SlideShare a Scribd company logo
1 of 48
Download to read offline
Fast Deterministic Algorithms
                            for Matrix Completion Problems


                                          Tasuku Soma

                             Research Institute for Mathematical Sciences,
                                              Kyoto Univ.




Tasuku Soma (Kyoto Univ.)             Fast Matrix Completion Algorithms      1 / 29
1   Introduction

2   Matrix Completion by Rank-One Matrices

3   Application to Network Coding

4   Mixed Skew-Symmetric Matrix Completion

5   Skew-Symmetric Matrix Completion by Rank-Two Skew-Symmetric
    Matrices

6   Conclusion




    Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms   2 / 29
1   Introduction

2   Matrix Completion by Rank-One Matrices

3   Application to Network Coding

4   Mixed Skew-Symmetric Matrix Completion

5   Skew-Symmetric Matrix Completion by Rank-Two Skew-Symmetric
    Matrices

6   Conclusion




    Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms   3 / 29
Matrix Completion


Matrix Completion
F: Field
         Input Matrix A (x1 , . . . , xn ) over F(x1 , . . . , xn ) with indeterminates
               x1 , . . . , xn
           Find α1 , . . . , αn ∈ F maximizing rank A (α1 , . . . , αn ).




   Tasuku Soma (Kyoto Univ.)       Fast Matrix Completion Algorithms                      4 / 29
Matrix Completion


Matrix Completion
F: Field
         Input Matrix A (x1 , . . . , xn ) over F(x1 , . . . , xn ) with indeterminates
               x1 , . . . , xn
           Find α1 , . . . , αn ∈ F maximizing rank A (α1 , . . . , αn ).

Example
F = Q,

                      1 + x1   2 + x2        2 2
             A=                       −→ A =
                        x3       x4          1 0
                                        (x1 := 1, x2 := 0, x3 := 1, x4 := 0)



   Tasuku Soma (Kyoto Univ.)       Fast Matrix Completion Algorithms                      4 / 29
Backgrounds

A variety of combinatorial optimization problems can be formulated by
matrices with indeterminates:
     Maximum matching,
     Structural rigidity,
     Network coding, etc.




   Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms        5 / 29
Backgrounds

A variety of combinatorial optimization problems can be formulated by
matrices with indeterminates:
     Maximum matching,
     Structural rigidity,
     Network coding, etc.


Previous Works
     Matrix completion for general matrices is solvable in polynomial time
     by a randomized algorithm if the field is sufficiently large.
     Deterministic algorithms are known only for special matrices
     (cf. polynomial identity testing)
     NP hard over a general field.


   Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms         5 / 29
Our Results


Our Results
Deterministic polynomial time algorithms for the following matrix
completion problems:
     Matrix completion by rank-one matrices
                               — a faster algorithm than the previous one
     Mixed skew-symmetric matrix completion
                     — the first deterministic polynomial time algorithm
     Skew-symmetric matrix completion by
     rank-two skew-symmetric matrices
                      — the first deterministic polynomial time algorithm




   Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms       6 / 29
Our Results


Our Results
Deterministic polynomial time algorithms for the following matrix
completion problems:
     Matrix completion by rank-one matrices
                               — a faster algorithm than the previous one
     Mixed skew-symmetric matrix completion
                     — the first deterministic polynomial time algorithm
     Skew-symmetric matrix completion by
     rank-two skew-symmetric matrices
                      — the first deterministic polynomial time algorithm


They are working over an arbitrary field!


   Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms       6 / 29
1   Introduction

2   Matrix Completion by Rank-One Matrices

3   Application to Network Coding

4   Mixed Skew-Symmetric Matrix Completion

5   Skew-Symmetric Matrix Completion by Rank-Two Skew-Symmetric
    Matrices

6   Conclusion




    Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms   7 / 29
Problem Definition



Matrix Completion by Rank-One Matrices
Matrix completion for A = B0 + x1 B1 + · · · + xn Bn , where B1 , . . . , Bn are of
rank one.




   Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms                8 / 29
Problem Definition



Matrix Completion by Rank-One Matrices
Matrix completion for A = B0 + x1 B1 + · · · + xn Bn , where B1 , . . . , Bn are of
rank one.

Example
    1 0         1 1        2 0
B0 =     , B1 =     , B2 =
    0 0         0 0        1 0
   1 + x1 + 2x2 x1
A=
        x2       0




   Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms                8 / 29
Previous Works

In the case of B0 = 0:

   ´
Lovasz ’89
This can be reduced to linear matroid intersection.

     solvable in O (mn1.62 ) time using the algorithm of Gabow & Xu ’96




m: the larger of row and column sizes, n: # of indeterminates

   Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms          9 / 29
Previous Works

In the case of B0 = 0:

   ´
Lovasz ’89
This can be reduced to linear matroid intersection.

     solvable in O (mn1.62 ) time using the algorithm of Gabow & Xu ’96

For the general case:

Ivanyos, Karpinski & Saxena ’10
An optimal solution can be found in O (m4.37 n) time.




m: the larger of row and column sizes, n: # of indeterminates

   Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms          9 / 29
Previous Works

In the case of B0 = 0:

   ´
Lovasz ’89
This can be reduced to linear matroid intersection.

     solvable in O (mn1.62 ) time using the algorithm of Gabow & Xu ’96

For the general case:

Ivanyos, Karpinski & Saxena ’10
An optimal solution can be found in O (m4.37 n) time.

