SlideShare una empresa de Scribd logo
1 de 67
T.Chhay                                                                                  NPIC




                                XVIII.   esckþIENnaMBIebtugkugRtaMg
                            Introduction to Prestressed Concrete

1> ebtugeRbkugRtaMg                 Prestressed Concrete

      k> eKalkarN_énkareFVIeRbkugRtaMg           Principles of Prestressing
        karGnuvtþeRbkugRtaMgeTAelIGgát;eRKOgbgáúMKWCakarbegáItkugRtaMgGciéRnþy_xagkñúgEdlmanGMeBI
RbqaMgnwgkugRtaMgTajenAkñúgebtugEdl)anbnÞúkxageRkA. karGnuvtþeRbkugRtaMgenHbegáItCaEdnkug
RtaMgEdlGgát;GacTb;Tl;)any:agmansuvtßiPaB. eKGacGnuvtþkMlaMgeRbkugRtaMgmun b¤kñúgeBldMNal
KñaénkarGnuvtþbnÞúkxageRkA. kugRtaMgenAkñúgGgát;eRKOgbgÁúMRtUvEtenAsl; ¬RKb;TIkEnøg nigsMrab;RKb;
sßanPaBénkardak;bnÞúk¦ enAkñúgEdnkMNt;rbs;kugRtaMgEdlsMPar³ GacRTRTg;)anKμanTIkMNt;. CaTU
eTA karGnuvtþkugRtaMg ¬PaKeRcInCakugRtaMgsgát;¦ RtUv)anbegáIteLIgeday high-strength steel
tendon EdlrgkarTaj nig anchor eTAnwgGgát;ebtug. kugRtaMgRtUv)anepÞreTAebtugeday bond

tamépÞrbs; tendon b¤eday anchorage enAxagcugrbs; tendon.
        edIm,IgayRsYlkñúgkarBnül; cUrBicarNaFñwmmYyEdleFVIBIebtugsuT§ ehIyFñwmenaHRtUvRTnUv
bnÞúkTMnajxageRkA (external gravity load) dUcbgðajkñúgrUbTI 19>1 a. muxkat;FñwmRtUv)aneRCIs
erIsCamYynwg tensile flexural stress EdlCalkçxNÐeRKaHfñak;sMrab;karKNna dUcenHeKTTYl)an
muxkat;EdlminmanlkçN³esdækic©. mUlehtuKWedaysarebtugxøaMgkñúgkarsgát;CagkarTaj. flexural
tensile strength b¤m:UDuldac; (module of rupture) rbs;ebtug f r esμInwg 0.62 f 'c ¬rUbTI 19>1a¦.

        kñúgkarKNnaebtugGarem:Fmμta eKminKit tensile strength rbs;ebtugeT ehIyEdksrés
RtUv)andak;enAkñúgtMbn;Tajrbs;ebtugedIm,ITb;Tl;nwgkugRtaMgTaj b:uEnþebtugTb;Tl;nwgkugRtaMgsgát;
¬rUbTI 19>1 b¦.
        kñúgkarKNnaebtugeRbkugRtaMg kugRtaMgsgát;dMbUgRtUv)anGnuvtþeTAkñúgFñwmedIm,IeGaymanGMeBI
Tb;nwgkugRtaMgTajEdlekIteLIgedaysarbnÞúkxageRkA ¬rUbTI 19>1 c¦. RbsinebIkugRtaMgEdldak;
dMbUgenHesμInwgkugRtaMgTajenAsréseRkambMput enaHkugRtaMgTaMgBIrRtUv)anlubecal b:uEnþkugRtaMg
sgát;enAsrésEpñkxagelIbMputnwgmantMélDub. kñúgkrNIenH muxkat;Ggát;TaMgmUlrgkarsgát;. Rb


esckþIENnaMBIebtugeRbkugRtaMg                                                              560
T.Chhay                                                                         NPIC




sinebIkugRtaMgsgát;EdlGnuvtþdMbUgtUcCagkugRtaMgTajenAsrésEpñkxageRkambMput enaHsrésenA
EpñkxageRkamenHrgkarTaj ÉsrésEpñkxagelIbMputrgkarsgát;.




esckþIENnaMBIebtugeRbkugRtaMg                                                     561
T.Chhay                                                                                     NPIC




kñúgkarGnuvtþ Ggát;ebtugGacrgeRbkugRtaMgtamviFImYykñúgcMeNamviFIxageRkam³
        !> karTajeRkay (Posttensioning): kñúgkareFVI posttensioning, eKTaj steel tendon
            eRkayeBlebtugRtUv)ancak; nigkkrwg. kareFVI posttensioning RtUv)aneFVIeLIgtamviFI
            saRsþdUcteTA³ dMbUgeKeRbI hydraulic jack Taj steel wire b¤ strand eGaylUt bnÞab;
            mkCMnYs jack eday anchorage EdlGacrkSaeGay steel strand enAEtrgkarTaj. CaTU
            eTA tendon RtUv)aneFVIeLIgBI wire, strand b¤ bar. eKGacTaj wire nig strand CaRkum)an
            EteKTaj bar mþg)anEtmYy. kñúgdMeNIrkareFVI posttensioning, eKdak; steel tendon
            eTAkñúgBum<muneBlcak;ebtug ehIy tendon RtUv)ankarBarkars¥itCab;eTAnwgebtugeday
            waterproof paper wrapping b¤ metal duct (sheath). tendon Edls¥itCab;eTAnwg

            ebutgRtUv)aneKehAfa boded tendon. Unbonded tendon/ RtUv)andak;edayKμan grout
            b¤RtUv)anlabeRbg.
        @> karTajmun (pretensioning): kñúgkareFVI prettensioning eKTaj steel tendon muneBlcak;
            ebtug. eKTb; tendon CabeNþaHGasnñeday abutment ehIyeKkat;va bnÞab;ebtugRtUv)an
            cak; nigkkrwg. kMlaMg prestessing RtUv)anepÞreTAebtugeday PaBs¥itenAtamRbEvgrbs;
            tendon. CaTUeTA eKeRcIneFVI prettensioning enAkñúgkardæan b¤eragcRkpliteRKOgbgÁúMebtug

            eRbkugRtaMgcak;eRsc EdlmankMralrwgmaMCaGciéRnþy_.
        #> kareFVIeRbkugRtaMgxageRkA (external prestressing): kñúgkareFVI external pretessing, eK
            GnuvtþkMlaMgeRbkugRtaMgeday flat jack EdlRtUv)andak;enAcenøaHcugGgát;ebtug nig
            permanent rigid abutments. Ggát;minman prestressing tendon dUcviFITaMgBIrxagelI

            EdleKGacehAfakareFVIeRbkugRtaMgxagkñúgeT. External prestressing mingayRsYlkñúg
            karGnuvtþeT edaysar shrinkage nig creep enAkñúgebtugEdlnaMeGaymankarkat;bnßy
            kugRtaMgsgát;EdlGnuvtþdMbUg.
        Profile rbs; tenden GacRtg; ekag b¤ragrgVg;GaRs½yeTAelIkarKNnaGgát;eRKOgbgÁúM.

CaTUeTAeKeRbI straight tendon enAkñúg solid slab nig hollow-cored slab b:uEnþeKeRbI bent tendon
enAkñúgFñwm nigGgát;eRKOgbgÁúMPaKeRcIn. eKeRbI circular tendon enAkñúgeRKOgbgÁúMEdlmanTMrg;mUldUc


esckþIENnaMBIebtugeRbkugRtaMg                                                                 562
T.Chhay                                                                                 NPIC




Ca tank, silo nig pipe. eKGacGnuvtþkMlaMgeRbkugRtaMgEtkñúgmYydMNakkal b¤eRcIndMNakkaledIm,I
karBarebtugkMurGayrgkugRtaMgelIs.
        eK)anbegáItnUvRbB½n§eRbkugRtaMgCaeRcIn EdlkñúgcMeNamenaHman Freyssinet, Magnel Blaton,
B.B.R.V., Dywidag, CCL, Morandi, VSL, Western Concrete, Prescon, nig INRYCO. eBlxøH

eKCYbnUvbBaðakñúgkareRCIserIsRbB½n§eRbkugRtaMgsMrab;kargarBiess.
        visVkrKYrBicarNanUvktþacMbgbIEdlnaMdl;kareRCIserIsRbB½n§enH³
        !> GaMgtg;sIueténkMlaMgeRbkugRtaMgEdlRtUvkar
        @> ragFrNImaRtrbs;muxkat; nigKMlatEdlGacmansMrab; tendon
        #> tMélénRbB½n§eRbkugRtaMg ¬sMPar³ nigkMlaMgBlkmμ¦
        ]TahrN_xageRkambgðajBIlkçN³Biessrbs;ebtugeRbkugRtaMg.

]TahrN_ 19>1³ sMrab;FñwmTMrsamBaØEdlbgðajenAkñúgrUbTI 19>2 cUrkMNt;kugRtaMgRtg;muxkat;
kNþalElVgEdlbNþalmkBITMgn;pÞal;xøÜnva nigkrNIénkardak;bnÞúk nigeRbkugRtaMg³
      !> bnÞúkGefrBRgayesμI 13.15kN / m
      @> bnÞúkGefrBRgayesμI 13.15kN / m nigkMlaMgsgát;tambeNþaycMp©it P = 1132kN
      #> bnÞúkGefrBRgayesμI 30.61kN / m nigkMlaMgsgát;tambeNþaycakp©it P = 1132kN Edl
         manGMeBIRtg;cMNakp©it e = 10cm
      $> bnÞúkGefrBRgayesμI 39.28kN / m nigkMlaMgsgát;tambeNþaycakp©it P = 1132kN Edl
         manGMeBIRtg;cMNakp©itGtibrmasMrab;muxkat; e = 15cm
      %> bnÞúkGefrGtibrmaenAeBl P = 1132kN EdlmanGMeBIRtg; e = 15cm
      eRbI b = 30cm / h = 60cm / f 'c = 31MPa nigkugRtaMgGnuBaØat f 'c = 14.14MPa
dMeNaHRsay³
      !> kugRtaMgEdlbNþalmkEtBIbnÞúkefr nigbnÞúkGefr
          bnÞúkpÞal;rbs;Fñwm = (0.3 × 0.6)24 = 4.32kN / m
                                  wL2 4.32(7.2 )2
          m:Um:g;bnÞúkefr M D.L. = 8 = 8 = 28kN .m
          kugRtaMgenARtg;srésEpñkxageRkAbMputEdlbNþalBIbnÞúkefrKW
esckþIENnaMBIebtugeRbkugRtaMg                                                             563
T.Chhay                                                                                    NPIC



                                      Mc M (h / 2) 6 M
                                 σ=        = 3           =
                                        I     bh / 12 bh 2
                                           6 × 28
                                 σD   =              10 − 3 = ±1.56MPa
                                         0.3 × 0.6 2


          m:Um:g;EdlbNþþalBIbnÞúkGefr L1 = 13.15kN / m KW
                                             13.15 × 7.2 2
                                 M L. L. =                 = 85.2kN .m
                                                  8
          kugRtaMgEdlbNþalBIbnÞúkGefrKW
                                          6M            6 × 85.2
                                 σ L1 =            =                   10 − 3 = ±4.73MPa
                                          bh   2
                                                       0.3 × 0.6   2

         edayeFVIkarbUkbBa©ÚkkugRtaMgEdl)anBIbnÞúkefr nigbnÞúkGefr ¬rUbTI 19>2 a¦ eyIg)an
                 kugRtaMgxagelI = −1.56 − 4.73 = −6.29MPa ¬rgkarsgát;¦
                 kugRtaMgxageRkam = +1.56 + 4.73 = 6.29MPa ¬rgkarTaj¦
         edaysarkugRtaMgTajFMCagm:UDuldac;rbs;ebtug f r = 0.62 31 = 3.45MPa dUcenHFñwmnwg)ak;.
      @> kñúgkrNIEdlkugRtaMgbNþalBIeRbkugRtaMgesμI RbsinebIeKGnuvtþkMlaMgsgát; P = 1132KN
         Rtg;TIRbCMuTMgn;rbs;muxkat; enaHmuxkat;tambeNþyFñwmnwgrgkugRtaMgesμI
                                 P    1132
                    σp =            =          10 − 3 = ±6.29MPa
                                area 0.3 × 0.6
         kugRtaMgcugeRkayEdlbNþalBIbnÞúkGefr nigbnÞúkefrbUknwgbnÞúkeRbkugRtaMgenARtg;srés
         xagelI nigxageRkambMputKW 12.58MPa nig 0 erogKña ¬rUbTI 19>2 b¦. kñúgkrNIenH kMlaMg
         eRbkugRtaMg)anebgáInkugRtaMgsgát;enARtg;srésEpñkxagelIbMputeGaymantMélBIrdg nig)an
         kat;bnßykugRtaMgTajenARtg;srésEpñkxageRkameGay esμInwg 0 . kugRtaMgsgát;Gtibrma
         12.58MPa mantMéltUcCagkugRtaMgGnuBaØat f 'c = 14.14MPa .

      #> sMrab;kugRtaMgEdlbNþalBIeRbkugRtaMgcMNakp©it ¬ e = 100mm ¦
         RbsinebIeKGnuvtþkMlaMgeRbkugRtaMg P = 1132 KN enARtg;cMNakp©it e = 100mm BI eRkamTI
         RbCMuTMgn;rbs;muxkat; kugRtaMgenARtg;srésEpñkxagelI nigEpñkxageRkambMputRtUv)ankMNt;
         dUcxageRkam. m:Um:g;EdlbNþalBIeRbkugRtaMgcMNakp©itKW Pe
                             P (Pe )c          P 6(Pe )
                    σp =−      ±         =− ±
                             A       I         A bh 2
                              1132              6(1132 × 0.1) − 3
                          =−           10 − 3 ±              10
                             0.3 × 0.6           0.3 × 0.6 2



esckþIENnaMBIebtugeRbkugRtaMg                                                               564
T.Chhay                                                                                NPIC




                           = −6.29 ± 6.29
          enAsrésEpñkxageRkam σ p = −12.58MPa nig σ p = 0 enAsrésEpñkxageRkambMput.
          BicarNaGMBIkardak;bnÞúkGefr L2 = 30.61kN / m
                               30.61× 7.2 2
                     M L. L. =              = 198.36kN .m
                                     8
                             6(198.36) − 3
                    σ L2   =             10 = ±11.02MPa
                             0.3 × 0.6 2
          kugRtaMgcugeRkayEdlbNþalBIbnÞúkefr/ bnÞúkGefr nigkMlaMgeRbkugRtaMgenAsrésEpñkxagelI
          nigEpñkxageRkambMputKW 12.58MPa nig 0 erogKña ¬rUbTI 19>2 c¦. cMNaMfa kugRtaMgcug
          eRkaydUcKñanwgkrNIelIkmunenAeBlEdlbnÞúkGefresμInwg 13.15kN / m . edayGnuvtþkMlaMg
          eRbkugRtaMgenARtg;cMNalp©it 10cm FñwmenHGacRTbnÞúkGefrEfm eTot ¬17.46kN / m ¦.




esckþIENnaMBIebtugeRbkugRtaMg                                                            565
T.Chhay                                                                                     NPIC




      $> sMrab;kugRtaMgEdlbNþalBIeRbkugRtaMgcakp©itRtg;cMNakp©itGtibrma
         snμt;facMNakp©itGtibrmasMrab;muxkat;enHKW e = 15cm .
         m:Um:g;Bt;EdlekItedaysarkMlaMgeRbkugRtaMgcakp©itKW Pe = 1132 × 0.15 = 169.8kN .m

esckþIENnaMBIebtugeRbkugRtaMg                                                                566
T.Chhay                                                                               NPIC




          kugRtaMgEdlbNþalBIkMlaMgeRbkugRtaMgKW
                                  1132               6(169.8) − 3
                    σp =−                  10 − 3 ±             10
                                 0.3 × 0.6          0.3 × 0.6 2

                           = −6.29 ± 9.41
                           = −15.7 MPa               nig    + 3.12

          begáInbnÞúkGefrdl; L3 = 39.28kN / m . m:Um:g;Edl)anBIbnÞúkenHKW
                                  39.28 × 7.2 2
                     M L. L. =                  = 254.5kN .m
                                       8
          kugRtaMgEdlbNþalmkBIbnÞúkGefrKW
                                6(254.5)
                    σ L3 =                      10 − 3 = ±14.14MPa
                                0.3 × 0.6   2

        kugRtaMgcugeRkayenAsrésEpñkxagelI nigEpñkxageRkambMputEdlbNþalBIbnÞúkefr nigbnÞúk
        GefrKW 12.58MPa nig 0 erogKña ¬rUbTI 19>2 d¦. cMNaMfa kugRtaMgcugeRkaydUcKñanwgkrNI
        mun²Edr b:uEnþbnÞúkGefr)anekIneLIgdl; 39.28kN / m . kugRtaMgTaj 1.56MPa RtUv)an
        begáIteLIgenAsrésEpñkxagelIbMput enAeBlEdleKGnuvtþkMlaMgeRbkugRtaMg. kugRtaMgenH
        mantMéltUcCagm:UDuldac;rbs;ebtug f r = 3.45MPa dUcenHvaminekItmansñameRbHenAelIFñwm
        eT.
      %> eKkMNt;bnÞúkGefrGtibrmaenAeBlkMlaMgeRbkugRtaMgcakp©iteFVIGMeBIenARtg; e = 15cm dUct
        eTA. kñúgkrNImun² kugRtaMgsgát;cugeRkayesμInwg 12.58MPa EdltUcCagkugRtaMg GnuBaØat
         f 'c = 14.14MPa . dUcenH bnÞúkGefrGacekIneLIgdl; L4 = 43.6kN / m .
                               43.6 × 7.2 2
                     M L. L. =              = 282.5kN .m
                                    8
                             6 × 282.5 − 3
                    σ L4   =             10 = 15.7 MPa
                             0.3 × 0.6 2
          kugRtaMgcugeRkayEdlbNþalBIbnÞúkefr nigbnÞúkGefr L4 ehIynigkMlaMgeRbkugRtaMg KW
          − 14.14 MPa nig + 1.56 MPa ¬rUbTI 19>2 e¦. kugRtaMgsgát;KWesμInwgkugRtaMgGnuBaØat

          14.14 MPa ehIykugRtaMgTajKWtUcCag modulus of rupture rbs;ebtug 3.45MPa . kñúg

          krNIenH eKGacKNnabnÞúkGefrBRgayEdlesμμInwg 43.6kN / m dUcteTA³ bUkkugRtaMgsgát;
          GnuBaØatGtibrma 14.14MPa CamYynwgkugRtaMgTajdMbUgenARtg;srésEpñkxagelIbMput

esckþIENnaMBIebtugeRbkugRtaMg                                                          567
T.Chhay                                                                                  NPIC




          1.56 MPa edIm,ITTYl)an 15.7MPa . m:Um:g;EdlnwgbegáItkugRtaMgenAsrésEpñkxagelIbMput
          15.7 MPa esμInwg
                           ⎛ bh 2 ⎞
                    M =σ⎜          ⎟
                           ⎜ 6 ⎟
                           ⎝       ⎠
                      =
                         15.7
                               (0.3)(0.6)2 ⋅103 = 282.6kN.m
                           6
                        W L2
                    M= L
                            8
                                  eyIgTTYl)an
                          8 × 282.6
                    WL =             = 43.6kN / m
                             7.2 2
      cMNaMfa³
      !> muxkat;ebtugTaMgmUlKWskmμkñúgkarTb;Tl;CamYykMlaMgxageRkA
      @> kugRtaMgTajcugRkayenAkñúgmuxkat;tUcCag modulus of rupture rbs;ebtug Edlbgðaj
         famuxkat;ebtugminmansñameRbHeRkamGMeBIrbs;bnÞúkGtibrma
      #> bnÞúkGnuBaØatenAelIFñwmekIneLIgeRcInKYrsmedaysarkarGnuvtþrbs;kMlaMgeRbkugRtaMg
      $> karekIneLIgnUvcMNakp©itrbs;kMlaMgeRbkugRtaMgk¾begáInkMlaMgGnuvtþn_GnuBaØat EdleFVIeGay
         kugRtaMgenAelImuxkat;minFMCagkugRtaMgGnuBaØat.

      x> karGnuvtþeRbkugRtaMgedayEpñk            Partial Prestressing
          eKkMNt;Ggát;ebtugeRbkugRtaMgedayEpñk (partially prestressed concrete member) CaGgát;
Edl³
          - kugRtaMgxagkñúgEdlmanGMeBITb;EpñkénkugRtaMgEdlekItBIbnÞúkxageRkA
          - kugRtaMgTajekItmanenAkñúgebtugeRkamGMeBIbnÞúkeFVIkar (service load)
          - EdkBRgwgminEmnCaEdkeRbkugRtaMgRtUv)andak;bEnßmedIm,IbegáInlT§PaBrbs;Ggát; edIm,ITb;
              nwgm:Um:g;
          eKGacBicarNa partially prestressed concrete tamBIrkrNI³
          !> eKeRbIEdkeRbkugRtaMg nigEdkminEmneRbkugRtaMgenAkñúgmuxkat;EtmYy. ExSkabeRbkugRtaMg
             begáItkugRtaMgxagkñúgRtUv)anKNnaedIm,ITTYl)an ultimate capacity rbs;muxkat;ebtugEt
             mYyEpñkb:ueNÑaH. cMENkÉ capacity EdlenAsl;RtUv)anTTYlBIEdkminEmneRbkugRtaMg

esckþIENnaMBIebtugeRbkugRtaMg                                                             568
T.Chhay                                                                                       NPIC




            Edldak;tamTisdUcKñanwgkabeRbkugRtaMg. EdkEdleRbICaEdkminEmneRbkugRtaMgGacCaRb
            ePTEdkFmμta dUcCaEdk carbon steel b¤CaEdk high-tensile-strength. kabeRbkugRtaMgk¾
            CaRbePTEdkFmμtadUcEdkminEmneRbkugRtaMgEdr Etvaman ultimate strength esμInwg
            1725MPa ¬ 250ksi ¦. kareRCIserIsGaRs½ynwgktþacMbgBIrKW³ PaBdabGnuBaØat nigTMhM

            sñameRbHGnuBaØat. dUcKña ACI Code kMNt;nUvpleFobGtibrmaénRbEvgElVgelIkkMBs;én
            Ggát;ebtugGarem: sMrab;PaBdab. eKminGnuBaØateGaymanPaBdabFMelIslubCamYynwg
            kMBs;rbs;muxkat;ebtugeRbkugRtaMgtUc nigedaysarkareRbIPaKryEdktic. sñameRbHekIt
            manenAtMbn;rgkarTajrbs;muxkat;ebtug b¤enARtg;nIv:UEdkedaysareKGnuBaØateGaykug
            RtaMgTajekItmaneRkamGMeBI working load. eKGnuBaØatsñameRbHGtibrmaRtwm 0.016in.
            (0.41mm) sMrab;Ggát;xagkñúg nig 0.013in. (0.33mm) sMrab;Ggát;xagkñúg.

         @> kugRtaMgxagkñúgEdleFVIGMeBIelIGgát;)anEtBI prestrssed steel b:ueNÑaH b:uEnþvaRtUv)anTajCa
            mYynwgEdnkMNt;TabCag. kñúgkrNIenHsñameRbHekItmanelOnCagGgát;rgeRbkugRtaMgeBj
            eljeRkambnÞúkdUcCaKña.
         eKGacBicarNa partially prestresssed concrete kñúgTMrg;kNþalrvagebtugGarem: nigebtug
eRbkugRtaMgeBj (fully prestressed concrete). enAkñúgGgát;ebtugGarem: sñameRbHekItmaneRkamGMeBI
bnÞúkeFVIkar dUcenHeKdak;EdkBRgwgenAkñúgtMbn;Taj. CaTUeTAenAkñúgGgát;ebtugeRbkugRtaMg sñameRbH
minekItmaneRkamGMeBIbnÞúkeFVIkareT. kugRtaMgsgát;EdlbNþalBIkMlaMgeRbkugRtaMgGacesμI b¤elIsBI
kugRtaMgTajEdlbNþalBIbnÞúkxageRkA. dUcenHeKGacBicarNaGgát; partially prestressed concrete
CaGgát;ebtugGarem:EdlkugRtaMgxagkñúgrbs;vamanGMeBITb;nwgEpñkxøH rbs;kugRtaMgEdl)anBIbnÞúkxag
eRkA dUcenHkugRtaMgTajenAkñúgebtugminRtUvFMCagtMélkMNt;eRkambnÞúkeFVIkareT. eKKitvaCaebtug
Garem:enAeBlNaEdlminmankugRtaMgxagkñúgeFVIGMeBIelIGgát;. ebtugeRbkugRtaMgeBjCakMritx<s;bMput
rbs;ebtugeRbkugRtaMgedayEpñk EdlenAkñúgenaHEdkminEmneRbkugRtaMgRtUv)ankat;bnßydl;sUnü.
         enAcenøaHGgát;ebtugGarem:EdlmaneRbH nigGgát;ebtugeRbkugRtaMgeBjEdlminmaneRbH eK
manEdnd¾FMsMrab;KNnaebtugeRbkugRtaMgedayEpñk ¬rUbTI 19>3¦. kareRCIserIskMriténkareFVIeRbkug
RtaMgd¾l¥ nwgbegáItnUveRKOgbgÁúMEdlmansuvtßiPaB nigmanlkçN³esdækic©.



esckþIENnaMBIebtugeRbkugRtaMg                                                                   569
T.Chhay                                                                             NPIC




        rUbTI 19>3 bgðajBIExSekagPaBdab-bnÞúkrbs;FñwmebtugGarem:EdlmanbrimaNEdk nigRbePT
EdkxusKña. ExSekag a bgðajBIFñwmebtugGarem: EdlmansñameRbHFmμtaeRkambnÞúktUc Wcr . eKGackM
Nt;m:Um:g;EdleFVIeGayeRbH (cracking moment) dUcxageRkam³
                     fr I
          M cr =
                      c
Edl          m:UDuldac;rbs;ebtug = 0.62 f 'c
           fr =

        I = m:Um:g;niclPaBén gross concrete section

       c = cMgayBIG½kSNWteTAsrésrgkarTajxageRkAbMput

       eKGackMNt;ebtugEdleFVIeGayeRbH (cracking load) BI cracking moment enAeBlRbEvg
ElVg nigRbePTénkardak;bnÞúkRtUv)ankMNt;. sMrab;FñwmTMrsamBaØEdlrgbnÞúkcMcMnugenAkNþalElVg
Wcr = (4M cr ) / L .


esckþIENnaMBIebtugeRbkugRtaMg                                                         570
T.Chhay                                                                                NPIC




         ExSekag e nig f bgðajBIFñwmebtugeRbkugRtaMgeBjEdlmanEdktic nigEdkeRcIn erogKña. Fñwm
ebtugGarem:EdlmanbrimaNEdkeRcIn)ak;edaysarkarEbkebtugmunnwgEdkeTAdl; yield strength b¤
proof stress rbs;va. FñwmmanPaBdabtUc nwgrgkar)ak;edayPaBRsYy (brittle failure). FñwmEdlman

brimaNEdktic)ak;edaysarEdkeFVIkardl; yield nig ultimate strength rbs;va. vabgðajnUv)abdab
nigsñameRbHEdlbNþalBIkarlUtsac;rbs;EdkmuneBlebtugEbkCabnþbnÞab; ehIyFñwm)ak;rlM.
         enAcenøaHExSekag a nig e CaEdnd¾FMrbs;FñwmebtugCamYynwgbrimaNERbRbYlrbs;Edk nigrg
nUvbrimaNERbRbYlrbs;kMlaMgeRbkugRtaMg. FñwmEdlrgkMlaMgeRbkugRtaMgtUcenAEk,rExSekag a ehIy
FñwmEdlmaneRbkugRtaMgFMenAEk,rExSekag e . eKeRCIserIsbnSMEdkeRbkugRtaMg nigEdkminEmneRbkug
RtaMgsMrab;karKNnaKWGaRs½yelIkugRtaMgebtugGnuBaØat PaBdab nigTMhMsñameRbHGtibrma.
         ExSekag b tMNageGayFñwmEdlnwgeRbHeRkamGMeBIénbnÞúkeFVIkareBjelj. RbsinebIEtEpñk
xøHrbs;bnÞúkGefrekItmanenAelIeRKOgbgÁúMCaerOy² enaH W1 tMNageGaybnÞúkefrsrub nigEpñkxøHrbs;
bnÞúkGefr L1 .
         ExSekag c tMNageGayFñwmcab;epþImeRbHeRkamGMeBI working load. kugRtaMgTajGtibrmaenA
kñúgebtug = f r = 0.62 f 'c .
         ExSekag d tMNageGayFñwmEdlmankMlaMgeRbkugRtaMgkMNt;. muxkat;eRKaHfñak;rbs;Fñwmnwg
mineRbHeRkambnÞúkeFVIkareBjeljeT b:uEnþvanwgmankugRtaMgTajGtibrma 0 < f r < 0.62 f 'c . ACI
Code GnuBaØatkugRtaMgTajGtibrmaenAkúñgebtugRtwm 0.5 f 'c .

