Se ha denunciado esta presentación.
Utilizamos tu perfil de LinkedIn y tus datos de actividad para personalizar los anuncios y mostrarte publicidad más relevante. Puedes cambiar tus preferencias de publicidad en cualquier momento.
http://www.sciencedaily.com/releases/2007/06/070609112916.htm
Robot Exploration with Combinatorial Auctions M. Berhault, H. Huang, P. Keskinocak,  S. Koenig, W. Elmaghraby, P. Griffin,...
Optimal Task Allocation Repeat Auctions  + Combinatorial Auctions + Bidding Strategy = Near Optimal Allocation http://shir...
Repeat Auctions Robot 1 Robot 2 Goal Unknown Terrain Wall
Repeat Auctions Robot 1 Robot 2 Goal Unknown Terrain Wall
Repeat Auctions Robot 1 Robot 2 Goal Wall Wall
Repeat Auctions Robot 1 Robot 2 Goal Wall Wall
Single Item vs. Combinatorial Auctions
Single Item vs. Combinatorial Auctions Possible Bundles: {} {G1} {G2} {G3} {G4} {G1, G2} {G1, G3} {G1, G4} {G2, G3} {G2, G...
Task Synergies - Positive Travel Distance for R1: T(S) T({G3}) = 4 T({G4}) = 4 T({G3, G4}) = 7 T({G3, G4}) ≤ T({G3}) + T({...
Task Synergies - Negative Travel Distance for R1: T(S) T({G3}) = 4 T({G1}) = 8 T({G3, G1}) = 16 T({G3, G1}) ≥ T({G3}) + T(...
Bidding Strategies Single Three-Combination Smart-Combination Nearest-Neighbor Graph-Cut http://blog.handbagsmaster.com/in...
Bidding Strategies - Single Same as single item auction
Bidding Strategies - Three-Combination Possible Bundles with 5 Goals: {} {G1} {G2} {G3} {G4} {G5} {G1, G2} {G1, G3} {G1, G...
Bidding Strategies - Smart-Combination Bid on all bundles that have 1 or 2 goals Additionally, bid on the top N bundles co...
Bidding Strategies - Nearest-Neighbor Bid on all "Good Sequences":  * {G i } for all i * If S = {G i , ... G e }...
Bidding Strategies - Graph Cut
Bidding Strategies - Graph Cut Maximum cuts
Summary of Experimental Results Generally Best Performing Bidding Strategies wrt: Travel Costs -- Graph-Cut Travel Times -...
Other Notes When targets are uniformly distributed, all bidding strategies are fairly close wrt travel costs. Nearest-Neig...
The End Questions?
Próxima SlideShare
Cargando en…5
×

Robot Exploration with Combinatorial Auctions

721 visualizaciones

Publicado el

Publicado en: Tecnología
  • Inicia sesión para ver los comentarios

  • Sé el primero en recomendar esto

Robot Exploration with Combinatorial Auctions

  1. 1. http://www.sciencedaily.com/releases/2007/06/070609112916.htm
  2. 2. Robot Exploration with Combinatorial Auctions M. Berhault, H. Huang, P. Keskinocak, S. Koenig, W. Elmaghraby, P. Griffin, A. Kleywegt http://www.news.cornell.edu/releases/rover/Mars.update8-19-04.html Corey A. Spitzer - CSCI 8110 04-20-2010
  3. 3. Optimal Task Allocation Repeat Auctions + Combinatorial Auctions + Bidding Strategy = Near Optimal Allocation http://shirt.woot.com/Derby/Entry.aspx?id=30206
  4. 4. Repeat Auctions Robot 1 Robot 2 Goal Unknown Terrain Wall
  5. 5. Repeat Auctions Robot 1 Robot 2 Goal Unknown Terrain Wall
  6. 6. Repeat Auctions Robot 1 Robot 2 Goal Wall Wall
  7. 7. Repeat Auctions Robot 1 Robot 2 Goal Wall Wall
  8. 8. Single Item vs. Combinatorial Auctions
  9. 9. Single Item vs. Combinatorial Auctions Possible Bundles: {} {G1} {G2} {G3} {G4} {G1, G2} {G1, G3} {G1, G4} {G2, G3} {G2, G4} {G3, G4} {G1, G2, G3} {G1, G2, G4} {G1, G3, G4} {G2, G3, G4} {G1, G2, G3, G4}
  10. 10. Task Synergies - Positive Travel Distance for R1: T(S) T({G3}) = 4 T({G4}) = 4 T({G3, G4}) = 7 T({G3, G4}) ≤ T({G3}) + T({G4})
  11. 11. Task Synergies - Negative Travel Distance for R1: T(S) T({G3}) = 4 T({G1}) = 8 T({G3, G1}) = 16 T({G3, G1}) ≥ T({G3}) + T({G1})
  12. 12. Bidding Strategies Single Three-Combination Smart-Combination Nearest-Neighbor Graph-Cut http://blog.handbagsmaster.com/index.php/2009/09/eleven-auction-terms-you-should-know/
  13. 13. Bidding Strategies - Single Same as single item auction
  14. 14. Bidding Strategies - Three-Combination Possible Bundles with 5 Goals: {} {G1} {G2} {G3} {G4} {G5} {G1, G2} {G1, G3} {G1, G4} {G1, G5} {G2, G3} {G2, G4} {G2, G5} {G3, G4} {G3, G5} {G4, G5} {G1, G2, G3} {G1, G2, G4} {G1, G2, G5} {G1, G3, G4} {G1, G3, G5} {G1, G4, G5} {G2, G3, G4} {G2, G3, G5} {G2, G4, G5} {G3, G4, G5} {G1, G2, G3, G4} {G1, G2, G3, G5} {G1, G2, G4, G5} {G1, G3, G4, G5} {G2, G3, G4, G5} {G1, G2, G3, G4, G5}
  15. 15. Bidding Strategies - Smart-Combination Bid on all bundles that have 1 or 2 goals Additionally, bid on the top N bundles containing more than 2 goals. Given k clusters of s goals (where s is in the set S of cluster sizes >2), N = |S| * max(S) * k. Goal Goal Goal Goal Goal Goal Goal Goal Goal Goal Goal Goal
  16. 16. Bidding Strategies - Nearest-Neighbor Bid on all "Good Sequences": * {G i } for all i * If S = {G i , ... G e } is a good sequence then S U {G t } is a good sequence if G t is the closest neighbor to G e not in S and the value of S U {G t } ≥ the value of S
  17. 17. Bidding Strategies - Graph Cut
  18. 18. Bidding Strategies - Graph Cut Maximum cuts
  19. 19. Summary of Experimental Results Generally Best Performing Bidding Strategies wrt: Travel Costs -- Graph-Cut Travel Times -- Three-Combination Smallest Number of Bids -- Single, then Graph-Cut Smallest Robot Utilization -- Graph-Cut Important Factors: Goal distribution (uniform or clustered), number of clusters, prior knowledge of the terrain
  20. 20. Other Notes When targets are uniformly distributed, all bidding strategies are fairly close wrt travel costs. Nearest-Neighbor and Graph-Cut tend to have large bundle sizes => smaller number of active robots Smaller robot utilization => smaller travel costs, but larger travel times
  21. 21. The End Questions?

×