Our Result
An optimal solution can be found in O ((m + n)2.77 ) time.

m: the larger of row and column sizes, n: # of indeterminates

   Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms          9 / 29
Idea

For A = B0 + x1 B1 + · · · + xn Bn (Bi = ui vi (i = 1, . . . , n))

                               1                                        v1
                                                                             
                                                                              
                                     ..                                   .
                                                                             
                                                          0               .
                              
                                                                             
                                                                              
                                          .                               .
                              
                              
                                                                             
                                                                              
                                                                              
                              
                              
                                                                             
                                                                              
                                                                              
                                                                             
                              
                              
                              
                                             1                          vn   
                                                                              
                                                                              
                                                                              
                              
                               x1                                            
                                                    1
                              
                                                                             
                                                                              
                                                                              
                                                                             
                         ˜ :=       ..                   ..                  .
                                                                             
                         A
                                                                         0
                                                                             
                                          .                    .
                              
                              
                                                                             
                                                                              
                                                                              
                              
                              
                                                                             
                                                                              
                                                                              
                                              xn                   1
                              
                              
                                                                             
                                                                              
                                                                              
                              
                              
                                                                             
                                                                              
                                                                              
                              
                              
                                                                             
                                                                              
                                                                              
                                                                             
                                     0
                                                                             
                                                                         B0
                                                                             
                                                   u1     ···      un
                              
                              
                                                                             
                                                                              
                                                                              
                                                                             




   Tasuku Soma (Kyoto Univ.)         Fast Matrix Completion Algorithms             10 / 29
Idea

For A = B0 + x1 B1 + · · · + xn Bn (Bi = ui vi (i = 1, . . . , n))

                               1                                        v1
                                                                             
                                                                              
                                     ..                                   .
                                                                             
                                                          0               .
                              
                                                                             
                                                                              
                                          .                               .
                              
                              
                                                                             
                                                                              
                                                                              
                              
                              
                                                                             
                                                                              
                                                                              
                                                                             
                              
                              
                              
                                             1                          vn   
                                                                              
                                                                              
                                                                              
                              
                               x1                                            
                                                    1
                              
                                                                             
                                                                              
                                                                              
                                                                             
                         ˜ :=       ..                   ..                  .
                                                                             
                         A
                                                                         0
                                                                             
                                          .                    .
                              
                              
                                                                             
                                                                              
                                                                              
                              
                              
                                                                             
                                                                              
                                                                              
                                              xn                   1
                              
                              
                                                                             
                                                                              
                                                                              
                              
                              
                                                                             
                                                                              
                                                                              
                              
                              
                                                                             
                                                                              
                                                                              
                                                                             
                                     0
                                                                             
                                                                         B0
                                                                             
                                                   u1     ···      un
                              
                              
                                                                             
                                                                              
                                                                              
                                                                             



Lemma
     ˜
rank A = 2n + rank A


   Tasuku Soma (Kyoto Univ.)         Fast Matrix Completion Algorithms             10 / 29
Algorithm


                                        ˜ ˜
Each indeterminate appears only once in A ! (A is a mixed matrix)




   Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms    11 / 29
Algorithm


                                        ˜ ˜
Each indeterminate appears only once in A ! (A is a mixed matrix)

Harvey, Karger & Murota ’05
Matrix completion for a mixed matrix can be done in O (m2.77 ) time.




m: the larger of row and column sizes, n: # of indeterminates



   Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms       11 / 29
Algorithm


                                        ˜ ˜
Each indeterminate appears only once in A ! (A is a mixed matrix)

Harvey, Karger & Murota ’05
Matrix completion for a mixed matrix can be done in O (m2.77 ) time.

                                               ˜
                                    ↓ Apply to A


Theorem
Matrix completion by rank-one matrices can be done in O ((m + n)2.77 )
time.

m: the larger of row and column sizes, n: # of indeterminates



   Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms         11 / 29
Min-Max Theorem


Theorem
For A = B0 + x1 B1 + · · · + xn Bn ,

           max{rank A : x1 , . . . , xn }
                                     0            [vj : j      J]
               = min rank                                              : J ⊆ {1, . . . , n} .
                               [uj : j ∈ J ]             B0




   Tasuku Soma (Kyoto Univ.)       Fast Matrix Completion Algorithms                            12 / 29
Min-Max Theorem


Theorem
For A = B0 + x1 B1 + · · · + xn Bn ,

           max{rank A : x1 , . . . , xn }
                                      0            [vj : j      J]
               = min rank                                                 : J ⊆ {1, . . . , n} .
                                [uj : j ∈ J ]             B0

                ´
Corollary (Lovasz ’89)
If B0 = 0, then

             max{rank A : x1 , . . . , xn }
                 = min{dim uj : j ∈ J + dim vj : j                      J : J ⊆ {1, . . . , n}}



   Tasuku Soma (Kyoto Univ.)        Fast Matrix Completion Algorithms                              12 / 29
Simultaneous Matrix Completion by Rank-One Matrices



Simultaneous Matrix Completion by Rank-One Matrices
F: Field
         Input Collection A of matrices in the form of B0 + x1 B1 + · · · + xn Bn
           Find Value assignments αi ∈ F for each indeterminate xi
                maximizing the rank of every matrix in A




   Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms              13 / 29
Simultaneous Matrix Completion by Rank-One Matrices



Simultaneous Matrix Completion by Rank-One Matrices
F: Field
         Input Collection A of matrices in the form of B0 + x1 B1 + · · · + xn Bn
           Find Value assignments αi ∈ F for each indeterminate xi
                maximizing the rank of every matrix in A

Theorem
A solution of simultaneous matrix completion by rank-one matrices can be
found in polynomial time, if |F| > |A|.




   Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms              13 / 29
1   Introduction

2   Matrix Completion by Rank-One Matrices

3   Application to Network Coding

4   Mixed Skew-Symmetric Matrix Completion

5   Skew-Symmetric Matrix Completion by Rank-Two Skew-Symmetric
    Matrices

6   Conclusion




    Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms   14 / 29
Network Coding

Network communication model s.t. intermediate nodes can perform coding




                     Classical model                                       Network coding




   Tasuku Soma (Kyoto Univ.)           Fast Matrix Completion Algorithms                    15 / 29
Multicast Problem with Linearly Correlated Sources




    Messages in source nodes are linearly
    correlated
    Each sink node demands the original
    messages x1 & x2




Theorem
A solution of this multicast can be found in polynomial time.

Approach: simultaneous matrix completion by rank-one matrices.


   Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms   16 / 29
1   Introduction

2   Matrix Completion by Rank-One Matrices

3   Application to Network Coding

4   Mixed Skew-Symmetric Matrix Completion

5   Skew-Symmetric Matrix Completion by Rank-Two Skew-Symmetric
    Matrices

6   Conclusion




    Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms   17 / 29
Problem Definition



Mixed Skew-Symmetric Matrix Completion
Matrix completion for a skew-symmetric matrix s.t. each indeterminate
appears twice (mixed skew-symmetric matrix).

Example
                                      
    0 −1 1  0
   
           
                  x 0  0
                         
                                −1 + x 1
                                           
A =1   0 0 + −x 0 y  = 1 − x   0    y
   
           
                       
                                         
                                           
   
   
           
                       
                                         
                                           
    −1 0 0
            
                 0 −y 0
                         
                             −1    −y
                                           
                                         0




   Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms        18 / 29
Our Result



There were no algorithms for this problem, but we can compute the rank.

Murota ’03 (←Geelen, Iwata & Murota ’03)
The rank of an m × m mixed skew-symmetric matrix can be computed in
O (m4 ) time.




   Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms      19 / 29
Our Result



There were no algorithms for this problem, but we can compute the rank.

Murota ’03 (←Geelen, Iwata & Murota ’03)
The rank of an m × m mixed skew-symmetric matrix can be computed in
O (m4 ) time.

Our Result
Matrix completion for an m × m mixed skew-symmetric matrix can be done
in O (m4 ) time.




   Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms      19 / 29
Rank of Mixed Skew-Symmetric Matrix



Lemma (Murota ’03)
For an m × m mixed skew-symmetric matrix A = Q + T
(Q: constant part, T : indeterminates part),

        rank A = max |FQ       FT | : both Q [FQ ], T [FT ] are nonsingular


    RHS is linear delta-covering.
    Optimal FQ and FT can be found in O (m4 )
    time (Geelen, Iwata & Murota ’03).




   Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms              20 / 29
Support Graph and Pfaffian

Support graph:

                    0 −2 1
                                        
                                     1
                   
                   2                   
                        0  0          3
                   
                                       
                                        
                A =
                                       
                                        
                   −1 0
                   
                   
                   
                          0          2
                                        
                                        
                                        
                                        
                                       
                     1 −3 −2          0




   Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms   21 / 29
Support Graph and Pfaffian

Support graph:

                    0 −2 1
                                               
                                              1
                   
                   2                            
                        0  0                   3
                   
                                                
                                                 
                A =
                                                
                                                 
                   −1 0
                   
                   
                   
                          0                   2
                                                 
                                                 
                                                 
                                                 
                                                
                     1 −3 −2                   0
Pfaffian:

       pf A :=                                 ±           Aij
                    M :perfect matching in G       ij ∈M

               = A12 A34 − A13 A24

Lemma
                                         det A = (pf A )2


   Tasuku Soma (Kyoto Univ.)          Fast Matrix Completion Algorithms   21 / 29
Sketch of Algorithm



Algorithm
 1: Find an optimal solution FQ and FT for linear delta-covering.
 2: Find a perfect matching M in the support graph of T [FT ].




      Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms   22 / 29
Sketch of Algorithm



Algorithm
 1:    Find an optimal solution FQ and FT for linear delta-covering.
 2:    Find a perfect matching M in the support graph of T [FT ].
 3:    for each ij ∈ M do
 4:      Substitute α to Tij so that Q [FQ ∪ {i , j }] will be nonsingular after
         substitution.
 5:      FQ := FQ ∪ {i , j }
 6:    end for




      Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms                22 / 29
Sketch of Algorithm



Algorithm
 1:    Find an optimal solution FQ and FT for linear delta-covering.
 2:    Find a perfect matching M in the support graph of T [FT ].
 3:    for each ij ∈ M do
 4:      Substitute α to Tij so that Q [FQ ∪ {i , j }] will be nonsingular after
         substitution.
 5:      FQ := FQ ∪ {i , j }
 6:    end for
 7:    Substitute 0 to the rest of indeterminates
 8:    return the resulting matrix




      Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms                22 / 29
Sketch of Algorithm
How can we find α s.t. Q [FQ ∪ {i , j }] will be nonsingular?