         ExSekag e nig e' tMNageGayFwñmebtugeRbkugRtaMgeBjeljEdlminmankugRtaMgTajeRkam
bnÞúkeFVIkar ¬emIlrUbTI 19>4¦.
         sar³RbeyaCn_d¾sMxan;bMputrbs;kMlaMgeRbkugRtaMgedayEpñkKWlT§PaBkúñgkarRKb;RKgkMeNag
(camber). edaykat;bnßykMlaMgeRbkugRtaMg camber nwgRtUv)ankat;bnßy ehIysnSMnUvbrimaNEdk

eRbkugRtaMg brimaNkargarkúñgkarTaj nigcMnYn end anchorage.
         GaRs½ynwgGaMgtg;sIueténkMlaMgeRbkugRtaMg sñameRbHenAkñúg partially prestressed member
ekIteLIgelOnCagenAkñúg fully prestressed concrete member eRkamGMeBIrbs; service load. enA
eBlEdlsñameRbHekItman m:Um:g;niclPaBRbsiT§PaBrbs;muxkat;eRKaHfñak;RtUv)ankat;bnßy ehIyeK
nwgTTYl)anPaBdabFMCagmun. b:uEnþ kareRbIkMlaMgeRbkugRtaMgedayEpñkKWeKTTYl)anlT§plKYrCaTU
eBjcitþ ehIyvaTTYl)ankareBjniym.

esckþIENnaMBIebtugeRbkugRtaMg                                                            571
T.Chhay                                                                                    NPIC




      K> karcat;cMNat;fñak;Ggát;rgkarBt;ebtugeRbkugRtaMg
          Classification of Prestressed Concrete Flexural Members
          ACI Code, Section 18.3   )anEckGgát;ebtugeRbkugRtaMgCabIfñak;edayQrelIkugRtaMgTaj
enAelIsrésxageRkAbMput f t enAkñúgtMbn;TajeRkamGMeBIbnÞúkeFVIkardUcxageRkam³




          !> fñak; U (uncracked section) Edlman f t ≤ 0.62 f 'c . enAkñúgmuxkat;ebtugEdlKμansñam
             eRbHenH eKeRbIlkçN³én gross section edIm,IRtYtBinitüPaBdabeRkamGMeBIbnÞúkeFVIkar.
             KμansñameRbHekItmanenAkñúgmuxkat; nigeKminRtUvkar skin reinforcement eT.
          @> fñak; T (muxkat;enAkñúg transition zone) Edlman 0.62 f 'c < ft ≤ f 'c . muxkat;
             RbePTenHmankugRtaMgTajenAkñúgebtugFMCagm:UDuldac; (modulus of rupture) rbs;ebtug
              f r = 0.62 f 'c EdlbegáItnUvkrNIcenøaHmuxkat;eRbH nigmuxkat;Gt;eRbH. enAkñúgkrNIenH

             eKeRbIlkçN³én gross section edIm,IRtYtBinitükugRtaMg ehIyeKeRbI bilinear section rbs;
             muxkat;eRbHedIm,IKNnaPaBdab. eKmincaM)ac;eRbI skin reinforcement enAkñúgtMbn;TajeT.
          #> fñak; C (cracked section) Edlman f t > f 'c . kugRtaMgTajenAkúñgmuxkat;FMCag
             modulus of rupture rbs;ebtug 1.6 dg. dUcenH sñameRbHnwgekItmandUckñúgkrNIGgát;eb

             tugeRbkugRtaMgedayEpñk. enAkñúgkrNIenH eKeRbIlkçN³énmuxkat;eRbHedIm,IRtYtBinitükug
esckþIENnaMBIebtugeRbkugRtaMg                                                                572
T.Chhay                                                                                    NPIC




               RtaMg sñameRbH nigPaBdab. eKKYreRbIkarpþl;eGayedIm,IRKb;RKgsñameRbH nigeRbI skin
               reinforcement dUckarBnül;enAkñúgEpñk 6>7 sMrab;Ggát;ebtugGarem:EdlmankMBs;RbsiT§-

               PaB d > 915mm .

2> sMPar³ nigtMrUvkarsMrab;bMerIbMras;          Material and Serviceability Requirement

      k> ebtug                  Concrete
        lkçN³rbs;ebtugRtUv)anbgðajenAkñúgCMBUk 2. eTaHbICaerOy² Ggát;ebtugGarem:RtUv)anplit
BIebtugEdlmanersIusþg;sgát; 21MPa eTA 35MPa k¾eday k¾Ggát;ebtugeRbkugRtaMgRtUv)anplitBI
sMPar³EdlmanersIusþg;x<s;Cag CaTUeTAsßitenAcenøaH 28MPa eTA 56MPa . eKeRbIebtugersIusþg;x<s;
sMrab;Ggát;ebtugcak;eRsc nigGgát;ebtugeRbHkugRtaMg Edlkarlay karcak; karbgðab; nigkarEfTaMeb
tugsßiteRkamkarRtYtBinitüy:agm:t;ct;.
        kugRtaMgGnuBaØatenAkñúgebtugEdleyagtam ACI Code, Section 18.4 mandUcxageRkam³
    !> kugRtaMgeRkayeBlepÞreRbkugRtaMg (prestress transfer) nigmuneBl)at;bg;eRbkugRtaMg
          (prestress losses):
          a. kugRtaMgsgát;GtibrmaesμInwg 0.6 f ci
         b. kugRtaMgTajGtibrma ¬elIkElgGVIEdl)anGnuBaØatdUcxageRkam¦ esμInwg 0.25 f ci

         c. kugRtaMgTajGtibrmaenARtg;cugénGgát;TMrsamBaØesμInwg 0.5 f ci

         Edl f ci CaersIusþg;rbs;ebtugenAeBlepÞr
         RbsinebIkugRtaMgTajmantMélFMCagenH eKRtUvdak;EdkenAtMbn;sgát;edIm,ITb;Tl;kMlaMgTaj
         srubenAkñúgebtug ¬edayQrelI uncracked gross section¦.
      @> kugRtaMgeRkamGMeBIbnÞúkeFVIkareRkayeBlkMhatbg; (loss) TaMgGs; ¬sMrab;fñak; U nigfñak; T ¦
         mandUcteTA³ kugRtaMgsgát;Gtibrma 0.45 f 'c EdlbNþalBIkMlaMgeRbkugRtaMgbUknwgbnÞúkefr
         nigkugRtaMg 0.05 f 'c EdlbNþalBIkMlaMgeRbkugRtaMgbUknwgbnÞúksrub.
      #> kugRtaMgTaMgenHGacmantMélFMCagenH RbsinebIkarBiesaF nigkarviPaKbgðajfakaRbRBwtþeTA
         rbs;vaRKb;RKan;.



esckþIENnaMBIebtugeRbkugRtaMg                                                                573
T.Chhay                                                                             NPIC




      x> EdkeRbkugRtaMg         Prestressing Steel
       Edk tendon EdleKniymeRbICageKenAkñúgebtugeRbkugRtaMgCa strands ¬b¤kab¦ Edlplit
eLIgCamYynwglYssrésr (wire) CaeRcIn CaTUeTAmancMnYn 7 b¤ 19 . Wire nig bar k¾RtUv)aneKeRbI
R)as;pgEdr. Stand nig wire RtUv)anpliteLIgedayeKarBtam ASTM Standard A421 sMrab;
uncoated stress-relieved wire nig A416 sMrab; uncoated seven-wire stress-relieved strand.

lkçN³rbs;EdkeRbkugRtaMgRtUv)aneGayenAkñúgtarag 19>1.
tarag 19>1
                                     Diameter         Area          Mass
                 Type
                                       (mm)          (mm2)         (kg/m)
Seven-wire strand (grade 250)           6.350         23.2         0.179
                                        7.950          37.4        0.298
                                        9.525          51.6        0.402
                                      11.125           69.7        0.551
                                      12.700           92.9        0.729
                                      15.240         139.4         1.101
Seven-wire strand (grade 270)           9.525         54.8         0.432
                                      11.125           74.2        0.595
                                      12.700           98.7        0.789
                                      15.250         138.7         1.101
Prestressing wire grades (250)          4.877         18.7         0.146
                         (250)          4.978         19.4         0.149
                         (240)          6.350         31.6         0.253
                         (235)          7.010         38.7         0.298
Prestressing bars (smooth)            19.050         283.9         2.232
(grade 145 or 160)                    22.225         387.1         3.036
                                      25.400         503.2         3.973
                                      28.575         638.7         5.030
                                      31.750         793.5         6.206
                                      34.925         954.8         7.515
Prestressing bars (deformed)          15.875         180.6         1.458
(grade 150-160)                       19.050         271.0         2.218
                                      25.400         548.4         4.480
                                      31.750         806.5         6.535
                                      34.925          1006         8.274

           EdkeRbkugRtaMgEdleRbIenAkñúgebtugeRbkugRtaMgRtUvEtmanersIusþg;x<s; CaTUeTAman
ultimate strength f puenAcenøaH 1730MPa eTA 1860MPa . eKcaM)ac;GnuBaØateGayEdkersIusþg;
x<s;mansac;lUtFM nigrkSakugRtaMgenAkñúgebtugeGayRKb;RKan; nigGciéRnþy_bnÞab;BI inelastic
shortening rbs;ebtug.


esckþIENnaMBIebtugeRbkugRtaMg                                                         574
T.Chhay                                                                                 NPIC




          kugRtaMgGnuBaØatenAkñúgEdkeRbkugRtaMgeyagtam ACI Code, Section 18.5 mandUcxageRkam³
          !> kugRtaMgGtibrmaEdlbNþalBI tendon jacking force minRtUvFMCagtMélEdltUcCageKkñú
             gcMeNam 0.8 f pu nig 0.94 f py . tMélEdltUcCagminRtUvFMCagkugRtaMgEdlENnaMedayGñk
             plit tendon b¤ anchorage eT.

          @> kugRtaMgGtibrmaenAkñúg pretensioned tendon Pøam²eRkayeBlepÞrminRtUvFMCagtMéltUc
             CageKkñúgcMeNam 0.74 f pu nig 0.82 f py .
          #> kugRtaMgGtibrmaenAkñúg postensioned tendon eRkayeBl tendon RtUv)an anchor KW
             0.70 f pu .



     K> EdkBRgwg Reinforcing Steel
        CaTUeTA eKeRbIEdkBRgwgminEmneRbkugRtaMgenAkúñgGgát;eRKOgbgÁúMebtugeRbkugRtaMg
CaBiessenAkñúgsMNg;ebtugeRbkugRtaMgcak;eRsc. eKeRbIEdkBRgwgCaEdkkMlaMgkat;TTwg Ca
EdkbEnßmsMrab;kardwkCBa¢Ún nigkarelIkdak;Ggát;cak;eRsc ehIynigeRbIenAkñúgGgát;ebtugeRb
kugRtaMgedayEpñkEdlcUlrYmCamYynwgEdkeRbkugRtaMg. RbePT nigkugRtaMgGnuBaØatrbs;Edk
RtUvENnaMenAkñúgCMBUk 2 nigCMBUk 5 rYcehIy.

3> kMhatbg;eRbkugRtaMg                Loss of Prestress

     k> Lump-sum losses
        kMhatbg;énkMlaMgeRbkugRtaMgCabnþbnÞab;ekItmaneRkayeBlkMlaMgeRbkugRtaMgRtUv)an
epÞrBI jack eTaGgát;ebtug. kMhatbg;eRbkugRtaMgCakarkat;bnßykMlaMgeRbkugRtaMgkñúgmYy
CIviténeRKOgbgÁúM. brimaNkMhatbg;enAkñμúg tendon ERbRbYlcenøaHBI 15% eTA 30% énkugRtaMg
edIm edayGaRs½ynwgktþaCaeRcIn. sMrab;eRKOgbgÁúMebtugGarem:TMgn;FmμtaPaKeRcInEdlsagsg;eday
standard method, tendon stress loss bNþalmkBI elastic shortening, shrinkage, creep nig

relaxation rbs;EdkKWmantMélRbEhlnwg 35ksi(241MPa ) sMrab; pretensioned member nigsMrab;




esckþIENnaMBIebtugeRbkugRtaMg                                                            575
T.Chhay                                                                                      NPIC




posttensioned member            KWRbEhlbwg 25ksi(172MPa) . kMlaMgkkit nig anchorage slip minRtUv)an
rab;bBa©ÚleT.
         karENnaMBIrsMrab;kar)a:n;sμankMhatbg;srubenAkñúgGgát;ebtugeRbkugRtaMgRtUv)anbgðajeday
AASTHO nig Posttensioning Institute (PTI). AASTHO ENnaMeGayykkMhatbg;srub

(edayminKitkMlaMgkkit) 45ksi(310 MPa ) sMrab; pretensioned strand nig 33ksi(228MPa ) sMrab;

postentioned strand nig wire enAeBlEdleKeRbIersIusþg;sgát;ebtug f 'c = 35MPa . PTI ENnaM

lump-sum prestress loss sMrab; posttensioned member 35ksi(241MPa ) sMrab;Fñwm nig

30ksi(207 MPa ) sMrab;kMralxNÐ ¬edayminKitkMlaMgkkit¦. eKGaceRbItMélTaMgGs;enH)anluHRta

EteK)aneFVIkar)a:n;RbmaNkMhatbg;eRbkugRtaMgedayRbPBénkMhatbg;nImYy²dac;edayELkBIKña)an
l¥ dUcEdl)anENnaMy:agsegçb.
         CaTUeTA RbPBénkMhatbg;eRbkugRtaMgKW
         - Elastic shortening rbs;ebtug
         - Shrinkage rbs;ebtug
         - Creep rbs;ebtug
         - Relaxation rbs;Edk tendon
         - kMlaMgkkit
          -    Anchorage set



      x> kMhatbg;edaysar Elastic Shortening of Concrete
         kar)a:n;RbmaNkMhatbg; elastic shortening rbs;ebtugenAkñúg           pretensioned member

RtUv)aneFVIeLIgdUcteTA. BicarNa pretensioned concrete member énmuxkat;efr nigkugRtaMgBRgay
esμItambeNþayG½kSTIRbCMuTMgn;rbs;vaedaysarkMlaMg Fo . eRkayBIkarepÞrkMlaMgeRbkugRtaMgFñwmebtug
nig prestressing tendon rYjxøIedaybrimaNesμIKña edaysarPaBs¥itrvagsMPar³TaMgBIr. dUcenH kMlaMg
eRbkugRtaMgEdlcab;epþIm Fo Føak;mkRtwm Fi ehIykMhatbg;kMlaMgeRbkugRtaMgKW Fo − Fi . dUcKña
strain enAkñúgebtug ε c RtUvEtesμInwgbMErbMrYl strain rbs; tendon Δε s . dUcenH ε c = Δε s b¤

( f c / Ec ) = (Δf s / E s ) ehIykMhatbg;kugRtaMgEdlbNþalBI elastic shortening KW


esckþIENnaMBIebtugeRbkugRtaMg                                                                  576
T.Chhay                                                                                     NPIC



                   Es               nF nF
          Δf s =      × f c = nf c = i ≈ o                                         (19.1)
                   Ec               Ac  Ac
Edl          RkLaépÞrbs;muxkat;ebtug
           Ac =

       n = E s / Ec = pleFobm:UDul (modular ratio)

       f c = kugRtaMgrbs;ebtugenARtg;TIRbCMuTMgn;rbs;EdkeRbkugRtaMg

KuNkugRtaMgnwgRkLaépÞrbs;EdkeRbkugRtaMg Asp edIm,ITTYl)ankMlaMgsrub . Elastic loss KW
                                                 ⎛ nF   ⎞
          ES = Fo − Fi = Δf s Asp = (nf c )Asp ≈ ⎜ o
                                                 ⎜ A    ⎟ Asp
                                                        ⎟                          (19.2)
                                                 ⎝ c    ⎠
          Fi = Fo − (nf c )Asp                                                     (19.3)

sMrab;karKNnaGnuvtþn_ kMhatbg;kugRtaMgénkMlaMgeRbkugRtaMg ¬ Δf s kñúgmYyktþaépÞ Asp ¦ mantMél
Rbhak;RbEhlnwg nFo / Ac . RbsinebI kMlaMg Fo manGMeBIRtg;cMNakp©it e enaH elastic loss Edl
bNþalBIvtþmanén Fo nigbnÞúkefrGnuvtþn_enAeBlepÞrKW
         ES = −(nf c )Asp ¬EdlbNþalBIeRbkugRtaMg¦ + (nf c )Asp ¬bnÞúkefr¦
                          ⎛ F F e2 ⎞      ⎛M e⎞
          ES = Fo − Fi = −⎜ i + i ⎟nAsp + ⎜ D ⎟nAsp                                (19.4)
                          ⎜ A      ⎟
                                 I ⎠      ⎝ I ⎠
                          ⎝
eKGaceRbItMélRbhak;RbEhlén Fi = (0.63 f pu )Asp enAkñúgsmIkarxagelI.
                                   ⎡         ⎛ 1 e 2 ⎞⎤
          Fo + f c (D.L.)nAsp = Fi ⎢1 + nAsp ⎜ + ⎟⎥                                (19.5)
                                             ⎜A I ⎟
                                   ⎢
                                   ⎣         ⎝       ⎠⎥
                                                      ⎦

                           Fi =
                                       (       )
                                Fo + nAsp f c (D.L.)
                                           ⎛ 1 e2 ⎞
                                   (       )
                                1 + nAsp ⎜ + ⎟
                                           ⎜A I ⎟
                                           ⎝       ⎠
sMrab; posttensioned member Edl tendon nig individual strand minrgkugRtaMgdMNalKña enaHeK
GackMhatbg;eRbkugRtaMgesμInwgBak;kNþaléntMél ES sMrab; prestensioned member.
        dUcKña eKGacyk elastic shortening loss enAkñúgkMralxNÐesμInwgmYyPaKbYnéntMél ES
sMrab; prestensioned member edaysarkarlUtrbs; tendon mYymanT§iBltictYceTAelIkugRtaMgén
tendon d¾éTeTot.


      K> kMhatbg;edaysarkarrYmmaD                  Loss Due to Shrinkage
          kMhatbg;eRbkugRtaMgEdlbNþalBIkarrYmmaDKWGaRs½ynwgeBl. eKGac)a:n;RbmaNvadUcxag
eRkam³
esckþIENnaMBIebtugeRbkugRtaMg                                                                577
T.Chhay                                                                                          NPIC



          SH = Δf s (shrinkage) = ε sh E s                                             (19.6)
Edl Es = 2 ⋅105 MPa nig ε sh = shrinkage strain enAkñúgebtug
        eKGacsnμt; Strain mFümEdlbNþalBIkarrYmmaDmantMéldUcxageRkam³
        - ε sh1 = 0.0003 sMrab; pretensioned member
        - ε sh2 = 0.0002 sMrab; posttentioned member
        RbsinebIeKGnuvtþ posttensioning kñúgcenøaH 5 eTA 7 éf¶eRkayBIcak;ebtug/ eKGacyk shrin-
kage strain esμInwg 0.8ε sh1 . RbsinebIeKGnuvtþ posttensioning kñúgcenøaH 1 s)aþh_eTA 2 s)aþh_ eK

GaceRbI ε sh = 0.7ε sh1 nigRbsinebIeKGnuvtþ posttensioning eRkayeBlcak;ebtugeRcInCag 2 s)aþh_
enaHeKGacyk ε sh = ε sh2 . eKk¾Gac)a:n;RbmaNkMhatbg;edaykarrYmmaD SH dUcxageRkam³
                                     ⎛ 0.06V   ⎞
          SH = 8.2 × 10 − 6 K sh E s ⎜1 −      ⎟(100 − RH )
                                     ⎝    S    ⎠
Edl V / S = pleFobmaDelIépÞ nig RH = average relative humidity. K sh = 1.0 sMrab; pretensioned
member nigesμInwg 0.8 / 0.73 / 0.64 nig 0.58 sMrab; posttensioned member RbsinebIeKGnuvtþ

posttensioning eRkayeBlcak;ebtug 5 / 10 / 20 nig 30 éf¶ erogKña.


      X> kMhatbg;edaysar creep rbs;ebtug
             CakMhUcRTg;RTayGaRs½ynwgeBlEdlekIteLIgenAkñúgebtugeRkamGMeBIbnÞúkefr. kMhUc
          Creep

RTg;RTayEdlekIteLIgedaysar creep eFVIeGay)at;bg;kMlaMgeRbkugRtaMgBI 5% eTA 7% .
       Creep strain ERbRbYlCamYynwgGaMgtg;sIueténkugRtaMgedImenAkñúgebtug relative humidity

nigeBl. eKGackMNt;kMhatbg;kugRtaMgEdlbNþalBI creep dUcxageRkam³
          CR = Δf s (creep) = Cc (nf c ) = Cc (ε cr E s )                              (19>7)
                                  creepstrain, ε cp
Edl       emKuN
          Cc =        creep =
                              initial elastic strain, εi
eKGacyktMél Cc dUcxageRkam³

     ersIusþg;ebtug                    f 'c ≤ 28MPa                    f 'c > 28MPa
 Relative humidity              100%                  50%        100%                  50%
           Cc                   1− 2                  2−4       0.7 − 1.5             1 .5 − 3




esckþIENnaMBIebtugeRbkugRtaMg                                                                     578
T.Chhay                                                                                      NPIC




         eKGaceFVI interpolation sMrab;tMélEdlenAcenøaHtMélEdlenAkñúgtaragxagenH. edayKitfa
creep EtBak;kNþalekIteLIgkñúgGMLúg 134 ExdMbUgén 6 ExdMbUgbnÞab;BIkarepÞreRbkugRtaMgeTAebtug

nigeRkamlkçxNÐsMeNImFmμta enaHeKGacsnμt; creep strain sMrab;karKNnaGnuvtþn_dUcxageRkam³
         !> sMrab; pretensioned members, ε cr = 7 ⋅10−5 × kugRtaMgenAkñúgebtug
         @> sMrab; postensioned members, ε cr = 5.2 ⋅10−5 × kugRtaMgenAkñúgebtug. eKeRbItMélenH
            enAeBlEdleKGnuvtþ posttensionning kñúgGMLúg 2 eTA 3 s)aþh_. sMrab;karGnuvtþ posten-
            sioning elOnCagenH eKGaceRbItMélkNþal.

         eKeRbItMélTaMgenH enAeBlEdlersIusþg;rbs;ebtugenAeBlepÞrKW f 'c ≥ 28MPa . enAeBlEdl
 f 'c < 28MPa creep strain KYrekIneLIgkñúgGRta 4 / ersIusþg;Cak;Esþg.

         kMhatbg;eRbkugRtaMgsrubEdlbNþalBI creep = ε cr Es                            (19.8)


      g> kMhatbg;edaysar Relaxation rbs;Edk
          Relaxation   rbs;EdkbNþaleGaymankMhatbg;enAkñúgEdkeRbkugRtaMgGaRs½ynwgeBl Edl
RsedogKñanwg creep enAkñúgebtugEdr. kMhatbg;edaysar relaxation ERbRbYleTAtamRbePTEdk.
CaTUeTA tMélrbs;vaRtUv)anpþl;eGayedayGñkplitEdk. CaFmμta eKsnμt;kMbaatbg;enHesμInwg 3%
énkugRtaMgedImrbs;EdksMrab; posttensioned member nig 2% eTA 3% sMrab; pretensioned
members. RbsinebIeKminmanB½t’manBIkarBiesaFeT eKGacPaKrykMhatbg;sMrab; relaxation enA

1000h dUcxageRkam³

        !> enAkñúg low-relaxation strands, enAeBlEdleRbkugRtaMgedImesμInwg 0.7 f pu nig 0.8 f pu /
            relaxation (RE) KW 2.5% nig 3.5% erogKña.

        @> enAkñúg stress-relieved strand b¤ wire, enAeBlEdleRbkugRtaMgedImesμInwg 0.7 f pu nig
            0.8 f pu / relaxation (RE) KW 8% nig 12% erogKña.


      c> kMhatbg;edaysarkMlaMgkkit             Loss Due to Friction
        CamYynwgEdkrg pretensioning kMhatbg;edaysarkMlaMgkkitekItmanenAeBlEdl wires b¤
strand dabtam diaphragm. CaFmμtakMhatbg;enHmantMéltUc ehIyeKGacecalva)an.




esckþIENnaMBIebtugeRbkugRtaMg                                                                  579
T.Chhay                                                                                      NPIC




enAeBlEdl strand dabtam concordant profile enaHkMhatbg;edaysarkMlaMgkkitGacmantMélFM.
enAkrNIEbbenH CaFmμtaeKeRbI]brkrN_Edlvas;bnÞúkCak;EsþgedIm,IkMNt;kMlaMgenAkñúg tendon.
       CamYynwgEdkrg posttensioning, T§iBlénkMlaMgkkitmantMélFMedaysarktþacMbgBIrKW
kMeNagrbs; tendon nigkar)at;bg;PaBRtg;rbs;bMBg; (wobble). RbsinebIeKTb;cugbgáb;mçagrbs;
tendon edaykMlaMg P2 nigeKTajcugTMenrmçageTotrbs; tendon edaykMlaMg P edIm,IeGay tendon
                                                                      1

enaHrGiltamTisrbs;kMlaMg P1 )anluHRtaEt
                      μα px
          P = P2 e
           1                                                                        (19.9)
Edl μ = emKuNmMukkitsþaTic nig α px = mMurvag P1 nig P2 . CaTUeTAeKKit wobble effect tamviFI
RsedogKña
          Px = Ps e −(μα + Kl x )
          Ppj = Ppx e
                             (
                            + Kl px + μ pα px   )
          Ppx = Ppj e
                             (
                            − Kl px + μ pα px   )                                   (19.10)

Edl           kMlaMgeRbkugRtaMgenARtg;cMnuc x
          Ppj =

        Ppx = kMlaMgeRbkugRtaMgenARtg; jacking end

        μ p = emKuNkMlaMgkkitedaysarkMeNag
       α px = bMErbMrYlmMusrubénragtambeNþayrbs;EdkeRbkugRtaMgBI jacking end eTAdl;cMnuc x
                KitCara:düg;
            =
               RbEvgkMeNag
                 kaMkMeNag
        K = emKuNkMlaMgkkit wobble kñúgmYyÉktþaRbEvgrbs; tendon

CakarsMrYl ACI Code eGaynUvsmIkarxageRkamsMrab;krNI (μ pα px + Kl x ) ≤ 0.30 . lT§plEdl
TTYl)anBIsmIkarCatMélRbEhl
                        (
          Ppx = Ppj 1 + Kl px + μ pα px             )−1   (AIC Code, eq. 18.2)      (19.11)

       emKuNkMlaMgkkit μ nig K GaRs½ynwgRbePTén strand b¤ wire, RbePTbMBg; niglkçxNÐépÞ
b:H. ACI Commentaru, Sectin 18.6 nigenAkñúgtarag 19.2 eGaynUvtMélRbhak;RbEhlrbs; μ nig
K.

       kMhatbg;edaysarkMlaMgkkitenAkñúg jack ERbRbYl nigGaRs½ynwgktþaCaeRcIn edayrab;
bBa©ÚlTaMgRbEvgrbs; tendon. eKENnaMeGayeRbI accurate load ceel edIm,Ivas;kMlaMgedaypÞal;.

esckþIENnaMBIebtugeRbkugRtaMg                                                                  580
T.Chhay                                                                                NPIC




kareRbI pressure gauge pþl;nUvlT§plminsuRkit luHRtaEteKeFVIkarEktMrUveTAtamkMlaMgEdleKsÁal;
enAkúñúg tendon.
          kMhatbg;edaysarkMlaMgkkitenAkñúg cnchorage KWGaRs½ynwgRbePT anchorage nigbrimaN
én deviation rbs; tendon Edlqøgkat; anchorage. CaFmμtakMhatbg;enHmantMéltUcEdlGac
ecal)an. karENnaMkñúgkrNIBiessKYrTTYl)anBIplitkr.

tarag 19>2 emKuNkMlaMgkkitsMrab; posttensioned tendon
                                        emKuNkMlaMgkkit wobble K emKuNkMlaMgkMlaMgkkit
           RbePT tendon
                                         kñúgmYyÉktþaRbEvg (10 −3 ) edaysarkMeNag μ
Tendon in flexible metal sheathing
(grouted)
    Wire tendon
                                                            3.33 − 5.0             0.15 − 0.25
     Seven-wire strand
                                                          1.67 − 6.67              0.15 − 0.25
     High-strength bars
                                                             0.33 − 2              0.08 − 0.30
Pregreased unbonded tendon

     Wire tendon and seven-wire strand
                                                              1 − 6.67             0.05 − 0.15
Mastic-coated unbonded tendon

     Wire tendon and seven-wire strand
                                                          0.33 − 0.67              0.05 − 0.15




      q> kMhatbg;edaysar Anchor set
        enAeBlkMlaMgenAkñúg tendon RtUv)anepÞrBI jack eTA anchorage unit, clnart;cUlkñúgbnþic
rbs; tendon ekIteLIgedaysarkardak; gripping device b¤ wedge. karrGilenHbNþaleGayman
tendon rYjxøI EdleFVIeGay)at;bg;kMlaMgeRbkugRtaMg. RbEvgrGilERbRbYlBI 2.5mm eTA 6mm ehIy

CaTUeTARtUv)ankMNt;edayplitkr. eKGacKNnakMhtbg; anchor set edayrUbmnþxageRkam³
                                ΔL
          Δf s = ΔεE s =           × Es                                          (19.12)
                                 L
Edl       Δε =    GaMgtg;sIueténkarrGil anchor
          E s = 2 ⋅10 5 MPa


esckþIENnaMBIebtugeRbkugRtaMg                                                              581
T.Chhay                                                                                           NPIC




            RbEvgrbs; tendon
            L=

edaysarkMhatbg;eRbkugRtaMgCacMras;smamaRteTAnwgRbEvgrbs; tendon ¬b¤RbEhlCaBak;kNþal
énRbEvgrbs; tendon RbsinebIvargkugRtaMgBIcugsgxagkñgeBlEtmYy¦PaKrykMhatbg;enAkñúgkug
                                                   ú
RtaMgEdknwgRtUv)ankat;bnßyenAeBlEdlRbEvgrbs; tendon ekIneLIg. RbsinebI tendon lUteday
Δε enAeBlepÞr enaHeKecalkMhatbg;eRbkugRtaMgedaysarkarrGil.



