SlideShare a Scribd company logo
1 of 27
Download to read offline
Optimal Budget Allocation: 
Theoretical Guarantee and Efficient Algorithm 
Tasuku Soma Naonori Kakimura Kazuhiro Inaba Ken-ichi Kawarabayashi 
Univ. of Tokyo Univ. of Tokyo Google NII, JST, ERATO 
Kawarabayashi LargeGraphProject 
1 / 16
Budget Allocation Problem (Alon et al. ’11) 
A mathematical model for company’s ads. 
source1 
source2 
source3 
Total: 6 
cap:3 
cap:5 
cap:2 
2 / 16
Budget Allocation Problem (Alon et al. ’11) 
A mathematical model for company’s ads. 
source1 
source2 
source3 
alloc:2 ! cap:3 
alloc:3 ! cap:5 
alloc:1 ! cap:2 
Total: 6 
2 / 16
Budget Allocation Problem (Alon et al. ’11) 
A mathematical model for company’s ads. 
source1 
alloc:2 ! cap:3 
Influence Probs 
1st trial: Pr 0.3 
2nd trial: Pr 0.7 
3rd trial: Pr 0.2 
2 / 16
Budget Allocation Problem (Alon et al. ’11) 
A mathematical model for company’s ads. 
source1 
alloc:2 ! cap:3 
Influence Probs 
1st trial: Pr 0.3 
2nd trial: Pr 0.7 
3rd trial: Pr 0.2 
fail 
success 
fail 
2 / 16
Budget Allocation Problem (Alon et al. ’11) 
A mathematical model for company’s ads. 
source1 
alloc:2 ! cap:3 
Influence Probs 
1st trial: Pr 0.3 
2nd trial: Pr 0.7 
3rd trial: Pr 0.2 
2 / 16
Budget Allocation Problem (Alon et al. ’11) 
A mathematical model for company’s ads. 
source1 
alloc:2 ! cap:3 
Influence Probs 
1st trial: Pr 0.3 
2nd trial: Pr 0.7 
3rd trial: Pr 0.2 
fail 
success 
success 
2 / 16
Budget Allocation Problem (formal) 
G = (S; T; E): Bipartite graph 
For each source s 2 S: 
 capacity c(s) 
 Pr of success of the ith trial p(i) 
s (i = 1; : : : ; c(s)) 
B 2 Z+: Total budget 
f (b) := the expected # of influenced nodes by budget allocation b 2 ZS, 
which satisfies: 
 x  y =) f (x)  f (y) (monotonicity) 
 f (x) + f (y)  f (x _ y) + f (x ^ y) (8x; y 2 ZS) (submodularity) 
3 / 16
Budget Allocation Problem (formal) 
G = (S; T; E): Bipartite graph 
For each source s 2 S: 
 capacity c(s) 
 Pr of success of the ith trial p(i) 
s (i = 1; : : : ; c(s)) 
B 2 Z+: Total budget 
f (b) := the expected # of influenced nodes by budget allocation b 2 ZS, 
which satisfies: 
 x  y =) f (x)  f (y) (monotonicity) 
 f (x) + f (y)  f (x _ y) + f (x ^ y) (8x; y 2 ZS) (submodularity) 
Maximize f (b) 
subject to 0  b(s)  c(s) (s 2 S) X 
s2S 
b(s)  B 
3 / 16
Previous Work 
 NP-hard 
 If P , NP, (1  1=e)-approximation is best possible 
 Previous algorithm (Alon et al. ’11) is polytime, but impractical 
due to the heavy time complexity 
 What about more complicated real scenarios? 
4 / 16
Our Results 
1 Submodular Function Maximization over Integer Lattice: 
 A gerenal framework including more complicated scenarios 
 (1  1=e)-approximation algorithm 
2 Faster Algorithm for Nonincreasing Influence Probabilities: 
 Speeding up Alon et al.’s algorithm under natural assumption 
 Almost linear time for graph size 
 Numerical experiments for real  big data 
5 / 16
1 Submodular Function Maximization over Integer Lattice 
2 Faster Algorithm for Nonincreasing Influence Probabilities 
6 / 16
Submodular Func. Maximization over ZS 
+ 
f : ZS 
+ ! R ... monotone submodular function over integer lattice 
 x  y =) f (x)  f (y) 
 f (x) + f (y)  f (x _ y) + f (x ^ y) 
(8x; y 2 ZS) 
(x _ y : elem-wise max, x ^ y : elem-wise min) 
7 / 16
Submodular Func. Maximization over ZS 
+ 
f : ZS 
+ ! R ... monotone submodular function over integer lattice 
 x  y =) f (x)  f (y) 
 f (x) + f (y)  f (x _ y) + f (x ^ y) 
(8x; y 2 ZS) 
(x _ y : elem-wise max, x ^ y : elem-wise min) 
cf. submodularity for 
set functions: 
f (X) + f (Y)  
f (X [ Y) + f (X  Y) 
(8X; Y  S) 
7 / 16
Submodular Func. Maximization over ZS 
+ 
f : ZS 
+ ! R ... monotone submodular function over integer lattice 
 x  y =) f (x)  f (y) 
 f (x) + f (y)  f (x _ y) + f (x ^ y) 
(8x; y 2 ZS) 
(x _ y : elem-wise max, x ^ y : elem-wise min) 
cf. submodularity for 
set functions: 
f (X) + f (Y)  
f (X [ Y) + f (X  Y) 
(8X; Y  S) 
c 2 ZS 
+, w 2 ZS 
+, B 2 Z0 
Maximize f (b) 