                   A =Q +T




   Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms   23 / 29
Sketch of Algorithm
How can we find α s.t. Q [FQ ∪ {i , j }] will be nonsingular?




                   A =Q +T                                         A =Q +T




   Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms             23 / 29
Sketch of Algorithm
How can we find α s.t. Q [FQ ∪ {i , j }] will be nonsingular?




                   A =Q +T                                               A =Q +T



Lemma
Q : modified matrix of Q as Qij := Qij + α, Qji := Qji − α

                   pf Q [FQ ∪ {i , j }] = pf Q [FQ ∪ {i , j }] ± α · pf Q [FQ ]

   Tasuku Soma (Kyoto Univ.)         Fast Matrix Completion Algorithms             23 / 29
Sketch of Algorithm

Finally, we obtain Q s.t. rank Q = rank A .




Theorem
Matrix completion for an m × m mixed skew-symmetric matrix can be done
in O (m4 ) time.

     Using delta-covering algortihm of Geelen, Iwata & Murota ’03



   Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms    24 / 29
1   Introduction

2   Matrix Completion by Rank-One Matrices

3   Application to Network Coding

4   Mixed Skew-Symmetric Matrix Completion

5   Skew-Symmetric Matrix Completion by Rank-Two Skew-Symmetric
    Matrices

6   Conclusion




    Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms   25 / 29
Problem Definition




Skew-Symmetric Matrix Completion by Rank-Two Skew-Symmetric
Matrices
Matrix completion for A = B0 + x1 B1 + · · · + xn Bn ,
where B0 is skew-symmetric and B1 , . . . , Bn are rank-two skew-symmteric




   Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms        26 / 29
Our Result

In the case of B0 = 0:

   ´
Lovasz ’89
This can be reduced to linear matroid parity.

     solvable in O (m3 n) time using the algorithm of Gabow & Stallman ’86.




   Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms        27 / 29
Our Result

In the case of B0 = 0:

   ´
Lovasz ’89
This can be reduced to linear matroid parity.

     solvable in O (m3 n) time using the algorithm of Gabow & Stallman ’86.


For the general case:

Our Result
An optimal solution can be found in O ((m + n)4 ) time.

     Idea: Reduction to mixed skew-symmetric matrix completion
     (similar to matrix completion by rank-one matrices)


   Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms        27 / 29
1   Introduction

2   Matrix Completion by Rank-One Matrices

3   Application to Network Coding

4   Mixed Skew-Symmetric Matrix Completion

5   Skew-Symmetric Matrix Completion by Rank-Two Skew-Symmetric
    Matrices

6   Conclusion




    Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms   28 / 29
Conclusion

Our Results
    Faster algorithm and Min-Max theorem for matrix completion by
    rank-one matrices.
    Application for multicast problem with linearly correlated sources.
    First deterministic polynomial time algorithm for mixed
    skew-symmetric matrix completion.
    First deterministic polynomial time algorithm for skew-symmetric
    matrix completion by rank-two skew-symmetric matrices.




  Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms           29 / 29
Conclusion

Our Results
    Faster algorithm and Min-Max theorem for matrix completion by
    rank-one matrices.
    Application for multicast problem with linearly correlated sources.
    First deterministic polynomial time algorithm for mixed
    skew-symmetric matrix completion.
    First deterministic polynomial time algorithm for skew-symmetric
    matrix completion by rank-two skew-symmetric matrices.


Future Works
    Application of skew-symmetric matrix completion
    Matrix completion for other types of matrices


  Tasuku Soma (Kyoto Univ.)   Fast Matrix Completion Algorithms           29 / 29

More Related Content

Viewers also liked

計算情報学研究室 (数理情報学第7研究室)
計算情報学研究室  (数理情報学第7研究室) 計算情報学研究室  (数理情報学第7研究室)
計算情報学研究室 (数理情報学第7研究室)
Tasuku Soma
 
Config rulesを1年ほど使い続けて分かったこと
Config rulesを1年ほど使い続けて分かったことConfig rulesを1年ほど使い続けて分かったこと
Config rulesを1年ほど使い続けて分かったこと
qtomonari
 

Viewers also liked (9)

計算情報学研究室 (数理情報学第7研究室)
計算情報学研究室  (数理情報学第7研究室) 計算情報学研究室  (数理情報学第7研究室)
計算情報学研究室 (数理情報学第7研究室)
 
非制約最小二乗密度比推定法 uLSIF を用いた外れ値検出
非制約最小二乗密度比推定法 uLSIF を用いた外れ値検出非制約最小二乗密度比推定法 uLSIF を用いた外れ値検出
非制約最小二乗密度比推定法 uLSIF を用いた外れ値検出
 
脆弱性スキャナVulsのAWS環境への融合
脆弱性スキャナVulsのAWS環境への融合脆弱性スキャナVulsのAWS環境への融合
脆弱性スキャナVulsのAWS環境への融合
 
Config rulesを1年ほど使い続けて分かったこと
Config rulesを1年ほど使い続けて分かったことConfig rulesを1年ほど使い続けて分かったこと
Config rulesを1年ほど使い続けて分かったこと
 