]TahrN_ 19>2³ FñwmTMrsamBaØrg pretensionning RbEvg 11m manmuxkat;ctuekaNEkgCamYynwg
b = 45cm    nig h = 80cm . KNnakMhatbg;eGLasÞic nigkMhatbg;EdlGaRs½ynwgeBlTaMgGs;. eK
eGay³ kMlaMgeRbkugRtaMgenAeBlepÞrKW Fi = 1935kN / RkLaépÞrbs;EdkeRbkugRtaMgKW Aps =
1935mm 2 / f 'c = 35MPa / Ec = 34500MPa / E s = 2 ⋅105 MPa / profile rbs; tendon manrag

Ca)a:ra:bUl/ cMNakp©itenAkNþalElVg = 15cm nigcMNakp©itenAcug = 0 .
dMeNaHRsay³
!> kMhatbg;edaysar elastic shortening: kugRtaMgEdl)anBIkMlaMgeRbkugRtaMgenAeBlepÞrKW
            Fi    1935 3
                =     10 = 1000MPa
            A ps 1935
                               f
        rbs;EdkeRbkugRtaMg = Es = 210005 = 5 ⋅10 −3
   strain
                                    ⋅10
                                 s

   edayeRbIsmIkar 19>1
            E    2 ⋅10 5
        n= s =           = 5.8 yk 6
            E    34500
                     c
                     nFi   6 × 1935 3
            Δf s =       =         10 = 32.25MPa
                     Ac 450 × 800
   edayKitbMErbMrYlcMNakp©ittambeNþayFñwm
                                  Fi
       strain enAmuxkat;xagcug =
                                               1935
                                     =                     10 3 = 1.56 ⋅10 − 4
                                 AE      450 × 800 × 34500
                                           c c
                                                     Fi e 2
             strain      enAkNþalElVg = AFE
                                          i
                                                 +
                                                     IEc
                                           c c

                                         bh 3
                                                 450(800 )3
                                      I=       =              = 1.92 ⋅1010 mm 4
                                          12          12
                                                           1935 × 150 2
                                strain = 1.56 ⋅10 − 4 +                     10 3 = 2.22 ⋅10 − 4
                                                        1.92 ⋅10 × 34500
                                                                 10




esckþIENnaMBIebtugeRbkugRtaMg                                                                      582
T.Chhay                                                                             NPIC




                      mFüm = 1 (1.56 + 2.22)10 − 4 = 1.89 ⋅10− 4
                        strain
                               2
         kMhatbg;eRbkugRtaMg = strain × Es = 1.89 ⋅10−4 × 2 ⋅105 = 37.8MPa
              PaKrykMhatbg; = 1000 = 3.78%
                                37.8


@> kMhatbg;edaysar shrinkage:
          shrinkage strain = 0.0003
                            Δf s = ε sh E s = 0.0003 × 200000 = 60MPa

        PaKrykMhatbg;            =
                                     60
                                   1000
                                           = 6%

#> kMhatbg;edaysar creep rbs;ebtug³ edaysnμt; Cc = 2.0 enaH Δf s = Cc (ε cr Es )
                                  Fi
          Elastic strain =             = 1.56 ⋅10 − 4
                                 Ac Ec

                                  (                     )
                        Δf s = 2 1.56 ⋅10 −4 × 200000 = 62.4MPa

       PaKrykMhatbg;         =
                               62.4
                               1000
                                     = 6.24%

    b¤edaytMélRbhak;RbEhl eyIgyk ε cr = 7 ⋅10−5 × kugRtaMgenAkñúgebtug
                                           ⎛ 1935          ⎞
                           ε cr = 7 ⋅10 − 5 ⎜          103 ⎟ = 3.76 ⋅10 − 4
                                           ⎝ 450 × 800     ⎠
                           Δf s = ε cr E s = 3.76 ⋅10 −4 × 200000 = 75.2MPa

         PaKrykMhatbg;          =
                                   75.2
                                  1000
                                          = 7.52%

   vaCatMélEdlmansuvtßiPaB ehIyeKnwgTTYl)anGRtadUcKñasMrab;karKNnaxagelIRbsinebIeKyk
   Cc = 2.41 .

$> kMhatbg;edaysar relaxation rbs;Edk³ sMrab; low-relaxation strand eKsnμt;ykkMhatbg;
   esμInwg 2.5%
          Δf s = 1000 × 2.5% = 25MPa
%> snμt;kMhatbg;edaysarkarBt; kMlaMgkkitrbs; cable spacer nigbøúkxagcugrbs;RbB½n§
   pretensioning KW 2% .

          Δf s = 0.02 × 1000 = 20MPa
^> kMhatbg;edaysarkMlaMgkkitenAkñúg tendon KWsUnü.
&> kMhatbg;srubmandUcxageRkam

esckþIENnaMBIebtugeRbkugRtaMg                                                        583
T.Chhay                                                                                        NPIC



           Elastic Shortening                                37.8MPa             3.78%
           Shrinkage loss                                    60.0MPa             6.00%
           Creep of concrete loss                            62.4MPa             6.24%
           Relaxation of steel loss                          25.0MPa             2.50%
           Other loss                                        20.0MPa             2.00%
           Total loss                                       205.2MPa            20.52%
                  eRbkugRtaMgRbsiT§PaB = 1000 − 167.4 = 832.6MPa
          kMlaMgeRbkugRtaMgRbsiT§PaB F = 832.6 ×1935 ⋅10 −3 = 1611kN
                                        F = (1 − 0.167 )Fi = 0.833Fi
          sMrab; F = ηFi
          dUcenH η = 0.833

]TahrN_ 19>3³ KNnakMhatbg;TaMgGs;én posttensioned beam EdlmanRbEvg 36m . RkLaépÞ
rbs;muxkat;ebtug ( Ac ) = 49 ⋅104 mm 2 / m:Um:g;niclPaB (I g ) = 6.83 ⋅1010 mm 4 / kMlaMgeRbkugRtaMg
enAeBlepÞr (Fi ) = 4950kN / RkLaépÞEdkeRbkugRtaMg (Aps ) = 4840mm 2 / f 'c = 35MPa /
 Ec = 34500MPa / nig E s = 2 ⋅10 5 MPa . Profile rbs; tendon manragCa)a:ra:bUl/ cMNakp©itenA

kNþalElVg = 50cm nigcMNakp©itenAxagcug = 0 .
dMeNaHRsay³
!> kMhatbg;eday elastic shortening:
                     kugRtaMgEdkenAeBlepÞr = AFi            =
                                                                4950 3
                                                                4840
                                                                     10 = 1022.7 MPa
                                                       ps

          kugRtaMgenAkúñgebtugRtg;muxkat;xagcug = 49 ⋅104 103 = 10.1MPa
                                                   4950

                                                                  2
    kugRtaMgenAkúñgebtugRtg;muxkat;kNþalElVg = Ai + FiIe − MID e
                                                  F
                                                   c

                                  TMgn;rbs;Fñwm = 49 ⋅10 −2 × 25 = 12.25kN / m
                                                             36 2
                                             M D = 12.25          = 1984.5kN .m
                                                              8
                                                                   4950 × 500 2 3 1982.5 × 500 6
                          kugRtaMgenAkNþalElVg   =
                                                    4950
                                                   49 ⋅10 4
                                                            10 3 +
                                                                    6.83 ⋅1010
                                                                               10 −
                                                                                    6.83 ⋅1010
                                                                                               10

                                                 = 10.1 + 18.12 − 14.5 = 13.72 MPa
                                                   10.1 + 13.72
                                 kugRtaMgmFüm    =
                                                         2
                                                                 = 11.9MPa



esckþIENnaMBIebtugeRbkugRtaMg                                                                     584
T.Chhay                                                                                  NPIC




                                    mFüm = 11.9 = 34500 = 3.45 ⋅10− 4
                                     strain
                                               Ec
                                                        11.9


   kMhatbg;eGLasÞicKW Δf s = ε c Es = 3.45 ⋅10 −4 × 2 ⋅105 = 69MPa edaysnμt;faeKTaj tendon
   mþgBIrkñúgeBlEtmYy. KUrTImYynwgmankMhatbg;FMCageK b:uEnþKUrcugeRkaynwgmankMhatbg;esμIsUnü.
   dUcenH kMhatbg;eGLasÞicmFüm Δf s = 69 / 2 = 34.5MPa .
        PaKrykMhatbg; = 10225.7 = 3.37%
                           34.


@> kMhatbg;edaysarkarrYmmaDrbs;ebtug
          Δf s (shrinkage) = 0.0002 E s = 0.0002 × 200000 = 40MPa

       PaKrykMhatbg;       =
                                40
                             1022.7
                                     = 3.91%

#> kMhatbg;;edaysar creep rbs;ebtug³ snμt; Cc = 1.5
                                 Fi         4950
          elastic strain =           =                10 3 = 2.93 ⋅10 − 4
                                Ac Ec 49 ⋅ 10 × 34500
                                             4

                                               (                    )
             Δf s (creep) = Cc (ε cr E s ) = 1.5 2.93 ⋅10 −4 × 200000 = 87.9MPa

     PaKrykMhatbg;        =
                             87.9
                            1022.7
                                      = 8.59%

$> kMhatbg;edaysar relaxation rbs;Edk³ sMrab; low-relaxation strand, kMhatbg;KW 2.5%
          Δf s = 0.025 × 1022.7 = 25.6MPa
%> karrGilrbs; anchorage: sMrab;karTajEtBIcugmçag snμt;RbEvgrGil 3.8mm
                    ΔL       3.8
           Δf s =      Es =       200000 = 21.1MPa
                     L      36000
   edIm,IGnuBaØateGaymankarrGilrbs; anchorage eKRtUvkMNt;kugRtaMgkñúgkarTaj 1022.7 + 21.1
   = 1043.8MPa enAelI pressure gauge edIm,ITTYl net stress 1022.7 MPa enAkñúg tendon.

^> kMhatbg;EdlbNþalBIkMlaMgkit³ smIkar parabolic profile KW
         e x = 2 (Lx − x 2 )
               4e
               L
   Edl ex = cMNakp©itenARtg;cMgay x Edlvas;BITMr nig e = cMNakp©itenAkNþalElVg
           d (e x ) 4e
                   = 2 (L − 2 x )
             dx     L
    CaCMerl (slope) rbs; tendon enARKb;cMnucTaMgGs;. enARtg;TMr e = 0 eyIgTTYl)an slop
           d (e x ) 4e 4 × 500
                   =  =        = 0.056
             dx      L 36000




esckþIENnaMBIebtugeRbkugRtaMg                                                             585
T.Chhay                                                                                       NPIC




    slope enAkNþalElVgesμIsUnü. dUcenH α px = 0.056 . edayeRbI flexible metallic sheath,
    μ p = 0.5 nig K = 0.00333 . enAkNþalElVg x = 18m . RtYtBinitüfaetI (μ pα px + Kl x ) ≤ 0.30
          μ pα px + Kl x = 0.5 × 0.056 + 0.00333 × 18 = 0.088 < 0.3
                                     (
                        Ppx = Ppj 1 + Kl px + μ pα px    )
                                = Px (1 + 0.088) = 1.088 Px
                                = 1.088 × 1022.7 = 1112.7 MPa        ¬kMlaMgenAcug jacking¦
                       Δf s = 1112.7 − 1022.7 = 90MPa

     PaKrykMhatbg;          =
                                90
                              1022.7
                                     = 8.8%

&> kMhatbg;srub
            Elastic Shortening                                 34.5MPa           3.37%
            Shrinkage loss                                     40.0MPa           3.91%
            Creep of concrete loss                             87.9MPa           8.59%
            Relaxation of steel loss                           25.6MPa           2.50%
            Friction loss                                      90.0MPa           8.80%
            Total loss                                        278.0MPa          27.17%
                         eRbkugRtaMgRbsiT§PaB = 1022.9 − 243.5 = 779.2MPa
       kMlaMgeRbkugRtaMgRbsiT§PaB (F ) = (1 − 0.238)Fi = 0.762Fi
                                             F = 0.762 × 4950 = 3772kN
          sMrab; F = ηFi
          dUcenH η = 0.762

4> viPaKGgát;rgkarBt;begáag                              Analysis of Flexural Members

      k> kugRtaMgEdlbNþalBIlkçxNÐmanbnÞúk niglkçxNÐKμanbnÞúk
          Stresses Due to Loaded and Unloaded condition
        enAkñúgkarviPaKFñwmebtugeRbkugRtaMg CaTUeTAkardak;bnÞúkBIrmaneRKaHfñak;CageK. TImYyKWekIt
manenAeBlepÞr KWenAeBlFñwmrgkMlaMgeRbkugRtaMg Fi ehIyTMgn;rbs;Fñwm b¤bnÞúkefrGnuvtþn_enAxN³én
karepÞrkMlaMgkugRtaMg. eKminKitlkçxNÐbnÞúkefrbEnßm b¤bnÞúkGefreT. kñúglkçxNÐKμanbnÞúkenH kug
RtaMgenAsrésEpñkxagelIbMput nigEpñkxageRkambMputénmuxkat;eRKaHfñak;minRtUvFMCagkugRtaMgenA
eBlepÞr f ci nig f ti sMrab;kugRtaMgrgkarsgát; nigkugRtaMgrgkarTajrbs;ebtugerogKña.

esckþIENnaMBIebtugeRbkugRtaMg                                                                  586
T.Chhay                                                                                     NPIC




         krNITIBIrénkardak;bnÞúkekIteLIgenAeBlEdlFñwmrgkMlaMgeRbkugRtaMgeRkayBIekItmankMhat
bg;TaMgGs; nigrgnUvbnÞúkefr nigGefr. enAkñúglkçxNÐmanbnÞúkenH kugRtaMgenAsrésEpñkxagelIbM
put nigEpñkxageRkambMputénmuxkat;eRKaHfñak;dac;xatminRtUvFMCagkugRtaMgGnuBaØat f c nig f t sMrab;
kugRtaMgrgkarsgát; nigkugRtaMgrgkarTajrbs;ebtugerogKña.
         lkçxNÐTaMgenHGacsresrCaTMrg;KNitviTüadUcxageRkam³
!> sMrab;lkçxNÐKμanbnÞúk ¬enAeBlepÞr¦
         - enAsrésEpñkxagelIbMput
                                Fi (Fi e ) yt M D yt
                    α ti = −      +          −       ≤ f ti                   (19.14)
                                A      I        I
          - enAsrésEpñkxageRkambMput
                                Fi (Fi e ) yb M D yb
                    α bi = −      −          −       ≥ − f ci                 (19.15)
                                A      I        I
@> sMrab;lkçxNÐmanbnÞúk ¬bnÞúkTaMgGs;RtUv)andak;eRkayBIkMhatbg;eRbkugRtaMg¦
        - enAsrésEpñkxagelIbMput
        - σ t = − F + (FeI)yt − M D yt − M IL yt ≥ − f c
                      A                 I
                                                                               (19.16)

        - enasrésEpñkxageRkambMput
        - σ b = − F − (FeI)yb − M D yb − M LI yb ≤ f t
                      A                  I
                                                                               (19.17)

        Edl Fi nig F = kMlaMgeRbkugRtaMgenAeBlepÞr nigeRkayBIkMhatbg;
                 f ti nig f t = kugRtaMgrgkarTajenAkñúgebtugenAeBlepÞr nigeRkayBIkMhatbg;

                 f ci nig f c = kugRtaMgrgkarsgát;enAkúñgebtugenAeBlepÞr nigeRkayBIkMhatbg;

                M D nig M L = m:Um:g;EdlbNþalBIbnÞúkefr nigbnÞúkGefr

                 yt nig yb = cMgayBIG½kSNWteTAsrésEpñkxagelIbMput nigEpñkxageRkambMput

        enAkúñgkarviPaK eKsnμt;fasMPar³manlkçN³eGLasÞicenAkúñgEdneFVIkarénkugRtaMgEdlGnuvtþ.

      x> EdnkMNt;sñÚl                   Kern Limits
      RbsinebIeKGnuvtþkMlaMgeRbkugRtaMgenARtg;TIRbCMuTMgn;rbs;muxkat; vanwgekItmankugRtaMg
BRgayesμI. RbsinebIGnuvtþkMlaMgeRbkugRtaMgenARtg;cMNakp©it e BIeRkamTIRbCMuTMgn; EdleFVIy:agNa
eGaykugRtaMgenAsrésEpñkxagelIbMputesμIsUnü enaHeKcat;TukkMlaMgeRbkugRtaMgenHmanGMeBIRtg;cMnug
esckþIENnaMBIebtugeRbkugRtaMg                                                                 587
T.Chhay                                                                                    NPIC




lower kern ¬rUbTI 19>5¦. enAkñúgkrNIenH e RtUv)ansMKal;eday K b ehIIykarBRgaykugRtaMgman
ragRtIekaN EdlmankugRtaMgsgát;GtibrmaenasréseRkameKbMput. kugRtaMgenAsrésxagelIbMputKW
                    Fi (Fi e ) yt
          σt = −      +           =0
                    A      I
                                        I
          e = K b = lower kern =                                             (19.17)
                                       Ayt
dUcKña RbsinebIeKGnuvtþkMlaMgeRbkugRtaMgenARtg;cMNap©it e' BIelITIRbCMuTMng; EdleFVIy:agNaeGaykug
RtaMgenAsrésEpñkxageRkambMputesμIsUnü enaHkMlaMgeRbkugRtaMgRtUv)aneKcat;TukfamanGMeBIRtg;cMnuc
upper lower ¬rUbTI 19>5¦. enAkñúgkrNIenHcMNap©it e' RtUv)ansMKal;eday K t ehIykarBRgaykug

RtaMgmanragRtIekaN EdlmankugRtaMgsgát;GtibrimaenAsrésEpñkxagelIbMput. kugRtaMgenAsrés
EpñkxageRkambMputKW
                     Fi (Fi e ) yb
          σb = −       +           =0
                     A      I
                                     I
          e' = K t = upper kern =                                            (19.18)
                                    Ayb
Kern limits     énmuxkat;RtIekaNRtUv)anbgðajenArUbTI 19>5.




esckþIENnaMBIebtugeRbkugRtaMg                                                                 588
T.Chhay                                                                                 NPIC




      K> karkMNt;tMéléncMNakp©it                     Limiting Values of Eccentricity
       eKGacsresrsmIkarkugRtaMgTaMgbYn ¬BIsmIkar 19.13 dl; 19.16¦CaGnuKmn_éncMNakp©it e
sMrab;lkçxNÐénkardak;bnÞúkepSg². Ca]TahrN_ eKGacsresrsmIkar 19.13 dUcxageRkam
                      Fi (Fi e ) yt M D yt
          σ ti = −       +         −       ≤ f ti
                      A        I        I
           (Fi e ) yt ≤ f + Fi + M D yt
                          ti
               I               A     I
                          I ⎛ Fi M D yt          ⎞
                   e≤         ⎜ +         + f ti ⎟                                 (19.19)
                        Fi yt ⎝ A     I          ⎠
RbsinebIeKeRbI lower kern limit K b = I / Ayt / enaH
                       M D f ti AK b
          e ≤ Kb +        +                                                        (19.20)
                       Fi       Fi
tMél e CacMNakp©itGtibrmaEdlQrelIsrésEpñkxagelIbMputsMrab;lkçxNÐKμanbnÞúk.
       dUcKña BIsmIkar 19.14
                I ⎛ Fi M D yb         ⎞
          e≤         ⎜− +      + f ci ⎟                                            (19.21)
              Fi yb ⎝ A     I         ⎠
                      M   f AK
          e ≤ − K t + D + ci t                                                     (19.22)
                       Fi   Fi
tMél e CacMNakp©itGtibrmaEdlQrelIsrésEpñkxageRkambMputsMrab;lkçxNÐKμanbnÞúk. eKKNna
tMélGtibrma e BIsmIkarelITaMgBIredayyktMélEdltUcCagmkeRbI.
       BIsmIkar 19.15
               I ⎛ F M T yt      ⎞
          e≥      ⎜ +       − fc ⎟                                                 (19.23)
              Fyt ⎝ A  I         ⎠
                    M  f AK b
          e ≥ Kb + T − c                                                           (19.24)
                     F    F
Edl M T = m:Um:g;EdlbNþalBIbnÞúkefr nigbnÞúkGefr = (M D + M L ) . tMélenHCacMNakp©itGb,-
brma EdlQrelIsrésEpñkxagelIbMputsMrab;lkçxNÐRTbnÞúk. BIsmIkar 19.16
               I ⎛ F M T yb        ⎞
          e≥      ⎜− +        − ft ⎟                                               (19.25)
              Fyb ⎝ A     I        ⎠
                   M   f AK t
          e ≥ Kt + T − t                                                           (19.26)
                    F    F




esckþIENnaMBIebtugeRbkugRtaMg                                                                589
T.Chhay                                                                             NPIC




tMélenHCacMNakp©itGb,brmaEdlQrelIsrésEpñkxageRkambMput sMrab;lkçxNÐmanbnÞúk. eKKYr
KNnatMélGb,brma e TaMgBIrenHBIsmIkarTaMgBIrxagelI ehIyeKykcMNakp©itGb,brmaNaEdl
mantMélFMCageKmkeRbI.

      X> tMélkMNt;émkMlaMgeRbkugRtaMgenAeBlepÞr
           Limiting Values of the Prestessing Force at Transfer
        edayKitfa F = ηFi Edl η CapleFobén net prestressing force eRkayBIkMhatbg; nig
sMrab;krNIepSg²énkardak;bnÞúk eKGacsresrsmIkar 19.20, 19.22, 19.24 nig 19.26 eLIgvijdUc
xageRkam³
          (e − K b )Fi ≤ M D + f ti AK b                                      (19.27)
          (e + K t )Fi ≤ M D + f ci AK t                                      (19.28)

          (e − K b )Fi ≥ M D + M L − 1 ( f c AK b )                           (19.29)
                                η       η        η
          (e + K t )Fi ≥ M D        +
                                        ML
                                             −
                                                 1
                                                     ( f t AK t )             (19.30)
                                η       η        η
CMnYsmIkar 19.27 eTAkñúgsmIkar 19.30 eKTTYl)an
                                 ⎛1 ⎞ M        f AK t
          Fi (K b + K t ) ≥ M D ⎜ − 1⎟ + L − t
                                 ⎜η ⎟ η               − f ti AK t
                                 ⎝    ⎠          η
                             ⎡⎛ 1 ⎞        M L ⎛ f t AK t ⎞          ⎤
b¤        Fi ≥
                     1
                             ⎢⎜ − 1⎟ M D +
                              ⎜η ⎟
                (K b + K t ) ⎣⎝            η ⎝
                                              −⎜⎜ η ⎟ − ( f ti AK b )⎥
                                                          ⎟                   (19.31)
                                   ⎠                      ⎠          ⎦
tMél Fi CatMélGb,brmaénkMlaMgeRbkugRtaMgenAeBlepÞredaymineGayFMCagkugRtaMgGnuBaØateRkam
lkçxNÐmanbnÞúk nigKμanbnÞúk. CMnYssmIkar 19.29 eTAkñúgsmIkar 19.28 edIm,ITTYl)an
                              ⎡⎛ 1 ⎞        M L ⎛ f c AK b ⎞         ⎤
                                                ⎜ η ⎟ + ( f ci AK t )⎥
                      1
          Fi ≤                ⎢⎜1 − ⎟ M D −
                               ⎜ η⎟            +⎜          ⎟                  (19.32)
                 (K b + K t ) ⎣⎝    ⎠       η ⎝            ⎠         ⎦
tMél Fi CatMélGtibrmaénkMlaMgeRbkugRtaMgenAeBlepÞredaymineGayelIskugRtaMgGnuBaØateRkam
lkçxNÐmanbnÞúk nigKμanbnÞúk. edayCMnYssmIkar 19.31 eTAkñúgsmIkar 19.32
          ⎛ 1⎞           2M L ⎛        f ⎞       ⎛        f ⎞
          ⎜1 − ⎟ 2 M D −
          ⎜ η⎟               + ⎜ fti + c ⎟ AKb + ⎜ f ci + t ⎟ AKt ≥ 0
                               ⎜         ⎟       ⎜                            (19.33)
          ⎝    ⎠          η    ⎝      η ⎠        ⎝       η⎟ ⎠
smIkarenHbgðajfa Fi max − Fi min ≥ 0 . eKeRbIsmIkarenHsMrab;bgðajfamuxkat;NamYymanlkçN³
RKb;RKan;.


esckþIENnaMBIebtugeRbkugRtaMg                                                           590
T.Chhay                                                                                   NPIC




]TahrN_ 19>4³ FñwmTMrsamBaØEdlrgeRbkugRtaMgmunEdlmanRbEvg 14.4m manmuxkat;dUcbgðajenA
kñúgrUbTI 19>6 a. FñwmenHRTnUvbnÞúkefr 13.15kN / m ¬edayminrYmbBa©ÚlTMgn;pÞal;¦ nigrgnUvbnÞúk
Gefr 16kN / m . edaysnμt;faEdkeRbkugRtaMgpSMeLIgeday tendon 20 Edl tendon mYymanGgát;
p©it 11.125mm CamYynwg Es = 2 ⋅105 MPa / Fo = 1200MPa nig ultimate strength
 f pu = 1725MPa .