subject to 0  b  c 
X 
s2S 
w(s)b(s)  B (knapsack constraint) 
b 2 ZS 
7 / 16
Submodular Func. Maximization over ZS 
+ 
General Framework Including: 
 Optimal budget allocation with various unit costs 
 Optimal budget allocation with competitor 
 Maximum coverage, Sensor placement, Text summarization, ... 
8 / 16
Submodular Func. Maximization over ZS 
+ 
General Framework Including: 
 Optimal budget allocation with various unit costs 
 Optimal budget allocation with competitor 
 Maximum coverage, Sensor placement, Text summarization, ... 
Pseudo Polytime (1  1=e)-Approximation Algorithm: 
Theorem 
A (1  1=e)-approximate solution can be found in O(B5jSj4) time 
(: the running time of oracle for f ) for a monotone submodular function 
maximization over the integer lattice subject to knapsack constraint. 
 Extends the algorithm for optimal budget allocation (Alon et al. ’11) 
8 / 16
1 Submodular Function Maximization over Integer Lattice 
2 Faster Algorithm for Nonincreasing Influence Probabilities 
9 / 16
Nonincreasing Influence Probabilities 
Under a natural assumption, Alon et al.’s algorithm can be accelerated. 
Assumption: 
Influence probabilities of each ad source are nonincreasing: 
p(1) 
s  p(2) 
s      p(c(s)) 
s (8s 2 S) 
(i.e., Effectiveness of each ad is nonincreasing with time) 
10 / 16
Nonincreasing Influence Probabilities 
Under a natural assumption, Alon et al.’s algorithm can be accelerated. 
Assumption: 
Influence probabilities of each ad source are nonincreasing: 
p(1) 
s  p(2) 
s      p(c(s)) 
s (8s 2 S) 
(i.e., Effectiveness of each ad is nonincreasing with time) 
Alon et al.’s algorithm: O(B6jSj5jTj) time 
Our algorithm: O(B(jSj + jTj + jEj)) time (almost linear for graph size) 
10 / 16
Algorithm 
Under the assumption, f satisfies the following diminishing marginal 
return property: 
f (b + 2es)  f (b + es)  f (b + es)  f (b) (b 2 ZS; s 2 S) 
Note: This property is NOT implied by submodularity! 
11 / 16
Algorithm 
Under the assumption, f satisfies the following diminishing marginal 
return property: 
f (b + 2es)  f (b + es)  f (b + es)  f (b) (b 2 ZS; s 2 S) 
Note: This property is NOT implied by submodularity! 
Algorithm 
1: b := 0 
2: while 
P 
s2S b(s)  B do 
3: Among s with b(s)  c(s), choose one of f (b +es)f (b) maximum. 
4: Set b := b + es. 
5: end while 
6: return b 
11 / 16
Algorithm 
One more trick: 
For optimal budget allocation, f (b + es)  f (b) can be computed in 
O(1) time. 
Theorem 
A (1  1=e)-approximate solution can be found in O(B(jVj + jEj)) time if 
the influence probabilities of each ad source are nonincreasing. 
 If B = O(1), runs in linear time for graph size. 
12 / 16
Experiments 
Our algorithm for nonincreasing probabilities vs Heuristics. 
Graphs: 
 Real Data (Yahoo! Webscope Dataset) 
 10,000 nodes  50,000 edges 
 Random Graph  2M nodes  8M edges 
Heuristics: 
 Degree-prob ... allocate to nodes with higher degree and prob. 
 Degree ... allocate to nodes with higher degree 
 Random ... allocate at random (baseline) 
Machine: Xeon E5-2690 2.9GHz CPU, 64GB RAM 
13 / 16
Real Data (10k nodes  50k edges) 
9000 
8000 
7000 
Influenced nodes: f (b) Budget: B 
6000 
5000 
4000 
3000 
2000 
1000 
0 
Greedy (Ours) 
Degree-prob 
Degree 
Random 
0 100 200 300 400 500 600 700 800 900 1000 
 Maximum 15% outperforming 
14 / 16
Random Graph (2M nodes  8M edges) 
1400000 
1200000 
Influenced nodes: f (b) Budget: B 
1000000 
800000 
600000 
400000 
200000 
0 
Greedy (Ours) 
Degree-prob 
Degree 
Random 
0 100 200 300 400 500 600 700 800 900 1000 
 Our algorithm finds an approx solution in a few seconds 
15 / 16
Our Results 
1 Submodular Function Maximization over Integer Lattice: 
 A gerenal framework including more complicated scenarios 
 (1  1=e)-approximation algorithm 
2 Faster Algorithm for Nonincreasing Influence Probabilities: 
 Speeding up Alon et al.’s algorithm under natural assumption 
 Almost linear time for graph size 
 Numerical experiments for real  big data 
16 / 16

