DATA.pptx
LESSON-8-ANALYSIS-INTERPRETATION-AND-USE-OF-TEST-DATA.pptx
MarjoriAnneDelosReye1.2K vistas

Más de sudhirchourasia86

When counting electrons for the purpose of drawin.pdf por
                     When counting electrons for the purpose of drawin.pdf                     When counting electrons for the purpose of drawin.pdf
When counting electrons for the purpose of drawin.pdfsudhirchourasia86
3 vistas1 diapositiva
the distance between players is the hypotenuse of.pdf por
                     the distance between players is the hypotenuse of.pdf                     the distance between players is the hypotenuse of.pdf
the distance between players is the hypotenuse of.pdfsudhirchourasia86
2 vistas1 diapositiva
rs 1,00,000 .pdf por
                     rs 1,00,000                                      .pdf                     rs 1,00,000                                      .pdf
rs 1,00,000 .pdfsudhirchourasia86
6 vistas1 diapositiva
Propyl benzoate .pdf por
                     Propyl benzoate                                  .pdf                     Propyl benzoate                                  .pdf
Propyl benzoate .pdfsudhirchourasia86
2 vistas1 diapositiva
O3, SO3, SO2 .pdf por
                     O3, SO3, SO2                                     .pdf                     O3, SO3, SO2                                     .pdf
O3, SO3, SO2 .pdfsudhirchourasia86
10 vistas1 diapositiva
nitrogen is limiting reagent .pdf por
                     nitrogen is limiting reagent                     .pdf                     nitrogen is limiting reagent                     .pdf
nitrogen is limiting reagent .pdfsudhirchourasia86
2 vistas1 diapositiva

Más de sudhirchourasia86(20)

When counting electrons for the purpose of drawin.pdf por sudhirchourasia86
                     When counting electrons for the purpose of drawin.pdf                     When counting electrons for the purpose of drawin.pdf
When counting electrons for the purpose of drawin.pdf
the distance between players is the hypotenuse of.pdf por sudhirchourasia86
                     the distance between players is the hypotenuse of.pdf                     the distance between players is the hypotenuse of.pdf
the distance between players is the hypotenuse of.pdf
highest frequency = shortest wavelength = closest.pdf por sudhirchourasia86
                     highest frequency = shortest wavelength = closest.pdf                     highest frequency = shortest wavelength = closest.pdf
highest frequency = shortest wavelength = closest.pdf
he bromine would be opposite(para to) the isoprop.pdf por sudhirchourasia86
                     he bromine would be opposite(para to) the isoprop.pdf                     he bromine would be opposite(para to) the isoprop.pdf
he bromine would be opposite(para to) the isoprop.pdf
d) in real gases there are attraction between m.pdf por sudhirchourasia86
                     d)   in real gases there are attraction between m.pdf                     d)   in real gases there are attraction between m.pdf
d) in real gases there are attraction between m.pdf
The answer is Rate = k[A]2Applying steady state approximation to i.pdf por sudhirchourasia86
The answer is Rate = k[A]2Applying steady state approximation to i.pdfThe answer is Rate = k[A]2Applying steady state approximation to i.pdf
The answer is Rate = k[A]2Applying steady state approximation to i.pdf
  package Chapter_20;import ToolKit.PostfixNotation;import javaf.pdf por sudhirchourasia86
  package Chapter_20;import ToolKit.PostfixNotation;import javaf.pdf  package Chapter_20;import ToolKit.PostfixNotation;import javaf.pdf
  package Chapter_20;import ToolKit.PostfixNotation;import javaf.pdf
Wavelength = 656 nm = 656 x 10-9 mEnergy E = hc where h is Planc.pdf por sudhirchourasia86
Wavelength  = 656 nm = 656 x 10-9 mEnergy E = hc where h is Planc.pdfWavelength  = 656 nm = 656 x 10-9 mEnergy E = hc where h is Planc.pdf
Wavelength = 656 nm = 656 x 10-9 mEnergy E = hc where h is Planc.pdf
we know that (n X p) matrix when multilied with (p X m) matrix yeild.pdf por sudhirchourasia86
we know that (n X p) matrix when multilied with (p X m) matrix yeild.pdfwe know that (n X p) matrix when multilied with (p X m) matrix yeild.pdf
we know that (n X p) matrix when multilied with (p X m) matrix yeild.pdf