          !> kMNt;TItaMgEdnkMNt;xagelI nigEdnkMNt;xageRkamrbs; tendon profile ¬TIRbCMuTMgn;rbs;
             EdkeRbkugRtaMg¦ sMrab;muxkat;enAkNþalElVg nigsMrab;muxkat;bIepSgeTotenAcenøaHmux
             kat;kNþalElVg nigcugFñwm.

esckþIENnaMBIebtugeRbkugRtaMg                                                               591
T.Chhay                                                                                 NPIC




          @> dak; tendon cMTItaMgedIm,IbMeBjEdnkMNt;TaMgenH edayeGay tendon xøHegIbeLIgcab;BI
             cMnucmYyPaKbIénRbEvgElVg. RtYtBinitütMélkMNt;énkMlaMgeRbkugRtaMgenAeBlepÞr.
          #> RtYtBinitüeLIgvijnUvkMhatbg; edayKit tendon profile Edl)aneRCIserIs nigbMErbMrYlcM
             Nakp©it e .
          eRbI fci ¬enAeBlepÞr¦ = 28MPa / f 'c = 35MPa / Ec = 27600MPa nig Eci = 24800MPa .




dMeNaHRsay³
!> kMNt;lkçN³rbs;muxkat;
       RkLaépÞ = 600 × 150 + 450 × 150 + 300 × 250 = 23.25 ⋅104 mm2

esckþIENnaMBIebtugeRbkugRtaMg                                                            592
T.Chhay                                                                               NPIC




   kMNt;TIRbCMuTMgn;rbs;muxkat;edayKitm:Um:g;eFob)atrbs;muxkat;
        yb =
                    1
             23.25 ⋅ 10 4
                          (75 ⋅103 ×125 + 90 ⋅103 × 550 + 67.5 ⋅103 × 925) = 522mm
           yt = 1000 − 522 = 478mm
   KNna gross moment of inertia I g
               ⎡ 450(150 )3                    ⎤ ⎡150(600)3                    ⎤
          Ig = ⎢            + (450)(150)(403)2 ⎥ + ⎢        + (150)(600 )(28)2 ⎥
               ⎢
               ⎣    12                         ⎥ ⎢
                                               ⎦ ⎣   12                        ⎥
                                                                               ⎦
                     ⎡ 300(250)3                      ⎤
                    +⎢           + (300 )(250)(397 )2 ⎥
                     ⎢
                     ⎣    12                          ⎥
                                                      ⎦
            = 2.607 ⋅ 1010 mm 4
                I        2.607 ⋅ 1010
          Kb =     =                  = 235.6mm
               Ayt 23.25 ⋅ 10 4 × 478
                   I    2.607 ⋅ 1010
          Kt =       =                   = 214.8mm
                  Ayb 23.25 ⋅ 10 4 × 522
@> )a:n;RbmaNkMhatbg;eRbkugRtaMg eday Fo = 1200MPa
         a. snμt; elastic loss esμI 4% b¤ 0.04 × 1200 = 48MPa

         b. kMhatbg;edaysarkarrYmmaDKW 0.0003Es = 0.0003 × 2 ⋅ 105 = 60MPa

         c. kMhat;bg;edaysar creep rbs;ebtug ³ kar)a:n;RbmaNdMbUgd¾l¥bMputénkMhatbg;eday

            sar creep KW 1.67 dgén elastic loss
                    1.67 × 48 ≈ 80 MPa
          d.   kMhatbg;edaysar relaxation énEdkKW 4% ³ 0.04 ×1200 = 48MPa
               kMhatbg;GaRs½ynwgeBlKW 60 + 80 + 48 = 188MPa
               PaKrykMhatbg; = 1200 = 15.7%
                                 188


          e.   kMhatbg;srubKW 188 + 48 = 236MPa
               PaKryénkMhatbg;srubKW
                      236
                          = 19.7%
                     1200
          f.   kugRtaMgkMlaMgeRbkugRtaMg
                     Fi = 1200 − 48 = 1152MPa     ¬enAeBlepÞr¦
                     F = 1200 − 236 = 964 MPa



esckþIENnaMBIebtugeRbkugRtaMg                                                          593
T.Chhay                                                                                  NPIC




                     F = ηFi
                    η = 1−      pleFobkMhatbg;GaRs½ynwgeBl
                          964
                     =        = 0.837
                         1152
#> EdnkMNt;éncMNakp©it e Rtg;kNþalElVg³ kMNt;kugRtaMgGnuBaØat nigm:Um:g;. enAeBlepÞr
    f 'ci = 28MPa / f ci = 0.6 × 28 = 16.8MPa nig f ti = 0.25 f 'ci = 1.32MPa . enAeBlrgbnÞúk

   eFVIkar f 'c = 35MPa / fc = 0.45 f 'c = 15.75MPa nig ft = 0.5 f 'c = 2.96MPa .
                      bnÞúkpÞal;rbs;Fñwm = 23.25 ⋅10−2 × 25 = 5.81kN / m
                                            5.81(14.4 )2
                        M D ¬bnÞúkpÞal;¦ =               = 150.6kN .m
                                                 8
                                                           2
          Ma     ¬bnÞúkbEnßm nigbnÞúkGefr¦ = wa8L
                                                 =
                                                     (13.15 + 16)14.4 2    = 755.6kN.m
                                                               8
                        m:Um:g;srub (M T ) = M D + M L = 906.2kN .m
                                       Fi = kugRtaMgenAeBlepÞr × RkLaépÞEdkeRbkugRtaMg

          RkLaépÞrbs; tendon 20 Edl tendon nImYy²manGgát;p©it 11.125mm KW
                    20 × 69.7 = 1394mm 2
          Fi = 1394 × 1152 ⋅ 10 −3 = 1606kN

          F = 1394 × 964 ⋅ 10 −3 = 1344kN
     a.   BicarNamuxkat;enAkNþalElVg
          srésxagelIbMput kñúglkçxNÐminrgbnÞúk
                                 M D f ti AK b
                     e ≤ Kb +       +
                                 Fi       Fi

                         ≤ 235.6 +        10 +
                                                       (           )
                                     150.6 3 1.32 23.25 ⋅ 10 4 (235.6) − 3
                                                                      10 ≤ 374.4mm
                                     1606             1606
          srésxageRkambMput kñúglkçxNÐKμanbnÞúk
                                  M D f ci AK t
                     e ≤ −Kt +       +
                                  Fi      Fi

                         ≤ −214.8 +        10 +
                                                           (           )
                                      150.6 3 16.8 23.25 ⋅ 10 4 214.8 − 3
                                                                     10 ≤ 401.4mm
                                      1606            1606
          yktMél e EdltUcCageKkñúgcMeNamlT§plTaMgBIrxagelICatMélGtibrma.

esckþIENnaMBIebtugeRbkugRtaMg                                                             594
T.Chhay                                                                                 NPIC




               dUcenH tMélGtibrmarbs; e = 374mm
          srésxagelIbMput kñúglkçxNÐrgbnÞúk
                              M T f c AK b
                     e ≥ Kb +      −
                               F       F

                       ≥ 235.6 +      10 −
                                                       (          )
                                 906.2 3 15.75 23.25 ⋅ 10 4 235.6 − 3
                                                                 10 ≥ 268mm
                                 1344            1344
          srésxageRkambMput kñúglkçxNÐmanbnÞúk
                               M T f t AK t
                     e ≥ −Kt +     −
                                F      F

                       ≥ −214.8 +      10 −
                                                       (          )
                                  906.2 3 2.96 23.25 ⋅ 10 4 214.8 − 3
                                                                 10 ≥ 349.5mm
                                  1344            1344
          tMélGb,brmarbs; e CatMéltUcCageKkñúgcMeNamlT§plTaMgBIrxagelI.
                dUcenH tMélGb,brmarbs; e = 350mm
     b.   BicarNamuxkat;EdlenAcMgay 2.4m BIkNþalElVg ¬muxkat;elx @ kñúgrUbTI 19>6 a¦³
                                        w
          M D ¬bnÞúkpÞal;¦ = R A (4.8) − D (4.8)2
                                         2
                                = (5.81)(7.2)(4.8) −     (4.8)2 = 133.9kN.m
                                                    5.81
                                                      2
                            M a = (29.15)(7.2)(4.8) −       (4.8)2 = 671.6kN .m
                                                      29.15
                                                        2
                            M T = 133.9 + 671.6 = 805.5kN .m
          srésxagelIbMput sMrab;lkçxNÐminrgbnÞúk³
                            133.9 3 1.32(23.25 ⋅ 10 4 )(235.6) − 3
                e ≤ 235.6 +      10 +                         10 ≤ 364mm
                                   1606                    1606
          srésxageRkambMput sMrab;lkçxNÐminrgbnÞúk
                             133.9 3 16.8(23.25 ⋅ 10 4 )214.8 − 3
                e ≤ −214.8 +       10 +                      10 ≤ 391mm
                                    1606                   1606

               tMélGtibrmarbs; e = 364mm
          srésxagelIbMput sMrab;lkçxNÐRTbnÞúk
                            805.5 3 15.75(23.25 ⋅ 10 4 )235.6 − 3
                e ≥ 235.6 +      10 −                        10 ≥ 193mm
                                   1344                    1344
          sésrxageRkambMput sMrab;lkçxNÐRTbnÞúk
                             805.5 3 2.96(23.25 ⋅ 10 4 )214.8 − 3
                e ≥ −214.8 +       10 −                      10 ≥ 274.5mm
                                    1344                   1344


esckþIENnaMBIebtugeRbkugRtaMg                                                            595
T.Chhay                                                                               NPIC




                tMélGb,brmarbs; e = 274.5mm
     c.   BicarNamuxkat;Rtg;cMgay 4.8m BIkNþalElVg ¬muxkat;elx # kñúgrUbTI 19>6 a¦³
          M D ¬bnÞúkpÞal;¦ = 83.7 kN .m

                            M a = 419.8kN .m

                            M T = 503.5kN .m
       - srésxagelIbMput sMrab;lkçxNÐKμanbnÞúk e ≤ 333mm ¬Gtibrma¦
       - srésxageRkambMput sMrab;lkçxNÐKμanbnÞúk e ≤ 360mm
       - srésxagelIbMput sMrab;lkçxNÐrgbnÞúk e ≥ −32mm
       - srésxageRkambMput sMrab;lkçxNÐrgbnÞúk e ≥ 50mm ¬Gb,brma¦
    d. BicarNamuxkat;Rtg;cMgay 0.9m BIcugFñwm ¬RbEvg anchorage¦³

        M D ¬bnÞúkpÞal;¦ = 35.3kN .m / M a = 177.1kN .m nig M T = 212.4kN .m

       - srésxagelIbMput sMrab;lkçxNÐKμanbnÞúk e ≤ 303mm ¬Gtibrma¦
       - srésxageRkambMput sMrab;lkçxNÐKμanbnÞúk e ≤ 330mm
       - srésxagelIbMput sMrab;lkçxNÐrgbnÞúk e ≥ −248mm
       - srésxageRkambMput sMrab;lkçxNÐrgbnÞúk e ≥ −167mm ¬Gb,brma¦
$> Tendon profile RtUv)anbgðajenAkñúgrUbTI 19>6 b. cMNakp©itEdl)aneRCIserIsenAkNþalElVgKW
   e = 364mm EdlvaRKb;RKan;sMrab;muxkat; B enAcMgay 2.4m BIkNþalElVg. TIRbCMuTMgn;énEdk

   eRbkugRtaMgmanlkçN³edkcenøaH A nig B nigbnÞb;mkeTreLIgEdlmanlkçN³CabnÞat;cenøaHBI B
   eTA E . cMNakp©itenARtg;muxkat; C nig D RtUv)anKNnaedayeRbIbnÞat;eRTt BE EdlmanCMerl
   364 / 4.8 = 75.83mm / m . cMNakp©itRtg; C KW 182mm nigRtg; D KW 68mm . Tendon profile

   Edl)aneRCIserIsbMeBjlkçxNÐEdnkMNt;xagelI nigEdnkMNt;xageRkamrbs;cMNakp©itenARKb;
   muxkat;TaMgGs;.
       karelIk tendon eLIgRtUv)aneFVIdUcxageRkam³
    a. dak; tendon TaMg 20 ¬Ggát;p©it 11.125mm ¦

        enAmYyPaKbIénkNþalElVgrbs;FñwmedaymanKMlat 50mm BIKñadUcbgðajenAkñúgrUbTI 19>6 a.
        edIm,IKNnacMNakp©itCak;EsþgenARtg;muxkat;kNþalElVg Kitm:Um:g;sMrab; tendon eFobnwg)at
        rbs;muxkat;³

esckþIENnaMBIebtugeRbkugRtaMg                                                          596
T.Chhay                                                                                            NPIC




                 cMgayBI)at = 20 (16 × 125 + 4 × 275) = 155mm
                              1


                 e ¬kNþalElVg¦ = yb − 155 = 522 − 155 = 367 mm

          EdlvaEk,rnwg 364mm Edl)ansnμt;. RbsinebIebIeKdak; tendon BIrenAcMgay 75mm BI
          tendon EdlenAxageRkam enaHcMgayBI)atkøayeTACa
                     1
                        (16 × 125 + 2 × 250 + 2 × 325) = 158mm
                     20
          enaHcMNakp©itnwgkøayeTACa 522 − 158 = 364mm EdlesμIweTAnwgcMNakp©itEdl)ansnμt;. Ca
          karGnuvtþ eKdak; tendon TaMgGs;edaymanKMlatBIKña 50mm .
     b.   elIkEt tendon EdlenAkNþalcMnYn 12 eGayegIbeLIg. karBRgay tendon enAmuxkat;xag
          cugRtUv)anbgðajenAkñúgrUbTI 19>6 a. RtYtBinitücMNakp©itrbs; tendon edayKitm:Um:g;eFobTI
          RbCMuTMgn;rbs;muxkat;ebtugsMrab; tendon 12 enAxagelI nig tendon 8 eTotEdlRtUv)andak;
          enAxageRkam³
                     e=
                          1
                             (8 × 364 − 12 × 226) = 10mm
                          20
          tMél e enHtUc nigRKb;RKan;. cMNakp©itCak;EsþgenAcMgay 0.9m BImuxkat;xagcug
                     e=
                          0.9
                              (364 − 10) + 10 = 76mm
                          4.8
          cMNakp©itCak;EsþgenAcMgay 2.4m BImuxkat;xagcugKW
                     e=
                          1
                            (364 − 10) + 10 = 187mm
                          2
%> tMélkMNt;rbs; Fi ³ tMélrbs; Fi EdleRbIsMrab;karKNnaBIxagelIKW Fi = 1606kN .
   RtYtBinitü Fi Gb,brmaedayeRbIsmIkar 19.31:
                                             ⎡⎛ 1 ⎞        M L ( f t AK t )                ⎤
                                                                            − ( f ti AK b )⎥
                                     1
                     Fi min =                ⎢⎜ − 1⎟ M D +
                                              ⎜η ⎟            −
                                (K b + K t ) ⎣⎝    ⎠       η         η                     ⎦

                           10    −3
                                      ⎡⎛ 1
                                      ⎢⎜
                                                  ⎞
                                               − 1⎟150.6 ⋅ 106 +            −
                                                                                               (   )
                                                                 755.6 ⋅ 106 2.96 × 23.25 ⋅ 10 4 214.8 ⎤
                                                                                                       ⎥
                    =                 ⎢⎝ 0.837 ⎠                   0.837              0.837            ⎥
                      (235.6 + 214.8) ⎢
                                              (
                                      ⎣− 1.32 × 23.25 ⋅ 10 × 235.6
                                                          4
                                                                          )                            ⎥
                                                                                                       ⎦


                    = 1516.8kN
          vamantMéltUcCag Fi EdleRbI. RtYtBinitü Fi GtibrmaedayeRbIsmIkar 19.32:
                                     1       ⎡⎛ 1 ⎞        M L f c AK b             ⎤
                     Fi max =                ⎢⎜1 − ⎟ M D −
                                              ⎜ η⎟            +         + f ci AK t ⎥
                                (K b + K t ) ⎣⎝    ⎠       η       η                ⎦


esckþIENnaMBIebtugeRbkugRtaMg                                                                          597
T.Chhay                                                                                         NPIC




                           10     −3
                                      ⎡⎛
                                      ⎢⎜1 −
                                              1 ⎞            6 755.6 ⋅ 10
                                                  ⎟150.6 ⋅ 10 −
                                                                          6
                                                                            +
                                                                                       (        )
                                                                              15.75 23.25 ⋅ 10 4 235.6 ⎤
                                                                                                       ⎥
                    =                 ⎢⎝ 0.837 ⎠                 0.837                0.837            ⎥
                      (235.6 + 214.8) ⎢
                                                        (
                                      ⎣+ 16.8 23.25 ⋅ 10 214.8
                                                        4
                                                                   )                                   ⎥
                                                                                                       ⎦

                     = 2081.9kN
        vamantMélFMCag Fi EdleRbI. dUcenHmuxkat;eRKaHfñak;enAkNþalElVgKWRKb;RKan;.
^> RtYtBinitükMhatbg;eRbkugRtaMg edayeyIgman Fo = 1200MPa nig Aps = 1394mm2
             kMlaMg Fo srub = 1200 × 1394 × 10−3 = 1672.8kN
                                 Ec = 27600MPa
                                      E
                                  n= s =
                                      Ec
                                           200000
                                           27600
                                                  = 7.25               yk n = 7
          MD    enAkNþalElVg = 150.6kN .m
                                         Fo + nAps f c (D.L.) ×
                                                                2
                                 Fi =                           3
                                                         ⎛1 e 2⎞
                                              (
                                          1 + nAps      )⎜ + ⎟
                                                         ⎜A I ⎟
                                                         ⎝     ⎠
          tMélrbs; fc Edl)anBIkarBRgaybnÞúkefrRtUvKuNnwg 2 / 3 edIm,IbgðajBIbMErbMrYlrag)a:ra:bUl
          rbs;kugRtaMgbnÞúkefrtambeNþayFñwm Edlpþl;eGaynUvtMélRbhak;RbEhlrbs; Fi )an
          RbesIrCag.
     a.    kMNt;tMélmFümrbs; e2 EdlTTYlenAkñúgFñwm. ExSekagtMNageGay e2 RtUv)anbgðajenA
           kñúgrUbTI 19>6 c³
                                            ⎡1                                           ⎤
                                         1 ⎢ (5776 × 0.9) + (5776 × 3.9) + (126720 × 3.9)⎥
                                                                          1
                     e   2
                             ¬mFüm¦   =
                                        7.2 ⎢
                                              3                           3
                                                                                         ⎥
                                            ⎣+ (2.4 × 132496 )                           ⎦

                                      = 70414.7mm 2

                                 e = 265mm
          RkLaépÞrbs;)a:ra:bUlesμInwgRkLaépÞrbs;ctuekaNEkg.
     b.   kugRtaMgEdlbNþalBIbnÞúkefrenARtg;nIv:Urbs; tendon KW
                                    150.6 × 265
                     f c (D.L.) =                      10 6 = 1.53MPa
                                      2.607 ⋅ 10  10




esckþIENnaMBIebtugeRbkugRtaMg                                                                       598
T.Chhay                                                                                       NPIC




                                1672.8 ⋅ 103 + 7(1394) × 1.53 ×
                                                                2
          dUcenH     Fi =
                                      ⎛
                                                                3
                                                        70414.7 ⎞
                                                                      10 − 3 = 1575.1kN
                          1 + 7(1394 )⎜
                                            1
                                                     +              ⎟
                                      ⎝ 23.25 ⋅ 10 4
                                                       2.607 ⋅ 1010 ⎠
          elastic loss    KW 1672.8 − 1575.1 = 97.7kN = 5.8% . tMélenHKWFMCag elastic loss Edl)an
          snμt; 4% .
                            kñúgmYyÉktþaRkLaépÞEdk = 1394 103 = 70MPa
                    elastic loss
                                                      97.7


                            Fi kñúgmYyÉktþaRkLaépÞ =
                                                     1575.1 3
                                                           10 = 1130MPa
                                                      1394
     c.   kMhatbg;GaRs½ynwgeBl
                kMhat;bg;edaysarkarrYmmaDebtug = 60MPa ¬dUcelIkmun¦
          kMhatbg;edaysar creep
                                         Fi         1575.1
                    elastic strain =          =                  103 = 2.45 ⋅ 10 − 4
                                        Ac Ec     (         )
                                                23.25 ⋅ 10 27600
                                                          4


                                Δf s = Cc (ε cr Es )
          yk Cc = 1.5 enaH
                                                  (         )
                                       Δf s = 1.5 2.45 ⋅ 10 −4 200000 = 73.5MPa

                     PaKrykMhatbg;          =
                                               73.5
                                              1130
                                                    = 6.5%

          kMhatbg;edaysar relaxation rbs;EdkKW 48MPa ¬dUcelIkmun¦. kMhatbg;GaRs½ynwgeBl
          esμInwg 60 + 73.5 + 48 = 181.5MPa ehIyPaKrykMhatbg;KW 181.5 / 1130 = 16% Edlman
          tMélEk,rnwgtMélEdl)ansnμt; 15.7% .
                     F = ηFi = (1 − 0.16)Fi = 0.84 Fi

                    η = 0.84



5> KNnaGgát;rgkarBt;begáag                             Design of Flexural Members

      k> sBaØaNTUeTA            General
        EpñkBIedIm)anbBa¢ak;fakugRtaMgenAsrésxagelIbMput nigsrésxageRkambMputénmuxkat;eRKaH
fñak;rbs;Ggát;ebtugeRbkugRtaMgminRtUvFMCagkugRtaMgGnuBaØatsMrab;RKb;krNITaMgGs; b¤dMNak;kalén

esckþIENnaMBIebtugeRbkugRtaMg                                                                   599
T.Chhay                                                                                 NPIC




kardak;bnÞúk. bEnßmBIelIlkçxNÐTaMgenH eKRtUvKNnaGgát;ebtugeRbkugRtaMgCamYynwgemKuNsuvtßi-
PaBRKb;RKan;edIm,IRbqaMgnwgkar)ak;. ACI Code tMrUveGaym:Um:g;Edl)anBIbnÞúkemKuN M u minRtUvFM
CagersIusþg;rgkarBt; φM n énmuxkat;Edl)anKNna.
        sMrab;krNI tension-controlled section, FñwmebtugeRbkugRtaMgcab;epþIm)ak;enAeBlEdlkug
RtaMgEdkFMCag yield strength rbs;EdkEdleRbIenAkñúgmuxkat;ebtug. EdkeRbkugRtaMgersIusþg;nwgmin
bgðajcMnuc yield c,as;las;dUcEdkFmμtaEdleRbIenAkñúgebtugGarem:eT. b:uEnþeRkamkarbEnßmbnÞúk
strain enAkñúgEdkekIneLIgedayGRtay:agelOn ehIykar)ak;ekIteLIgenAeBl compressice strain

Gtibrmarbs;ebtugmantMélesμInwg 0.003 ¬rUbTI 19>7¦.




       EdnkMNt;sMrab;EdkBRgwgrbs;Ggát;rgkarBt;ebtugeRbkugRtaMgEdlGaRs½yeTAtam ACI Code,
Section 18.8 KWQrelI net tensile strain sMrab; tension-controlled, transition b¤ compression-



esckþIENnaMBIebtugeRbkugRtaMg                                                             600
T.Chhay                                                                                         NPIC




                 edayeKarBtam ACI Code, Section 10.3 dUcEdl)anBnül;enAkñúgCMBUk 3. em
controlled section

KuNkat;bnßyersIusþg; φ RtUv)aneGayenAkñúgCMBUkTI 3 edayQrelI ACI Code, Section 9.3.

      x> muxkat;ctuekaN                    Rectangular Sections
       eKGackMNt; Nominal moment capacity rbs;muxkat;ctuekaNdUcxageRkam ¬eyagtamrUb
TI 19>7¦³
                 ⎛    a⎞     ⎛    a⎞
          M n = C⎜ d − ⎟ = T ⎜ d − ⎟                                                      (19.34)
                 ⎝    2⎠     ⎝    2⎠
Edl T = Aps f s nig C = 0.85 f 'c ab . sMrab; C = T
                  Aps f ps          ρ p f ps
          a=                    =               d                                         (19.35|
                0.85 f 'c b         0.85 f 'c
EdlpleFobEdkeRbkugRtaMgKW ρ p = Aps / bd ehIy Aps nig             f ps   CaRkLaépÞ nigkugRtaMgTajrbs;
EdkeRbkugRtaMg. yk
                      ⎛ f ps    ⎞
          ωp = ρp⎜
                 ⎜              ⎟ ≤ 0.32 β1
                                ⎟
                      ⎝ f 'c    ⎠
                     ωp
bnÞab;mk         a=
                     0.85
                          d                                                         (19.36)

        tMél ω p CakMlaMgenAkñúg tendon EdlRtUv)anvas;edaypÞal;. edIm,IFananUv tesion-controlled
behavior, ACI Code, Section 18.8.1 kMNt;fa ω p minRtUvFMCag 0.32β1 EdkRtUvKñanwg net tensile

strain ε t = 0.005 . cMNaMfa β1 = 0.85 sMrab; f 'c ≤ 28MPa nwgkat;bnßyeday 0.05 sMrab;ral;

7 MPa sMrab; 28MPa < f 'c < 56MPa ehIyesμInwg 0.65 sMrab; f 'c > 56MPa . eKk¾Gacsresr
                          ⎛      a⎞
          M n = Aps f ps ⎜ d − ⎟
                          ⎝      2⎠
                            ⎛ ρ p f ps ⎞
                            ⎜ 1 .7 f ' ⎟
          M n = A ps f ps d ⎜1 −        ⎟                                                 (19.37)
                            ⎝         c ⎠
                            ⎛ ωp ⎞
                            ⎜ 1 .7 ⎟
          M n = A ps f ps d ⎜1 −   ⎟                                                      (19.38)
                            ⎝      ⎠
nig M u = φM n
        enAkúñgsmIkarBImun f ps CakugRtaMgenAkñúgEdkeRbkugRtaMgenAeBl)ak;. eKminGackMNt;tMél
Cak;Esþgrbs; f ps edaygayRsYleT. dUcenH ACI Code, Section 18.7.2 GnuBaØateGay)a:n;RbmaN
tMél f ps dUcxageRkam.

esckþIENnaMBIebtugeRbkugRtaMg                                                                       601
T.Chhay                                                                                                NPIC




           sMrab; bonded tendons
                                     ⎡ γp    ⎛       f ⎞⎤
                         f ps = f pu ⎢1 −    ⎜ ρ p × pu ⎟⎥
                                             ⎜                                                    (19.39)
                                     ⎢ β1
                                     ⎣       ⎝       f 'c ⎟ ⎥
                                                          ⎠⎦
           sMrab; unbonded tendon enAkñúgGgát;EdlmanpleFobElVgelIkMBs;tUcCag b¤esμI 35
                                ⎛               f 'c ⎞
                         f ps = ⎜ f se + 69 +         ⎟ ≤ f py                                    (19.40)
                                ⎜             100 ρ p ⎟
                                ⎝                     ⎠
RbsinebI f se ≥ 0.5 f pu nigRbsinebI f ps sMrab; unbonded tendon minFMCag f py b¤ f se + 415MPa .
       sMrab; unbonded tendon enAkñúgGgát;EdlmanpleFobElVgelIkMBs;FMCag 35
                                ⎛               f 'c ⎞
                         f ps = ⎜ f se + 69 +         ⎟                                           (19.41)
                                ⎜             300 ρ p ⎟
                                ⎝                     ⎠
        b:uEnþminRtUvFMCag f py b¤ f se + 207MPa Edl
                  γ p = emKuNsMrab;RbePTrbs; tendon eRbkugRtaMg
                       = 0.55 sMrab; f py / f pu EdlmintUcCag 0.8