Pythonによる非同期プログラミング入門
Pythonによる非同期プログラミング入門Pythonによる非同期プログラミング入門
Pythonによる非同期プログラミング入門
 
QAアーキテクチャの設計による 説明責任の高いテスト・品質保証
QAアーキテクチャの設計による説明責任の高いテスト・品質保証QAアーキテクチャの設計による説明責任の高いテスト・品質保証
QAアーキテクチャの設計による 説明責任の高いテスト・品質保証
 
Pythonによるwebアプリケーション入門 - Django編-
Pythonによるwebアプリケーション入門 - Django編- Pythonによるwebアプリケーション入門 - Django編-
Pythonによるwebアプリケーション入門 - Django編-
 
0528 kanntigai ui_ux
0528 kanntigai ui_ux0528 kanntigai ui_ux
0528 kanntigai ui_ux
 
女子の心をつかむUIデザインポイント - MERY編 -
女子の心をつかむUIデザインポイント - MERY編 -女子の心をつかむUIデザインポイント - MERY編 -
女子の心をつかむUIデザインポイント - MERY編 -
 

Similar to Fast Deterministic Algorithms for Matrix Completion Problems

George Washington University - Next Generation of modeling and Solving Tools
George Washington University - Next Generation of modeling and Solving ToolsGeorge Washington University - Next Generation of modeling and Solving Tools
George Washington University - Next Generation of modeling and Solving Tools
Alkis Vazacopoulos
 
INFORMS Metro NY February 2013
INFORMS Metro NY February 2013INFORMS Metro NY February 2013
INFORMS Metro NY February 2013
Alkis Vazacopoulos
 
RMAWGEN: a software project for Daily Multi-Site Weather Generator
RMAWGEN: a software project for Daily Multi-Site Weather GeneratorRMAWGEN: a software project for Daily Multi-Site Weather Generator
RMAWGEN: a software project for Daily Multi-Site Weather Generator
Emanuele Cordano
 
CES Capabilities Overview
CES Capabilities OverviewCES Capabilities Overview
CES Capabilities Overview
NickPeligno
 
Linear programming introduction
Linear programming  introductionLinear programming  introduction
Linear programming introduction
sankerps
 

Similar to Fast Deterministic Algorithms for Matrix Completion Problems (20)

Locally Stationary Geostatistics
Locally Stationary Geostatistics Locally Stationary Geostatistics
Locally Stationary Geostatistics
 
George Washington University - Next Generation of modeling and Solving Tools
George Washington University - Next Generation of modeling and Solving ToolsGeorge Washington University - Next Generation of modeling and Solving Tools
George Washington University - Next Generation of modeling and Solving Tools
 
INFORMS Metro NY February 2013
INFORMS Metro NY February 2013INFORMS Metro NY February 2013
INFORMS Metro NY February 2013
 
RMAWGEN: A software project for a daily Multi-Site Weather Generator with R E...
RMAWGEN: A software project for a daily Multi-Site Weather Generator with R E...RMAWGEN: A software project for a daily Multi-Site Weather Generator with R E...
RMAWGEN: A software project for a daily Multi-Site Weather Generator with R E...
 
Extending carriers network with fring OTT
Extending carriers network with fring OTTExtending carriers network with fring OTT
Extending carriers network with fring OTT
 
Poster EWEA "Damping Estimation of an Offshore Wind Turbine on a Monopile Fou...
Poster EWEA "Damping Estimation of an Offshore Wind Turbine on a Monopile Fou...Poster EWEA "Damping Estimation of an Offshore Wind Turbine on a Monopile Fou...
Poster EWEA "Damping Estimation of an Offshore Wind Turbine on a Monopile Fou...
 
Network design
Network designNetwork design
Network design
 
Agile in Practice
Agile in PracticeAgile in Practice
Agile in Practice
 
Viedome Presentation Eu
Viedome Presentation EuViedome Presentation Eu
Viedome Presentation Eu
 
Asms2004 Alternate Scanning Lcms
Asms2004 Alternate Scanning LcmsAsms2004 Alternate Scanning Lcms
Asms2004 Alternate Scanning Lcms
 
Egu 2012 cordano_eccel
Egu 2012 cordano_eccelEgu 2012 cordano_eccel
Egu 2012 cordano_eccel
 
RMAWGEN: a software project for Daily Multi-Site Weather Generator
RMAWGEN: a software project for Daily Multi-Site Weather GeneratorRMAWGEN: a software project for Daily Multi-Site Weather Generator
RMAWGEN: a software project for Daily Multi-Site Weather Generator
 
Egu 2012 cordano_eccel
Egu 2012 cordano_eccelEgu 2012 cordano_eccel
Egu 2012 cordano_eccel
 
chap3.pdf
chap3.pdfchap3.pdf
chap3.pdf
 
CES Capabilities Overview
CES Capabilities OverviewCES Capabilities Overview
CES Capabilities Overview
 
The Trails of Two Cities
The Trails of Two CitiesThe Trails of Two Cities
The Trails of Two Cities
 
One-way quantum computation with ultra-narrow optical transition of 171Yb atoms
One-way quantum computation with ultra-narrow optical transition of 171Yb atomsOne-way quantum computation with ultra-narrow optical transition of 171Yb atoms
One-way quantum computation with ultra-narrow optical transition of 171Yb atoms
 
