SlideShare una empresa de Scribd logo
1 de 26
LOGICS OF The Laplace Transform BY TARUN GEHLOT

Introduction
                                x(t)      input                                     y(t) output
(1) System analysis                                              Dynamic
                                                                 System

                                                                                    A processor which
                                                                                    processes the input signal
                                                                                    to produce the output
    static system: y(t) = ax(t) => easy (simple processing)

    dynamic system:

             dy ( n ) (t )      dy ( n 1) (t )                              dx ( m ) (t )
                             a1                ... a n y (t )            b0               ... bm x(t )
               dt n               dt n 1                                      dt m

         Can we determine y(t) for given u(t) easily?

    Easier solution method


                 X(f)                                            Y(f )
                                          Dynamic
                                          System

                                               H(f )
                                                                                  Algebraic equation, not
                                   Y( f )          H( f )X ( f )                  differential equation

                                       y(t )     F 1 (Y ( f ))

       (1) we have systematic way to obtain H(f) based on the differential equation
       (2) we can obtain X(f)
                    Fourier transform: an easier way

(2) Problem
       Fourier transform of the input signal:




                                                                                                 Page 5-1
j 2 ft
                          X( f )                     x (t )e                dt

                                    j 2 ft
                          |e                 | 1
      if x(t) does not go to zero when t       and t
       X(f) typically does not exist! (the existence of X(f) if not guaranteed)

      A very strong condition, can not be satisfied by many signals!

(3) Solution:

     Why should we care about t<0 for system analysis? We do not care!
     x(t) does not go to zero (when t      ), but x(t )e t may!
                                                       (Will be much easier. )
      use “single-sided” Fourier transform of x(t )e t , instead of “double-
         sided” Fourier transform of x(t).
                           t          j t                          (        j )t
             ( x (t )e        )e           dt           x (t )e                   dt
          0                                          0


                                very useful, let’s use a new name for it: Laplace transform.

(4) Laplace Transform

      Definition: Laplace transform of x(t)


               L[ x(t )]        X ( s)               x(t )e st dt                   (s   j )
                                                 0


      What is a Laplace transform of x(t)?
                      A time function? No, t has been eliminated by the integral with respect to t!
                      A function of s ( s is complex variable)

(5) System analysis using Laplace transform




                                                                                               Page 5-2
X(s)                                                                  Y(s )
                                                                     Dynamic
                                                                     System
                                                                      G(s )
                                                                                                                     Inverse Laplace transform
                                                        Y ( s) G( s) X ( s)
                                                        y(t )                L 1 (Y ( s))
(6) How is the inverse transform defined?
                                               j
                                   1
                   x (t )                          X ( s )e st ds
                                  2 j          j
(7) Will we often use the definition of the inverse transform to find time
    function?
       No!
       What will we do?
                   Express X(s) as sum of terms for which we know the inverse transforms!

5-2 Examples of Evaluating Laplace Transforms using the definition

(1) x(t)=1 and step function x(t)=u(t)

                                                                                                  t
                                                        st                     st               1
        L[ x(t ) u (t )]                     x(t )e dt                       e dt                   e st d ( st )
                                       0                                 0
                                                                                                st 0
                                  st                             t                                                            0
                            e            t              e                j t
                                                                                    t           e                j    e               j 0
                                                                     e                                       e                    e
                                  s      t 0                 s                      t 0               s                   s
               j
        (| e            | 1            e                0 , (if                         0)              e             , (if                 0)
                            1                                            1
                              (cos0            j sin 0)
                            s                                            s
                                                                 1
                            L(1)         L[u (t )]                                        (Re(s)) 0
                                                                 s
                    t
(2) x(t )      e        u(t )
                              t                              t
                   L[e            u(t )]            e            e st dt                e   (    s )t
                                                                                                        dt
                                               0                                    0

                                                                                            ~
                   Define a new complex variable s s

                                                                                                                                                 Page 5-3
~
                     st
                e        dt
             0

                                               st                 1
             we know e                              dt                                                 Re( s )   0
                                      0
                                                                  s

                     ~                                                                      ~
                     st               1
                 e        dt          ~
                                                                                    Re( s )        0
             0                        s
                     (        s )t                  1
                 e                   dt                                                   Re( s          )   0
             0
                                              s
                          t                         1
             L[e              u(t )]                                                      Re( s          )   0 or       Re( s )   Re( )
                                              s
                          t               1
             L[e              ]
                                      s

(3) x (t )       (t )

                                     L[ (t )]                         (t )e st dt
                                                              0
                                              st                        t           j t
                                          e                       e         e
                                                    t 0                                   t 0
                                               t
                                          e        (cos t                   j sin t )
                                                                                                  t 0
                                          1
                                                                                    No constraint on s.

5-2B Discussion: Convergence of the Laplace Transform

(1) To assure             x(t )e st dt                        x (t )e           t
                                                                                    e     j t
                                                                                                dt converge,         Re(s) must be psotive
                     0                                    0
                                                     t
    enough such that x(t )e                              goes to zero when t goes to positive infinite

(2) Region of absolute convergence and pole




                                                                                                                                   Page 5-4
(3) How to obtain Fourier transform form Laplace transform:
                                        s j
                   L[ x(t )]   X ( s)         X( j )   F ( x(t ))

Important: why introduce Laplace transform; definition of Laplace transform as a
modification of Fourier transform; find the Laplace transforms of the three basic
functions based on the (mathematical) definition of Laplace transform.

Chapter structure

      Part one: Definition (5.1)
      Part two: Direct evaluation of Laplace transforms of simple time-
                domain function.
             Easy? Not at all!
          complex (not simple) functions: even harder
          tools for application of Laplace transform in system analysis

      Part three: Rest of the chapter

 What tools: tools for easier Laplace transform evaluation
            tools for easy inverse transform


                                                                           Page 5-5
5-3 Some Laplace Transform theorems
       (Tools for evaluating Laplace transform based on the Laplace
             transforms of the basic functions)

5.3.1 Linearity
      Assume x(t )     a1x1(t ) a2 x2 (t ) ( a1 and a 2 are time independent)
                 X1( s) L[ x1(t )],           X 2 ( s) L[ x2 (t )]
       then X ( s) L[ x(t )] a1 X1( s) a2 X 2 ( s)
HW#2-1: Assume x(t ) a1 (t ) x1 (t ) a2 (t ) x2 (t ) , X1( s)                                 L[ x1(t )] and X 2 ( s)   L[ x2 (t )] .

(a) Is X ( s ) L[ x (t )] equal to a1(t ) X1( s)                                   a2 (t ) X 2 ( s) ?
       (Answer: Yes or No)
(b) If A ( s) L[a1(t )] , is it true
        1
        L[ x(t )]       A1( s) X1( s)           A2 ( s) X 2 ( s) ?
       (Answer: Yes or No)

Example 5.1
(1) Find L(cos 0t )
    Key to solution : express (cos                                  0t )   as linear combination of          (t ) , u(t ) ,
                                                    t
                                    and/or e            :

                                        L[ (t )] 1
                                                 1
                                        L[u(t )]
                                                 s
                                                    t                    1
                                        L[e             ]
                                                                     s
       let          j       0
                                                j       0t
                                                                           1
                                        L[e                     ]
                                                                         s j       0
       let              j       0
                                                                                                1
                                        L[e j       0t
                                                            ]         L[e    ( j   0 )t
                                                                                          ]
                                                                                              s j    0




                                                                                                                          Page 5-6
j   0t
         Can we use e                        and e j            0t
                                                                     to express cos( 0t ) ?