More Related Content

What's hot

Core–periphery detection in networks with nonlinear Perron eigenvectors
Core–periphery detection in networks with nonlinear Perron eigenvectorsCore–periphery detection in networks with nonlinear Perron eigenvectors
Core–periphery detection in networks with nonlinear Perron eigenvectorsFrancesco Tudisco
 
Non-informative reparametrisation for location-scale mixtures
Non-informative reparametrisation for location-scale mixturesNon-informative reparametrisation for location-scale mixtures
Non-informative reparametrisation for location-scale mixturesChristian Robert
 
Brief Introduction About Topological Interference Management (TIM)
Brief Introduction About Topological Interference Management (TIM)Brief Introduction About Topological Interference Management (TIM)
Brief Introduction About Topological Interference Management (TIM)Pei-Che Chang
 
Distributed solution of stochastic optimal control problem on GPUs
Distributed solution of stochastic optimal control problem on GPUsDistributed solution of stochastic optimal control problem on GPUs
Distributed solution of stochastic optimal control problem on GPUsPantelis Sopasakis
 
Summary of Integration Methods
Summary of Integration MethodsSummary of Integration Methods
Summary of Integration MethodsSilvius
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusMatthew Leingang
 
HMPC for Upper Stage Attitude Control
HMPC for Upper Stage Attitude ControlHMPC for Upper Stage Attitude Control
HMPC for Upper Stage Attitude ControlPantelis Sopasakis
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Matthew Leingang
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsMatthew Leingang
 
Lesson 30: The Definite Integral
Lesson 30: The  Definite  IntegralLesson 30: The  Definite  Integral
Lesson 30: The Definite IntegralMatthew Leingang
 
Sloshing-aware MPC for upper stage attitude control
Sloshing-aware MPC for upper stage attitude controlSloshing-aware MPC for upper stage attitude control
Sloshing-aware MPC for upper stage attitude controlPantelis Sopasakis
 
Need for Controllers having Integer Coefficients in Homomorphically Encrypted D...
Need for Controllers having Integer Coefficients in Homomorphically Encrypted D...Need for Controllers having Integer Coefficients in Homomorphically Encrypted D...
Need for Controllers having Integer Coefficients in Homomorphically Encrypted D...CDSL_at_SNU
 
Random Number Generators 2018
Random Number Generators 2018Random Number Generators 2018
Random Number Generators 2018rinnocente
 
Pseudo and Quasi Random Number Generation
Pseudo and Quasi Random Number GenerationPseudo and Quasi Random Number Generation
Pseudo and Quasi Random Number GenerationAshwin Rao
 
Efficient Volume and Edge-Skeleton Computation for Polytopes Given by Oracles
Efficient Volume and Edge-Skeleton Computation for Polytopes Given by OraclesEfficient Volume and Edge-Skeleton Computation for Polytopes Given by Oracles
Efficient Volume and Edge-Skeleton Computation for Polytopes Given by OraclesVissarion Fisikopoulos
 
Oracle-based algorithms for high-dimensional polytopes.
Oracle-based algorithms for high-dimensional polytopes.Oracle-based algorithms for high-dimensional polytopes.
Oracle-based algorithms for high-dimensional polytopes.Vissarion Fisikopoulos
 
k-MLE: A fast algorithm for learning statistical mixture models
k-MLE: A fast algorithm for learning statistical mixture modelsk-MLE: A fast algorithm for learning statistical mixture models
k-MLE: A fast algorithm for learning statistical mixture modelsFrank Nielsen
 

What's hot (20)

Absorbing Random Walk Centrality
Absorbing Random Walk CentralityAbsorbing Random Walk Centrality
Absorbing Random Walk Centrality
 
Core–periphery detection in networks with nonlinear Perron eigenvectors
Core–periphery detection in networks with nonlinear Perron eigenvectorsCore–periphery detection in networks with nonlinear Perron eigenvectors
Core–periphery detection in networks with nonlinear Perron eigenvectors
 
Recursive Compressed Sensing
Recursive Compressed SensingRecursive Compressed Sensing
Recursive Compressed Sensing
 
Non-informative reparametrisation for location-scale mixtures
Non-informative reparametrisation for location-scale mixturesNon-informative reparametrisation for location-scale mixtures
Non-informative reparametrisation for location-scale mixtures
 
Brief Introduction About Topological Interference Management (TIM)
Brief Introduction About Topological Interference Management (TIM)Brief Introduction About Topological Interference Management (TIM)
Brief Introduction About Topological Interference Management (TIM)
 
Distributed solution of stochastic optimal control problem on GPUs
Distributed solution of stochastic optimal control problem on GPUsDistributed solution of stochastic optimal control problem on GPUs
Distributed solution of stochastic optimal control problem on GPUs
 