                       = 0.4 sMrab; f py / f pu EdlmintUcCag 0.85

                       = 0.28 sMrab; f py / f pu EdlmintUcCag 0.9

                   f pu = ersIusþg;TajEdlkMNt;rbs;EdkeRbkugRtaMg

                   f se = kugRtaMgRbsiT§PaBenAkñúgEdkeRbkugRtaMgeRkayeBlkMhatbg;TaMgGs;

                   f py = specified yield strength rbs;EdkeRbkugRtaMg

        enAkñúgkrNIEdl ω p > 0.32β1 FñwmebtugeRbkugRtaMgCa compression-controlled section.
edIm,IFananUv ductile failure eKkMNt; ω p RtwmtMélGtibrma 0.32β1 . sMrab; ω = 0.32β1 nig
a = 0.377 β1d eyIgTTYl)an
                            ⎛ 0.32 β1 ⎞
           M n = Aps f ps d ⎜1 −      ⎟
                            ⎝    1.7 ⎠
                     (        )
                   = ρ p bd f ps d (1 − 0.188β1 )

                  = ω p f 'c (1 − 0.188β1 )bd 2
                     (              )
                   = 0.32β1 − 0.06β12 f 'c bd 2                                                   (19.42)
sMrab;    f 'c   = 35MPa / β = 0.8 . enaH
                                  1

           M n = 0.22 f 'c bd 2 = 1.09bd 2
dUcKña/ sMrab;                        /
                    f 'c = 28MPa M n = 0.915bd 2           nigsMrab;               /
                                                                       f 'c = 42 MPa M n = 1.238bd 2


esckþIENnaMBIebtugeRbkugRtaMg                                                                               602
Xix introduction to prestressed concrete
Xix introduction to prestressed concrete
Xix introduction to prestressed concrete
Xix introduction to prestressed concrete
Xix introduction to prestressed concrete
Xix introduction to prestressed concrete
Xix introduction to prestressed concrete
Xix introduction to prestressed concrete
Xix introduction to prestressed concrete
Xix introduction to prestressed concrete
Xix introduction to prestressed concrete
Xix introduction to prestressed concrete
Xix introduction to prestressed concrete
Xix introduction to prestressed concrete
Xix introduction to prestressed concrete
Xix introduction to prestressed concrete
Xix introduction to prestressed concrete
Xix introduction to prestressed concrete
Xix introduction to prestressed concrete
Xix introduction to prestressed concrete
Xix introduction to prestressed concrete
Xix introduction to prestressed concrete
Xix introduction to prestressed concrete
Xix introduction to prestressed concrete

Más contenido relacionado

Destacado

Xi members in compression and bending
Xi members in compression and bendingXi members in compression and bending
Xi members in compression and bendingChhay Teng
 
12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution12. displacement method of analysis moment distribution
12. displacement method of analysis moment distributionChhay Teng
 
13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic membersChhay Teng
 
Xii slender column
Xii slender columnXii slender column
Xii slender columnChhay Teng
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy methodChhay Teng
 
Construction work
Construction work Construction work
Construction work Chhay Teng
 
Carpentering work
Carpentering work Carpentering work
Carpentering work Chhay Teng
 
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack controlVii. camber, deflection, and crack control
Vii. camber, deflection, and crack controlChhay Teng
 
Computer aided achitecture design
Computer aided achitecture design Computer aided achitecture design
Computer aided achitecture design Chhay Teng
 
7.simple connections
7.simple connections7.simple connections
7.simple connectionsChhay Teng
 
14. truss analysis using the stiffness method
14. truss analysis using the stiffness method14. truss analysis using the stiffness method
14. truss analysis using the stiffness methodChhay Teng
 
Construction plan
Construction planConstruction plan
Construction planChhay Teng
 
V. shear and torsional strength design
V. shear and torsional strength designV. shear and torsional strength design
V. shear and torsional strength designChhay Teng
 
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridgeXii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridgeChhay Teng
 
Appendix b structural steel design based on allowable stress
Appendix  b structural steel design based on allowable stressAppendix  b structural steel design based on allowable stress
Appendix b structural steel design based on allowable stressChhay Teng
 
Xiv retaining walls
Xiv retaining wallsXiv retaining walls
Xiv retaining wallsChhay Teng
 

Destacado (20)

Appendix
AppendixAppendix
Appendix
 
Euron fl
Euron flEuron fl
Euron fl
 
Xi members in compression and bending
Xi members in compression and bendingXi members in compression and bending
Xi members in compression and bending
 
12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution
 
13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members
 
Xii slender column
Xii slender columnXii slender column
Xii slender column
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy method
 
Appendix
AppendixAppendix
Appendix
 
Construction work
Construction work Construction work
Construction work
 
Carpentering work
Carpentering work Carpentering work
Carpentering work
 
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack controlVii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
 
Euro upe
Euro upeEuro upe
Euro upe
 
Computer aided achitecture design
Computer aided achitecture design Computer aided achitecture design
Computer aided achitecture design
 
7.simple connections
7.simple connections7.simple connections
7.simple connections
 
14. truss analysis using the stiffness method
14. truss analysis using the stiffness method14. truss analysis using the stiffness method
14. truss analysis using the stiffness method
 
Construction plan
Construction planConstruction plan
Construction plan
 
V. shear and torsional strength design
V. shear and torsional strength designV. shear and torsional strength design
V. shear and torsional strength design
 
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridgeXii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
 
Appendix b structural steel design based on allowable stress
Appendix  b structural steel design based on allowable stressAppendix  b structural steel design based on allowable stress
Appendix b structural steel design based on allowable stress
 
Xiv retaining walls
Xiv retaining wallsXiv retaining walls
Xiv retaining walls
 

Más de Chhay Teng

Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_studentsChhay Teng
 
Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countriesChhay Teng
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix designChhay Teng
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelinesChhay Teng
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto contentChhay Teng
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-camChhay Teng
 
Concrete basics
Concrete basicsConcrete basics
Concrete basicsChhay Teng
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryoutChhay Teng
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapesChhay Teng
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shapeChhay Teng
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shapeChhay Teng
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shapeChhay Teng
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shapeChhay Teng
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shapeChhay Teng
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipnChhay Teng
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angleChhay Teng
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upeChhay Teng
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upnChhay Teng
 

Más de Chhay Teng (20)

Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_students
 
Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countries
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix design
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
 
Type of road
Type of roadType of road
Type of road
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto content
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-cam
 
Concrete basics
Concrete basicsConcrete basics
Concrete basics
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryout
 
Mix design
Mix designMix design
Mix design
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapes
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shape
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shape
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shape
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shape
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipn
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upe
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upn
 