                                                  j 0t
                                            e                        cos(      0t )         j sin(          0t )
                                                  cos(           0t )       j sin(        0t )

                                            ej        0t
                                                                cos(        0t )        j sin(       0t )

             j   0t
         e            ej    0t
                                   2 cos( 0 t )
                                                  j    0t
                                              e                 ej   0t

                       cos( 0 t )
                                                            2
                                       1
                 L[cos( 0 t )]           [ L(e j 0t ) L(e j 0t )]
                                       2
                                       1      1          1
                                       2 s j 0 s j 0
                                       1 (s j 0 ) (s j 0 )
                                       2 ( s j 0 )(s j 0 )
                                             s
                                                      2
                                       s2         0

(2) Find L[sin             0t ]


5-3-2 Transforms of Derivatives

         Assume             X ( s)          L[ x (t )]
                                  dx(t )
         Then               L                     sX ( s )           x (0 )
                                   dt
Proof:
                                  dx(t )                dx(t ) st
(1) Definition              L                                 e dt                     e st dx(t )
                                  d (t )              0
                                                         dt                        0


(2) Integration by parts:
    General equation:




                                                                                                                   Page 5-7
b                                                      b
                                                                                  t b
                                        u (t )dv(t )                  u (t )v(t ) t   a
                                                                                               v(t )du(t )
                                    a                                                      a
(3) Use the above equation
                                                                                                                           st
     Why? If we assume                                                           v(t )          x(t ) ,      u (t )    e
                                                                                          st
                                                        v(t )du(t )            x(t )de             s x(t )e st dt
                                                0                          0                         0


                                                                                                          X ( s)      L x(t )
                      st
     u (t )     e          ,                            v(t )     x(t )
                                                                                      dx(t )
              u (t )dv(t )                          e st dx(t )           [ L                from (1) ]
          0                                     0
                                                                                       dt

                                            b
                       t
     u (t )v(t ) t          0
                                                v(t )du(t )
                                            a

                                                         t
                           e st x(t ) t                      0
                                                                  s x(t )e st dt
                                                                      0
                                                         t
                           e st x(t ) t                      0
                                                                  sL[ x(t )]

                 st
       lim e          x(t ) must go to zero. Otherwise,
      t

                 L[ x(t )]                              x(t )e st dt does not exist !
                                                0
                      st                t                        s0
                e          x (t ) t         0
                                                             e        x(0)        x(0)
                 use        0 as lower limit => x (0 )

                                t
          u (t )v(t ) t             0
                                                        v(t )du (t )
                                                    0

                                x(0 ) sX ( s )                            sX ( s ) x(0 )

                                                                                                                                Page 5-8
HW#2-2: Assume X ( s )                     L[ x (t )] . Prove

                d 2 x(t )
              L                            s 2 X ( s) sx (0 ) x (1) (0 )
                   dt
                  d ( n ) x (t )
HW#2-3: Express L                                  using L[ x ( t )]
                      dt n

Example 5-2

                                                            Find i(t) using Laplace transform method
                                                            for t>0

                                                            Solution:
                                                            (1) Before switched from 1 to 2 at t=0
                                 4
                            i            2A        i (0 )      2A
                                 2
(2) System equation (t>0)
                  di(t )
              L           Ri (t ) 0                          ( L 1H ) ( R      2ohm)
                   dt
 KVL:
                   di(t )
                           2i (t ) 0
                     dt

(3) Solve system equation using Laplace transform

                  di(t )                           di(t )
              L                  2i (t )       L               2 L[i (t )]
                   dt                               dt
                  sI ( s ) i (0 ) 2 I ( s )
                  ( s 2) I ( s ) 2             0
                                     2
                   I (s)
                                 s 2
                   i (t )       2e 2t u (t ) A




                                                                                               Page 5-9
5-3-3 Laplace Transform of an integral
                              t

Assume    y(t )                   x( ) d ,                             X ( s)          L[ x(t )]
                  t
                                                    X ( s)        y (0 )
Then      L               x ( )d
                                                      s              s
                                               0
          where y (0 )                              x ( )d

Proof :
                      t                                           0
                                                                                             st
          L               x ( )d                                       x ( )d            e        dt
                                                         0

                                                t
                      udv             uv t           0
                                                                  vdu
              0                                               0
(1)
                                       t                                   st t
                  t                                                    e
          uv t            0
                                               x( )d
                                                                       s         t 0                   1
                                      st       t                               s0 0                               y (0 )
                                  e                                      e
              lim                                   x( )d                               x( )d
              t                   s                                          s
              y (0 )                                     0

                 s
(2)
                                           st
                                      e                               1                                1
              vdu                                  x (t )dt              x (t )e st dt                   X ( s)
          0                       0
                                           s                          s0                               s
(3)
                  t
                                                    y (0 )            X ( s)       X ( s)          y (0 )
          L               x ( )d                                                                          Proved!
                                                       s                s            s                s



                                                                                                                           Page 5-10
Example 5.3:


                                                                                                     Find I(s) = L(i(t))

                                                                                               Solution:
                                                                                         (1) Differential equation
                                                                                         KVL :
                                                                                            x(t ) vL (t ) vC (t ) vR (t )



               dvC (t )
      i (t )    C
                 dt                                                                         di(t )
                1                                                          v L (t )     L
      dvC (t )    i (t )dt                                                                   dt
                C                                                                              t
       t                       t                                                        1
                           1                                               vC (t )        i ( )d
           dvC ( )                 i ( )d                                               C
                           C
                                         t                                 v R (t )     Ri (t )
                                     1
      vC (t )       vC (       )             i ( )d
                                     C
                                                      t
                                                 1
      vC (      )     0        vC (t )                    i ( )d
                                                 C
(2) Laplace transform

                X ( s ) VL ( s ) VC ( s ) VR ( s )
                VL ( s )       L[ sI ( s ) i (0 )]             LsI ( s )              i (0 )       zero
                                                          0
                               1 I ( s)              1
                VC ( s )                               i ( )d
                               C s                   s
                                             0
                     1         11
                        I ( s)    i ( )d
                     Cs        sc
                   1           1
                        I ( s)   vc ( 0 )
                  Cs           s
                VR ( s ) RI ( s )



                                                                                                                    Page 5-11
1           1
                 X ( s)        LsI ( s )     I ( s)   vC (0 )                      RI ( s )
                                        Cs          s
                                        1
                                X ( s)     vC (0 )
                      I ( s)             s
                                         1
                                  Ls             R
                                        Cs
                     sX ( s ) vC (0 )
                               1
                      Ls 2           sR
                              C
                        sX ( s ) vC (0 )
                                 R         1
                     L s2            s
                                 L       LC

5-3-4. Complex Frequency shift (s-shift) Theorem

Assume           y(t ) x(t )e t
                 X (s) L[ x(t )]                                 Y ( s)       L[ y(t )]

Then           Y (s) X (s                          )
                   1                                               t             1
       L[u (t )]     ,                                 L[u (t )e       ]
                   s                                                         s
                          s                                                                            0
       L[cos 0t ]                              2
                                                                   L[sin         0t ]                          2
                       s2                  0                                               s   2
                                                                                                           0
                       t               s                                                           t                     0
=> L[cos    0t   e         ]                                 2
                                                                           L[sin      0t   e           ]                         2
                                               2                                                                        2
                                (s         )             0                                                     (s   )        0


                                                                                     s 8
Example 5-4          Find            x(t )             L 1[ X ( s)] L 1
                                                                                 s 2 6s 13
Solution:
                              s 8           ( s 3) 5
                 X (s)
                          s 2 6s 13 s 2 6s 9 4
                         s 3         (5 / 2) 2
                     ( s 3) 2 2 2 ( s 3) 2 2 2


                                                                                                                             Page 5-12
5
            x(t )               L 1[ X ( s)] e                 3t
                                                                    cos 2t              e      3t
                                                                                                    sin 2t                (t   0)
                                                                                      2

5-3-4 Delay Theorem
   question: How to express delayed function?




   Assume L[ x(t )]                  L[ x(t )u(t )]                 X ( s)
  Then             L[ x(t t0 )u (t t0 )] e st 0 X (s)                                                              (t0    0)
            (If (t0 0) , it will not be a delay!)
  Proof :
            L[ x(t t0 )u (t t0 )]

                   x(t t0 )u (t t0 )e st dt
               0
              t0

                   x(t t0 )u (t t0 )e st dt                                     x(t t0 )u (t t0 )e st dt
               0                                                           t0


                                                                                  s ( t t0 ) st0
                   x(t t0 )e st dt                         x(t t0 )e                               dt
              t0                                      t0


                     st0                          s ( t t0 )
              e                 x(t t0 )e                      d (t t0 )
                           t0

              t t0
                           st0                s                      st0                                    st0
                     e               x ( )e       d             e               x(t )e st dt            e         X (s)
                                 0                                         0




                                                                                                                                    Page 5-13
st 0
      Question: will L[ x(t t0 )u(t t0 )] e                                   X (s) be true if t0            0?
                 No! (it will not be a delay)




Example 5-5: Square wave beginning at t = 0
                                                            T0                                       3T0
                             1  1                            2
                                                               s        1         T0 s    1           2
                                                                                                         s    1     2T0 s
                L[ xsq (t )]   2 e                                     2 e               2 e                 2 e
                             s  s                                       s                 s                   s
                           1
                             T0 s
                      e    2
                                 1    1                    1       2          1   3          1   4
                                    2                  2               2                 2             ...
                                 s    s                    s                  s              s
                     1          2       2              3
                                  (                             ...)
                     s          s
                                                                                         T0
                                                                                            s
                                                                                          2
                     1             2               1 1                  1 1 e
                                                                                         T0
                     s          s (1       )       s 1                  s                 2
                                                                                            s
                                                                          1 e
5-3-5 Convolution
  Signal 1: x1 (t )                 Signal 2 : x2 (t )

             y(t )        x1 (t ) * x2 (t )            x1 ( ) x2 (t               )d

      if    x1 (t ) 0                              t    0

                y (t )              x1 ( ) x2 (t           )d
                                0




                                                                                                                  Page 5-14
if       x2 (t ) 0                                           t          0        ( x2 (t            ) 0                        t)
                              t
            y (t )                x1 ( ) x2 (t                 )d
                              0
 Therefore, if                        x1 (t ) 0,               x2 (t ) 0                            t      0