Summary of Integration Methods
Summary of Integration MethodsSummary of Integration Methods
Summary of Integration Methods
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
 
HMPC for Upper Stage Attitude Control
HMPC for Upper Stage Attitude ControlHMPC for Upper Stage Attitude Control
HMPC for Upper Stage Attitude Control
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite Integrals
 
Lesson 30: The Definite Integral
Lesson 30: The  Definite  IntegralLesson 30: The  Definite  Integral
Lesson 30: The Definite Integral
 
Sloshing-aware MPC for upper stage attitude control
Sloshing-aware MPC for upper stage attitude controlSloshing-aware MPC for upper stage attitude control
Sloshing-aware MPC for upper stage attitude control
 
Need for Controllers having Integer Coefficients in Homomorphically Encrypted D...
Need for Controllers having Integer Coefficients in Homomorphically Encrypted D...Need for Controllers having Integer Coefficients in Homomorphically Encrypted D...
Need for Controllers having Integer Coefficients in Homomorphically Encrypted D...
 
Random Number Generators 2018
Random Number Generators 2018Random Number Generators 2018
Random Number Generators 2018
 
Pseudo and Quasi Random Number Generation
Pseudo and Quasi Random Number GenerationPseudo and Quasi Random Number Generation
Pseudo and Quasi Random Number Generation
 
Efficient Volume and Edge-Skeleton Computation for Polytopes Given by Oracles
Efficient Volume and Edge-Skeleton Computation for Polytopes Given by OraclesEfficient Volume and Edge-Skeleton Computation for Polytopes Given by Oracles
Efficient Volume and Edge-Skeleton Computation for Polytopes Given by Oracles
 
Signals Processing Homework Help
Signals Processing Homework HelpSignals Processing Homework Help
Signals Processing Homework Help
 
Oracle-based algorithms for high-dimensional polytopes.
Oracle-based algorithms for high-dimensional polytopes.Oracle-based algorithms for high-dimensional polytopes.
Oracle-based algorithms for high-dimensional polytopes.
 
k-MLE: A fast algorithm for learning statistical mixture models
k-MLE: A fast algorithm for learning statistical mixture modelsk-MLE: A fast algorithm for learning statistical mixture models
k-MLE: A fast algorithm for learning statistical mixture models
 

Viewers also liked

Fast Deterministic Algorithms for Matrix Completion Problems
Fast Deterministic Algorithms for Matrix Completion ProblemsFast Deterministic Algorithms for Matrix Completion Problems
Fast Deterministic Algorithms for Matrix Completion ProblemsTasuku Soma
 
行列補完を用いた無線マルチキャスト符号構成アルゴリズム
行列補完を用いた無線マルチキャスト符号構成アルゴリズム行列補完を用いた無線マルチキャスト符号構成アルゴリズム
行列補完を用いた無線マルチキャスト符号構成アルゴリズムTasuku Soma
 
整数格子点上の劣モジュラ被覆に対する高速アルゴリズム
整数格子点上の劣モジュラ被覆に対する高速アルゴリズム整数格子点上の劣モジュラ被覆に対する高速アルゴリズム
整数格子点上の劣モジュラ被覆に対する高速アルゴリズムTasuku Soma
 
計算情報学研究室 (数理情報学第7研究室)
計算情報学研究室  (数理情報学第7研究室) 計算情報学研究室  (数理情報学第7研究室)
計算情報学研究室 (数理情報学第7研究室) Tasuku Soma
 
非制約最小二乗密度比推定法 uLSIF を用いた外れ値検出
非制約最小二乗密度比推定法 uLSIF を用いた外れ値検出非制約最小二乗密度比推定法 uLSIF を用いた外れ値検出
非制約最小二乗密度比推定法 uLSIF を用いた外れ値検出hoxo_m
 
脆弱性スキャナVulsのAWS環境への融合
脆弱性スキャナVulsのAWS環境への融合脆弱性スキャナVulsのAWS環境への融合
脆弱性スキャナVulsのAWS環境への融合Takayuki Ushida
 
Config rulesを1年ほど使い続けて分かったこと
Config rulesを1年ほど使い続けて分かったことConfig rulesを1年ほど使い続けて分かったこと
Config rulesを1年ほど使い続けて分かったことqtomonari
 
Pythonによる非同期プログラミング入門
Pythonによる非同期プログラミング入門Pythonによる非同期プログラミング入門
Pythonによる非同期プログラミング入門Hironori Sekine
 
QAアーキテクチャの設計による 説明責任の高いテスト・品質保証
QAアーキテクチャの設計による説明責任の高いテスト・品質保証QAアーキテクチャの設計による説明責任の高いテスト・品質保証
QAアーキテクチャの設計による 説明責任の高いテスト・品質保証Yasuharu Nishi
 
Pythonによる機械学習入門 ~SVMからDeep Learningまで~
Pythonによる機械学習入門 ~SVMからDeep Learningまで~Pythonによる機械学習入門 ~SVMからDeep Learningまで~
Pythonによる機械学習入門 ~SVMからDeep Learningまで~Yasutomo Kawanishi
 