Último

ICS3211_lecture 09_2023.pdf por
ICS3211_lecture 09_2023.pdfICS3211_lecture 09_2023.pdf
ICS3211_lecture 09_2023.pdfVanessa Camilleri
115 vistas10 diapositivas
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx por
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptxEIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptxISSIP
386 vistas50 diapositivas
Use of Probiotics in Aquaculture.pptx por
Use of Probiotics in Aquaculture.pptxUse of Probiotics in Aquaculture.pptx
Use of Probiotics in Aquaculture.pptxAKSHAY MANDAL
119 vistas15 diapositivas
Recap of our Class por
Recap of our ClassRecap of our Class
Recap of our ClassCorinne Weisgerber
88 vistas15 diapositivas
Class 9 lesson plans por
Class 9 lesson plansClass 9 lesson plans
Class 9 lesson plansTARIQ KHAN
51 vistas34 diapositivas
Structure and Functions of Cell.pdf por
Structure and Functions of Cell.pdfStructure and Functions of Cell.pdf
Structure and Functions of Cell.pdfNithya Murugan
719 vistas10 diapositivas

Último(20)

EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx por ISSIP
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptxEIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx
ISSIP386 vistas
Use of Probiotics in Aquaculture.pptx por AKSHAY MANDAL
Use of Probiotics in Aquaculture.pptxUse of Probiotics in Aquaculture.pptx
Use of Probiotics in Aquaculture.pptx
AKSHAY MANDAL119 vistas
Class 9 lesson plans por TARIQ KHAN
Class 9 lesson plansClass 9 lesson plans
Class 9 lesson plans
TARIQ KHAN51 vistas
Structure and Functions of Cell.pdf por Nithya Murugan
Structure and Functions of Cell.pdfStructure and Functions of Cell.pdf
Structure and Functions of Cell.pdf
Nithya Murugan719 vistas
CUNY IT Picciano.pptx por apicciano
CUNY IT Picciano.pptxCUNY IT Picciano.pptx
CUNY IT Picciano.pptx
apicciano54 vistas
Solar System and Galaxies.pptx por DrHafizKosar
Solar System and Galaxies.pptxSolar System and Galaxies.pptx
Solar System and Galaxies.pptx
DrHafizKosar106 vistas
S1_SD_Resources Walkthrough.pptx por LAZAROAREVALO1
S1_SD_Resources Walkthrough.pptxS1_SD_Resources Walkthrough.pptx
S1_SD_Resources Walkthrough.pptx
LAZAROAREVALO164 vistas
Psychology KS5 por WestHatch
Psychology KS5Psychology KS5
Psychology KS5
WestHatch119 vistas
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively por PECB
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks EffectivelyISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively
PECB 623 vistas
Monthly Information Session for MV Asterix (November) por Esquimalt MFRC
Monthly Information Session for MV Asterix (November)Monthly Information Session for MV Asterix (November)
Monthly Information Session for MV Asterix (November)
Esquimalt MFRC72 vistas
Pharmaceutical Inorganic Chemistry Unit IVMiscellaneous compounds Expectorant... por Ms. Pooja Bhandare
Pharmaceutical Inorganic Chemistry Unit IVMiscellaneous compounds Expectorant...Pharmaceutical Inorganic Chemistry Unit IVMiscellaneous compounds Expectorant...
Pharmaceutical Inorganic Chemistry Unit IVMiscellaneous compounds Expectorant...
Ms. Pooja Bhandare133 vistas
Classification of crude drugs.pptx por GayatriPatra14
Classification of crude drugs.pptxClassification of crude drugs.pptx
Classification of crude drugs.pptx
GayatriPatra14101 vistas
Ch. 7 Political Participation and Elections.pptx por Rommel Regala
Ch. 7 Political Participation and Elections.pptxCh. 7 Political Participation and Elections.pptx
Ch. 7 Political Participation and Elections.pptx
Rommel Regala111 vistas

We have 2 variables Response variable = Final grade -- Quantit.pdf

  • 1. We have 2 variables: Response variable = Final grade <-- Quantitative (specifically "interval") Explanatory variable = Gender <-- Categorical (specifically "nominal") * To numerically describe the final grades... If the data is symmetric, we want to use the MEAN and STANDARD DEVIATION to describe the center and spread of the observations respectively. If the data is skewed, we want to use the MEDIAN and IQR to describe the center and spread of the observations respectively. * To graphically describe the final grades... We can either construct (1) separate histograms based on gender using the same classes, and/or (2) side-by-side boxplots. Solution We have 2 variables: Response variable = Final grade <-- Quantitative (specifically "interval") Explanatory variable = Gender <-- Categorical (specifically "nominal") * To numerically describe the final grades... If the data is symmetric, we want to use the MEAN and STANDARD DEVIATION to describe the center and spread of the observations respectively. If the data is skewed, we want to use the MEDIAN and IQR to describe the center and spread of the observations respectively.
  • 2. * To graphically describe the final grades... We can either construct (1) separate histograms based on gender using the same classes, and/or (2) side-by-side boxplots.