Xix introduction to prestressed concrete

  • 1. T.Chhay NPIC XVIII. esckþIENnaMBIebtugkugRtaMg Introduction to Prestressed Concrete 1> ebtugeRbkugRtaMg Prestressed Concrete k> eKalkarN_énkareFVIeRbkugRtaMg Principles of Prestressing karGnuvtþeRbkugRtaMgeTAelIGgát;eRKOgbgáúMKWCakarbegáItkugRtaMgGciéRnþy_xagkñúgEdlmanGMeBI RbqaMgnwgkugRtaMgTajenAkñúgebtugEdl)anbnÞúkxageRkA. karGnuvtþeRbkugRtaMgenHbegáItCaEdnkug RtaMgEdlGgát;GacTb;Tl;)any:agmansuvtßiPaB. eKGacGnuvtþkMlaMgeRbkugRtaMgmun b¤kñúgeBldMNal KñaénkarGnuvtþbnÞúkxageRkA. kugRtaMgenAkñúgGgát;eRKOgbgÁúMRtUvEtenAsl; ¬RKb;TIkEnøg nigsMrab;RKb; sßanPaBénkardak;bnÞúk¦ enAkñúgEdnkMNt;rbs;kugRtaMgEdlsMPar³ GacRTRTg;)anKμanTIkMNt;. CaTU eTA karGnuvtþkugRtaMg ¬PaKeRcInCakugRtaMgsgát;¦ RtUv)anbegáIteLIgeday high-strength steel tendon EdlrgkarTaj nig anchor eTAnwgGgát;ebtug. kugRtaMgRtUv)anepÞreTAebtugeday bond tamépÞrbs; tendon b¤eday anchorage enAxagcugrbs; tendon. edIm,IgayRsYlkñúgkarBnül; cUrBicarNaFñwmmYyEdleFVIBIebtugsuT§ ehIyFñwmenaHRtUvRTnUv bnÞúkTMnajxageRkA (external gravity load) dUcbgðajkñúgrUbTI 19>1 a. muxkat;FñwmRtUv)aneRCIs erIsCamYynwg tensile flexural stress EdlCalkçxNÐeRKaHfñak;sMrab;karKNna dUcenHeKTTYl)an muxkat;EdlminmanlkçN³esdækic©. mUlehtuKWedaysarebtugxøaMgkñúgkarsgát;CagkarTaj. flexural tensile strength b¤m:UDuldac; (module of rupture) rbs;ebtug f r esμInwg 0.62 f 'c ¬rUbTI 19>1a¦. kñúgkarKNnaebtugGarem:Fmμta eKminKit tensile strength rbs;ebtugeT ehIyEdksrés RtUv)andak;enAkñúgtMbn;Tajrbs;ebtugedIm,ITb;Tl;nwgkugRtaMgTaj b:uEnþebtugTb;Tl;nwgkugRtaMgsgát; ¬rUbTI 19>1 b¦. kñúgkarKNnaebtugeRbkugRtaMg kugRtaMgsgát;dMbUgRtUv)anGnuvtþeTAkñúgFñwmedIm,IeGaymanGMeBI Tb;nwgkugRtaMgTajEdlekIteLIgedaysarbnÞúkxageRkA ¬rUbTI 19>1 c¦. RbsinebIkugRtaMgEdldak; dMbUgenHesμInwgkugRtaMgTajenAsréseRkambMput enaHkugRtaMgTaMgBIrRtUv)anlubecal b:uEnþkugRtaMg sgát;enAsrésEpñkxagelIbMputnwgmantMélDub. kñúgkrNIenH muxkat;Ggát;TaMgmUlrgkarsgát;. Rb esckþIENnaMBIebtugeRbkugRtaMg 560
  • 2. T.Chhay NPIC sinebIkugRtaMgsgát;EdlGnuvtþdMbUgtUcCagkugRtaMgTajenAsrésEpñkxageRkambMput enaHsrésenA EpñkxageRkamenHrgkarTaj ÉsrésEpñkxagelIbMputrgkarsgát;. esckþIENnaMBIebtugeRbkugRtaMg 561
  • 3. T.Chhay NPIC kñúgkarGnuvtþ Ggát;ebtugGacrgeRbkugRtaMgtamviFImYykñúgcMeNamviFIxageRkam³ !> karTajeRkay (Posttensioning): kñúgkareFVI posttensioning, eKTaj steel tendon eRkayeBlebtugRtUv)ancak; nigkkrwg. kareFVI posttensioning RtUv)aneFVIeLIgtamviFI saRsþdUcteTA³ dMbUgeKeRbI hydraulic jack Taj steel wire b¤ strand eGaylUt bnÞab; mkCMnYs jack eday anchorage EdlGacrkSaeGay steel strand enAEtrgkarTaj. CaTU eTA tendon RtUv)aneFVIeLIgBI wire, strand b¤ bar. eKGacTaj wire nig strand CaRkum)an EteKTaj bar mþg)anEtmYy. kñúgdMeNIrkareFVI posttensioning, eKdak; steel tendon eTAkñúgBum<muneBlcak;ebtug ehIy tendon RtUv)ankarBarkars¥itCab;eTAnwgebtugeday waterproof paper wrapping b¤ metal duct (sheath). tendon Edls¥itCab;eTAnwg ebutgRtUv)aneKehAfa boded tendon. Unbonded tendon/ RtUv)andak;edayKμan grout b¤RtUv)anlabeRbg. @> karTajmun (pretensioning): kñúgkareFVI prettensioning eKTaj steel tendon muneBlcak; ebtug. eKTb; tendon CabeNþaHGasnñeday abutment ehIyeKkat;va bnÞab;ebtugRtUv)an cak; nigkkrwg. kMlaMg prestessing RtUv)anepÞreTAebtugeday PaBs¥itenAtamRbEvgrbs; tendon. CaTUeTA eKeRcIneFVI prettensioning enAkñúgkardæan b¤eragcRkpliteRKOgbgÁúMebtug eRbkugRtaMgcak;eRsc EdlmankMralrwgmaMCaGciéRnþy_. #> kareFVIeRbkugRtaMgxageRkA (external prestressing): kñúgkareFVI external pretessing, eK GnuvtþkMlaMgeRbkugRtaMgeday flat jack EdlRtUv)andak;enAcenøaHcugGgát;ebtug nig permanent rigid abutments. Ggát;minman prestressing tendon dUcviFITaMgBIrxagelI EdleKGacehAfakareFVIeRbkugRtaMgxagkñúgeT. External prestressing mingayRsYlkñúg karGnuvtþeT edaysar shrinkage nig creep enAkñúgebtugEdlnaMeGaymankarkat;bnßy kugRtaMgsgát;EdlGnuvtþdMbUg. Profile rbs; tenden GacRtg; ekag b¤ragrgVg;GaRs½yeTAelIkarKNnaGgát;eRKOgbgÁúM. CaTUeTAeKeRbI straight tendon enAkñúg solid slab nig hollow-cored slab b:uEnþeKeRbI bent tendon enAkñúgFñwm nigGgát;eRKOgbgÁúMPaKeRcIn. eKeRbI circular tendon enAkñúgeRKOgbgÁúMEdlmanTMrg;mUldUc esckþIENnaMBIebtugeRbkugRtaMg 562
  • 4. T.Chhay NPIC Ca tank, silo nig pipe. eKGacGnuvtþkMlaMgeRbkugRtaMgEtkñúgmYydMNakkal b¤eRcIndMNakkaledIm,I karBarebtugkMurGayrgkugRtaMgelIs. eK)anbegáItnUvRbB½n§eRbkugRtaMgCaeRcIn EdlkñúgcMeNamenaHman Freyssinet, Magnel Blaton, B.B.R.V., Dywidag, CCL, Morandi, VSL, Western Concrete, Prescon, nig INRYCO. eBlxøH eKCYbnUvbBaðakñúgkareRCIserIsRbB½n§eRbkugRtaMgsMrab;kargarBiess. visVkrKYrBicarNanUvktþacMbgbIEdlnaMdl;kareRCIserIsRbB½n§enH³ !> GaMgtg;sIueténkMlaMgeRbkugRtaMgEdlRtUvkar @> ragFrNImaRtrbs;muxkat; nigKMlatEdlGacmansMrab; tendon #> tMélénRbB½n§eRbkugRtaMg ¬sMPar³ nigkMlaMgBlkmμ¦ ]TahrN_xageRkambgðajBIlkçN³Biessrbs;ebtugeRbkugRtaMg. ]TahrN_ 19>1³ sMrab;FñwmTMrsamBaØEdlbgðajenAkñúgrUbTI 19>2 cUrkMNt;kugRtaMgRtg;muxkat; kNþalElVgEdlbNþalmkBITMgn;pÞal;xøÜnva nigkrNIénkardak;bnÞúk nigeRbkugRtaMg³ !> bnÞúkGefrBRgayesμI 13.15kN / m @> bnÞúkGefrBRgayesμI 13.15kN / m nigkMlaMgsgát;tambeNþaycMp©it P = 1132kN #> bnÞúkGefrBRgayesμI 30.61kN / m nigkMlaMgsgát;tambeNþaycakp©it P = 1132kN Edl manGMeBIRtg;cMNakp©it e = 10cm $> bnÞúkGefrBRgayesμI 39.28kN / m nigkMlaMgsgát;tambeNþaycakp©it P = 1132kN Edl manGMeBIRtg;cMNakp©itGtibrmasMrab;muxkat; e = 15cm %> bnÞúkGefrGtibrmaenAeBl P = 1132kN EdlmanGMeBIRtg; e = 15cm eRbI b = 30cm / h = 60cm / f 'c = 31MPa nigkugRtaMgGnuBaØat f 'c = 14.14MPa dMeNaHRsay³ !> kugRtaMgEdlbNþalmkEtBIbnÞúkefr nigbnÞúkGefr bnÞúkpÞal;rbs;Fñwm = (0.3 × 0.6)24 = 4.32kN / m wL2 4.32(7.2 )2 m:Um:g;bnÞúkefr M D.L. = 8 = 8 = 28kN .m kugRtaMgenARtg;srésEpñkxageRkAbMputEdlbNþalBIbnÞúkefrKW esckþIENnaMBIebtugeRbkugRtaMg 563
  • 5. T.Chhay NPIC Mc M (h / 2) 6 M σ= = 3 = I bh / 12 bh 2 6 × 28 σD = 10 − 3 = ±1.56MPa 0.3 × 0.6 2 m:Um:g;EdlbNþþalBIbnÞúkGefr L1 = 13.15kN / m KW 13.15 × 7.2 2 M L. L. = = 85.2kN .m 8 kugRtaMgEdlbNþalBIbnÞúkGefrKW 6M 6 × 85.2 σ L1 = = 10 − 3 = ±4.73MPa bh 2 0.3 × 0.6 2 edayeFVIkarbUkbBa©ÚkkugRtaMgEdl)anBIbnÞúkefr nigbnÞúkGefr ¬rUbTI 19>2 a¦ eyIg)an kugRtaMgxagelI = −1.56 − 4.73 = −6.29MPa ¬rgkarsgát;¦ kugRtaMgxageRkam = +1.56 + 4.73 = 6.29MPa ¬rgkarTaj¦ edaysarkugRtaMgTajFMCagm:UDuldac;rbs;ebtug f r = 0.62 31 = 3.45MPa dUcenHFñwmnwg)ak;. @> kñúgkrNIEdlkugRtaMgbNþalBIeRbkugRtaMgesμI RbsinebIeKGnuvtþkMlaMgsgát; P = 1132KN Rtg;TIRbCMuTMgn;rbs;muxkat; enaHmuxkat;tambeNþyFñwmnwgrgkugRtaMgesμI P 1132 σp = = 10 − 3 = ±6.29MPa area 0.3 × 0.6 kugRtaMgcugeRkayEdlbNþalBIbnÞúkGefr nigbnÞúkefrbUknwgbnÞúkeRbkugRtaMgenARtg;srés xagelI nigxageRkambMputKW 12.58MPa nig 0 erogKña ¬rUbTI 19>2 b¦. kñúgkrNIenH kMlaMg eRbkugRtaMg)anebgáInkugRtaMgsgát;enARtg;srésEpñkxagelIbMputeGaymantMélBIrdg nig)an kat;bnßykugRtaMgTajenARtg;srésEpñkxageRkameGay esμInwg 0 . kugRtaMgsgát;Gtibrma 12.58MPa mantMéltUcCagkugRtaMgGnuBaØat f 'c = 14.14MPa . #> sMrab;kugRtaMgEdlbNþalBIeRbkugRtaMgcMNakp©it ¬ e = 100mm ¦ RbsinebIeKGnuvtþkMlaMgeRbkugRtaMg P = 1132 KN enARtg;cMNakp©it e = 100mm BI eRkamTI RbCMuTMgn;rbs;muxkat; kugRtaMgenARtg;srésEpñkxagelI nigEpñkxageRkambMputRtUv)ankMNt; dUcxageRkam. m:Um:g;EdlbNþalBIeRbkugRtaMgcMNakp©itKW Pe P (Pe )c P 6(Pe ) σp =− ± =− ± A I A bh 2 1132 6(1132 × 0.1) − 3 =− 10 − 3 ± 10 0.3 × 0.6 0.3 × 0.6 2 esckþIENnaMBIebtugeRbkugRtaMg 564
  • 6. T.Chhay NPIC = −6.29 ± 6.29 enAsrésEpñkxageRkam σ p = −12.58MPa nig σ p = 0 enAsrésEpñkxageRkambMput. BicarNaGMBIkardak;bnÞúkGefr L2 = 30.61kN / m 30.61× 7.2 2 M L. L. = = 198.36kN .m 8 6(198.36) − 3 σ L2 = 10 = ±11.02MPa 0.3 × 0.6 2 kugRtaMgcugeRkayEdlbNþalBIbnÞúkefr/ bnÞúkGefr nigkMlaMgeRbkugRtaMgenAsrésEpñkxagelI nigEpñkxageRkambMputKW 12.58MPa nig 0 erogKña ¬rUbTI 19>2 c¦. cMNaMfa kugRtaMgcug eRkaydUcKñanwgkrNIelIkmunenAeBlEdlbnÞúkGefresμInwg 13.15kN / m . edayGnuvtþkMlaMg eRbkugRtaMgenARtg;cMNalp©it 10cm FñwmenHGacRTbnÞúkGefrEfm eTot ¬17.46kN / m ¦. esckþIENnaMBIebtugeRbkugRtaMg 565
  • 7. T.Chhay NPIC $> sMrab;kugRtaMgEdlbNþalBIeRbkugRtaMgcakp©itRtg;cMNakp©itGtibrma snμt;facMNakp©itGtibrmasMrab;muxkat;enHKW e = 15cm . m:Um:g;Bt;EdlekItedaysarkMlaMgeRbkugRtaMgcakp©itKW Pe = 1132 × 0.15 = 169.8kN .m esckþIENnaMBIebtugeRbkugRtaMg 566
  • 8. T.Chhay NPIC kugRtaMgEdlbNþalBIkMlaMgeRbkugRtaMgKW 1132 6(169.8) − 3 σp =− 10 − 3 ± 10 0.3 × 0.6 0.3 × 0.6 2 = −6.29 ± 9.41 = −15.7 MPa nig + 3.12 begáInbnÞúkGefrdl; L3 = 39.28kN / m . m:Um:g;Edl)anBIbnÞúkenHKW 39.28 × 7.2 2 M L. L. = = 254.5kN .m 8 kugRtaMgEdlbNþalmkBIbnÞúkGefrKW 6(254.5) σ L3 = 10 − 3 = ±14.14MPa 0.3 × 0.6 2 kugRtaMgcugeRkayenAsrésEpñkxagelI nigEpñkxageRkambMputEdlbNþalBIbnÞúkefr nigbnÞúk GefrKW 12.58MPa nig 0 erogKña ¬rUbTI 19>2 d¦. cMNaMfa kugRtaMgcugeRkaydUcKñanwgkrNI mun²Edr b:uEnþbnÞúkGefr)anekIneLIgdl; 39.28kN / m . kugRtaMgTaj 1.56MPa RtUv)an begáIteLIgenAsrésEpñkxagelIbMput enAeBlEdleKGnuvtþkMlaMgeRbkugRtaMg. kugRtaMgenH mantMéltUcCagm:UDuldac;rbs;ebtug f r = 3.45MPa dUcenHvaminekItmansñameRbHenAelIFñwm eT. %> eKkMNt;bnÞúkGefrGtibrmaenAeBlkMlaMgeRbkugRtaMgcakp©iteFVIGMeBIenARtg; e = 15cm dUct eTA. kñúgkrNImun² kugRtaMgsgát;cugeRkayesμInwg 12.58MPa EdltUcCagkugRtaMg GnuBaØat f 'c = 14.14MPa . dUcenH bnÞúkGefrGacekIneLIgdl; L4 = 43.6kN / m . 43.6 × 7.2 2 M L. L. = = 282.5kN .m 8 6 × 282.5 − 3 σ L4 = 10 = 15.7 MPa 0.3 × 0.6 2 kugRtaMgcugeRkayEdlbNþalBIbnÞúkefr nigbnÞúkGefr L4 ehIynigkMlaMgeRbkugRtaMg KW − 14.14 MPa nig + 1.56 MPa ¬rUbTI 19>2 e¦. kugRtaMgsgát;KWesμInwgkugRtaMgGnuBaØat 14.14 MPa ehIykugRtaMgTajKWtUcCag modulus of rupture rbs;ebtug 3.45MPa . kñúg krNIenH eKGacKNnabnÞúkGefrBRgayEdlesμμInwg 43.6kN / m dUcteTA³ bUkkugRtaMgsgát; GnuBaØatGtibrma 14.14MPa CamYynwgkugRtaMgTajdMbUgenARtg;srésEpñkxagelIbMput esckþIENnaMBIebtugeRbkugRtaMg 567
  • 9. T.Chhay NPIC 1.56 MPa edIm,ITTYl)an 15.7MPa . m:Um:g;EdlnwgbegáItkugRtaMgenAsrésEpñkxagelIbMput 15.7 MPa esμInwg ⎛ bh 2 ⎞ M =σ⎜ ⎟ ⎜ 6 ⎟ ⎝ ⎠ = 15.7 (0.3)(0.6)2 ⋅103 = 282.6kN.m 6 W L2 M= L 8 eyIgTTYl)an 8 × 282.6 WL = = 43.6kN / m 7.2 2 cMNaMfa³ !> muxkat;ebtugTaMgmUlKWskmμkñúgkarTb;Tl;CamYykMlaMgxageRkA @> kugRtaMgTajcugRkayenAkñúgmuxkat;tUcCag modulus of rupture rbs;ebtug Edlbgðaj famuxkat;ebtugminmansñameRbHeRkamGMeBIrbs;bnÞúkGtibrma #> bnÞúkGnuBaØatenAelIFñwmekIneLIgeRcInKYrsmedaysarkarGnuvtþrbs;kMlaMgeRbkugRtaMg $> karekIneLIgnUvcMNakp©itrbs;kMlaMgeRbkugRtaMgk¾begáInkMlaMgGnuvtþn_GnuBaØat EdleFVIeGay kugRtaMgenAelImuxkat;minFMCagkugRtaMgGnuBaØat. x> karGnuvtþeRbkugRtaMgedayEpñk Partial Prestressing eKkMNt;Ggát;ebtugeRbkugRtaMgedayEpñk (partially prestressed concrete member) CaGgát; Edl³ - kugRtaMgxagkñúgEdlmanGMeBITb;EpñkénkugRtaMgEdlekItBIbnÞúkxageRkA - kugRtaMgTajekItmanenAkñúgebtugeRkamGMeBIbnÞúkeFVIkar (service load) - EdkBRgwgminEmnCaEdkeRbkugRtaMgRtUv)andak;bEnßmedIm,IbegáInlT§PaBrbs;Ggát; edIm,ITb; nwgm:Um:g; eKGacBicarNa partially prestressed concrete tamBIrkrNI³ !> eKeRbIEdkeRbkugRtaMg nigEdkminEmneRbkugRtaMgenAkñúgmuxkat;EtmYy. ExSkabeRbkugRtaMg begáItkugRtaMgxagkñúgRtUv)anKNnaedIm,ITTYl)an ultimate capacity rbs;muxkat;ebtugEt mYyEpñkb:ueNÑaH. cMENkÉ capacity EdlenAsl;RtUv)anTTYlBIEdkminEmneRbkugRtaMg esckþIENnaMBIebtugeRbkugRtaMg 568
  • 10. T.Chhay NPIC Edldak;tamTisdUcKñanwgkabeRbkugRtaMg. EdkEdleRbICaEdkminEmneRbkugRtaMgGacCaRb ePTEdkFmμta dUcCaEdk carbon steel b¤CaEdk high-tensile-strength. kabeRbkugRtaMgk¾ CaRbePTEdkFmμtadUcEdkminEmneRbkugRtaMgEdr Etvaman ultimate strength esμInwg 1725MPa ¬ 250ksi ¦. kareRCIserIsGaRs½ynwgktþacMbgBIrKW³ PaBdabGnuBaØat nigTMhM sñameRbHGnuBaØat. dUcKña ACI Code kMNt;nUvpleFobGtibrmaénRbEvgElVgelIkkMBs;én Ggát;ebtugGarem: sMrab;PaBdab. eKminGnuBaØateGaymanPaBdabFMelIslubCamYynwg kMBs;rbs;muxkat;ebtugeRbkugRtaMgtUc nigedaysarkareRbIPaKryEdktic. sñameRbHekIt manenAtMbn;rgkarTajrbs;muxkat;ebtug b¤enARtg;nIv:UEdkedaysareKGnuBaØateGaykug RtaMgTajekItmaneRkamGMeBI working load. eKGnuBaØatsñameRbHGtibrmaRtwm 0.016in. (0.41mm) sMrab;Ggát;xagkñúg nig 0.013in. (0.33mm) sMrab;Ggát;xagkñúg. @> kugRtaMgxagkñúgEdleFVIGMeBIelIGgát;)anEtBI prestrssed steel b:ueNÑaH b:uEnþvaRtUv)anTajCa mYynwgEdnkMNt;TabCag. kñúgkrNIenHsñameRbHekItmanelOnCagGgát;rgeRbkugRtaMgeBj eljeRkambnÞúkdUcCaKña. eKGacBicarNa partially prestresssed concrete kñúgTMrg;kNþalrvagebtugGarem: nigebtug eRbkugRtaMgeBj (fully prestressed concrete). enAkñúgGgát;ebtugGarem: sñameRbHekItmaneRkamGMeBI bnÞúkeFVIkar dUcenHeKdak;EdkBRgwgenAkñúgtMbn;Taj. CaTUeTAenAkñúgGgát;ebtugeRbkugRtaMg sñameRbH minekItmaneRkamGMeBIbnÞúkeFVIkareT. kugRtaMgsgát;EdlbNþalBIkMlaMgeRbkugRtaMgGacesμI b¤elIsBI kugRtaMgTajEdlbNþalBIbnÞúkxageRkA. dUcenHeKGacBicarNaGgát; partially prestressed concrete CaGgát;ebtugGarem:EdlkugRtaMgxagkñúgrbs;vamanGMeBITb;nwgEpñkxøH rbs;kugRtaMgEdl)anBIbnÞúkxag eRkA dUcenHkugRtaMgTajenAkñúgebtugminRtUvFMCagtMélkMNt;eRkambnÞúkeFVIkareT. eKKitvaCaebtug Garem:enAeBlNaEdlminmankugRtaMgxagkñúgeFVIGMeBIelIGgát;. ebtugeRbkugRtaMgeBjCakMritx<s;bMput rbs;ebtugeRbkugRtaMgedayEpñk EdlenAkñúgenaHEdkminEmneRbkugRtaMgRtUv)ankat;bnßydl;sUnü. enAcenøaHGgát;ebtugGarem:EdlmaneRbH nigGgát;ebtugeRbkugRtaMgeBjEdlminmaneRbH eK manEdnd¾FMsMrab;KNnaebtugeRbkugRtaMgedayEpñk ¬rUbTI 19>3¦. kareRCIserIskMriténkareFVIeRbkug RtaMgd¾l¥ nwgbegáItnUveRKOgbgÁúMEdlmansuvtßiPaB nigmanlkçN³esdækic©. esckþIENnaMBIebtugeRbkugRtaMg 569
  • 11. T.Chhay NPIC rUbTI 19>3 bgðajBIExSekagPaBdab-bnÞúkrbs;FñwmebtugGarem:EdlmanbrimaNEdk nigRbePT EdkxusKña. ExSekag a bgðajBIFñwmebtugGarem: EdlmansñameRbHFmμtaeRkambnÞúktUc Wcr . eKGackM Nt;m:Um:g;EdleFVIeGayeRbH (cracking moment) dUcxageRkam³ fr I M cr = c Edl m:UDuldac;rbs;ebtug = 0.62 f 'c fr = I = m:Um:g;niclPaBén gross concrete section c = cMgayBIG½kSNWteTAsrésrgkarTajxageRkAbMput eKGackMNt;ebtugEdleFVIeGayeRbH (cracking load) BI cracking moment enAeBlRbEvg ElVg nigRbePTénkardak;bnÞúkRtUv)ankMNt;. sMrab;FñwmTMrsamBaØEdlrgbnÞúkcMcMnugenAkNþalElVg Wcr = (4M cr ) / L . esckþIENnaMBIebtugeRbkugRtaMg 570
  • 12. T.Chhay NPIC ExSekag e nig f bgðajBIFñwmebtugeRbkugRtaMgeBjEdlmanEdktic nigEdkeRcIn erogKña. Fñwm ebtugGarem:EdlmanbrimaNEdkeRcIn)ak;edaysarkarEbkebtugmunnwgEdkeTAdl; yield strength b¤ proof stress rbs;va. FñwmmanPaBdabtUc nwgrgkar)ak;edayPaBRsYy (brittle failure). FñwmEdlman brimaNEdktic)ak;edaysarEdkeFVIkardl; yield nig ultimate strength rbs;va. vabgðajnUv)abdab nigsñameRbHEdlbNþalBIkarlUtsac;rbs;EdkmuneBlebtugEbkCabnþbnÞab; ehIyFñwm)ak;rlM. enAcenøaHExSekag a nig e CaEdnd¾FMrbs;FñwmebtugCamYynwgbrimaNERbRbYlrbs;Edk nigrg nUvbrimaNERbRbYlrbs;kMlaMgeRbkugRtaMg. FñwmEdlrgkMlaMgeRbkugRtaMgtUcenAEk,rExSekag a ehIy FñwmEdlmaneRbkugRtaMgFMenAEk,rExSekag e . eKeRCIserIsbnSMEdkeRbkugRtaMg nigEdkminEmneRbkug RtaMgsMrab;karKNnaKWGaRs½yelIkugRtaMgebtugGnuBaØat PaBdab nigTMhMsñameRbHGtibrma. ExSekag b tMNageGayFñwmEdlnwgeRbHeRkamGMeBIénbnÞúkeFVIkareBjelj. RbsinebIEtEpñk xøHrbs;bnÞúkGefrekItmanenAelIeRKOgbgÁúMCaerOy² enaH W1 tMNageGaybnÞúkefrsrub nigEpñkxøHrbs; bnÞúkGefr L1 . ExSekag c tMNageGayFñwmcab;epþImeRbHeRkamGMeBI working load. kugRtaMgTajGtibrmaenA kñúgebtug = f r = 0.62 f 'c . ExSekag d tMNageGayFñwmEdlmankMlaMgeRbkugRtaMgkMNt;. muxkat;eRKaHfñak;rbs;Fñwmnwg mineRbHeRkambnÞúkeFVIkareBjeljeT b:uEnþvanwgmankugRtaMgTajGtibrma 0 < f r < 0.62 f 'c . ACI Code GnuBaØatkugRtaMgTajGtibrmaenAkúñgebtugRtwm 0.5 f 'c . ExSekag e nig e' tMNageGayFwñmebtugeRbkugRtaMgeBjeljEdlminmankugRtaMgTajeRkam bnÞúkeFVIkar ¬emIlrUbTI 19>4¦. sar³RbeyaCn_d¾sMxan;bMputrbs;kMlaMgeRbkugRtaMgedayEpñkKWlT§PaBkúñgkarRKb;RKgkMeNag (camber). edaykat;bnßykMlaMgeRbkugRtaMg camber nwgRtUv)ankat;bnßy ehIysnSMnUvbrimaNEdk eRbkugRtaMg brimaNkargarkúñgkarTaj nigcMnYn end anchorage. GaRs½ynwgGaMgtg;sIueténkMlaMgeRbkugRtaMg sñameRbHenAkñúg partially prestressed member ekIteLIgelOnCagenAkñúg fully prestressed concrete member eRkamGMeBIrbs; service load. enA eBlEdlsñameRbHekItman m:Um:g;niclPaBRbsiT§PaBrbs;muxkat;eRKaHfñak;RtUv)ankat;bnßy ehIyeK nwgTTYl)anPaBdabFMCagmun. b:uEnþ kareRbIkMlaMgeRbkugRtaMgedayEpñkKWeKTTYl)anlT§plKYrCaTU eBjcitþ ehIyvaTTYl)ankareBjniym. esckþIENnaMBIebtugeRbkugRtaMg 571
  • 13. T.Chhay NPIC K> karcat;cMNat;fñak;Ggát;rgkarBt;ebtugeRbkugRtaMg Classification of Prestressed Concrete Flexural Members ACI Code, Section 18.3 )anEckGgát;ebtugeRbkugRtaMgCabIfñak;edayQrelIkugRtaMgTaj enAelIsrésxageRkAbMput f t enAkñúgtMbn;TajeRkamGMeBIbnÞúkeFVIkardUcxageRkam³ !> fñak; U (uncracked section) Edlman f t ≤ 0.62 f 'c . enAkñúgmuxkat;ebtugEdlKμansñam eRbHenH eKeRbIlkçN³én gross section edIm,IRtYtBinitüPaBdabeRkamGMeBIbnÞúkeFVIkar. KμansñameRbHekItmanenAkñúgmuxkat; nigeKminRtUvkar skin reinforcement eT. @> fñak; T (muxkat;enAkñúg transition zone) Edlman 0.62 f 'c < ft ≤ f 'c . muxkat; RbePTenHmankugRtaMgTajenAkñúgebtugFMCagm:UDuldac; (modulus of rupture) rbs;ebtug f r = 0.62 f 'c EdlbegáItnUvkrNIcenøaHmuxkat;eRbH nigmuxkat;Gt;eRbH. enAkñúgkrNIenH eKeRbIlkçN³én gross section edIm,IRtYtBinitükugRtaMg ehIyeKeRbI bilinear section rbs; muxkat;eRbHedIm,IKNnaPaBdab. eKmincaM)ac;eRbI skin reinforcement enAkñúgtMbn;TajeT. #> fñak; C (cracked section) Edlman f t > f 'c . kugRtaMgTajenAkúñgmuxkat;FMCag modulus of rupture rbs;ebtug 1.6 dg. dUcenH sñameRbHnwgekItmandUckñúgkrNIGgát;eb tugeRbkugRtaMgedayEpñk. enAkñúgkrNIenH eKeRbIlkçN³énmuxkat;eRbHedIm,IRtYtBinitükug esckþIENnaMBIebtugeRbkugRtaMg 572
  • 14. T.Chhay NPIC RtaMg sñameRbH nigPaBdab. eKKYreRbIkarpþl;eGayedIm,IRKb;RKgsñameRbH nigeRbI skin reinforcement dUckarBnül;enAkñúgEpñk 6>7 sMrab;Ggát;ebtugGarem:EdlmankMBs;RbsiT§- PaB d > 915mm . 2> sMPar³ nigtMrUvkarsMrab;bMerIbMras; Material and Serviceability Requirement k> ebtug Concrete lkçN³rbs;ebtugRtUv)anbgðajenAkñúgCMBUk 2. eTaHbICaerOy² Ggát;ebtugGarem:RtUv)anplit BIebtugEdlmanersIusþg;sgát; 21MPa eTA 35MPa k¾eday k¾Ggát;ebtugeRbkugRtaMgRtUv)anplitBI sMPar³EdlmanersIusþg;x<s;Cag CaTUeTAsßitenAcenøaH 28MPa eTA 56MPa . eKeRbIebtugersIusþg;x<s; sMrab;Ggát;ebtugcak;eRsc nigGgát;ebtugeRbHkugRtaMg Edlkarlay karcak; karbgðab; nigkarEfTaMeb tugsßiteRkamkarRtYtBinitüy:agm:t;ct;. kugRtaMgGnuBaØatenAkñúgebtugEdleyagtam ACI Code, Section 18.4 mandUcxageRkam³ !> kugRtaMgeRkayeBlepÞreRbkugRtaMg (prestress transfer) nigmuneBl)at;bg;eRbkugRtaMg (prestress losses): a. kugRtaMgsgát;GtibrmaesμInwg 0.6 f ci b. kugRtaMgTajGtibrma ¬elIkElgGVIEdl)anGnuBaØatdUcxageRkam¦ esμInwg 0.25 f ci c. kugRtaMgTajGtibrmaenARtg;cugénGgát;TMrsamBaØesμInwg 0.5 f ci Edl f ci CaersIusþg;rbs;ebtugenAeBlepÞr RbsinebIkugRtaMgTajmantMélFMCagenH eKRtUvdak;EdkenAtMbn;sgát;edIm,ITb;Tl;kMlaMgTaj srubenAkñúgebtug ¬edayQrelI uncracked gross section¦. @> kugRtaMgeRkamGMeBIbnÞúkeFVIkareRkayeBlkMhatbg; (loss) TaMgGs; ¬sMrab;fñak; U nigfñak; T ¦ mandUcteTA³ kugRtaMgsgát;Gtibrma 0.45 f 'c EdlbNþalBIkMlaMgeRbkugRtaMgbUknwgbnÞúkefr nigkugRtaMg 0.05 f 'c EdlbNþalBIkMlaMgeRbkugRtaMgbUknwgbnÞúksrub. #> kugRtaMgTaMgenHGacmantMélFMCagenH RbsinebIkarBiesaF nigkarviPaKbgðajfakaRbRBwtþeTA rbs;vaRKb;RKan;. esckþIENnaMBIebtugeRbkugRtaMg 573