Pythonによるwebアプリケーション入門 - Django編-
Pythonによるwebアプリケーション入門 - Django編- Pythonによるwebアプリケーション入門 - Django編-
Pythonによるwebアプリケーション入門 - Django編- Hironori Sekine
 
0528 kanntigai ui_ux
0528 kanntigai ui_ux0528 kanntigai ui_ux
0528 kanntigai ui_uxSaori Matsui
 
女子の心をつかむUIデザインポイント - MERY編 -
女子の心をつかむUIデザインポイント - MERY編 -女子の心をつかむUIデザインポイント - MERY編 -
女子の心をつかむUIデザインポイント - MERY編 -Shoko Tanaka
 

Viewers also liked (14)

Fast Deterministic Algorithms for Matrix Completion Problems
Fast Deterministic Algorithms for Matrix Completion ProblemsFast Deterministic Algorithms for Matrix Completion Problems
Fast Deterministic Algorithms for Matrix Completion Problems
 
Beamertemplete
BeamertempleteBeamertemplete
Beamertemplete
 
行列補完を用いた無線マルチキャスト符号構成アルゴリズム
行列補完を用いた無線マルチキャスト符号構成アルゴリズム行列補完を用いた無線マルチキャスト符号構成アルゴリズム
行列補完を用いた無線マルチキャスト符号構成アルゴリズム
 
整数格子点上の劣モジュラ被覆に対する高速アルゴリズム
整数格子点上の劣モジュラ被覆に対する高速アルゴリズム整数格子点上の劣モジュラ被覆に対する高速アルゴリズム
整数格子点上の劣モジュラ被覆に対する高速アルゴリズム
 
計算情報学研究室 (数理情報学第7研究室)
計算情報学研究室  (数理情報学第7研究室) 計算情報学研究室  (数理情報学第7研究室)
計算情報学研究室 (数理情報学第7研究室)
 
非制約最小二乗密度比推定法 uLSIF を用いた外れ値検出
非制約最小二乗密度比推定法 uLSIF を用いた外れ値検出非制約最小二乗密度比推定法 uLSIF を用いた外れ値検出
非制約最小二乗密度比推定法 uLSIF を用いた外れ値検出
 
脆弱性スキャナVulsのAWS環境への融合
脆弱性スキャナVulsのAWS環境への融合脆弱性スキャナVulsのAWS環境への融合
脆弱性スキャナVulsのAWS環境への融合
 
Config rulesを1年ほど使い続けて分かったこと
Config rulesを1年ほど使い続けて分かったことConfig rulesを1年ほど使い続けて分かったこと
Config rulesを1年ほど使い続けて分かったこと
 
Pythonによる非同期プログラミング入門
Pythonによる非同期プログラミング入門Pythonによる非同期プログラミング入門
Pythonによる非同期プログラミング入門
 
QAアーキテクチャの設計による 説明責任の高いテスト・品質保証
QAアーキテクチャの設計による説明責任の高いテスト・品質保証QAアーキテクチャの設計による説明責任の高いテスト・品質保証
QAアーキテクチャの設計による 説明責任の高いテスト・品質保証
 
Pythonによる機械学習入門 ~SVMからDeep Learningまで~
Pythonによる機械学習入門 ~SVMからDeep Learningまで~Pythonによる機械学習入門 ~SVMからDeep Learningまで~
Pythonによる機械学習入門 ~SVMからDeep Learningまで~
 
Pythonによるwebアプリケーション入門 - Django編-
Pythonによるwebアプリケーション入門 - Django編- Pythonによるwebアプリケーション入門 - Django編-
Pythonによるwebアプリケーション入門 - Django編-
 
0528 kanntigai ui_ux
0528 kanntigai ui_ux0528 kanntigai ui_ux
0528 kanntigai ui_ux
 
女子の心をつかむUIデザインポイント - MERY編 -
女子の心をつかむUIデザインポイント - MERY編 -女子の心をつかむUIデザインポイント - MERY編 -
女子の心をつかむUIデザインポイント - MERY編 -
 

Similar to Optimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm

ECE 2103_L6 Boolean Algebra Canonical Forms.pptx
ECE 2103_L6 Boolean Algebra Canonical Forms.pptxECE 2103_L6 Boolean Algebra Canonical Forms.pptx
ECE 2103_L6 Boolean Algebra Canonical Forms.pptxMdJubayerFaisalEmon
 
FPGA based BCH Decoder
FPGA based BCH DecoderFPGA based BCH Decoder
FPGA based BCH Decoderijsrd.com
 
ISI MSQE Entrance Question Paper (2010)
ISI MSQE Entrance Question Paper (2010)ISI MSQE Entrance Question Paper (2010)
ISI MSQE Entrance Question Paper (2010)CrackDSE
 