Adagio in G Minor for Piano and Violin Duet
Adagio in G Minor for Piano and Violin DuetAdagio in G Minor for Piano and Violin Duet
Adagio in G Minor for Piano and Violin Duet
 
Stochastic matrices
Stochastic matricesStochastic matrices
Stochastic matrices
 
Linear programming introduction
Linear programming  introductionLinear programming  introduction
Linear programming introduction
 

Fast Deterministic Algorithms for Matrix Completion Problems

  • 1. Fast Deterministic Algorithms for Matrix Completion Problems Tasuku Soma Research Institute for Mathematical Sciences, Kyoto Univ. Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 1 / 29
  • 2. 1 Introduction 2 Matrix Completion by Rank-One Matrices 3 Application to Network Coding 4 Mixed Skew-Symmetric Matrix Completion 5 Skew-Symmetric Matrix Completion by Rank-Two Skew-Symmetric Matrices 6 Conclusion Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 2 / 29
  • 3. 1 Introduction 2 Matrix Completion by Rank-One Matrices 3 Application to Network Coding 4 Mixed Skew-Symmetric Matrix Completion 5 Skew-Symmetric Matrix Completion by Rank-Two Skew-Symmetric Matrices 6 Conclusion Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 3 / 29
  • 4. Matrix Completion Matrix Completion F: Field Input Matrix A (x1 , . . . , xn ) over F(x1 , . . . , xn ) with indeterminates x1 , . . . , xn Find α1 , . . . , αn ∈ F maximizing rank A (α1 , . . . , αn ). Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 4 / 29
  • 5. Matrix Completion Matrix Completion F: Field Input Matrix A (x1 , . . . , xn ) over F(x1 , . . . , xn ) with indeterminates x1 , . . . , xn Find α1 , . . . , αn ∈ F maximizing rank A (α1 , . . . , αn ). Example F = Q, 1 + x1 2 + x2 2 2 A= −→ A = x3 x4 1 0 (x1 := 1, x2 := 0, x3 := 1, x4 := 0) Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 4 / 29
  • 6. Backgrounds A variety of combinatorial optimization problems can be formulated by matrices with indeterminates: Maximum matching, Structural rigidity, Network coding, etc. Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 5 / 29
  • 7. Backgrounds A variety of combinatorial optimization problems can be formulated by matrices with indeterminates: Maximum matching, Structural rigidity, Network coding, etc. Previous Works Matrix completion for general matrices is solvable in polynomial time by a randomized algorithm if the field is sufficiently large. Deterministic algorithms are known only for special matrices (cf. polynomial identity testing) NP hard over a general field. Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 5 / 29
  • 8. Our Results Our Results Deterministic polynomial time algorithms for the following matrix completion problems: Matrix completion by rank-one matrices — a faster algorithm than the previous one Mixed skew-symmetric matrix completion — the first deterministic polynomial time algorithm Skew-symmetric matrix completion by rank-two skew-symmetric matrices — the first deterministic polynomial time algorithm Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 6 / 29
  • 9. Our Results Our Results Deterministic polynomial time algorithms for the following matrix completion problems: Matrix completion by rank-one matrices — a faster algorithm than the previous one Mixed skew-symmetric matrix completion — the first deterministic polynomial time algorithm Skew-symmetric matrix completion by rank-two skew-symmetric matrices — the first deterministic polynomial time algorithm They are working over an arbitrary field! Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 6 / 29
  • 10. 1 Introduction 2 Matrix Completion by Rank-One Matrices 3 Application to Network Coding 4 Mixed Skew-Symmetric Matrix Completion 5 Skew-Symmetric Matrix Completion by Rank-Two Skew-Symmetric Matrices 6 Conclusion Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 7 / 29
  • 11. Problem Definition Matrix Completion by Rank-One Matrices Matrix completion for A = B0 + x1 B1 + · · · + xn Bn , where B1 , . . . , Bn are of rank one. Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 8 / 29
  • 12. Problem Definition Matrix Completion by Rank-One Matrices Matrix completion for A = B0 + x1 B1 + · · · + xn Bn , where B1 , . . . , Bn are of rank one. Example 1 0 1 1 2 0 B0 = , B1 = , B2 = 0 0 0 0 1 0 1 + x1 + 2x2 x1 A= x2 0 Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 8 / 29
  • 13. Previous Works In the case of B0 = 0: ´ Lovasz ’89 This can be reduced to linear matroid intersection. solvable in O (mn1.62 ) time using the algorithm of Gabow & Xu ’96 m: the larger of row and column sizes, n: # of indeterminates Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 9 / 29
  • 14. Previous Works In the case of B0 = 0: ´ Lovasz ’89 This can be reduced to linear matroid intersection. solvable in O (mn1.62 ) time using the algorithm of Gabow & Xu ’96 For the general case: Ivanyos, Karpinski & Saxena ’10 An optimal solution can be found in O (m4.37 n) time. m: the larger of row and column sizes, n: # of indeterminates Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 9 / 29