                                  t
                                      x1 ( ) x2 (t                 )d                x1 ( ) x2 (t              )d                 x1 ( ) x2 (t    )d
                                  0                                              0

       t
  L[ x1 ( ) x2 (t                         )d ]     L[ x1 ( ) x2 (t                              )d ]       L[ x1 ( ) x2 (t                 )d ]
       0                                                   0




 [ x1 ( ) x2 (t                        )d ]e st dt                          x1 ( )[ x2 (t                      )e st dt ]d
0 0                                                                     0               0


                                                                                        t

      Look at

                         x 2 (t                )e st dt                     x 2 (t          )e      s (t   )
                                                                                                               e       s
                                                                                                                           dt
                0                                                   0

                          t
                                           s                            s
                                      e          x 2 ( )e                    d
                     d        dt
                t 0
                 t

                x2 ( ) 0                           0
                                                               s                            s                      s
                                                       e                    x 2 ( )e            d          e               X 2 ( s)
                                                                    0
Then
                                                       s
                Y (s)                      x1 ( )e             X 2 ( s)d
                                       0

                                                           s
                         X 2 ( s ) x1 ( )e                      d
                                           0
                         X 1 (s) X 2 (s)


                                                                                                                                             Page 5-15
5-3-7 Product
5-3-8 Initial Value Theorem
             x(t )      L 1[ X ( s )]
                     x (0 )        lim sX ( s )
                                   s


Example: A demonstration where x(0) is obvious
                               t
             x(t )      e          cos      0tu(t )
  It is evident: x(0) e 0 cos                    0     0 1
  Using Laplace transform
                                                       s
             X ( s)          L[ x(t )]                                          2
                                              (s           )2               0
                                                                    s(s              )
             x(0)        lim sX ( s )              lim                                       2
                         s                         s       (s                )2          0

                                       s2        s
                 lim                                            2
                 s      s2         2 s           2
                                                           0

                                       d (s 2          s ) / ds
                 lim                                                    2
                 s      d (s 2          2 s            2
                                                                    0       ) / ds
                        2s                              d (2s  ) / ds                                  2
                 lim                         lim                                                 lim     1
                 s      2s 2                 s         d (2s 2 ) / ds                            s     2

5-3-9 Final Value Theorem: if x(t ) and dx(t ) / dt are Laplace transformable, then
             lim x(t ) lim sX (s)
             t               s 0

              (condition: sX (s) has no poles on j                                       axis or in the right-half s-plan
      or lim t x(t ) exists)

5-3-10 Scaling
            a>0: x(at)                           a times fast (if a>1)
                                                   or slow (if a<1) as x(t)

           X ( s) L[ x(t )]
   What do we expect on L[ x(at )] ?


                                                                                                                 Page 5-16
s
            L[ x(at)]                    X ( )?
                                            a
                                                                    a 0                    s
                                                          st              1                a
                                                                                             ( at )
            L[ x(at )]                   x(at )e               dt            x(at )e                d (at )
                                     0
                                                                          a0
                                                  s
                    at    1                                          1   s
                                                  a
                             x ( )e                   d                X
            a 0           a0                                         a   a
            t



5-4  Inversion of Rational Functions
(1) Ways to find x(t ) from X (s )
                     1
    (1) x(t )                     X ( s)e st dt                     (Contour Integral)
                    2 j

(2) Transform pair
            1
                            u (t )
            s
                    1                        t
                                     e           u (t )
                s
                                             1
    Therefore            X ( s)                                   x(t )     e t u (t )
                                         s

(2) All kinds of Laplace Transform ? No!

  We almost only see

            b0 s m b1s m                          1
                                                          ... bm 1s bm                            s
                                                                       e
                s n a1s n                         1
                                                          ...an 1s an
                    rational function X(s)                                                          Delay

                    x(t )      L 1[ X ( s)]
                    y (t )     L 1[ X ( s)e               s
                                                              ]     x(t     )u (t      )


                                                                                                              Page 5-17
 Consider Rational Functions only!

(3) Non proper Rational Function
        proper Rational Function

Non proper         m>=n                     (b0              0)
proper             m<n

Non proper => proper + Polynomial (using long division)

             s3     4s 2 6s 7                                           s 5
                                                        s 1
                  s 2 3s 2                                           s 2 3s 2
                                                             s 1
                    s 2 3s 2
                               s3           4s 2          6s 7
                                        s2              4s 7
                                  3s s s2
                                   s 5
 How to find inverse Laplace transform for polynomials?

                   sn          (n)
                                     (t )
                    L 1 ( s 1)         L 1 ( s) L 1 (1)                        (1)
                                                                                     (t )        (t )
  consider proper rational functions only!

(4) Proper Rational Functions: Partial Fraction Expansion
                                      1                      t ne    t
                                                                         u (t )
                           (s               )n      1
                                                                n!
                                      s                                   t
                                                             2
                                                                     e        cos       0   tu (t )
                           (s               )2           0

     sum of                                    0
                                                                     e    t
                                                                              sin          tu (t )
                                                2            2                         0
                           (s               )            0

                           1              (t )
                           1
                                       u (t )
                           s
                                1                        t
                                                    e
                           s




                                                                                                        Page 5-18
Let’s look at examples, and then summarize!

 Techniques:
      Common Denominator                          Factorize first!
      Specific value of s                         Expand second!
      Heaviside’s Expansion                       Find coefficients third!
      Matlab

Example 5-9: Simple Factors
                                10
                  Y ( s)
                           s2   10s 16

     Solution:
                                                 10              A      B
     (1) Factorize and expand Y ( s )
                                            ( s 8)(s 2)         s 8     s 2
     (2) Common Denominator Methods
                    10       A( s 2) B( s 8)
               ( s 8)(s 2)      ( s 8)(s 2)
                  A( s 2) B( s 8) 10
                       A B      0       A     B
                       2 A 8B 10             2 B 8B 10
                                B 10 / 6      5/3           A     5/3
                             5 1    5 1
                  Y (s)
                             3 s 8 3 s 2
                               5     5 2t
                      y (t ) ( e 8t    e )u (t )
                               3     3
     specific values of s
                       10          A     B
                  ( s 8)(s 2) s 8 s 2
                  s 0 10    A B
                     8 2 8 2
                  s 2 10     A B
                     10 4 10 4
                    Can you solve for A and B?



                                                                              Page 5-19
Heaviside Expansion
                  10                         A         B
            ( s 8)( s          2)   s 8 s                      2
                 10                B ( s 8) s              8   10
                               A                                     A                     5/3
                s 2                  s 2                       8 2
                 10            A( s 2)      s              2      10
     and                                  B                  B                             5/3
               s 8               s 8                              2 8

Example 5-10 Imaginary Roots

                          15s 2 25s 20
            Y ( s)
                      ( s 2 1)(s 2)(s 8)
                                                                                                   Same as real roots!
 Solution: what do we have:

                          A1                A2        A3             A4
            Y (s)
                      s        j       s         j    s 2           s 8
                                   A1 ( s  j ) A2 ( s j )     A3    A4
                     Y (s)                    2
                                           s 1              s 2 s 8
                       ( A1        A2 ) s ( A2 A1 ) j      A3    A4
                                         2
                                       s 1                s 2 s 8
            A1+A2 must be real number
            (-A1+A2)j must be real number

                      c1s c2                     A3     A4
            Y ( s)
                       s2 1                  s 2       s 8

           Heaviside Expansion => A3=1 and A4= - 2.