KARNAUGH MAP(K-MAP)
KARNAUGH MAP(K-MAP)KARNAUGH MAP(K-MAP)
KARNAUGH MAP(K-MAP)mihir jain
 
M166Calculus” ProjectDue Wednesday, December 9, 2015PROJ.docx
M166Calculus” ProjectDue Wednesday, December 9, 2015PROJ.docxM166Calculus” ProjectDue Wednesday, December 9, 2015PROJ.docx
M166Calculus” ProjectDue Wednesday, December 9, 2015PROJ.docxinfantsuk
 
ECE 2103_L6 Boolean Algebra Canonical Forms [Autosaved].pptx
ECE 2103_L6 Boolean Algebra Canonical Forms [Autosaved].pptxECE 2103_L6 Boolean Algebra Canonical Forms [Autosaved].pptx
ECE 2103_L6 Boolean Algebra Canonical Forms [Autosaved].pptxMdJubayerFaisalEmon
 
Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 6
Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 6Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 6
Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 6Ono Shigeru
 
Model-counting Approaches For Nonlinear Numerical Constraints
Model-counting Approaches For Nonlinear Numerical ConstraintsModel-counting Approaches For Nonlinear Numerical Constraints
Model-counting Approaches For Nonlinear Numerical ConstraintsQuoc-Sang Phan
 
2012 mdsp pr13 support vector machine
2012 mdsp pr13 support vector machine2012 mdsp pr13 support vector machine
2012 mdsp pr13 support vector machinenozomuhamada
 
Fast Identification of Heavy Hitters by Cached and Packed Group Testing
Fast Identification of Heavy Hitters by Cached and Packed Group TestingFast Identification of Heavy Hitters by Cached and Packed Group Testing
Fast Identification of Heavy Hitters by Cached and Packed Group TestingRakuten Group, Inc.
 
MLHEP 2015: Introductory Lecture #4
MLHEP 2015: Introductory Lecture #4MLHEP 2015: Introductory Lecture #4
MLHEP 2015: Introductory Lecture #4arogozhnikov
 

Similar to Optimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm (20)

ECE 2103_L6 Boolean Algebra Canonical Forms.pptx
ECE 2103_L6 Boolean Algebra Canonical Forms.pptxECE 2103_L6 Boolean Algebra Canonical Forms.pptx
ECE 2103_L6 Boolean Algebra Canonical Forms.pptx
 
FPGA based BCH Decoder
FPGA based BCH DecoderFPGA based BCH Decoder
FPGA based BCH Decoder
 
ISI MSQE Entrance Question Paper (2010)
ISI MSQE Entrance Question Paper (2010)ISI MSQE Entrance Question Paper (2010)
ISI MSQE Entrance Question Paper (2010)
 
KARNAUGH MAP(K-MAP)
KARNAUGH MAP(K-MAP)KARNAUGH MAP(K-MAP)
KARNAUGH MAP(K-MAP)
 
M166Calculus” ProjectDue Wednesday, December 9, 2015PROJ.docx
M166Calculus” ProjectDue Wednesday, December 9, 2015PROJ.docxM166Calculus” ProjectDue Wednesday, December 9, 2015PROJ.docx
M166Calculus” ProjectDue Wednesday, December 9, 2015PROJ.docx
 
Seminar psu 20.10.2013
Seminar psu 20.10.2013Seminar psu 20.10.2013
Seminar psu 20.10.2013
 
ECE 2103_L6 Boolean Algebra Canonical Forms [Autosaved].pptx
ECE 2103_L6 Boolean Algebra Canonical Forms [Autosaved].pptxECE 2103_L6 Boolean Algebra Canonical Forms [Autosaved].pptx
ECE 2103_L6 Boolean Algebra Canonical Forms [Autosaved].pptx
 
Algorithms DM
Algorithms DMAlgorithms DM
Algorithms DM
 
Type and proof structures for concurrency
Type and proof structures for concurrencyType and proof structures for concurrency
Type and proof structures for concurrency
 
Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 6
Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 6Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 6
Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 6
 
OI.ppt
OI.pptOI.ppt
OI.ppt
 
Model-counting Approaches For Nonlinear Numerical Constraints
Model-counting Approaches For Nonlinear Numerical ConstraintsModel-counting Approaches For Nonlinear Numerical Constraints
Model-counting Approaches For Nonlinear Numerical Constraints
 
Funções 2
Funções 2Funções 2
Funções 2
 
Função afim resumo teórico e exercícios - celso brasil
Função afim   resumo teórico e exercícios - celso brasilFunção afim   resumo teórico e exercícios - celso brasil
Função afim resumo teórico e exercícios - celso brasil
 
CLIM: Transition Workshop - Statistical Emulation with Dimension Reduction fo...
CLIM: Transition Workshop - Statistical Emulation with Dimension Reduction fo...CLIM: Transition Workshop - Statistical Emulation with Dimension Reduction fo...
CLIM: Transition Workshop - Statistical Emulation with Dimension Reduction fo...
 