  • 15. Previous Works In the case of B0 = 0: ´ Lovasz ’89 This can be reduced to linear matroid intersection. solvable in O (mn1.62 ) time using the algorithm of Gabow & Xu ’96 For the general case: Ivanyos, Karpinski & Saxena ’10 An optimal solution can be found in O (m4.37 n) time. Our Result An optimal solution can be found in O ((m + n)2.77 ) time. m: the larger of row and column sizes, n: # of indeterminates Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 9 / 29
  • 16. Idea For A = B0 + x1 B1 + · · · + xn Bn (Bi = ui vi (i = 1, . . . , n))  1 v1    .. .   0 .     . .                   1 vn       x1  1        ˜ :=  .. .. .   A 0   . .             xn 1                     0   B0   u1 ··· un         Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 10 / 29
  • 17. Idea For A = B0 + x1 B1 + · · · + xn Bn (Bi = ui vi (i = 1, . . . , n))  1 v1    .. .   0 .     . .                   1 vn       x1  1        ˜ :=  .. .. .   A 0   . .             xn 1                     0   B0   u1 ··· un         Lemma ˜ rank A = 2n + rank A Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 10 / 29
  • 18. Algorithm ˜ ˜ Each indeterminate appears only once in A ! (A is a mixed matrix) Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 11 / 29
  • 19. Algorithm ˜ ˜ Each indeterminate appears only once in A ! (A is a mixed matrix) Harvey, Karger & Murota ’05 Matrix completion for a mixed matrix can be done in O (m2.77 ) time. m: the larger of row and column sizes, n: # of indeterminates Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 11 / 29
  • 20. Algorithm ˜ ˜ Each indeterminate appears only once in A ! (A is a mixed matrix) Harvey, Karger & Murota ’05 Matrix completion for a mixed matrix can be done in O (m2.77 ) time. ˜ ↓ Apply to A Theorem Matrix completion by rank-one matrices can be done in O ((m + n)2.77 ) time. m: the larger of row and column sizes, n: # of indeterminates Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 11 / 29
  • 21. Min-Max Theorem Theorem For A = B0 + x1 B1 + · · · + xn Bn , max{rank A : x1 , . . . , xn } 0 [vj : j J] = min rank : J ⊆ {1, . . . , n} . [uj : j ∈ J ] B0 Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 12 / 29
  • 22. Min-Max Theorem Theorem For A = B0 + x1 B1 + · · · + xn Bn , max{rank A : x1 , . . . , xn } 0 [vj : j J] = min rank : J ⊆ {1, . . . , n} . [uj : j ∈ J ] B0 ´ Corollary (Lovasz ’89) If B0 = 0, then max{rank A : x1 , . . . , xn } = min{dim uj : j ∈ J + dim vj : j J : J ⊆ {1, . . . , n}} Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 12 / 29
  • 23. Simultaneous Matrix Completion by Rank-One Matrices Simultaneous Matrix Completion by Rank-One Matrices F: Field Input Collection A of matrices in the form of B0 + x1 B1 + · · · + xn Bn Find Value assignments αi ∈ F for each indeterminate xi maximizing the rank of every matrix in A Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 13 / 29
  • 24. Simultaneous Matrix Completion by Rank-One Matrices Simultaneous Matrix Completion by Rank-One Matrices F: Field Input Collection A of matrices in the form of B0 + x1 B1 + · · · + xn Bn Find Value assignments αi ∈ F for each indeterminate xi maximizing the rank of every matrix in A Theorem A solution of simultaneous matrix completion by rank-one matrices can be found in polynomial time, if |F| > |A|. Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 13 / 29
  • 25. 1 Introduction 2 Matrix Completion by Rank-One Matrices 3 Application to Network Coding 4 Mixed Skew-Symmetric Matrix Completion 5 Skew-Symmetric Matrix Completion by Rank-Two Skew-Symmetric Matrices 6 Conclusion Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 14 / 29
  • 26. Network Coding Network communication model s.t. intermediate nodes can perform coding Classical model Network coding Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 15 / 29
  • 27. Multicast Problem with Linearly Correlated Sources Messages in source nodes are linearly correlated Each sink node demands the original messages x1 & x2 Theorem A solution of this multicast can be found in polynomial time. Approach: simultaneous matrix completion by rank-one matrices. Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 16 / 29
  • 28. 1 Introduction 2 Matrix Completion by Rank-One Matrices 3 Application to Network Coding 4 Mixed Skew-Symmetric Matrix Completion 5 Skew-Symmetric Matrix Completion by Rank-Two Skew-Symmetric Matrices 6 Conclusion Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 17 / 29
  • 29. Problem Definition Mixed Skew-Symmetric Matrix Completion Matrix completion for a skew-symmetric matrix s.t. each indeterminate appears twice (mixed skew-symmetric matrix). Example        0 −1 1  0       x 0  0     −1 + x 1  A =1 0 0 + −x 0 y  = 1 − x 0 y                          −1 0 0   0 −y 0   −1 −y  0 Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 18 / 29
  • 30. Our Result There were no algorithms for this problem, but we can compute the rank. Murota ’03 (←Geelen, Iwata & Murota ’03) The rank of an m × m mixed skew-symmetric matrix can be computed in O (m4 ) time. Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 19 / 29
  • 31. Our Result There were no algorithms for this problem, but we can compute the rank. Murota ’03 (←Geelen, Iwata & Murota ’03) The rank of an m × m mixed skew-symmetric matrix can be computed in O (m4 ) time. Our Result Matrix completion for an m × m mixed skew-symmetric matrix can be done in O (m4 ) time. Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 19 / 29