                        15s 2 25s 20                               c1 s c2             1       2
            Y ( s)
                      (s 2 1)(s 2)(s 8)                             s2 1           s 2       s 8
                       15 25 20                       c1 c2           1            2
            s=1 =>
                         2 3 9                          2             3           9

                       15 4 25 2 20                                2c1       c2        1     2
            s=2 =>
                          5 4 10                                         5             4    10


                                                                                                       Page 5-20
Can we solve for c1 and c2?
                c1=1 c2=1

                     s 1     1     2
            Y (s)
                    s2 1 s 2 s 8
                s        1      1       2
              s2 1 s2 1 s 2 s 8
           => [cos t sin t e 2t 2e 8t ]u (t )
 Too complex: use MATLAB

Example 5-11 Repeated linear Factors

                        10s
           Y (s)
                   ( s 2) 2 ( s 8)
                A1     A2       A3
               s 8 s 2 ( s 2) 2

Example 5-12

                        10s
          Y ( s)
                   ( s 2) 3 ( s 8)
                A1     A2        A3         A4
               s 8 s 2 ( s 2) 2          ( s 2) 3


Example 5-13 Complex - Conjugate Factors
                           2s 2 6s 6
             Y ( s)
                       ( s 2)(s 2 2s 2)
                       2s 2 6s 6          A1          A2      A3
                   ( s 2)[(s 1) 2 1]     s 2        s 1 j   s 1 j
Example 5-14 Repeated Quadratic Factors



                                                                    Page 5-21
s4          5s 3 12s 2 7 s 15
                              Y (s)
                                                            ( s 2)(s 2 1) 2
                                       A1                B1s c1 B2 s c2
                                      s 2                 s 2 1 ( s 2 1) 2

* Summary of Partial–Fraction Expansion
(1) Expansion Structure:
    Simple Roots (including complex conjugate)
                Aj
   =>                                 could be complex.
            s            j
   Repeated Roots: m multiplicity
            B1                         B2                                     Bm
   =>                                                2
                                                               ...                      m
        s            j        (s                j)                       (s        j)


                 real number or complex number

(2) Avoid complex number
    For complex conjugates:                                          j    a    jb
                Aj                    Aj*                        cs D
                                                *
        s            j            s         j                 ( s a) 2 b 2
                 Bk                             Bk *                          cs D
                              k                              * k
        (s               j)            s                                 [( s a) 2 b 2 ]k
                                                         j


(3) Inverse Laplace transform

                Aj                              jt
                                      Aje            u (t )
        s            j
                                                                     t
                 Aj                           t k 1e j
                            k
                                           Ak          u (t )                               k   2
        (s               j)                    (k 1)!




                                                                                                    Page 5-22
Aj                  Bj               tk 1          jt         j
                                                                           *
                                                                           t
                    k                 * k
                                                   [ Aj e        Bje           ]u (t )
(s             j)       (s        j    )    (k 1)!
 j      a jb
                  t k 1 at
    *
                          e [ A j (cosbt       j sin bt ) B j (cosbt             j sin bt ]u (t )
j       a   jb ( k    1)!




                                                                                               Page 5-23
Page 5-24
Page 5-25
Page 5-26

Más contenido relacionado

La actualidad más candente

TR tabling presentation_2010_09
TR tabling presentation_2010_09TR tabling presentation_2010_09
TR tabling presentation_2010_09Paul Fodor
 
Label propagation - Semisupervised Learning with Applications to NLP
Label propagation - Semisupervised Learning with Applications to NLPLabel propagation - Semisupervised Learning with Applications to NLP
Label propagation - Semisupervised Learning with Applications to NLPDavid Przybilla
 
fourier representation of signal and systems
fourier representation of signal and systemsfourier representation of signal and systems
fourier representation of signal and systemsSugeng Widodo
 
Eece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transformEece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transformSandilya Sridhara
 
Tele3113 wk1tue
Tele3113 wk1tueTele3113 wk1tue
Tele3113 wk1tueVin Voro
 
Volatility derivatives and default risk
Volatility derivatives and default riskVolatility derivatives and default risk
Volatility derivatives and default riskVolatility
 
Olivier Cappé's talk at BigMC March 2011
Olivier Cappé's talk at BigMC March 2011Olivier Cappé's talk at BigMC March 2011
Olivier Cappé's talk at BigMC March 2011BigMC
 
Chapter 9(laplace transform)
Chapter 9(laplace transform)Chapter 9(laplace transform)
Chapter 9(laplace transform)Eko Wijayanto
 
Nonlinear Stochastic Programming by the Monte-Carlo method
Nonlinear Stochastic Programming by the Monte-Carlo methodNonlinear Stochastic Programming by the Monte-Carlo method
Nonlinear Stochastic Programming by the Monte-Carlo methodSSA KPI
 
Fourier Transform
Fourier TransformFourier Transform
Fourier TransformAamir Saeed
 
DSP, Differences between Fourier series ,Fourier Transform and Z transform
DSP, Differences between  Fourier series ,Fourier Transform and Z transform DSP, Differences between  Fourier series ,Fourier Transform and Z transform
DSP, Differences between Fourier series ,Fourier Transform and Z transform Naresh Biloniya
 
Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Pierre Jacob
 
Dsp U Lec06 The Z Transform And Its Application
Dsp U   Lec06 The Z Transform And Its ApplicationDsp U   Lec06 The Z Transform And Its Application
Dsp U Lec06 The Z Transform And Its Applicationtaha25
 
Lecture8 Signal and Systems
Lecture8 Signal and SystemsLecture8 Signal and Systems
Lecture8 Signal and Systemsbabak danyal
 
MATHEON Center Days: Index determination and structural analysis using Algori...
MATHEON Center Days: Index determination and structural analysis using Algori...MATHEON Center Days: Index determination and structural analysis using Algori...
MATHEON Center Days: Index determination and structural analysis using Algori...Dagmar Monett
 
Markov Tutorial CDC Shanghai 2009
Markov Tutorial CDC Shanghai 2009Markov Tutorial CDC Shanghai 2009
Markov Tutorial CDC Shanghai 2009Sean Meyn
 

La actualidad más candente (20)

TR tabling presentation_2010_09
TR tabling presentation_2010_09TR tabling presentation_2010_09
TR tabling presentation_2010_09
 
Label propagation - Semisupervised Learning with Applications to NLP
Label propagation - Semisupervised Learning with Applications to NLPLabel propagation - Semisupervised Learning with Applications to NLP
Label propagation - Semisupervised Learning with Applications to NLP
 
fourier representation of signal and systems
fourier representation of signal and systemsfourier representation of signal and systems
fourier representation of signal and systems
 
Eece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transformEece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transform
 
Tele3113 wk1tue
Tele3113 wk1tueTele3113 wk1tue
Tele3113 wk1tue
 
Volatility derivatives and default risk
Volatility derivatives and default riskVolatility derivatives and default risk
Volatility derivatives and default risk
 
Olivier Cappé's talk at BigMC March 2011
Olivier Cappé's talk at BigMC March 2011Olivier Cappé's talk at BigMC March 2011
Olivier Cappé's talk at BigMC March 2011
 
Chapter 9(laplace transform)
Chapter 9(laplace transform)Chapter 9(laplace transform)
Chapter 9(laplace transform)
 
Nonlinear Stochastic Programming by the Monte-Carlo method
Nonlinear Stochastic Programming by the Monte-Carlo methodNonlinear Stochastic Programming by the Monte-Carlo method
Nonlinear Stochastic Programming by the Monte-Carlo method
 
Cash Settled Interest Rate Swap Futures
Cash Settled Interest Rate Swap FuturesCash Settled Interest Rate Swap Futures
Cash Settled Interest Rate Swap Futures
 
Fourier Transform
Fourier TransformFourier Transform
Fourier Transform
 
DSP, Differences between Fourier series ,Fourier Transform and Z transform
DSP, Differences between  Fourier series ,Fourier Transform and Z transform DSP, Differences between  Fourier series ,Fourier Transform and Z transform
DSP, Differences between Fourier series ,Fourier Transform and Z transform
 
C slides 11
C slides 11C slides 11
C slides 11
 
Midsem sol 2013
Midsem sol 2013Midsem sol 2013
Midsem sol 2013
 
Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...
 
Dsp U Lec06 The Z Transform And Its Application
Dsp U   Lec06 The Z Transform And Its ApplicationDsp U   Lec06 The Z Transform And Its Application
Dsp U Lec06 The Z Transform And Its Application
 
The FFT And Spectral Analysis
The FFT And Spectral AnalysisThe FFT And Spectral Analysis
The FFT And Spectral Analysis
 
Lecture8 Signal and Systems
Lecture8 Signal and SystemsLecture8 Signal and Systems
Lecture8 Signal and Systems
 
MATHEON Center Days: Index determination and structural analysis using Algori...
MATHEON Center Days: Index determination and structural analysis using Algori...MATHEON Center Days: Index determination and structural analysis using Algori...
MATHEON Center Days: Index determination and structural analysis using Algori...
 