R Language Introduction
R Language IntroductionR Language Introduction
R Language Introduction
 
2012 mdsp pr13 support vector machine
2012 mdsp pr13 support vector machine2012 mdsp pr13 support vector machine
2012 mdsp pr13 support vector machine
 
Fast Identification of Heavy Hitters by Cached and Packed Group Testing
Fast Identification of Heavy Hitters by Cached and Packed Group TestingFast Identification of Heavy Hitters by Cached and Packed Group Testing
Fast Identification of Heavy Hitters by Cached and Packed Group Testing
 
MUMS: Transition & SPUQ Workshop - Practical Bayesian Optimization for Urban ...
MUMS: Transition & SPUQ Workshop - Practical Bayesian Optimization for Urban ...MUMS: Transition & SPUQ Workshop - Practical Bayesian Optimization for Urban ...
MUMS: Transition & SPUQ Workshop - Practical Bayesian Optimization for Urban ...
 
MLHEP 2015: Introductory Lecture #4
MLHEP 2015: Introductory Lecture #4MLHEP 2015: Introductory Lecture #4
MLHEP 2015: Introductory Lecture #4
 

Optimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm

  • 1. Optimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm Tasuku Soma Naonori Kakimura Kazuhiro Inaba Ken-ichi Kawarabayashi Univ. of Tokyo Univ. of Tokyo Google NII, JST, ERATO Kawarabayashi LargeGraphProject 1 / 16
  • 2. Budget Allocation Problem (Alon et al. ’11) A mathematical model for company’s ads. source1 source2 source3 Total: 6 cap:3 cap:5 cap:2 2 / 16
  • 3. Budget Allocation Problem (Alon et al. ’11) A mathematical model for company’s ads. source1 source2 source3 alloc:2 ! cap:3 alloc:3 ! cap:5 alloc:1 ! cap:2 Total: 6 2 / 16
  • 4. Budget Allocation Problem (Alon et al. ’11) A mathematical model for company’s ads. source1 alloc:2 ! cap:3 Influence Probs 1st trial: Pr 0.3 2nd trial: Pr 0.7 3rd trial: Pr 0.2 2 / 16
  • 5. Budget Allocation Problem (Alon et al. ’11) A mathematical model for company’s ads. source1 alloc:2 ! cap:3 Influence Probs 1st trial: Pr 0.3 2nd trial: Pr 0.7 3rd trial: Pr 0.2 fail success fail 2 / 16
  • 6. Budget Allocation Problem (Alon et al. ’11) A mathematical model for company’s ads. source1 alloc:2 ! cap:3 Influence Probs 1st trial: Pr 0.3 2nd trial: Pr 0.7 3rd trial: Pr 0.2 2 / 16
  • 7. Budget Allocation Problem (Alon et al. ’11) A mathematical model for company’s ads. source1 alloc:2 ! cap:3 Influence Probs 1st trial: Pr 0.3 2nd trial: Pr 0.7 3rd trial: Pr 0.2 fail success success 2 / 16
  • 8. Budget Allocation Problem (formal) G = (S; T; E): Bipartite graph For each source s 2 S: capacity c(s) Pr of success of the ith trial p(i) s (i = 1; : : : ; c(s)) B 2 Z+: Total budget f (b) := the expected # of influenced nodes by budget allocation b 2 ZS, which satisfies: x y =) f (x) f (y) (monotonicity) f (x) + f (y) f (x _ y) + f (x ^ y) (8x; y 2 ZS) (submodularity) 3 / 16
  • 9. Budget Allocation Problem (formal) G = (S; T; E): Bipartite graph For each source s 2 S: capacity c(s) Pr of success of the ith trial p(i) s (i = 1; : : : ; c(s)) B 2 Z+: Total budget f (b) := the expected # of influenced nodes by budget allocation b 2 ZS, which satisfies: x y =) f (x) f (y) (monotonicity) f (x) + f (y) f (x _ y) + f (x ^ y) (8x; y 2 ZS) (submodularity) Maximize f (b) subject to 0 b(s) c(s) (s 2 S) X s2S b(s) B 3 / 16
  • 10. Previous Work NP-hard If P , NP, (1 1=e)-approximation is best possible Previous algorithm (Alon et al. ’11) is polytime, but impractical due to the heavy time complexity What about more complicated real scenarios? 4 / 16
  • 11. Our Results 1 Submodular Function Maximization over Integer Lattice: A gerenal framework including more complicated scenarios (1 1=e)-approximation algorithm 2 Faster Algorithm for Nonincreasing Influence Probabilities: Speeding up Alon et al.’s algorithm under natural assumption Almost linear time for graph size Numerical experiments for real big data 5 / 16
  • 12. 1 Submodular Function Maximization over Integer Lattice 2 Faster Algorithm for Nonincreasing Influence Probabilities 6 / 16
  • 13. Submodular Func. Maximization over ZS + f : ZS + ! R ... monotone submodular function over integer lattice x y =) f (x) f (y) f (x) + f (y) f (x _ y) + f (x ^ y) (8x; y 2 ZS) (x _ y : elem-wise max, x ^ y : elem-wise min) 7 / 16
  • 14. Submodular Func. Maximization over ZS + f : ZS + ! R ... monotone submodular function over integer lattice x y =) f (x) f (y) f (x) + f (y) f (x _ y) + f (x ^ y) (8x; y 2 ZS) (x _ y : elem-wise max, x ^ y : elem-wise min) cf. submodularity for set functions: f (X) + f (Y) f (X [ Y) + f (X Y) (8X; Y S) 7 / 16