  • 32. Rank of Mixed Skew-Symmetric Matrix Lemma (Murota ’03) For an m × m mixed skew-symmetric matrix A = Q + T (Q: constant part, T : indeterminates part), rank A = max |FQ FT | : both Q [FQ ], T [FT ] are nonsingular RHS is linear delta-covering. Optimal FQ and FT can be found in O (m4 ) time (Geelen, Iwata & Murota ’03). Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 20 / 29
  • 33. Support Graph and Pfaffian Support graph:  0 −2 1    1  2  0 0 3     A =    −1 0     0 2       1 −3 −2 0 Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 21 / 29
  • 34. Support Graph and Pfaffian Support graph:  0 −2 1    1  2  0 0 3     A =    −1 0     0 2       1 −3 −2 0 Pfaffian: pf A := ± Aij M :perfect matching in G ij ∈M = A12 A34 − A13 A24 Lemma det A = (pf A )2 Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 21 / 29
  • 35. Sketch of Algorithm Algorithm 1: Find an optimal solution FQ and FT for linear delta-covering. 2: Find a perfect matching M in the support graph of T [FT ]. Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 22 / 29
  • 36. Sketch of Algorithm Algorithm 1: Find an optimal solution FQ and FT for linear delta-covering. 2: Find a perfect matching M in the support graph of T [FT ]. 3: for each ij ∈ M do 4: Substitute α to Tij so that Q [FQ ∪ {i , j }] will be nonsingular after substitution. 5: FQ := FQ ∪ {i , j } 6: end for Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 22 / 29
  • 37. Sketch of Algorithm Algorithm 1: Find an optimal solution FQ and FT for linear delta-covering. 2: Find a perfect matching M in the support graph of T [FT ]. 3: for each ij ∈ M do 4: Substitute α to Tij so that Q [FQ ∪ {i , j }] will be nonsingular after substitution. 5: FQ := FQ ∪ {i , j } 6: end for 7: Substitute 0 to the rest of indeterminates 8: return the resulting matrix Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 22 / 29
  • 38. Sketch of Algorithm How can we find α s.t. Q [FQ ∪ {i , j }] will be nonsingular? A =Q +T Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 23 / 29
  • 39. Sketch of Algorithm How can we find α s.t. Q [FQ ∪ {i , j }] will be nonsingular? A =Q +T A =Q +T Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 23 / 29
  • 40. Sketch of Algorithm How can we find α s.t. Q [FQ ∪ {i , j }] will be nonsingular? A =Q +T A =Q +T Lemma Q : modified matrix of Q as Qij := Qij + α, Qji := Qji − α pf Q [FQ ∪ {i , j }] = pf Q [FQ ∪ {i , j }] ± α · pf Q [FQ ] Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 23 / 29
  • 41. Sketch of Algorithm Finally, we obtain Q s.t. rank Q = rank A . Theorem Matrix completion for an m × m mixed skew-symmetric matrix can be done in O (m4 ) time. Using delta-covering algortihm of Geelen, Iwata & Murota ’03 Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 24 / 29
  • 42. 1 Introduction 2 Matrix Completion by Rank-One Matrices 3 Application to Network Coding 4 Mixed Skew-Symmetric Matrix Completion 5 Skew-Symmetric Matrix Completion by Rank-Two Skew-Symmetric Matrices 6 Conclusion Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 25 / 29
  • 43. Problem Definition Skew-Symmetric Matrix Completion by Rank-Two Skew-Symmetric Matrices Matrix completion for A = B0 + x1 B1 + · · · + xn Bn , where B0 is skew-symmetric and B1 , . . . , Bn are rank-two skew-symmteric Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 26 / 29
  • 44. Our Result In the case of B0 = 0: ´ Lovasz ’89 This can be reduced to linear matroid parity. solvable in O (m3 n) time using the algorithm of Gabow & Stallman ’86. Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 27 / 29
  • 45. Our Result In the case of B0 = 0: ´ Lovasz ’89 This can be reduced to linear matroid parity. solvable in O (m3 n) time using the algorithm of Gabow & Stallman ’86. For the general case: Our Result An optimal solution can be found in O ((m + n)4 ) time. Idea: Reduction to mixed skew-symmetric matrix completion (similar to matrix completion by rank-one matrices) Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 27 / 29
  • 46. 1 Introduction 2 Matrix Completion by Rank-One Matrices 3 Application to Network Coding 4 Mixed Skew-Symmetric Matrix Completion 5 Skew-Symmetric Matrix Completion by Rank-Two Skew-Symmetric Matrices 6 Conclusion Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 28 / 29
  • 47. Conclusion Our Results Faster algorithm and Min-Max theorem for matrix completion by rank-one matrices. Application for multicast problem with linearly correlated sources. First deterministic polynomial time algorithm for mixed skew-symmetric matrix completion. First deterministic polynomial time algorithm for skew-symmetric matrix completion by rank-two skew-symmetric matrices. Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 29 / 29
  • 48. Conclusion Our Results Faster algorithm and Min-Max theorem for matrix completion by rank-one matrices. Application for multicast problem with linearly correlated sources. First deterministic polynomial time algorithm for mixed skew-symmetric matrix completion. First deterministic polynomial time algorithm for skew-symmetric matrix completion by rank-two skew-symmetric matrices. Future Works Application of skew-symmetric matrix completion Matrix completion for other types of matrices Tasuku Soma (Kyoto Univ.) Fast Matrix Completion Algorithms 29 / 29