Markov Tutorial CDC Shanghai 2009
Markov Tutorial CDC Shanghai 2009Markov Tutorial CDC Shanghai 2009
Markov Tutorial CDC Shanghai 2009
 

Destacado

Btech admission in india
Btech admission in indiaBtech admission in india
Btech admission in indiaEdhole.com
 
sampling theorem | Communication Systems
sampling theorem | Communication Systemssampling theorem | Communication Systems
sampling theorem | Communication SystemsLearn By Watch
 
Lecture10 Signal and Systems
Lecture10 Signal and SystemsLecture10 Signal and Systems
Lecture10 Signal and Systemsbabak danyal
 
Laplace Transform of Periodic Function
Laplace Transform of Periodic FunctionLaplace Transform of Periodic Function
Laplace Transform of Periodic FunctionDhaval Shukla
 
Dsp U Lec02 Data Converters
Dsp U   Lec02 Data ConvertersDsp U   Lec02 Data Converters
Dsp U Lec02 Data Converterstaha25
 
Dsp U Lec03 Analogue To Digital Converters
Dsp U   Lec03 Analogue To Digital ConvertersDsp U   Lec03 Analogue To Digital Converters
Dsp U Lec03 Analogue To Digital Converterstaha25
 
Dsp U Lec08 Fir Filter Design
Dsp U   Lec08 Fir Filter DesignDsp U   Lec08 Fir Filter Design
Dsp U Lec08 Fir Filter Designtaha25
 
Dsp U Lec01 Real Time Dsp Systems
Dsp U   Lec01 Real Time Dsp SystemsDsp U   Lec01 Real Time Dsp Systems
Dsp U Lec01 Real Time Dsp Systemstaha25
 
Laplace Transform And Its Applications
Laplace Transform And Its ApplicationsLaplace Transform And Its Applications
Laplace Transform And Its ApplicationsSmit Shah
 
Dsp U Lec10 DFT And FFT
Dsp U   Lec10  DFT And  FFTDsp U   Lec10  DFT And  FFT
Dsp U Lec10 DFT And FFTtaha25
 
Dsp U Lec09 Iir Filter Design
Dsp U   Lec09 Iir Filter DesignDsp U   Lec09 Iir Filter Design
Dsp U Lec09 Iir Filter Designtaha25
 
Dsp U Lec05 The Z Transform
Dsp U   Lec05 The Z TransformDsp U   Lec05 The Z Transform
Dsp U Lec05 The Z Transformtaha25
 
Dsp U Lec04 Discrete Time Signals & Systems
Dsp U   Lec04 Discrete Time Signals & SystemsDsp U   Lec04 Discrete Time Signals & Systems
Dsp U Lec04 Discrete Time Signals & Systemstaha25
 
Laplace transform
Laplace transformLaplace transform
Laplace transformjoni joy
 
3F3 – Digital Signal Processing (DSP) - Part1
3F3 – Digital Signal Processing (DSP) - Part13F3 – Digital Signal Processing (DSP) - Part1
3F3 – Digital Signal Processing (DSP) - Part1op205
 

Destacado (19)

Btech admission in india
Btech admission in indiaBtech admission in india
Btech admission in india
 
05 weekly report (9 may 2012)
05 weekly report (9 may 2012)05 weekly report (9 may 2012)
05 weekly report (9 may 2012)
 
sampling theorem | Communication Systems
sampling theorem | Communication Systemssampling theorem | Communication Systems
sampling theorem | Communication Systems
 
Lecture10 Signal and Systems
Lecture10 Signal and SystemsLecture10 Signal and Systems
Lecture10 Signal and Systems
 
Laplace Transform of Periodic Function
Laplace Transform of Periodic FunctionLaplace Transform of Periodic Function
Laplace Transform of Periodic Function
 
Dsp U Lec02 Data Converters
Dsp U   Lec02 Data ConvertersDsp U   Lec02 Data Converters
Dsp U Lec02 Data Converters
 
Chapter3 laplace
Chapter3 laplaceChapter3 laplace
Chapter3 laplace
 
Dsp U Lec03 Analogue To Digital Converters
Dsp U   Lec03 Analogue To Digital ConvertersDsp U   Lec03 Analogue To Digital Converters
Dsp U Lec03 Analogue To Digital Converters
 
Chapter6 sampling
Chapter6 samplingChapter6 sampling
Chapter6 sampling
 
Laplace table
Laplace tableLaplace table
Laplace table
 
Dsp U Lec08 Fir Filter Design
Dsp U   Lec08 Fir Filter DesignDsp U   Lec08 Fir Filter Design
Dsp U Lec08 Fir Filter Design
 
Dsp U Lec01 Real Time Dsp Systems
Dsp U   Lec01 Real Time Dsp SystemsDsp U   Lec01 Real Time Dsp Systems
Dsp U Lec01 Real Time Dsp Systems
 
Laplace Transform And Its Applications
Laplace Transform And Its ApplicationsLaplace Transform And Its Applications
Laplace Transform And Its Applications
 
Dsp U Lec10 DFT And FFT
Dsp U   Lec10  DFT And  FFTDsp U   Lec10  DFT And  FFT
Dsp U Lec10 DFT And FFT
 
Dsp U Lec09 Iir Filter Design
Dsp U   Lec09 Iir Filter DesignDsp U   Lec09 Iir Filter Design
Dsp U Lec09 Iir Filter Design
 
Dsp U Lec05 The Z Transform
Dsp U   Lec05 The Z TransformDsp U   Lec05 The Z Transform
Dsp U Lec05 The Z Transform
 
Dsp U Lec04 Discrete Time Signals & Systems
Dsp U   Lec04 Discrete Time Signals & SystemsDsp U   Lec04 Discrete Time Signals & Systems
Dsp U Lec04 Discrete Time Signals & Systems
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
3F3 – Digital Signal Processing (DSP) - Part1
3F3 – Digital Signal Processing (DSP) - Part13F3 – Digital Signal Processing (DSP) - Part1
3F3 – Digital Signal Processing (DSP) - Part1
 

Similar a LOGICS OF The Laplace Transform

Fractional Calculus
Fractional CalculusFractional Calculus
Fractional CalculusVRRITC
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Scienceresearchinventy
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD Editor
 
11.solution of linear and nonlinear partial differential equations using mixt...
11.solution of linear and nonlinear partial differential equations using mixt...11.solution of linear and nonlinear partial differential equations using mixt...
11.solution of linear and nonlinear partial differential equations using mixt...Alexander Decker
 
Solution of linear and nonlinear partial differential equations using mixture...
Solution of linear and nonlinear partial differential equations using mixture...Solution of linear and nonlinear partial differential equations using mixture...
Solution of linear and nonlinear partial differential equations using mixture...Alexander Decker
 
Gibbs flow transport for Bayesian inference
Gibbs flow transport for Bayesian inferenceGibbs flow transport for Bayesian inference
Gibbs flow transport for Bayesian inferenceJeremyHeng10
 
Case Study (All)
Case Study (All)Case Study (All)
Case Study (All)gudeyi
 
Sheet with useful_formulas
Sheet with useful_formulasSheet with useful_formulas
Sheet with useful_formulasHoopeer Hoopeer
 
Systems Of Differential Equations
Systems Of Differential EquationsSystems Of Differential Equations
Systems Of Differential EquationsJDagenais
 
Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties
Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties
Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties Dr.SHANTHI K.G
 
Mesh Processing Course : Active Contours
Mesh Processing Course : Active ContoursMesh Processing Course : Active Contours
Mesh Processing Course : Active ContoursGabriel Peyré
 
Convolution representation impulse response
Convolution representation impulse responseConvolution representation impulse response
Convolution representation impulse responseuradiraghu92
 
Seismic data processing lecture 3
Seismic data processing lecture 3Seismic data processing lecture 3
Seismic data processing lecture 3Amin khalil
 
Doering Savov
Doering SavovDoering Savov
Doering Savovgh
 
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Chiheb Ben Hammouda
 
Redundancy in robot manipulators and multi robot systems
Redundancy in robot manipulators and multi robot systemsRedundancy in robot manipulators and multi robot systems
Redundancy in robot manipulators and multi robot systemsSpringer
 

Similar a LOGICS OF The Laplace Transform (20)

Fractional Calculus
Fractional CalculusFractional Calculus
Fractional Calculus
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
Signal Processing Homework Help
Signal Processing Homework HelpSignal Processing Homework Help
Signal Processing Homework Help
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
 
summary.pdf
summary.pdfsummary.pdf
summary.pdf
 
11.solution of linear and nonlinear partial differential equations using mixt...
11.solution of linear and nonlinear partial differential equations using mixt...11.solution of linear and nonlinear partial differential equations using mixt...
11.solution of linear and nonlinear partial differential equations using mixt...
 
Solution of linear and nonlinear partial differential equations using mixture...
Solution of linear and nonlinear partial differential equations using mixture...Solution of linear and nonlinear partial differential equations using mixture...
Solution of linear and nonlinear partial differential equations using mixture...
 