  • 15. T.Chhay NPIC x> EdkeRbkugRtaMg Prestressing Steel Edk tendon EdleKniymeRbICageKenAkñúgebtugeRbkugRtaMgCa strands ¬b¤kab¦ Edlplit eLIgCamYynwglYssrésr (wire) CaeRcIn CaTUeTAmancMnYn 7 b¤ 19 . Wire nig bar k¾RtUv)aneKeRbI R)as;pgEdr. Stand nig wire RtUv)anpliteLIgedayeKarBtam ASTM Standard A421 sMrab; uncoated stress-relieved wire nig A416 sMrab; uncoated seven-wire stress-relieved strand. lkçN³rbs;EdkeRbkugRtaMgRtUv)aneGayenAkñúgtarag 19>1. tarag 19>1 Diameter Area Mass Type (mm) (mm2) (kg/m) Seven-wire strand (grade 250) 6.350 23.2 0.179 7.950 37.4 0.298 9.525 51.6 0.402 11.125 69.7 0.551 12.700 92.9 0.729 15.240 139.4 1.101 Seven-wire strand (grade 270) 9.525 54.8 0.432 11.125 74.2 0.595 12.700 98.7 0.789 15.250 138.7 1.101 Prestressing wire grades (250) 4.877 18.7 0.146 (250) 4.978 19.4 0.149 (240) 6.350 31.6 0.253 (235) 7.010 38.7 0.298 Prestressing bars (smooth) 19.050 283.9 2.232 (grade 145 or 160) 22.225 387.1 3.036 25.400 503.2 3.973 28.575 638.7 5.030 31.750 793.5 6.206 34.925 954.8 7.515 Prestressing bars (deformed) 15.875 180.6 1.458 (grade 150-160) 19.050 271.0 2.218 25.400 548.4 4.480 31.750 806.5 6.535 34.925 1006 8.274 EdkeRbkugRtaMgEdleRbIenAkñúgebtugeRbkugRtaMgRtUvEtmanersIusþg;x<s; CaTUeTAman ultimate strength f puenAcenøaH 1730MPa eTA 1860MPa . eKcaM)ac;GnuBaØateGayEdkersIusþg; x<s;mansac;lUtFM nigrkSakugRtaMgenAkñúgebtugeGayRKb;RKan; nigGciéRnþy_bnÞab;BI inelastic shortening rbs;ebtug. esckþIENnaMBIebtugeRbkugRtaMg 574
  • 16. T.Chhay NPIC kugRtaMgGnuBaØatenAkñúgEdkeRbkugRtaMgeyagtam ACI Code, Section 18.5 mandUcxageRkam³ !> kugRtaMgGtibrmaEdlbNþalBI tendon jacking force minRtUvFMCagtMélEdltUcCageKkñú gcMeNam 0.8 f pu nig 0.94 f py . tMélEdltUcCagminRtUvFMCagkugRtaMgEdlENnaMedayGñk plit tendon b¤ anchorage eT. @> kugRtaMgGtibrmaenAkñúg pretensioned tendon Pøam²eRkayeBlepÞrminRtUvFMCagtMéltUc CageKkñúgcMeNam 0.74 f pu nig 0.82 f py . #> kugRtaMgGtibrmaenAkñúg postensioned tendon eRkayeBl tendon RtUv)an anchor KW 0.70 f pu . K> EdkBRgwg Reinforcing Steel CaTUeTA eKeRbIEdkBRgwgminEmneRbkugRtaMgenAkúñgGgát;eRKOgbgÁúMebtugeRbkugRtaMg CaBiessenAkñúgsMNg;ebtugeRbkugRtaMgcak;eRsc. eKeRbIEdkBRgwgCaEdkkMlaMgkat;TTwg Ca EdkbEnßmsMrab;kardwkCBa¢Ún nigkarelIkdak;Ggát;cak;eRsc ehIynigeRbIenAkñúgGgát;ebtugeRb kugRtaMgedayEpñkEdlcUlrYmCamYynwgEdkeRbkugRtaMg. RbePT nigkugRtaMgGnuBaØatrbs;Edk RtUvENnaMenAkñúgCMBUk 2 nigCMBUk 5 rYcehIy. 3> kMhatbg;eRbkugRtaMg Loss of Prestress k> Lump-sum losses kMhatbg;énkMlaMgeRbkugRtaMgCabnþbnÞab;ekItmaneRkayeBlkMlaMgeRbkugRtaMgRtUv)an epÞrBI jack eTaGgát;ebtug. kMhatbg;eRbkugRtaMgCakarkat;bnßykMlaMgeRbkugRtaMgkñúgmYy CIviténeRKOgbgÁúM. brimaNkMhatbg;enAkñμúg tendon ERbRbYlcenøaHBI 15% eTA 30% énkugRtaMg edIm edayGaRs½ynwgktþaCaeRcIn. sMrab;eRKOgbgÁúMebtugGarem:TMgn;FmμtaPaKeRcInEdlsagsg;eday standard method, tendon stress loss bNþalmkBI elastic shortening, shrinkage, creep nig relaxation rbs;EdkKWmantMélRbEhlnwg 35ksi(241MPa ) sMrab; pretensioned member nigsMrab; esckþIENnaMBIebtugeRbkugRtaMg 575
  • 17. T.Chhay NPIC posttensioned member KWRbEhlbwg 25ksi(172MPa) . kMlaMgkkit nig anchorage slip minRtUv)an rab;bBa©ÚleT. karENnaMBIrsMrab;kar)a:n;sμankMhatbg;srubenAkñúgGgát;ebtugeRbkugRtaMgRtUv)anbgðajeday AASTHO nig Posttensioning Institute (PTI). AASTHO ENnaMeGayykkMhatbg;srub (edayminKitkMlaMgkkit) 45ksi(310 MPa ) sMrab; pretensioned strand nig 33ksi(228MPa ) sMrab; postentioned strand nig wire enAeBlEdleKeRbIersIusþg;sgát;ebtug f 'c = 35MPa . PTI ENnaM lump-sum prestress loss sMrab; posttensioned member 35ksi(241MPa ) sMrab;Fñwm nig 30ksi(207 MPa ) sMrab;kMralxNÐ ¬edayminKitkMlaMgkkit¦. eKGaceRbItMélTaMgGs;enH)anluHRta EteK)aneFVIkar)a:n;RbmaNkMhatbg;eRbkugRtaMgedayRbPBénkMhatbg;nImYy²dac;edayELkBIKña)an l¥ dUcEdl)anENnaMy:agsegçb. CaTUeTA RbPBénkMhatbg;eRbkugRtaMgKW - Elastic shortening rbs;ebtug - Shrinkage rbs;ebtug - Creep rbs;ebtug - Relaxation rbs;Edk tendon - kMlaMgkkit - Anchorage set x> kMhatbg;edaysar Elastic Shortening of Concrete kar)a:n;RbmaNkMhatbg; elastic shortening rbs;ebtugenAkñúg pretensioned member RtUv)aneFVIeLIgdUcteTA. BicarNa pretensioned concrete member énmuxkat;efr nigkugRtaMgBRgay esμItambeNþayG½kSTIRbCMuTMgn;rbs;vaedaysarkMlaMg Fo . eRkayBIkarepÞrkMlaMgeRbkugRtaMgFñwmebtug nig prestressing tendon rYjxøIedaybrimaNesμIKña edaysarPaBs¥itrvagsMPar³TaMgBIr. dUcenH kMlaMg eRbkugRtaMgEdlcab;epþIm Fo Føak;mkRtwm Fi ehIykMhatbg;kMlaMgeRbkugRtaMgKW Fo − Fi . dUcKña strain enAkñúgebtug ε c RtUvEtesμInwgbMErbMrYl strain rbs; tendon Δε s . dUcenH ε c = Δε s b¤ ( f c / Ec ) = (Δf s / E s ) ehIykMhatbg;kugRtaMgEdlbNþalBI elastic shortening KW esckþIENnaMBIebtugeRbkugRtaMg 576
  • 18. T.Chhay NPIC Es nF nF Δf s = × f c = nf c = i ≈ o (19.1) Ec Ac Ac Edl RkLaépÞrbs;muxkat;ebtug Ac = n = E s / Ec = pleFobm:UDul (modular ratio) f c = kugRtaMgrbs;ebtugenARtg;TIRbCMuTMgn;rbs;EdkeRbkugRtaMg KuNkugRtaMgnwgRkLaépÞrbs;EdkeRbkugRtaMg Asp edIm,ITTYl)ankMlaMgsrub . Elastic loss KW ⎛ nF ⎞ ES = Fo − Fi = Δf s Asp = (nf c )Asp ≈ ⎜ o ⎜ A ⎟ Asp ⎟ (19.2) ⎝ c ⎠ Fi = Fo − (nf c )Asp (19.3) sMrab;karKNnaGnuvtþn_ kMhatbg;kugRtaMgénkMlaMgeRbkugRtaMg ¬ Δf s kñúgmYyktþaépÞ Asp ¦ mantMél Rbhak;RbEhlnwg nFo / Ac . RbsinebI kMlaMg Fo manGMeBIRtg;cMNakp©it e enaH elastic loss Edl bNþalBIvtþmanén Fo nigbnÞúkefrGnuvtþn_enAeBlepÞrKW ES = −(nf c )Asp ¬EdlbNþalBIeRbkugRtaMg¦ + (nf c )Asp ¬bnÞúkefr¦ ⎛ F F e2 ⎞ ⎛M e⎞ ES = Fo − Fi = −⎜ i + i ⎟nAsp + ⎜ D ⎟nAsp (19.4) ⎜ A ⎟ I ⎠ ⎝ I ⎠ ⎝ eKGaceRbItMélRbhak;RbEhlén Fi = (0.63 f pu )Asp enAkñúgsmIkarxagelI. ⎡ ⎛ 1 e 2 ⎞⎤ Fo + f c (D.L.)nAsp = Fi ⎢1 + nAsp ⎜ + ⎟⎥ (19.5) ⎜A I ⎟ ⎢ ⎣ ⎝ ⎠⎥ ⎦ Fi = ( ) Fo + nAsp f c (D.L.) ⎛ 1 e2 ⎞ ( ) 1 + nAsp ⎜ + ⎟ ⎜A I ⎟ ⎝ ⎠ sMrab; posttensioned member Edl tendon nig individual strand minrgkugRtaMgdMNalKña enaHeK GackMhatbg;eRbkugRtaMgesμInwgBak;kNþaléntMél ES sMrab; prestensioned member. dUcKña eKGacyk elastic shortening loss enAkñúgkMralxNÐesμInwgmYyPaKbYnéntMél ES sMrab; prestensioned member edaysarkarlUtrbs; tendon mYymanT§iBltictYceTAelIkugRtaMgén tendon d¾éTeTot. K> kMhatbg;edaysarkarrYmmaD Loss Due to Shrinkage kMhatbg;eRbkugRtaMgEdlbNþalBIkarrYmmaDKWGaRs½ynwgeBl. eKGac)a:n;RbmaNvadUcxag eRkam³ esckþIENnaMBIebtugeRbkugRtaMg 577
  • 19. T.Chhay NPIC SH = Δf s (shrinkage) = ε sh E s (19.6) Edl Es = 2 ⋅105 MPa nig ε sh = shrinkage strain enAkñúgebtug eKGacsnμt; Strain mFümEdlbNþalBIkarrYmmaDmantMéldUcxageRkam³ - ε sh1 = 0.0003 sMrab; pretensioned member - ε sh2 = 0.0002 sMrab; posttentioned member RbsinebIeKGnuvtþ posttensioning kñúgcenøaH 5 eTA 7 éf¶eRkayBIcak;ebtug/ eKGacyk shrin- kage strain esμInwg 0.8ε sh1 . RbsinebIeKGnuvtþ posttensioning kñúgcenøaH 1 s)aþh_eTA 2 s)aþh_ eK GaceRbI ε sh = 0.7ε sh1 nigRbsinebIeKGnuvtþ posttensioning eRkayeBlcak;ebtugeRcInCag 2 s)aþh_ enaHeKGacyk ε sh = ε sh2 . eKk¾Gac)a:n;RbmaNkMhatbg;edaykarrYmmaD SH dUcxageRkam³ ⎛ 0.06V ⎞ SH = 8.2 × 10 − 6 K sh E s ⎜1 − ⎟(100 − RH ) ⎝ S ⎠ Edl V / S = pleFobmaDelIépÞ nig RH = average relative humidity. K sh = 1.0 sMrab; pretensioned member nigesμInwg 0.8 / 0.73 / 0.64 nig 0.58 sMrab; posttensioned member RbsinebIeKGnuvtþ posttensioning eRkayeBlcak;ebtug 5 / 10 / 20 nig 30 éf¶ erogKña. X> kMhatbg;edaysar creep rbs;ebtug CakMhUcRTg;RTayGaRs½ynwgeBlEdlekIteLIgenAkñúgebtugeRkamGMeBIbnÞúkefr. kMhUc Creep RTg;RTayEdlekIteLIgedaysar creep eFVIeGay)at;bg;kMlaMgeRbkugRtaMgBI 5% eTA 7% . Creep strain ERbRbYlCamYynwgGaMgtg;sIueténkugRtaMgedImenAkñúgebtug relative humidity nigeBl. eKGackMNt;kMhatbg;kugRtaMgEdlbNþalBI creep dUcxageRkam³ CR = Δf s (creep) = Cc (nf c ) = Cc (ε cr E s ) (19>7) creepstrain, ε cp Edl emKuN Cc = creep = initial elastic strain, εi eKGacyktMél Cc dUcxageRkam³ ersIusþg;ebtug f 'c ≤ 28MPa f 'c > 28MPa Relative humidity 100% 50% 100% 50% Cc 1− 2 2−4 0.7 − 1.5 1 .5 − 3 esckþIENnaMBIebtugeRbkugRtaMg 578
  • 20. T.Chhay NPIC eKGaceFVI interpolation sMrab;tMélEdlenAcenøaHtMélEdlenAkñúgtaragxagenH. edayKitfa creep EtBak;kNþalekIteLIgkñúgGMLúg 134 ExdMbUgén 6 ExdMbUgbnÞab;BIkarepÞreRbkugRtaMgeTAebtug nigeRkamlkçxNÐsMeNImFmμta enaHeKGacsnμt; creep strain sMrab;karKNnaGnuvtþn_dUcxageRkam³ !> sMrab; pretensioned members, ε cr = 7 ⋅10−5 × kugRtaMgenAkñúgebtug @> sMrab; postensioned members, ε cr = 5.2 ⋅10−5 × kugRtaMgenAkñúgebtug. eKeRbItMélenH enAeBlEdleKGnuvtþ posttensionning kñúgGMLúg 2 eTA 3 s)aþh_. sMrab;karGnuvtþ posten- sioning elOnCagenH eKGaceRbItMélkNþal. eKeRbItMélTaMgenH enAeBlEdlersIusþg;rbs;ebtugenAeBlepÞrKW f 'c ≥ 28MPa . enAeBlEdl f 'c < 28MPa creep strain KYrekIneLIgkñúgGRta 4 / ersIusþg;Cak;Esþg. kMhatbg;eRbkugRtaMgsrubEdlbNþalBI creep = ε cr Es (19.8) g> kMhatbg;edaysar Relaxation rbs;Edk Relaxation rbs;EdkbNþaleGaymankMhatbg;enAkñúgEdkeRbkugRtaMgGaRs½ynwgeBl Edl RsedogKñanwg creep enAkñúgebtugEdr. kMhatbg;edaysar relaxation ERbRbYleTAtamRbePTEdk. CaTUeTA tMélrbs;vaRtUv)anpþl;eGayedayGñkplitEdk. CaFmμta eKsnμt;kMbaatbg;enHesμInwg 3% énkugRtaMgedImrbs;EdksMrab; posttensioned member nig 2% eTA 3% sMrab; pretensioned members. RbsinebIeKminmanB½t’manBIkarBiesaFeT eKGacPaKrykMhatbg;sMrab; relaxation enA 1000h dUcxageRkam³ !> enAkñúg low-relaxation strands, enAeBlEdleRbkugRtaMgedImesμInwg 0.7 f pu nig 0.8 f pu / relaxation (RE) KW 2.5% nig 3.5% erogKña. @> enAkñúg stress-relieved strand b¤ wire, enAeBlEdleRbkugRtaMgedImesμInwg 0.7 f pu nig 0.8 f pu / relaxation (RE) KW 8% nig 12% erogKña. c> kMhatbg;edaysarkMlaMgkkit Loss Due to Friction CamYynwgEdkrg pretensioning kMhatbg;edaysarkMlaMgkkitekItmanenAeBlEdl wires b¤ strand dabtam diaphragm. CaFmμtakMhatbg;enHmantMéltUc ehIyeKGacecalva)an. esckþIENnaMBIebtugeRbkugRtaMg 579
  • 21. T.Chhay NPIC enAeBlEdl strand dabtam concordant profile enaHkMhatbg;edaysarkMlaMgkkitGacmantMélFM. enAkrNIEbbenH CaFmμtaeKeRbI]brkrN_Edlvas;bnÞúkCak;EsþgedIm,IkMNt;kMlaMgenAkñúg tendon. CamYynwgEdkrg posttensioning, T§iBlénkMlaMgkkitmantMélFMedaysarktþacMbgBIrKW kMeNagrbs; tendon nigkar)at;bg;PaBRtg;rbs;bMBg; (wobble). RbsinebIeKTb;cugbgáb;mçagrbs; tendon edaykMlaMg P2 nigeKTajcugTMenrmçageTotrbs; tendon edaykMlaMg P edIm,IeGay tendon 1 enaHrGiltamTisrbs;kMlaMg P1 )anluHRtaEt μα px P = P2 e 1 (19.9) Edl μ = emKuNmMukkitsþaTic nig α px = mMurvag P1 nig P2 . CaTUeTAeKKit wobble effect tamviFI RsedogKña Px = Ps e −(μα + Kl x ) Ppj = Ppx e ( + Kl px + μ pα px ) Ppx = Ppj e ( − Kl px + μ pα px ) (19.10) Edl kMlaMgeRbkugRtaMgenARtg;cMnuc x Ppj = Ppx = kMlaMgeRbkugRtaMgenARtg; jacking end μ p = emKuNkMlaMgkkitedaysarkMeNag α px = bMErbMrYlmMusrubénragtambeNþayrbs;EdkeRbkugRtaMgBI jacking end eTAdl;cMnuc x KitCara:düg; = RbEvgkMeNag kaMkMeNag K = emKuNkMlaMgkkit wobble kñúgmYyÉktþaRbEvgrbs; tendon CakarsMrYl ACI Code eGaynUvsmIkarxageRkamsMrab;krNI (μ pα px + Kl x ) ≤ 0.30 . lT§plEdl TTYl)anBIsmIkarCatMélRbEhl ( Ppx = Ppj 1 + Kl px + μ pα px )−1 (AIC Code, eq. 18.2) (19.11) emKuNkMlaMgkkit μ nig K GaRs½ynwgRbePTén strand b¤ wire, RbePTbMBg; niglkçxNÐépÞ b:H. ACI Commentaru, Sectin 18.6 nigenAkñúgtarag 19.2 eGaynUvtMélRbhak;RbEhlrbs; μ nig K. kMhatbg;edaysarkMlaMgkkitenAkñúg jack ERbRbYl nigGaRs½ynwgktþaCaeRcIn edayrab; bBa©ÚlTaMgRbEvgrbs; tendon. eKENnaMeGayeRbI accurate load ceel edIm,Ivas;kMlaMgedaypÞal;. esckþIENnaMBIebtugeRbkugRtaMg 580
  • 22. T.Chhay NPIC kareRbI pressure gauge pþl;nUvlT§plminsuRkit luHRtaEteKeFVIkarEktMrUveTAtamkMlaMgEdleKsÁal; enAkúñúg tendon. kMhatbg;edaysarkMlaMgkkitenAkñúg cnchorage KWGaRs½ynwgRbePT anchorage nigbrimaN én deviation rbs; tendon Edlqøgkat; anchorage. CaFmμtakMhatbg;enHmantMéltUcEdlGac ecal)an. karENnaMkñúgkrNIBiessKYrTTYl)anBIplitkr. tarag 19>2 emKuNkMlaMgkkitsMrab; posttensioned tendon emKuNkMlaMgkkit wobble K emKuNkMlaMgkMlaMgkkit RbePT tendon kñúgmYyÉktþaRbEvg (10 −3 ) edaysarkMeNag μ Tendon in flexible metal sheathing (grouted) Wire tendon 3.33 − 5.0 0.15 − 0.25 Seven-wire strand 1.67 − 6.67 0.15 − 0.25 High-strength bars 0.33 − 2 0.08 − 0.30 Pregreased unbonded tendon Wire tendon and seven-wire strand 1 − 6.67 0.05 − 0.15 Mastic-coated unbonded tendon Wire tendon and seven-wire strand 0.33 − 0.67 0.05 − 0.15 q> kMhatbg;edaysar Anchor set enAeBlkMlaMgenAkñúg tendon RtUv)anepÞrBI jack eTA anchorage unit, clnart;cUlkñúgbnþic rbs; tendon ekIteLIgedaysarkardak; gripping device b¤ wedge. karrGilenHbNþaleGayman tendon rYjxøI EdleFVIeGay)at;bg;kMlaMgeRbkugRtaMg. RbEvgrGilERbRbYlBI 2.5mm eTA 6mm ehIy CaTUeTARtUv)ankMNt;edayplitkr. eKGacKNnakMhtbg; anchor set edayrUbmnþxageRkam³ ΔL Δf s = ΔεE s = × Es (19.12) L Edl Δε = GaMgtg;sIueténkarrGil anchor E s = 2 ⋅10 5 MPa esckþIENnaMBIebtugeRbkugRtaMg 581
  • 23. T.Chhay NPIC RbEvgrbs; tendon L= edaysarkMhatbg;eRbkugRtaMgCacMras;smamaRteTAnwgRbEvgrbs; tendon ¬b¤RbEhlCaBak;kNþal énRbEvgrbs; tendon RbsinebIvargkugRtaMgBIcugsgxagkñgeBlEtmYy¦PaKrykMhatbg;enAkñúgkug ú RtaMgEdknwgRtUv)ankat;bnßyenAeBlEdlRbEvgrbs; tendon ekIneLIg. RbsinebI tendon lUteday Δε enAeBlepÞr enaHeKecalkMhatbg;eRbkugRtaMgedaysarkarrGil. ]TahrN_ 19>2³ FñwmTMrsamBaØrg pretensionning RbEvg 11m manmuxkat;ctuekaNEkgCamYynwg b = 45cm nig h = 80cm . KNnakMhatbg;eGLasÞic nigkMhatbg;EdlGaRs½ynwgeBlTaMgGs;. eK eGay³ kMlaMgeRbkugRtaMgenAeBlepÞrKW Fi = 1935kN / RkLaépÞrbs;EdkeRbkugRtaMgKW Aps = 1935mm 2 / f 'c = 35MPa / Ec = 34500MPa / E s = 2 ⋅105 MPa / profile rbs; tendon manrag Ca)a:ra:bUl/ cMNakp©itenAkNþalElVg = 15cm nigcMNakp©itenAcug = 0 . dMeNaHRsay³ !> kMhatbg;edaysar elastic shortening: kugRtaMgEdl)anBIkMlaMgeRbkugRtaMgenAeBlepÞrKW Fi 1935 3 = 10 = 1000MPa A ps 1935 f rbs;EdkeRbkugRtaMg = Es = 210005 = 5 ⋅10 −3 strain ⋅10 s edayeRbIsmIkar 19>1 E 2 ⋅10 5 n= s = = 5.8 yk 6 E 34500 c nFi 6 × 1935 3 Δf s = = 10 = 32.25MPa Ac 450 × 800 edayKitbMErbMrYlcMNakp©ittambeNþayFñwm Fi strain enAmuxkat;xagcug = 1935 = 10 3 = 1.56 ⋅10 − 4 AE 450 × 800 × 34500 c c Fi e 2 strain enAkNþalElVg = AFE i + IEc c c bh 3 450(800 )3 I= = = 1.92 ⋅1010 mm 4 12 12 1935 × 150 2 strain = 1.56 ⋅10 − 4 + 10 3 = 2.22 ⋅10 − 4 1.92 ⋅10 × 34500 10 esckþIENnaMBIebtugeRbkugRtaMg 582
  • 24. T.Chhay NPIC mFüm = 1 (1.56 + 2.22)10 − 4 = 1.89 ⋅10− 4 strain 2 kMhatbg;eRbkugRtaMg = strain × Es = 1.89 ⋅10−4 × 2 ⋅105 = 37.8MPa PaKrykMhatbg; = 1000 = 3.78% 37.8 @> kMhatbg;edaysar shrinkage: shrinkage strain = 0.0003 Δf s = ε sh E s = 0.0003 × 200000 = 60MPa PaKrykMhatbg; = 60 1000 = 6% #> kMhatbg;edaysar creep rbs;ebtug³ edaysnμt; Cc = 2.0 enaH Δf s = Cc (ε cr Es ) Fi Elastic strain = = 1.56 ⋅10 − 4 Ac Ec ( ) Δf s = 2 1.56 ⋅10 −4 × 200000 = 62.4MPa PaKrykMhatbg; = 62.4 1000 = 6.24% b¤edaytMélRbhak;RbEhl eyIgyk ε cr = 7 ⋅10−5 × kugRtaMgenAkñúgebtug ⎛ 1935 ⎞ ε cr = 7 ⋅10 − 5 ⎜ 103 ⎟ = 3.76 ⋅10 − 4 ⎝ 450 × 800 ⎠ Δf s = ε cr E s = 3.76 ⋅10 −4 × 200000 = 75.2MPa PaKrykMhatbg; = 75.2 1000 = 7.52% vaCatMélEdlmansuvtßiPaB ehIyeKnwgTTYl)anGRtadUcKñasMrab;karKNnaxagelIRbsinebIeKyk Cc = 2.41 . $> kMhatbg;edaysar relaxation rbs;Edk³ sMrab; low-relaxation strand eKsnμt;ykkMhatbg; esμInwg 2.5% Δf s = 1000 × 2.5% = 25MPa %> snμt;kMhatbg;edaysarkarBt; kMlaMgkkitrbs; cable spacer nigbøúkxagcugrbs;RbB½n§ pretensioning KW 2% . Δf s = 0.02 × 1000 = 20MPa ^> kMhatbg;edaysarkMlaMgkkitenAkñúg tendon KWsUnü. &> kMhatbg;srubmandUcxageRkam esckþIENnaMBIebtugeRbkugRtaMg 583
  • 25. T.Chhay NPIC Elastic Shortening 37.8MPa 3.78% Shrinkage loss 60.0MPa 6.00% Creep of concrete loss 62.4MPa 6.24% Relaxation of steel loss 25.0MPa 2.50% Other loss 20.0MPa 2.00% Total loss 205.2MPa 20.52% eRbkugRtaMgRbsiT§PaB = 1000 − 167.4 = 832.6MPa kMlaMgeRbkugRtaMgRbsiT§PaB F = 832.6 ×1935 ⋅10 −3 = 1611kN F = (1 − 0.167 )Fi = 0.833Fi sMrab; F = ηFi dUcenH η = 0.833 ]TahrN_ 19>3³ KNnakMhatbg;TaMgGs;én posttensioned beam EdlmanRbEvg 36m . RkLaépÞ rbs;muxkat;ebtug ( Ac ) = 49 ⋅104 mm 2 / m:Um:g;niclPaB (I g ) = 6.83 ⋅1010 mm 4 / kMlaMgeRbkugRtaMg enAeBlepÞr (Fi ) = 4950kN / RkLaépÞEdkeRbkugRtaMg (Aps ) = 4840mm 2 / f 'c = 35MPa / Ec = 34500MPa / nig E s = 2 ⋅10 5 MPa . Profile rbs; tendon manragCa)a:ra:bUl/ cMNakp©itenA kNþalElVg = 50cm nigcMNakp©itenAxagcug = 0 . dMeNaHRsay³ !> kMhatbg;eday elastic shortening: kugRtaMgEdkenAeBlepÞr = AFi = 4950 3 4840 10 = 1022.7 MPa ps kugRtaMgenAkúñgebtugRtg;muxkat;xagcug = 49 ⋅104 103 = 10.1MPa 4950 2 kugRtaMgenAkúñgebtugRtg;muxkat;kNþalElVg = Ai + FiIe − MID e F c TMgn;rbs;Fñwm = 49 ⋅10 −2 × 25 = 12.25kN / m 36 2 M D = 12.25 = 1984.5kN .m 8 4950 × 500 2 3 1982.5 × 500 6 kugRtaMgenAkNþalElVg = 4950 49 ⋅10 4 10 3 + 6.83 ⋅1010 10 − 6.83 ⋅1010 10 = 10.1 + 18.12 − 14.5 = 13.72 MPa 10.1 + 13.72 kugRtaMgmFüm = 2 = 11.9MPa esckþIENnaMBIebtugeRbkugRtaMg 584
  • 26. T.Chhay NPIC mFüm = 11.9 = 34500 = 3.45 ⋅10− 4 strain Ec 11.9 kMhatbg;eGLasÞicKW Δf s = ε c Es = 3.45 ⋅10 −4 × 2 ⋅105 = 69MPa edaysnμt;faeKTaj tendon mþgBIrkñúgeBlEtmYy. KUrTImYynwgmankMhatbg;FMCageK b:uEnþKUrcugeRkaynwgmankMhatbg;esμIsUnü. dUcenH kMhatbg;eGLasÞicmFüm Δf s = 69 / 2 = 34.5MPa . PaKrykMhatbg; = 10225.7 = 3.37% 34. @> kMhatbg;edaysarkarrYmmaDrbs;ebtug Δf s (shrinkage) = 0.0002 E s = 0.0002 × 200000 = 40MPa PaKrykMhatbg; = 40 1022.7 = 3.91% #> kMhatbg;;edaysar creep rbs;ebtug³ snμt; Cc = 1.5 Fi 4950 elastic strain = = 10 3 = 2.93 ⋅10 − 4 Ac Ec 49 ⋅ 10 × 34500 4 ( ) Δf s (creep) = Cc (ε cr E s ) = 1.5 2.93 ⋅10 −4 × 200000 = 87.9MPa PaKrykMhatbg; = 87.9 1022.7 = 8.59% $> kMhatbg;edaysar relaxation rbs;Edk³ sMrab; low-relaxation strand, kMhatbg;KW 2.5% Δf s = 0.025 × 1022.7 = 25.6MPa %> karrGilrbs; anchorage: sMrab;karTajEtBIcugmçag snμt;RbEvgrGil 3.8mm ΔL 3.8 Δf s = Es = 200000 = 21.1MPa L 36000 edIm,IGnuBaØateGaymankarrGilrbs; anchorage eKRtUvkMNt;kugRtaMgkñúgkarTaj 1022.7 + 21.1 = 1043.8MPa enAelI pressure gauge edIm,ITTYl net stress 1022.7 MPa enAkñúg tendon. ^> kMhatbg;EdlbNþalBIkMlaMgkit³ smIkar parabolic profile KW e x = 2 (Lx − x 2 ) 4e L Edl ex = cMNakp©itenARtg;cMgay x Edlvas;BITMr nig e = cMNakp©itenAkNþalElVg d (e x ) 4e = 2 (L − 2 x ) dx L CaCMerl (slope) rbs; tendon enARKb;cMnucTaMgGs;. enARtg;TMr e = 0 eyIgTTYl)an slop d (e x ) 4e 4 × 500 = = = 0.056 dx L 36000 esckþIENnaMBIebtugeRbkugRtaMg 585
  • 27. T.Chhay NPIC slope enAkNþalElVgesμIsUnü. dUcenH α px = 0.056 . edayeRbI flexible metallic sheath, μ p = 0.5 nig K = 0.00333 . enAkNþalElVg x = 18m . RtYtBinitüfaetI (μ pα px + Kl x ) ≤ 0.30 μ pα px + Kl x = 0.5 × 0.056 + 0.00333 × 18 = 0.088 < 0.3 ( Ppx = Ppj 1 + Kl px + μ pα px ) = Px (1 + 0.088) = 1.088 Px = 1.088 × 1022.7 = 1112.7 MPa ¬kMlaMgenAcug jacking¦ Δf s = 1112.7 − 1022.7 = 90MPa PaKrykMhatbg; = 90 1022.7 = 8.8% &> kMhatbg;srub Elastic Shortening 34.5MPa 3.37% Shrinkage loss 40.0MPa 3.91% Creep of concrete loss 87.9MPa 8.59% Relaxation of steel loss 25.6MPa 2.50% Friction loss 90.0MPa 8.80% Total loss 278.0MPa 27.17% eRbkugRtaMgRbsiT§PaB = 1022.9 − 243.5 = 779.2MPa kMlaMgeRbkugRtaMgRbsiT§PaB (F ) = (1 − 0.238)Fi = 0.762Fi F = 0.762 × 4950 = 3772kN sMrab; F = ηFi dUcenH η = 0.762 4> viPaKGgát;rgkarBt;begáag Analysis of Flexural Members k> kugRtaMgEdlbNþalBIlkçxNÐmanbnÞúk niglkçxNÐKμanbnÞúk Stresses Due to Loaded and Unloaded condition enAkñúgkarviPaKFñwmebtugeRbkugRtaMg CaTUeTAkardak;bnÞúkBIrmaneRKaHfñak;CageK. TImYyKWekIt manenAeBlepÞr KWenAeBlFñwmrgkMlaMgeRbkugRtaMg Fi ehIyTMgn;rbs;Fñwm b¤bnÞúkefrGnuvtþn_enAxN³én karepÞrkMlaMgkugRtaMg. eKminKitlkçxNÐbnÞúkefrbEnßm b¤bnÞúkGefreT. kñúglkçxNÐKμanbnÞúkenH kug RtaMgenAsrésEpñkxagelIbMput nigEpñkxageRkambMputénmuxkat;eRKaHfñak;minRtUvFMCagkugRtaMgenA eBlepÞr f ci nig f ti sMrab;kugRtaMgrgkarsgát; nigkugRtaMgrgkarTajrbs;ebtugerogKña. esckþIENnaMBIebtugeRbkugRtaMg 586