  • 15. Submodular Func. Maximization over ZS + f : ZS + ! R ... monotone submodular function over integer lattice x y =) f (x) f (y) f (x) + f (y) f (x _ y) + f (x ^ y) (8x; y 2 ZS) (x _ y : elem-wise max, x ^ y : elem-wise min) cf. submodularity for set functions: f (X) + f (Y) f (X [ Y) + f (X Y) (8X; Y S) c 2 ZS +, w 2 ZS +, B 2 Z0 Maximize f (b) subject to 0 b c X s2S w(s)b(s) B (knapsack constraint) b 2 ZS 7 / 16
  • 16. Submodular Func. Maximization over ZS + General Framework Including: Optimal budget allocation with various unit costs Optimal budget allocation with competitor Maximum coverage, Sensor placement, Text summarization, ... 8 / 16
  • 17. Submodular Func. Maximization over ZS + General Framework Including: Optimal budget allocation with various unit costs Optimal budget allocation with competitor Maximum coverage, Sensor placement, Text summarization, ... Pseudo Polytime (1 1=e)-Approximation Algorithm: Theorem A (1 1=e)-approximate solution can be found in O(B5jSj4) time (: the running time of oracle for f ) for a monotone submodular function maximization over the integer lattice subject to knapsack constraint. Extends the algorithm for optimal budget allocation (Alon et al. ’11) 8 / 16
  • 18. 1 Submodular Function Maximization over Integer Lattice 2 Faster Algorithm for Nonincreasing Influence Probabilities 9 / 16
  • 19. Nonincreasing Influence Probabilities Under a natural assumption, Alon et al.’s algorithm can be accelerated. Assumption: Influence probabilities of each ad source are nonincreasing: p(1) s p(2) s p(c(s)) s (8s 2 S) (i.e., Effectiveness of each ad is nonincreasing with time) 10 / 16
  • 20. Nonincreasing Influence Probabilities Under a natural assumption, Alon et al.’s algorithm can be accelerated. Assumption: Influence probabilities of each ad source are nonincreasing: p(1) s p(2) s p(c(s)) s (8s 2 S) (i.e., Effectiveness of each ad is nonincreasing with time) Alon et al.’s algorithm: O(B6jSj5jTj) time Our algorithm: O(B(jSj + jTj + jEj)) time (almost linear for graph size) 10 / 16
  • 21. Algorithm Under the assumption, f satisfies the following diminishing marginal return property: f (b + 2es) f (b + es) f (b + es) f (b) (b 2 ZS; s 2 S) Note: This property is NOT implied by submodularity! 11 / 16
  • 22. Algorithm Under the assumption, f satisfies the following diminishing marginal return property: f (b + 2es) f (b + es) f (b + es) f (b) (b 2 ZS; s 2 S) Note: This property is NOT implied by submodularity! Algorithm 1: b := 0 2: while P s2S b(s) B do 3: Among s with b(s) c(s), choose one of f (b +es)f (b) maximum. 4: Set b := b + es. 5: end while 6: return b 11 / 16
  • 23. Algorithm One more trick: For optimal budget allocation, f (b + es) f (b) can be computed in O(1) time. Theorem A (1 1=e)-approximate solution can be found in O(B(jVj + jEj)) time if the influence probabilities of each ad source are nonincreasing. If B = O(1), runs in linear time for graph size. 12 / 16
  • 24. Experiments Our algorithm for nonincreasing probabilities vs Heuristics. Graphs: Real Data (Yahoo! Webscope Dataset) 10,000 nodes 50,000 edges Random Graph 2M nodes 8M edges Heuristics: Degree-prob ... allocate to nodes with higher degree and prob. Degree ... allocate to nodes with higher degree Random ... allocate at random (baseline) Machine: Xeon E5-2690 2.9GHz CPU, 64GB RAM 13 / 16
  • 25. Real Data (10k nodes 50k edges) 9000 8000 7000 Influenced nodes: f (b) Budget: B 6000 5000 4000 3000 2000 1000 0 Greedy (Ours) Degree-prob Degree Random 0 100 200 300 400 500 600 700 800 900 1000 Maximum 15% outperforming 14 / 16
  • 26. Random Graph (2M nodes 8M edges) 1400000 1200000 Influenced nodes: f (b) Budget: B 1000000 800000 600000 400000 200000 0 Greedy (Ours) Degree-prob Degree Random 0 100 200 300 400 500 600 700 800 900 1000 Our algorithm finds an approx solution in a few seconds 15 / 16
  • 27. Our Results 1 Submodular Function Maximization over Integer Lattice: A gerenal framework including more complicated scenarios (1 1=e)-approximation algorithm 2 Faster Algorithm for Nonincreasing Influence Probabilities: Speeding up Alon et al.’s algorithm under natural assumption Almost linear time for graph size Numerical experiments for real big data 16 / 16