Gibbs flow transport for Bayesian inference
Gibbs flow transport for Bayesian inferenceGibbs flow transport for Bayesian inference
Gibbs flow transport for Bayesian inference
 
Tf
TfTf
Tf
 
Case Study (All)
Case Study (All)Case Study (All)
Case Study (All)
 
Sheet with useful_formulas
Sheet with useful_formulasSheet with useful_formulas
Sheet with useful_formulas
 
Solved problems
Solved problemsSolved problems
Solved problems
 
Systems Of Differential Equations
Systems Of Differential EquationsSystems Of Differential Equations
Systems Of Differential Equations
 
Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties
Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties
Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties
 
Mesh Processing Course : Active Contours
Mesh Processing Course : Active ContoursMesh Processing Course : Active Contours
Mesh Processing Course : Active Contours
 
Convolution representation impulse response
Convolution representation impulse responseConvolution representation impulse response
Convolution representation impulse response
 
Seismic data processing lecture 3
Seismic data processing lecture 3Seismic data processing lecture 3
Seismic data processing lecture 3
 
Doering Savov
Doering SavovDoering Savov
Doering Savov
 
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
 
Redundancy in robot manipulators and multi robot systems
Redundancy in robot manipulators and multi robot systemsRedundancy in robot manipulators and multi robot systems
Redundancy in robot manipulators and multi robot systems
 

Más de Tarun Gehlot

Materials 11-01228
Materials 11-01228Materials 11-01228
Materials 11-01228Tarun Gehlot
 
Continuity and end_behavior
Continuity and  end_behaviorContinuity and  end_behavior
Continuity and end_behaviorTarun Gehlot
 
Continuity of functions by graph (exercises with detailed solutions)
Continuity of functions by graph   (exercises with detailed solutions)Continuity of functions by graph   (exercises with detailed solutions)
Continuity of functions by graph (exercises with detailed solutions)Tarun Gehlot
 
Factoring by the trial and-error method
Factoring by the trial and-error methodFactoring by the trial and-error method
Factoring by the trial and-error methodTarun Gehlot
 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysisTarun Gehlot
 
Finite elements : basis functions
Finite elements : basis functionsFinite elements : basis functions
Finite elements : basis functionsTarun Gehlot
 
Finite elements for 2‐d problems
Finite elements  for 2‐d problemsFinite elements  for 2‐d problems
Finite elements for 2‐d problemsTarun Gehlot
 
Error analysis statistics
Error analysis   statisticsError analysis   statistics
Error analysis statisticsTarun Gehlot
 
Introduction to matlab
Introduction to matlabIntroduction to matlab
Introduction to matlabTarun Gehlot
 
Linear approximations and_differentials
Linear approximations and_differentialsLinear approximations and_differentials
Linear approximations and_differentialsTarun Gehlot
 
Local linear approximation
Local linear approximationLocal linear approximation
Local linear approximationTarun Gehlot
 
Interpolation functions
Interpolation functionsInterpolation functions
Interpolation functionsTarun Gehlot
 
Propeties of-triangles
Propeties of-trianglesPropeties of-triangles
Propeties of-trianglesTarun Gehlot
 
Gaussian quadratures
Gaussian quadraturesGaussian quadratures
Gaussian quadraturesTarun Gehlot
 
Basics of set theory
Basics of set theoryBasics of set theory
Basics of set theoryTarun Gehlot
 
Numerical integration
Numerical integrationNumerical integration
Numerical integrationTarun Gehlot
 
Applications of set theory
Applications of  set theoryApplications of  set theory
Applications of set theoryTarun Gehlot
 
Miscellneous functions
Miscellneous  functionsMiscellneous  functions
Miscellneous functionsTarun Gehlot
 

Más de Tarun Gehlot (20)

Materials 11-01228
Materials 11-01228Materials 11-01228
Materials 11-01228
 
Binary relations
Binary relationsBinary relations
Binary relations
 
Continuity and end_behavior
Continuity and  end_behaviorContinuity and  end_behavior
Continuity and end_behavior
 
Continuity of functions by graph (exercises with detailed solutions)
Continuity of functions by graph   (exercises with detailed solutions)Continuity of functions by graph   (exercises with detailed solutions)
Continuity of functions by graph (exercises with detailed solutions)
 
Factoring by the trial and-error method
Factoring by the trial and-error methodFactoring by the trial and-error method
Factoring by the trial and-error method
 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysis
 
Finite elements : basis functions
Finite elements : basis functionsFinite elements : basis functions
Finite elements : basis functions
 
Finite elements for 2‐d problems
Finite elements  for 2‐d problemsFinite elements  for 2‐d problems
Finite elements for 2‐d problems
 
Error analysis statistics
Error analysis   statisticsError analysis   statistics
Error analysis statistics
 
Matlab commands
Matlab commandsMatlab commands
Matlab commands
 
Introduction to matlab
Introduction to matlabIntroduction to matlab
Introduction to matlab
 
Linear approximations and_differentials
Linear approximations and_differentialsLinear approximations and_differentials
Linear approximations and_differentials
 
Local linear approximation
Local linear approximationLocal linear approximation
Local linear approximation
 
Interpolation functions
Interpolation functionsInterpolation functions
Interpolation functions
 
Propeties of-triangles
Propeties of-trianglesPropeties of-triangles
Propeties of-triangles
 
Gaussian quadratures
Gaussian quadraturesGaussian quadratures
Gaussian quadratures
 
Basics of set theory
Basics of set theoryBasics of set theory
Basics of set theory
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
 
Applications of set theory
Applications of  set theoryApplications of  set theory
Applications of set theory
 
Miscellneous functions
Miscellneous  functionsMiscellneous  functions
Miscellneous functions
 