  • 28. T.Chhay NPIC krNITIBIrénkardak;bnÞúkekIteLIgenAeBlEdlFñwmrgkMlaMgeRbkugRtaMgeRkayBIekItmankMhat bg;TaMgGs; nigrgnUvbnÞúkefr nigGefr. enAkñúglkçxNÐmanbnÞúkenH kugRtaMgenAsrésEpñkxagelIbM put nigEpñkxageRkambMputénmuxkat;eRKaHfñak;dac;xatminRtUvFMCagkugRtaMgGnuBaØat f c nig f t sMrab; kugRtaMgrgkarsgát; nigkugRtaMgrgkarTajrbs;ebtugerogKña. lkçxNÐTaMgenHGacsresrCaTMrg;KNitviTüadUcxageRkam³ !> sMrab;lkçxNÐKμanbnÞúk ¬enAeBlepÞr¦ - enAsrésEpñkxagelIbMput Fi (Fi e ) yt M D yt α ti = − + − ≤ f ti (19.14) A I I - enAsrésEpñkxageRkambMput Fi (Fi e ) yb M D yb α bi = − − − ≥ − f ci (19.15) A I I @> sMrab;lkçxNÐmanbnÞúk ¬bnÞúkTaMgGs;RtUv)andak;eRkayBIkMhatbg;eRbkugRtaMg¦ - enAsrésEpñkxagelIbMput - σ t = − F + (FeI)yt − M D yt − M IL yt ≥ − f c A I (19.16) - enasrésEpñkxageRkambMput - σ b = − F − (FeI)yb − M D yb − M LI yb ≤ f t A I (19.17) Edl Fi nig F = kMlaMgeRbkugRtaMgenAeBlepÞr nigeRkayBIkMhatbg; f ti nig f t = kugRtaMgrgkarTajenAkñúgebtugenAeBlepÞr nigeRkayBIkMhatbg; f ci nig f c = kugRtaMgrgkarsgát;enAkúñgebtugenAeBlepÞr nigeRkayBIkMhatbg; M D nig M L = m:Um:g;EdlbNþalBIbnÞúkefr nigbnÞúkGefr yt nig yb = cMgayBIG½kSNWteTAsrésEpñkxagelIbMput nigEpñkxageRkambMput enAkúñgkarviPaK eKsnμt;fasMPar³manlkçN³eGLasÞicenAkúñgEdneFVIkarénkugRtaMgEdlGnuvtþ. x> EdnkMNt;sñÚl Kern Limits RbsinebIeKGnuvtþkMlaMgeRbkugRtaMgenARtg;TIRbCMuTMgn;rbs;muxkat; vanwgekItmankugRtaMg BRgayesμI. RbsinebIGnuvtþkMlaMgeRbkugRtaMgenARtg;cMNakp©it e BIeRkamTIRbCMuTMgn; EdleFVIy:agNa eGaykugRtaMgenAsrésEpñkxagelIbMputesμIsUnü enaHeKcat;TukkMlaMgeRbkugRtaMgenHmanGMeBIRtg;cMnug esckþIENnaMBIebtugeRbkugRtaMg 587
  • 29. T.Chhay NPIC lower kern ¬rUbTI 19>5¦. enAkñúgkrNIenH e RtUv)ansMKal;eday K b ehIIykarBRgaykugRtaMgman ragRtIekaN EdlmankugRtaMgsgát;GtibrmaenasréseRkameKbMput. kugRtaMgenAsrésxagelIbMputKW Fi (Fi e ) yt σt = − + =0 A I I e = K b = lower kern = (19.17) Ayt dUcKña RbsinebIeKGnuvtþkMlaMgeRbkugRtaMgenARtg;cMNap©it e' BIelITIRbCMuTMng; EdleFVIy:agNaeGaykug RtaMgenAsrésEpñkxageRkambMputesμIsUnü enaHkMlaMgeRbkugRtaMgRtUv)aneKcat;TukfamanGMeBIRtg;cMnuc upper lower ¬rUbTI 19>5¦. enAkñúgkrNIenHcMNap©it e' RtUv)ansMKal;eday K t ehIykarBRgaykug RtaMgmanragRtIekaN EdlmankugRtaMgsgát;GtibrimaenAsrésEpñkxagelIbMput. kugRtaMgenAsrés EpñkxageRkambMputKW Fi (Fi e ) yb σb = − + =0 A I I e' = K t = upper kern = (19.18) Ayb Kern limits énmuxkat;RtIekaNRtUv)anbgðajenArUbTI 19>5. esckþIENnaMBIebtugeRbkugRtaMg 588
  • 30. T.Chhay NPIC K> karkMNt;tMéléncMNakp©it Limiting Values of Eccentricity eKGacsresrsmIkarkugRtaMgTaMgbYn ¬BIsmIkar 19.13 dl; 19.16¦CaGnuKmn_éncMNakp©it e sMrab;lkçxNÐénkardak;bnÞúkepSg². Ca]TahrN_ eKGacsresrsmIkar 19.13 dUcxageRkam Fi (Fi e ) yt M D yt σ ti = − + − ≤ f ti A I I (Fi e ) yt ≤ f + Fi + M D yt ti I A I I ⎛ Fi M D yt ⎞ e≤ ⎜ + + f ti ⎟ (19.19) Fi yt ⎝ A I ⎠ RbsinebIeKeRbI lower kern limit K b = I / Ayt / enaH M D f ti AK b e ≤ Kb + + (19.20) Fi Fi tMél e CacMNakp©itGtibrmaEdlQrelIsrésEpñkxagelIbMputsMrab;lkçxNÐKμanbnÞúk. dUcKña BIsmIkar 19.14 I ⎛ Fi M D yb ⎞ e≤ ⎜− + + f ci ⎟ (19.21) Fi yb ⎝ A I ⎠ M f AK e ≤ − K t + D + ci t (19.22) Fi Fi tMél e CacMNakp©itGtibrmaEdlQrelIsrésEpñkxageRkambMputsMrab;lkçxNÐKμanbnÞúk. eKKNna tMélGtibrma e BIsmIkarelITaMgBIredayyktMélEdltUcCagmkeRbI. BIsmIkar 19.15 I ⎛ F M T yt ⎞ e≥ ⎜ + − fc ⎟ (19.23) Fyt ⎝ A I ⎠ M f AK b e ≥ Kb + T − c (19.24) F F Edl M T = m:Um:g;EdlbNþalBIbnÞúkefr nigbnÞúkGefr = (M D + M L ) . tMélenHCacMNakp©itGb,- brma EdlQrelIsrésEpñkxagelIbMputsMrab;lkçxNÐRTbnÞúk. BIsmIkar 19.16 I ⎛ F M T yb ⎞ e≥ ⎜− + − ft ⎟ (19.25) Fyb ⎝ A I ⎠ M f AK t e ≥ Kt + T − t (19.26) F F esckþIENnaMBIebtugeRbkugRtaMg 589
  • 31. T.Chhay NPIC tMélenHCacMNakp©itGb,brmaEdlQrelIsrésEpñkxageRkambMput sMrab;lkçxNÐmanbnÞúk. eKKYr KNnatMélGb,brma e TaMgBIrenHBIsmIkarTaMgBIrxagelI ehIyeKykcMNakp©itGb,brmaNaEdl mantMélFMCageKmkeRbI. X> tMélkMNt;émkMlaMgeRbkugRtaMgenAeBlepÞr Limiting Values of the Prestessing Force at Transfer edayKitfa F = ηFi Edl η CapleFobén net prestressing force eRkayBIkMhatbg; nig sMrab;krNIepSg²énkardak;bnÞúk eKGacsresrsmIkar 19.20, 19.22, 19.24 nig 19.26 eLIgvijdUc xageRkam³ (e − K b )Fi ≤ M D + f ti AK b (19.27) (e + K t )Fi ≤ M D + f ci AK t (19.28) (e − K b )Fi ≥ M D + M L − 1 ( f c AK b ) (19.29) η η η (e + K t )Fi ≥ M D + ML − 1 ( f t AK t ) (19.30) η η η CMnYsmIkar 19.27 eTAkñúgsmIkar 19.30 eKTTYl)an ⎛1 ⎞ M f AK t Fi (K b + K t ) ≥ M D ⎜ − 1⎟ + L − t ⎜η ⎟ η − f ti AK t ⎝ ⎠ η ⎡⎛ 1 ⎞ M L ⎛ f t AK t ⎞ ⎤ b¤ Fi ≥ 1 ⎢⎜ − 1⎟ M D + ⎜η ⎟ (K b + K t ) ⎣⎝ η ⎝ −⎜⎜ η ⎟ − ( f ti AK b )⎥ ⎟ (19.31) ⎠ ⎠ ⎦ tMél Fi CatMélGb,brmaénkMlaMgeRbkugRtaMgenAeBlepÞredaymineGayFMCagkugRtaMgGnuBaØateRkam lkçxNÐmanbnÞúk nigKμanbnÞúk. CMnYssmIkar 19.29 eTAkñúgsmIkar 19.28 edIm,ITTYl)an ⎡⎛ 1 ⎞ M L ⎛ f c AK b ⎞ ⎤ ⎜ η ⎟ + ( f ci AK t )⎥ 1 Fi ≤ ⎢⎜1 − ⎟ M D − ⎜ η⎟ +⎜ ⎟ (19.32) (K b + K t ) ⎣⎝ ⎠ η ⎝ ⎠ ⎦ tMél Fi CatMélGtibrmaénkMlaMgeRbkugRtaMgenAeBlepÞredaymineGayelIskugRtaMgGnuBaØateRkam lkçxNÐmanbnÞúk nigKμanbnÞúk. edayCMnYssmIkar 19.31 eTAkñúgsmIkar 19.32 ⎛ 1⎞ 2M L ⎛ f ⎞ ⎛ f ⎞ ⎜1 − ⎟ 2 M D − ⎜ η⎟ + ⎜ fti + c ⎟ AKb + ⎜ f ci + t ⎟ AKt ≥ 0 ⎜ ⎟ ⎜ (19.33) ⎝ ⎠ η ⎝ η ⎠ ⎝ η⎟ ⎠ smIkarenHbgðajfa Fi max − Fi min ≥ 0 . eKeRbIsmIkarenHsMrab;bgðajfamuxkat;NamYymanlkçN³ RKb;RKan;. esckþIENnaMBIebtugeRbkugRtaMg 590
  • 32. T.Chhay NPIC ]TahrN_ 19>4³ FñwmTMrsamBaØEdlrgeRbkugRtaMgmunEdlmanRbEvg 14.4m manmuxkat;dUcbgðajenA kñúgrUbTI 19>6 a. FñwmenHRTnUvbnÞúkefr 13.15kN / m ¬edayminrYmbBa©ÚlTMgn;pÞal;¦ nigrgnUvbnÞúk Gefr 16kN / m . edaysnμt;faEdkeRbkugRtaMgpSMeLIgeday tendon 20 Edl tendon mYymanGgát; p©it 11.125mm CamYynwg Es = 2 ⋅105 MPa / Fo = 1200MPa nig ultimate strength f pu = 1725MPa . !> kMNt;TItaMgEdnkMNt;xagelI nigEdnkMNt;xageRkamrbs; tendon profile ¬TIRbCMuTMgn;rbs; EdkeRbkugRtaMg¦ sMrab;muxkat;enAkNþalElVg nigsMrab;muxkat;bIepSgeTotenAcenøaHmux kat;kNþalElVg nigcugFñwm. esckþIENnaMBIebtugeRbkugRtaMg 591
  • 33. T.Chhay NPIC @> dak; tendon cMTItaMgedIm,IbMeBjEdnkMNt;TaMgenH edayeGay tendon xøHegIbeLIgcab;BI cMnucmYyPaKbIénRbEvgElVg. RtYtBinitütMélkMNt;énkMlaMgeRbkugRtaMgenAeBlepÞr. #> RtYtBinitüeLIgvijnUvkMhatbg; edayKit tendon profile Edl)aneRCIserIs nigbMErbMrYlcM Nakp©it e . eRbI fci ¬enAeBlepÞr¦ = 28MPa / f 'c = 35MPa / Ec = 27600MPa nig Eci = 24800MPa . dMeNaHRsay³ !> kMNt;lkçN³rbs;muxkat; RkLaépÞ = 600 × 150 + 450 × 150 + 300 × 250 = 23.25 ⋅104 mm2 esckþIENnaMBIebtugeRbkugRtaMg 592
  • 34. T.Chhay NPIC kMNt;TIRbCMuTMgn;rbs;muxkat;edayKitm:Um:g;eFob)atrbs;muxkat; yb = 1 23.25 ⋅ 10 4 (75 ⋅103 ×125 + 90 ⋅103 × 550 + 67.5 ⋅103 × 925) = 522mm yt = 1000 − 522 = 478mm KNna gross moment of inertia I g ⎡ 450(150 )3 ⎤ ⎡150(600)3 ⎤ Ig = ⎢ + (450)(150)(403)2 ⎥ + ⎢ + (150)(600 )(28)2 ⎥ ⎢ ⎣ 12 ⎥ ⎢ ⎦ ⎣ 12 ⎥ ⎦ ⎡ 300(250)3 ⎤ +⎢ + (300 )(250)(397 )2 ⎥ ⎢ ⎣ 12 ⎥ ⎦ = 2.607 ⋅ 1010 mm 4 I 2.607 ⋅ 1010 Kb = = = 235.6mm Ayt 23.25 ⋅ 10 4 × 478 I 2.607 ⋅ 1010 Kt = = = 214.8mm Ayb 23.25 ⋅ 10 4 × 522 @> )a:n;RbmaNkMhatbg;eRbkugRtaMg eday Fo = 1200MPa a. snμt; elastic loss esμI 4% b¤ 0.04 × 1200 = 48MPa b. kMhatbg;edaysarkarrYmmaDKW 0.0003Es = 0.0003 × 2 ⋅ 105 = 60MPa c. kMhat;bg;edaysar creep rbs;ebtug ³ kar)a:n;RbmaNdMbUgd¾l¥bMputénkMhatbg;eday sar creep KW 1.67 dgén elastic loss 1.67 × 48 ≈ 80 MPa d. kMhatbg;edaysar relaxation énEdkKW 4% ³ 0.04 ×1200 = 48MPa kMhatbg;GaRs½ynwgeBlKW 60 + 80 + 48 = 188MPa PaKrykMhatbg; = 1200 = 15.7% 188 e. kMhatbg;srubKW 188 + 48 = 236MPa PaKryénkMhatbg;srubKW 236 = 19.7% 1200 f. kugRtaMgkMlaMgeRbkugRtaMg Fi = 1200 − 48 = 1152MPa ¬enAeBlepÞr¦ F = 1200 − 236 = 964 MPa esckþIENnaMBIebtugeRbkugRtaMg 593
  • 35. T.Chhay NPIC F = ηFi η = 1− pleFobkMhatbg;GaRs½ynwgeBl 964 = = 0.837 1152 #> EdnkMNt;éncMNakp©it e Rtg;kNþalElVg³ kMNt;kugRtaMgGnuBaØat nigm:Um:g;. enAeBlepÞr f 'ci = 28MPa / f ci = 0.6 × 28 = 16.8MPa nig f ti = 0.25 f 'ci = 1.32MPa . enAeBlrgbnÞúk eFVIkar f 'c = 35MPa / fc = 0.45 f 'c = 15.75MPa nig ft = 0.5 f 'c = 2.96MPa . bnÞúkpÞal;rbs;Fñwm = 23.25 ⋅10−2 × 25 = 5.81kN / m 5.81(14.4 )2 M D ¬bnÞúkpÞal;¦ = = 150.6kN .m 8 2 Ma ¬bnÞúkbEnßm nigbnÞúkGefr¦ = wa8L = (13.15 + 16)14.4 2 = 755.6kN.m 8 m:Um:g;srub (M T ) = M D + M L = 906.2kN .m Fi = kugRtaMgenAeBlepÞr × RkLaépÞEdkeRbkugRtaMg RkLaépÞrbs; tendon 20 Edl tendon nImYy²manGgát;p©it 11.125mm KW 20 × 69.7 = 1394mm 2 Fi = 1394 × 1152 ⋅ 10 −3 = 1606kN F = 1394 × 964 ⋅ 10 −3 = 1344kN a. BicarNamuxkat;enAkNþalElVg srésxagelIbMput kñúglkçxNÐminrgbnÞúk M D f ti AK b e ≤ Kb + + Fi Fi ≤ 235.6 + 10 + ( ) 150.6 3 1.32 23.25 ⋅ 10 4 (235.6) − 3 10 ≤ 374.4mm 1606 1606 srésxageRkambMput kñúglkçxNÐKμanbnÞúk M D f ci AK t e ≤ −Kt + + Fi Fi ≤ −214.8 + 10 + ( ) 150.6 3 16.8 23.25 ⋅ 10 4 214.8 − 3 10 ≤ 401.4mm 1606 1606 yktMél e EdltUcCageKkñúgcMeNamlT§plTaMgBIrxagelICatMélGtibrma. esckþIENnaMBIebtugeRbkugRtaMg 594
  • 36. T.Chhay NPIC dUcenH tMélGtibrmarbs; e = 374mm srésxagelIbMput kñúglkçxNÐrgbnÞúk M T f c AK b e ≥ Kb + − F F ≥ 235.6 + 10 − ( ) 906.2 3 15.75 23.25 ⋅ 10 4 235.6 − 3 10 ≥ 268mm 1344 1344 srésxageRkambMput kñúglkçxNÐmanbnÞúk M T f t AK t e ≥ −Kt + − F F ≥ −214.8 + 10 − ( ) 906.2 3 2.96 23.25 ⋅ 10 4 214.8 − 3 10 ≥ 349.5mm 1344 1344 tMélGb,brmarbs; e CatMéltUcCageKkñúgcMeNamlT§plTaMgBIrxagelI. dUcenH tMélGb,brmarbs; e = 350mm b. BicarNamuxkat;EdlenAcMgay 2.4m BIkNþalElVg ¬muxkat;elx @ kñúgrUbTI 19>6 a¦³ w M D ¬bnÞúkpÞal;¦ = R A (4.8) − D (4.8)2 2 = (5.81)(7.2)(4.8) − (4.8)2 = 133.9kN.m 5.81 2 M a = (29.15)(7.2)(4.8) − (4.8)2 = 671.6kN .m 29.15 2 M T = 133.9 + 671.6 = 805.5kN .m srésxagelIbMput sMrab;lkçxNÐminrgbnÞúk³ 133.9 3 1.32(23.25 ⋅ 10 4 )(235.6) − 3 e ≤ 235.6 + 10 + 10 ≤ 364mm 1606 1606 srésxageRkambMput sMrab;lkçxNÐminrgbnÞúk 133.9 3 16.8(23.25 ⋅ 10 4 )214.8 − 3 e ≤ −214.8 + 10 + 10 ≤ 391mm 1606 1606 tMélGtibrmarbs; e = 364mm srésxagelIbMput sMrab;lkçxNÐRTbnÞúk 805.5 3 15.75(23.25 ⋅ 10 4 )235.6 − 3 e ≥ 235.6 + 10 − 10 ≥ 193mm 1344 1344 sésrxageRkambMput sMrab;lkçxNÐRTbnÞúk 805.5 3 2.96(23.25 ⋅ 10 4 )214.8 − 3 e ≥ −214.8 + 10 − 10 ≥ 274.5mm 1344 1344 esckþIENnaMBIebtugeRbkugRtaMg 595
  • 37. T.Chhay NPIC tMélGb,brmarbs; e = 274.5mm c. BicarNamuxkat;Rtg;cMgay 4.8m BIkNþalElVg ¬muxkat;elx # kñúgrUbTI 19>6 a¦³ M D ¬bnÞúkpÞal;¦ = 83.7 kN .m M a = 419.8kN .m M T = 503.5kN .m - srésxagelIbMput sMrab;lkçxNÐKμanbnÞúk e ≤ 333mm ¬Gtibrma¦ - srésxageRkambMput sMrab;lkçxNÐKμanbnÞúk e ≤ 360mm - srésxagelIbMput sMrab;lkçxNÐrgbnÞúk e ≥ −32mm - srésxageRkambMput sMrab;lkçxNÐrgbnÞúk e ≥ 50mm ¬Gb,brma¦ d. BicarNamuxkat;Rtg;cMgay 0.9m BIcugFñwm ¬RbEvg anchorage¦³ M D ¬bnÞúkpÞal;¦ = 35.3kN .m / M a = 177.1kN .m nig M T = 212.4kN .m - srésxagelIbMput sMrab;lkçxNÐKμanbnÞúk e ≤ 303mm ¬Gtibrma¦ - srésxageRkambMput sMrab;lkçxNÐKμanbnÞúk e ≤ 330mm - srésxagelIbMput sMrab;lkçxNÐrgbnÞúk e ≥ −248mm - srésxageRkambMput sMrab;lkçxNÐrgbnÞúk e ≥ −167mm ¬Gb,brma¦ $> Tendon profile RtUv)anbgðajenAkñúgrUbTI 19>6 b. cMNakp©itEdl)aneRCIserIsenAkNþalElVgKW e = 364mm EdlvaRKb;RKan;sMrab;muxkat; B enAcMgay 2.4m BIkNþalElVg. TIRbCMuTMgn;énEdk eRbkugRtaMgmanlkçN³edkcenøaH A nig B nigbnÞb;mkeTreLIgEdlmanlkçN³CabnÞat;cenøaHBI B eTA E . cMNakp©itenARtg;muxkat; C nig D RtUv)anKNnaedayeRbIbnÞat;eRTt BE EdlmanCMerl 364 / 4.8 = 75.83mm / m . cMNakp©itRtg; C KW 182mm nigRtg; D KW 68mm . Tendon profile Edl)aneRCIserIsbMeBjlkçxNÐEdnkMNt;xagelI nigEdnkMNt;xageRkamrbs;cMNakp©itenARKb; muxkat;TaMgGs;. karelIk tendon eLIgRtUv)aneFVIdUcxageRkam³ a. dak; tendon TaMg 20 ¬Ggát;p©it 11.125mm ¦ enAmYyPaKbIénkNþalElVgrbs;FñwmedaymanKMlat 50mm BIKñadUcbgðajenAkñúgrUbTI 19>6 a. edIm,IKNnacMNakp©itCak;EsþgenARtg;muxkat;kNþalElVg Kitm:Um:g;sMrab; tendon eFobnwg)at rbs;muxkat;³ esckþIENnaMBIebtugeRbkugRtaMg 596
  • 38. T.Chhay NPIC cMgayBI)at = 20 (16 × 125 + 4 × 275) = 155mm 1 e ¬kNþalElVg¦ = yb − 155 = 522 − 155 = 367 mm EdlvaEk,rnwg 364mm Edl)ansnμt;. RbsinebIebIeKdak; tendon BIrenAcMgay 75mm BI tendon EdlenAxageRkam enaHcMgayBI)atkøayeTACa 1 (16 × 125 + 2 × 250 + 2 × 325) = 158mm 20 enaHcMNakp©itnwgkøayeTACa 522 − 158 = 364mm EdlesμIweTAnwgcMNakp©itEdl)ansnμt;. Ca karGnuvtþ eKdak; tendon TaMgGs;edaymanKMlatBIKña 50mm . b. elIkEt tendon EdlenAkNþalcMnYn 12 eGayegIbeLIg. karBRgay tendon enAmuxkat;xag cugRtUv)anbgðajenAkñúgrUbTI 19>6 a. RtYtBinitücMNakp©itrbs; tendon edayKitm:Um:g;eFobTI RbCMuTMgn;rbs;muxkat;ebtugsMrab; tendon 12 enAxagelI nig tendon 8 eTotEdlRtUv)andak; enAxageRkam³ e= 1 (8 × 364 − 12 × 226) = 10mm 20 tMél e enHtUc nigRKb;RKan;. cMNakp©itCak;EsþgenAcMgay 0.9m BImuxkat;xagcug e= 0.9 (364 − 10) + 10 = 76mm 4.8 cMNakp©itCak;EsþgenAcMgay 2.4m BImuxkat;xagcugKW e= 1 (364 − 10) + 10 = 187mm 2 %> tMélkMNt;rbs; Fi ³ tMélrbs; Fi EdleRbIsMrab;karKNnaBIxagelIKW Fi = 1606kN . RtYtBinitü Fi Gb,brmaedayeRbIsmIkar 19.31: ⎡⎛ 1 ⎞ M L ( f t AK t ) ⎤ − ( f ti AK b )⎥ 1 Fi min = ⎢⎜ − 1⎟ M D + ⎜η ⎟ − (K b + K t ) ⎣⎝ ⎠ η η ⎦ 10 −3 ⎡⎛ 1 ⎢⎜ ⎞ − 1⎟150.6 ⋅ 106 + − ( ) 755.6 ⋅ 106 2.96 × 23.25 ⋅ 10 4 214.8 ⎤ ⎥ = ⎢⎝ 0.837 ⎠ 0.837 0.837 ⎥ (235.6 + 214.8) ⎢ ( ⎣− 1.32 × 23.25 ⋅ 10 × 235.6 4 ) ⎥ ⎦ = 1516.8kN vamantMéltUcCag Fi EdleRbI. RtYtBinitü Fi GtibrmaedayeRbIsmIkar 19.32: 1 ⎡⎛ 1 ⎞ M L f c AK b ⎤ Fi max = ⎢⎜1 − ⎟ M D − ⎜ η⎟ + + f ci AK t ⎥ (K b + K t ) ⎣⎝ ⎠ η η ⎦ esckþIENnaMBIebtugeRbkugRtaMg 597
  • 39. T.Chhay NPIC 10 −3 ⎡⎛ ⎢⎜1 − 1 ⎞ 6 755.6 ⋅ 10 ⎟150.6 ⋅ 10 − 6 + ( ) 15.75 23.25 ⋅ 10 4 235.6 ⎤ ⎥ = ⎢⎝ 0.837 ⎠ 0.837 0.837 ⎥ (235.6 + 214.8) ⎢ ( ⎣+ 16.8 23.25 ⋅ 10 214.8 4 ) ⎥ ⎦ = 2081.9kN vamantMélFMCag Fi EdleRbI. dUcenHmuxkat;eRKaHfñak;enAkNþalElVgKWRKb;RKan;. ^> RtYtBinitükMhatbg;eRbkugRtaMg edayeyIgman Fo = 1200MPa nig Aps = 1394mm2 kMlaMg Fo srub = 1200 × 1394 × 10−3 = 1672.8kN Ec = 27600MPa E n= s = Ec 200000 27600 = 7.25 yk n = 7 MD enAkNþalElVg = 150.6kN .m Fo + nAps f c (D.L.) × 2 Fi = 3 ⎛1 e 2⎞ ( 1 + nAps )⎜ + ⎟ ⎜A I ⎟ ⎝ ⎠ tMélrbs; fc Edl)anBIkarBRgaybnÞúkefrRtUvKuNnwg 2 / 3 edIm,IbgðajBIbMErbMrYlrag)a:ra:bUl rbs;kugRtaMgbnÞúkefrtambeNþayFñwm Edlpþl;eGaynUvtMélRbhak;RbEhlrbs; Fi )an RbesIrCag. a. kMNt;tMélmFümrbs; e2 EdlTTYlenAkñúgFñwm. ExSekagtMNageGay e2 RtUv)anbgðajenA kñúgrUbTI 19>6 c³ ⎡1 ⎤ 1 ⎢ (5776 × 0.9) + (5776 × 3.9) + (126720 × 3.9)⎥ 1 e 2 ¬mFüm¦ = 7.2 ⎢ 3 3 ⎥ ⎣+ (2.4 × 132496 ) ⎦ = 70414.7mm 2 e = 265mm RkLaépÞrbs;)a:ra:bUlesμInwgRkLaépÞrbs;ctuekaNEkg. b. kugRtaMgEdlbNþalBIbnÞúkefrenARtg;nIv:Urbs; tendon KW 150.6 × 265 f c (D.L.) = 10 6 = 1.53MPa 2.607 ⋅ 10 10 esckþIENnaMBIebtugeRbkugRtaMg 598
  • 40. T.Chhay NPIC 1672.8 ⋅ 103 + 7(1394) × 1.53 × 2 dUcenH Fi = ⎛ 3 70414.7 ⎞ 10 − 3 = 1575.1kN 1 + 7(1394 )⎜ 1 + ⎟ ⎝ 23.25 ⋅ 10 4 2.607 ⋅ 1010 ⎠ elastic loss KW 1672.8 − 1575.1 = 97.7kN = 5.8% . tMélenHKWFMCag elastic loss Edl)an snμt; 4% . kñúgmYyÉktþaRkLaépÞEdk = 1394 103 = 70MPa elastic loss 97.7 Fi kñúgmYyÉktþaRkLaépÞ = 1575.1 3 10 = 1130MPa 1394 c. kMhatbg;GaRs½ynwgeBl kMhat;bg;edaysarkarrYmmaDebtug = 60MPa ¬dUcelIkmun¦ kMhatbg;edaysar creep Fi 1575.1 elastic strain = = 103 = 2.45 ⋅ 10 − 4 Ac Ec ( ) 23.25 ⋅ 10 27600 4 Δf s = Cc (ε cr Es ) yk Cc = 1.5 enaH ( ) Δf s = 1.5 2.45 ⋅ 10 −4 200000 = 73.5MPa PaKrykMhatbg; = 73.5 1130 = 6.5% kMhatbg;edaysar relaxation rbs;EdkKW 48MPa ¬dUcelIkmun¦. kMhatbg;GaRs½ynwgeBl esμInwg 60 + 73.5 + 48 = 181.5MPa ehIyPaKrykMhatbg;KW 181.5 / 1130 = 16% Edlman tMélEk,rnwgtMélEdl)ansnμt; 15.7% . F = ηFi = (1 − 0.16)Fi = 0.84 Fi η = 0.84 5> KNnaGgát;rgkarBt;begáag Design of Flexural Members k> sBaØaNTUeTA General EpñkBIedIm)anbBa¢ak;fakugRtaMgenAsrésxagelIbMput nigsrésxageRkambMputénmuxkat;eRKaH fñak;rbs;Ggát;ebtugeRbkugRtaMgminRtUvFMCagkugRtaMgGnuBaØatsMrab;RKb;krNITaMgGs; b¤dMNak;kalén esckþIENnaMBIebtugeRbkugRtaMg 599
  • 41. T.Chhay NPIC kardak;bnÞúk. bEnßmBIelIlkçxNÐTaMgenH eKRtUvKNnaGgát;ebtugeRbkugRtaMgCamYynwgemKuNsuvtßi- PaBRKb;RKan;edIm,IRbqaMgnwgkar)ak;. ACI Code tMrUveGaym:Um:g;Edl)anBIbnÞúkemKuN M u minRtUvFM CagersIusþg;rgkarBt; φM n énmuxkat;Edl)anKNna. sMrab;krNI tension-controlled section, FñwmebtugeRbkugRtaMgcab;epþIm)ak;enAeBlEdlkug RtaMgEdkFMCag yield strength rbs;EdkEdleRbIenAkñúgmuxkat;ebtug. EdkeRbkugRtaMgersIusþg;nwgmin bgðajcMnuc yield c,as;las;dUcEdkFmμtaEdleRbIenAkñúgebtugGarem:eT. b:uEnþeRkamkarbEnßmbnÞúk strain enAkñúgEdkekIneLIgedayGRtay:agelOn ehIykar)ak;ekIteLIgenAeBl compressice strain Gtibrmarbs;ebtugmantMélesμInwg 0.003 ¬rUbTI 19>7¦. EdnkMNt;sMrab;EdkBRgwgrbs;Ggát;rgkarBt;ebtugeRbkugRtaMgEdlGaRs½yeTAtam ACI Code, Section 18.8 KWQrelI net tensile strain sMrab; tension-controlled, transition b¤ compression- esckþIENnaMBIebtugeRbkugRtaMg 600
  • 42. T.Chhay NPIC edayeKarBtam ACI Code, Section 10.3 dUcEdl)anBnül;enAkñúgCMBUk 3. em controlled section KuNkat;bnßyersIusþg; φ RtUv)aneGayenAkñúgCMBUkTI 3 edayQrelI ACI Code, Section 9.3. x> muxkat;ctuekaN Rectangular Sections eKGackMNt; Nominal moment capacity rbs;muxkat;ctuekaNdUcxageRkam ¬eyagtamrUb TI 19>7¦³ ⎛ a⎞ ⎛ a⎞ M n = C⎜ d − ⎟ = T ⎜ d − ⎟ (19.34) ⎝ 2⎠ ⎝ 2⎠ Edl T = Aps f s nig C = 0.85 f 'c ab . sMrab; C = T Aps f ps ρ p f ps a= = d (19.35| 0.85 f 'c b 0.85 f 'c EdlpleFobEdkeRbkugRtaMgKW ρ p = Aps / bd ehIy Aps nig f ps CaRkLaépÞ nigkugRtaMgTajrbs; EdkeRbkugRtaMg. yk ⎛ f ps ⎞ ωp = ρp⎜ ⎜ ⎟ ≤ 0.32 β1 ⎟ ⎝ f 'c ⎠ ωp bnÞab;mk a= 0.85 d (19.36) tMél ω p CakMlaMgenAkñúg tendon EdlRtUv)anvas;edaypÞal;. edIm,IFananUv tesion-controlled behavior, ACI Code, Section 18.8.1 kMNt;fa ω p minRtUvFMCag 0.32β1 EdkRtUvKñanwg net tensile strain ε t = 0.005 . cMNaMfa β1 = 0.85 sMrab; f 'c ≤ 28MPa nwgkat;bnßyeday 0.05 sMrab;ral; 7 MPa sMrab; 28MPa < f 'c < 56MPa ehIyesμInwg 0.65 sMrab; f 'c > 56MPa . eKk¾Gacsresr ⎛ a⎞ M n = Aps f ps ⎜ d − ⎟ ⎝ 2⎠ ⎛ ρ p f ps ⎞ ⎜ 1 .7 f ' ⎟ M n = A ps f ps d ⎜1 − ⎟ (19.37) ⎝ c ⎠ ⎛ ωp ⎞ ⎜ 1 .7 ⎟ M n = A ps f ps d ⎜1 − ⎟ (19.38) ⎝ ⎠ nig M u = φM n enAkúñgsmIkarBImun f ps CakugRtaMgenAkñúgEdkeRbkugRtaMgenAeBl)ak;. eKminGackMNt;tMél Cak;Esþgrbs; f ps edaygayRsYleT. dUcenH ACI Code, Section 18.7.2 GnuBaØateGay)a:n;RbmaN tMél f ps dUcxageRkam. esckþIENnaMBIebtugeRbkugRtaMg 601
  • 43. T.Chhay NPIC sMrab; bonded tendons ⎡ γp ⎛ f ⎞⎤ f ps = f pu ⎢1 − ⎜ ρ p × pu ⎟⎥ ⎜ (19.39) ⎢ β1 ⎣ ⎝ f 'c ⎟ ⎥ ⎠⎦ sMrab; unbonded tendon enAkñúgGgát;EdlmanpleFobElVgelIkMBs;tUcCag b¤esμI 35 ⎛ f 'c ⎞ f ps = ⎜ f se + 69 + ⎟ ≤ f py (19.40) ⎜ 100 ρ p ⎟ ⎝ ⎠ RbsinebI f se ≥ 0.5 f pu nigRbsinebI f ps sMrab; unbonded tendon minFMCag f py b¤ f se + 415MPa . sMrab; unbonded tendon enAkñúgGgát;EdlmanpleFobElVgelIkMBs;FMCag 35 ⎛ f 'c ⎞ f ps = ⎜ f se + 69 + ⎟ (19.41) ⎜ 300 ρ p ⎟ ⎝ ⎠ b:uEnþminRtUvFMCag f py b¤ f se + 207MPa Edl γ p = emKuNsMrab;RbePTrbs; tendon eRbkugRtaMg = 0.55 sMrab; f py / f pu EdlmintUcCag 0.8 = 0.4 sMrab; f py / f pu EdlmintUcCag 0.85 = 0.28 sMrab; f py / f pu EdlmintUcCag 0.9 f pu = ersIusþg;TajEdlkMNt;rbs;EdkeRbkugRtaMg f se = kugRtaMgRbsiT§PaBenAkñúgEdkeRbkugRtaMgeRkayeBlkMhatbg;TaMgGs; f py = specified yield strength rbs;EdkeRbkugRtaMg enAkñúgkrNIEdl ω p > 0.32β1 FñwmebtugeRbkugRtaMgCa compression-controlled section. edIm,IFananUv ductile failure eKkMNt; ω p RtwmtMélGtibrma 0.32β1 . sMrab; ω = 0.32β1 nig a = 0.377 β1d eyIgTTYl)an ⎛ 0.32 β1 ⎞ M n = Aps f ps d ⎜1 − ⎟ ⎝ 1.7 ⎠ ( ) = ρ p bd f ps d (1 − 0.188β1 ) = ω p f 'c (1 − 0.188β1 )bd 2 ( ) = 0.32β1 − 0.06β12 f 'c bd 2 (19.42) sMrab; f 'c = 35MPa / β = 0.8 . enaH 1 M n = 0.22 f 'c bd 2 = 1.09bd 2 dUcKña/ sMrab; / f 'c = 28MPa M n = 0.915bd 2 nigsMrab; / f 'c = 42 MPa M n = 1.238bd 2 esckþIENnaMBIebtugeRbkugRtaMg 602