LOGICS OF The Laplace Transform

  • 1. LOGICS OF The Laplace Transform BY TARUN GEHLOT Introduction x(t) input y(t) output (1) System analysis Dynamic System A processor which processes the input signal to produce the output static system: y(t) = ax(t) => easy (simple processing) dynamic system: dy ( n ) (t ) dy ( n 1) (t ) dx ( m ) (t ) a1 ... a n y (t ) b0 ... bm x(t ) dt n dt n 1 dt m Can we determine y(t) for given u(t) easily? Easier solution method X(f) Y(f ) Dynamic System H(f ) Algebraic equation, not Y( f ) H( f )X ( f ) differential equation y(t ) F 1 (Y ( f )) (1) we have systematic way to obtain H(f) based on the differential equation (2) we can obtain X(f)  Fourier transform: an easier way (2) Problem Fourier transform of the input signal: Page 5-1
  • 2. j 2 ft X( f ) x (t )e dt j 2 ft |e | 1 if x(t) does not go to zero when t and t  X(f) typically does not exist! (the existence of X(f) if not guaranteed) A very strong condition, can not be satisfied by many signals! (3) Solution: Why should we care about t<0 for system analysis? We do not care! x(t) does not go to zero (when t ), but x(t )e t may! (Will be much easier. )  use “single-sided” Fourier transform of x(t )e t , instead of “double- sided” Fourier transform of x(t). t j t ( j )t  ( x (t )e )e dt x (t )e dt 0 0 very useful, let’s use a new name for it: Laplace transform. (4) Laplace Transform Definition: Laplace transform of x(t) L[ x(t )] X ( s) x(t )e st dt (s j ) 0 What is a Laplace transform of x(t)? A time function? No, t has been eliminated by the integral with respect to t! A function of s ( s is complex variable) (5) System analysis using Laplace transform Page 5-2
  • 3. X(s) Y(s ) Dynamic System G(s ) Inverse Laplace transform Y ( s) G( s) X ( s) y(t ) L 1 (Y ( s)) (6) How is the inverse transform defined? j 1 x (t ) X ( s )e st ds 2 j j (7) Will we often use the definition of the inverse transform to find time function? No! What will we do? Express X(s) as sum of terms for which we know the inverse transforms! 5-2 Examples of Evaluating Laplace Transforms using the definition (1) x(t)=1 and step function x(t)=u(t) t st st 1 L[ x(t ) u (t )] x(t )e dt e dt e st d ( st ) 0 0 st 0 st t 0 e t e j t t e j e j 0 e e e s t 0 s t 0 s s j (| e | 1 e 0 , (if 0) e , (if 0) 1 1 (cos0 j sin 0) s s 1 L(1) L[u (t )] (Re(s)) 0 s t (2) x(t ) e u(t ) t t L[e u(t )] e e st dt e ( s )t dt 0 0 ~ Define a new complex variable s s Page 5-3
  • 4. ~ st  e dt 0 st 1 we know e dt Re( s ) 0 0 s ~ ~ st 1 e dt ~ Re( s ) 0 0 s ( s )t 1 e dt Re( s ) 0 0 s t 1 L[e u(t )] Re( s ) 0 or Re( s ) Re( ) s t 1 L[e ] s (3) x (t ) (t ) L[ (t )] (t )e st dt 0 st t j t e e e t 0 t 0 t e (cos t j sin t ) t 0 1 No constraint on s. 5-2B Discussion: Convergence of the Laplace Transform (1) To assure x(t )e st dt x (t )e t e j t dt converge, Re(s) must be psotive 0 0 t enough such that x(t )e goes to zero when t goes to positive infinite (2) Region of absolute convergence and pole Page 5-4
  • 5. (3) How to obtain Fourier transform form Laplace transform: s j L[ x(t )] X ( s) X( j ) F ( x(t )) Important: why introduce Laplace transform; definition of Laplace transform as a modification of Fourier transform; find the Laplace transforms of the three basic functions based on the (mathematical) definition of Laplace transform. Chapter structure Part one: Definition (5.1) Part two: Direct evaluation of Laplace transforms of simple time- domain function. Easy? Not at all!  complex (not simple) functions: even harder  tools for application of Laplace transform in system analysis Part three: Rest of the chapter What tools: tools for easier Laplace transform evaluation tools for easy inverse transform Page 5-5
  • 6. 5-3 Some Laplace Transform theorems (Tools for evaluating Laplace transform based on the Laplace transforms of the basic functions) 5.3.1 Linearity Assume x(t ) a1x1(t ) a2 x2 (t ) ( a1 and a 2 are time independent) X1( s) L[ x1(t )], X 2 ( s) L[ x2 (t )] then X ( s) L[ x(t )] a1 X1( s) a2 X 2 ( s) HW#2-1: Assume x(t ) a1 (t ) x1 (t ) a2 (t ) x2 (t ) , X1( s) L[ x1(t )] and X 2 ( s) L[ x2 (t )] . (a) Is X ( s ) L[ x (t )] equal to a1(t ) X1( s) a2 (t ) X 2 ( s) ? (Answer: Yes or No) (b) If A ( s) L[a1(t )] , is it true 1 L[ x(t )] A1( s) X1( s) A2 ( s) X 2 ( s) ? (Answer: Yes or No) Example 5.1 (1) Find L(cos 0t ) Key to solution : express (cos 0t ) as linear combination of (t ) , u(t ) , t and/or e : L[ (t )] 1 1 L[u(t )] s t 1 L[e ] s let j 0 j 0t 1 L[e ] s j 0 let j 0 1 L[e j 0t ] L[e ( j 0 )t ] s j 0 Page 5-6
  • 7. j 0t Can we use e and e j 0t to express cos( 0t ) ? j 0t e cos( 0t ) j sin( 0t ) cos( 0t ) j sin( 0t ) ej 0t cos( 0t ) j sin( 0t ) j 0t e ej 0t 2 cos( 0 t ) j 0t e ej 0t cos( 0 t ) 2 1 L[cos( 0 t )] [ L(e j 0t ) L(e j 0t )] 2 1 1 1 2 s j 0 s j 0 1 (s j 0 ) (s j 0 ) 2 ( s j 0 )(s j 0 ) s 2 s2 0 (2) Find L[sin 0t ] 5-3-2 Transforms of Derivatives Assume X ( s) L[ x (t )] dx(t ) Then L sX ( s ) x (0 ) dt Proof: dx(t ) dx(t ) st (1) Definition L e dt e st dx(t ) d (t ) 0 dt 0 (2) Integration by parts: General equation: Page 5-7
  • 8. b b t b u (t )dv(t ) u (t )v(t ) t a v(t )du(t ) a a (3) Use the above equation st Why? If we assume v(t ) x(t ) , u (t ) e st v(t )du(t ) x(t )de s x(t )e st dt 0 0 0 X ( s) L x(t ) st u (t ) e , v(t ) x(t ) dx(t ) u (t )dv(t ) e st dx(t ) [ L from (1) ] 0 0 dt b t u (t )v(t ) t 0 v(t )du(t ) a t e st x(t ) t 0 s x(t )e st dt 0 t e st x(t ) t 0 sL[ x(t )] st lim e x(t ) must go to zero. Otherwise, t L[ x(t )] x(t )e st dt does not exist ! 0 st t s0 e x (t ) t 0 e x(0) x(0) use 0 as lower limit => x (0 ) t u (t )v(t ) t 0 v(t )du (t ) 0 x(0 ) sX ( s ) sX ( s ) x(0 ) Page 5-8
  • 9. HW#2-2: Assume X ( s ) L[ x (t )] . Prove d 2 x(t ) L s 2 X ( s) sx (0 ) x (1) (0 ) dt d ( n ) x (t ) HW#2-3: Express L using L[ x ( t )] dt n Example 5-2 Find i(t) using Laplace transform method for t>0 Solution: (1) Before switched from 1 to 2 at t=0 4 i 2A i (0 ) 2A 2 (2) System equation (t>0) di(t ) L Ri (t ) 0 ( L 1H ) ( R 2ohm) dt KVL: di(t ) 2i (t ) 0 dt (3) Solve system equation using Laplace transform di(t ) di(t ) L 2i (t ) L 2 L[i (t )] dt dt sI ( s ) i (0 ) 2 I ( s ) ( s 2) I ( s ) 2 0 2 I (s) s 2 i (t ) 2e 2t u (t ) A Page 5-9
  • 10. 5-3-3 Laplace Transform of an integral t Assume y(t ) x( ) d , X ( s) L[ x(t )] t X ( s) y (0 ) Then L x ( )d s s 0 where y (0 ) x ( )d Proof : t 0 st L x ( )d x ( )d e dt 0 t udv uv t 0 vdu 0 0 (1) t st t t e uv t 0 x( )d s t 0 1 st t s0 0 y (0 ) e e lim x( )d x( )d t s s y (0 ) 0 s (2) st e 1 1 vdu x (t )dt x (t )e st dt X ( s) 0 0 s s0 s (3) t y (0 ) X ( s) X ( s) y (0 ) L x ( )d Proved! s s s s Page 5-10
  • 11. Example 5.3: Find I(s) = L(i(t)) Solution: (1) Differential equation KVL : x(t ) vL (t ) vC (t ) vR (t ) dvC (t ) i (t ) C dt di(t ) 1 v L (t ) L dvC (t ) i (t )dt dt C t t t 1 1 vC (t ) i ( )d dvC ( ) i ( )d C C t v R (t ) Ri (t ) 1 vC (t ) vC ( ) i ( )d C t 1 vC ( ) 0 vC (t ) i ( )d C (2) Laplace transform X ( s ) VL ( s ) VC ( s ) VR ( s ) VL ( s ) L[ sI ( s ) i (0 )] LsI ( s ) i (0 ) zero 0 1 I ( s) 1 VC ( s ) i ( )d C s s 0 1 11 I ( s) i ( )d Cs sc 1 1 I ( s) vc ( 0 ) Cs s VR ( s ) RI ( s ) Page 5-11
  • 12. 1 1 X ( s) LsI ( s ) I ( s) vC (0 ) RI ( s ) Cs s 1 X ( s) vC (0 ) I ( s) s 1 Ls R Cs sX ( s ) vC (0 ) 1 Ls 2 sR C sX ( s ) vC (0 ) R 1 L s2 s L LC 5-3-4. Complex Frequency shift (s-shift) Theorem Assume y(t ) x(t )e t X (s) L[ x(t )] Y ( s) L[ y(t )] Then Y (s) X (s ) 1 t 1 L[u (t )] , L[u (t )e ] s s s 0 L[cos 0t ] 2 L[sin 0t ] 2 s2 0 s 2 0 t s t 0 => L[cos 0t e ] 2 L[sin 0t e ] 2 2 2 (s ) 0 (s ) 0 s 8 Example 5-4 Find x(t ) L 1[ X ( s)] L 1 s 2 6s 13 Solution: s 8 ( s 3) 5 X (s) s 2 6s 13 s 2 6s 9 4 s 3 (5 / 2) 2 ( s 3) 2 2 2 ( s 3) 2 2 2 Page 5-12
  • 13. 5 x(t ) L 1[ X ( s)] e 3t cos 2t e 3t sin 2t (t 0) 2 5-3-4 Delay Theorem question: How to express delayed function? Assume L[ x(t )] L[ x(t )u(t )] X ( s) Then L[ x(t t0 )u (t t0 )] e st 0 X (s) (t0 0) (If (t0 0) , it will not be a delay!) Proof : L[ x(t t0 )u (t t0 )] x(t t0 )u (t t0 )e st dt 0 t0 x(t t0 )u (t t0 )e st dt x(t t0 )u (t t0 )e st dt 0 t0 s ( t t0 ) st0 x(t t0 )e st dt x(t t0 )e dt t0 t0 st0 s ( t t0 ) e x(t t0 )e d (t t0 ) t0 t t0 st0 s st0 st0 e x ( )e d e x(t )e st dt e X (s) 0 0 Page 5-13
  • 14. st 0 Question: will L[ x(t t0 )u(t t0 )] e X (s) be true if t0 0? No! (it will not be a delay) Example 5-5: Square wave beginning at t = 0 T0 3T0 1 1 2 s 1 T0 s 1 2 s 1 2T0 s L[ xsq (t )] 2 e 2 e 2 e 2 e s s s s s 1 T0 s e 2 1 1 1 2 1 3 1 4 2 2 2 2 ... s s s s s 1 2 2 3 ( ...) s s T0 s 2 1 2 1 1 1 1 e T0 s s (1 ) s 1 s 2 s 1 e 5-3-5 Convolution Signal 1: x1 (t ) Signal 2 : x2 (t ) y(t ) x1 (t ) * x2 (t ) x1 ( ) x2 (t )d if x1 (t ) 0 t 0 y (t ) x1 ( ) x2 (t )d 0 Page 5-14
  • 15. if x2 (t ) 0 t 0 ( x2 (t ) 0 t) t y (t ) x1 ( ) x2 (t )d 0 Therefore, if x1 (t ) 0, x2 (t ) 0 t 0 t x1 ( ) x2 (t )d x1 ( ) x2 (t )d x1 ( ) x2 (t )d 0 0 t L[ x1 ( ) x2 (t )d ] L[ x1 ( ) x2 (t )d ] L[ x1 ( ) x2 (t )d ] 0 0 [ x1 ( ) x2 (t )d ]e st dt x1 ( )[ x2 (t )e st dt ]d 0 0 0 0 t Look at x 2 (t )e st dt x 2 (t )e s (t ) e s dt 0 0 t s s e x 2 ( )e d d dt t 0 t x2 ( ) 0 0 s s s e x 2 ( )e d e X 2 ( s) 0 Then s Y (s) x1 ( )e X 2 ( s)d 0 s X 2 ( s ) x1 ( )e d 0 X 1 (s) X 2 (s) Page 5-15
  • 16. 5-3-7 Product 5-3-8 Initial Value Theorem x(t ) L 1[ X ( s )] x (0 ) lim sX ( s ) s Example: A demonstration where x(0) is obvious t x(t ) e cos 0tu(t ) It is evident: x(0) e 0 cos 0 0 1 Using Laplace transform s X ( s) L[ x(t )] 2 (s )2 0 s(s ) x(0) lim sX ( s ) lim 2 s s (s )2 0 s2 s lim 2 s s2 2 s 2 0 d (s 2 s ) / ds lim 2 s d (s 2 2 s 2 0 ) / ds 2s d (2s ) / ds 2 lim lim lim 1 s 2s 2 s d (2s 2 ) / ds s 2 5-3-9 Final Value Theorem: if x(t ) and dx(t ) / dt are Laplace transformable, then lim x(t ) lim sX (s) t s 0 (condition: sX (s) has no poles on j axis or in the right-half s-plan or lim t x(t ) exists) 5-3-10 Scaling a>0: x(at) a times fast (if a>1) or slow (if a<1) as x(t) X ( s) L[ x(t )] What do we expect on L[ x(at )] ? Page 5-16
  • 17. s L[ x(at)] X ( )? a a 0 s st 1 a ( at ) L[ x(at )] x(at )e dt x(at )e d (at ) 0 a0 s at 1 1 s a x ( )e d X a 0 a0 a a t 5-4 Inversion of Rational Functions (1) Ways to find x(t ) from X (s ) 1 (1) x(t ) X ( s)e st dt (Contour Integral) 2 j (2) Transform pair 1 u (t ) s 1 t e u (t ) s 1 Therefore X ( s) x(t ) e t u (t ) s (2) All kinds of Laplace Transform ? No! We almost only see b0 s m b1s m 1 ... bm 1s bm s e s n a1s n 1 ...an 1s an rational function X(s) Delay x(t ) L 1[ X ( s)] y (t ) L 1[ X ( s)e s ] x(t )u (t ) Page 5-17
  • 18.  Consider Rational Functions only! (3) Non proper Rational Function proper Rational Function Non proper m>=n (b0 0) proper m<n Non proper => proper + Polynomial (using long division) s3 4s 2 6s 7 s 5 s 1 s 2 3s 2 s 2 3s 2 s 1 s 2 3s 2 s3 4s 2 6s 7 s2 4s 7 3s s s2 s 5 How to find inverse Laplace transform for polynomials? sn (n) (t ) L 1 ( s 1) L 1 ( s) L 1 (1) (1) (t ) (t ) consider proper rational functions only! (4) Proper Rational Functions: Partial Fraction Expansion 1 t ne t u (t ) (s )n 1 n! s t 2 e cos 0 tu (t ) (s )2 0  sum of 0 e t sin tu (t ) 2 2 0 (s ) 0 1 (t ) 1 u (t ) s 1 t e s Page 5-18
  • 19. Let’s look at examples, and then summarize! Techniques: Common Denominator Factorize first! Specific value of s Expand second! Heaviside’s Expansion Find coefficients third! Matlab Example 5-9: Simple Factors 10 Y ( s) s2 10s 16 Solution: 10 A B (1) Factorize and expand Y ( s ) ( s 8)(s 2) s 8 s 2 (2) Common Denominator Methods 10 A( s 2) B( s 8) ( s 8)(s 2) ( s 8)(s 2) A( s 2) B( s 8) 10 A B 0 A B 2 A 8B 10 2 B 8B 10 B 10 / 6 5/3 A 5/3 5 1 5 1 Y (s) 3 s 8 3 s 2 5 5 2t y (t ) ( e 8t e )u (t ) 3 3 specific values of s 10 A B ( s 8)(s 2) s 8 s 2 s 0 10 A B 8 2 8 2 s 2 10 A B 10 4 10 4 Can you solve for A and B? Page 5-19
  • 20. Heaviside Expansion 10 A B ( s 8)( s 2) s 8 s 2 10 B ( s 8) s 8 10 A A 5/3 s 2 s 2 8 2 10 A( s 2) s 2 10 and B B 5/3 s 8 s 8 2 8 Example 5-10 Imaginary Roots 15s 2 25s 20 Y ( s) ( s 2 1)(s 2)(s 8) Same as real roots! Solution: what do we have: A1 A2 A3 A4 Y (s) s j s j s 2 s 8 A1 ( s j ) A2 ( s j ) A3 A4 Y (s) 2 s 1 s 2 s 8 ( A1 A2 ) s ( A2 A1 ) j A3 A4 2 s 1 s 2 s 8 A1+A2 must be real number (-A1+A2)j must be real number c1s c2 A3 A4 Y ( s) s2 1 s 2 s 8 Heaviside Expansion => A3=1 and A4= - 2. 15s 2 25s 20 c1 s c2 1 2 Y ( s) (s 2 1)(s 2)(s 8) s2 1 s 2 s 8 15 25 20 c1 c2 1 2 s=1 => 2 3 9 2 3 9 15 4 25 2 20 2c1 c2 1 2 s=2 => 5 4 10 5 4 10 Page 5-20
  • 21. Can we solve for c1 and c2? c1=1 c2=1 s 1 1 2 Y (s) s2 1 s 2 s 8 s 1 1 2 s2 1 s2 1 s 2 s 8 => [cos t sin t e 2t 2e 8t ]u (t ) Too complex: use MATLAB Example 5-11 Repeated linear Factors 10s Y (s) ( s 2) 2 ( s 8) A1 A2 A3 s 8 s 2 ( s 2) 2 Example 5-12 10s Y ( s) ( s 2) 3 ( s 8) A1 A2 A3 A4 s 8 s 2 ( s 2) 2 ( s 2) 3 Example 5-13 Complex - Conjugate Factors 2s 2 6s 6 Y ( s) ( s 2)(s 2 2s 2) 2s 2 6s 6 A1 A2 A3 ( s 2)[(s 1) 2 1] s 2 s 1 j s 1 j Example 5-14 Repeated Quadratic Factors Page 5-21
  • 22. s4 5s 3 12s 2 7 s 15 Y (s) ( s 2)(s 2 1) 2 A1 B1s c1 B2 s c2 s 2 s 2 1 ( s 2 1) 2 * Summary of Partial–Fraction Expansion (1) Expansion Structure: Simple Roots (including complex conjugate) Aj => could be complex. s j Repeated Roots: m multiplicity B1 B2 Bm => 2 ... m s j (s j) (s j) real number or complex number (2) Avoid complex number For complex conjugates: j a jb Aj Aj* cs D * s j s j ( s a) 2 b 2 Bk Bk * cs D k * k (s j) s [( s a) 2 b 2 ]k j (3) Inverse Laplace transform Aj jt Aje u (t ) s j t Aj t k 1e j k Ak u (t ) k 2 (s j) (k 1)! Page 5-22
  • 23. Aj Bj tk 1 jt j * t k * k [ Aj e Bje ]u (t ) (s j) (s j ) (k 1)! j a jb t k 1 at * e [ A j (cosbt j sin bt ) B j (cosbt j sin bt ]u (t ) j a jb ( k 1)! Page 5-23