SlideShare a Scribd company logo
1 of 21
FIXTURE DESIGN AND DEVELOPMENT FOR ALIGNMENT &
       WELDING TO PIPES


Batch no. VII
                                   Guided By
NAME OF THE STUDENTS
                                   Prof K S Sundar
 Pradeep Behera,
   Regn no. – 112082038             SOME/SASTRA University
 Pralay Shankar Mohanty
   Regn no. – 112082039
 Sibani Shankar Mishra
   Regn no. – 112082050
# As per our shop visit we have found that the pipes are welding by utilizing
 so many time in alignment & welding with more man power & effort .So we
 have planned to prepare a fixture which can be help full for reducing the
 man effort as well as man power with time ..

 # This savings will be a good impact for company & to reduce fatigue for
 labor & time

Index –of First Review


 About the project
 To whom and how this fixturet will be helpful
 Drawings
 Cost effectiveness
 Advantages
 Project Fabrication plan
requirement of alignment

1-allignment is the main & basic need for joining of two materials .



2-The pipes which are being to joint with each other by butt welding are
machined for edge preparation .After edge preparation the both pipes
kept in aligned position in such a manner that the three axis should be
match with each other.

3-The joining of two pipes is more essential for boiler industry .The
seamless steel pipes which has the crucial role for boiler parts such as
header ,steam lines , elbow joint ,bend joint etc are procured /prepared
from small length for transportation & machine facility point of view
,some times formed bend pipes also .These are required to form long
pipes by joining with one another .
After alignment of pipes




                           End prepared pipes
  After welding
OBJECTIVES OF THE FIXTURE




* To reduce the cycle time.
* To reduce additional man power.
* To reduce manufacturing cost.
* To increase productivity.
* To reduce effort of man power
* To avoid fatigue
* To improve quality of the product.
* To create safe working environment.
* To reduce human effort.
DESCRIPTION OF THE FIXTURE


The main parts of the fixture are-
 1. Rollers
 2. Shaft
 3. Bearing & Housing
 4. lead screw & half nut
 5. Column
 6. Base Plate
 7. Hand Wheel
 8. Adjustable v blocks
 9.Stand Wheels
FIXTURE FOR ALIGNING & WELDING THE END PREPARED PIPES
COST BENEFITS
             Old Method
                                                       New Method
1.Man power:1 welder and 2 Helper,1
                                           1.Man power:1 welder and
fitter,1 crane operator
                                           fitter,1 crane operator
2.Alignment time for one joint :
                                           2.Alignment time for one joint :
 1 hour
                                            15min (15/60 Hrs)
3.Cost for 1 no joint:
                                           3.Cost for 1 no joint:
 Rs.150x1x5(man hr) =Rs.750
                                            Rs.150x1x (15/60*3)(man hr)
                                           =Rs.112.5
4- total 10 joint is possible in three
shift
                                           4- total 10 joint is possible in
                                           three shift
5- Yearly joint cost : 10 x 300 x 750 =
22,50,000 INR
                                           5- Yearly joint cost : 10 x 300 x
                                           112.5 = 3,37,500 INR



         Total savings per annum : 19,12,500 INR
SIDE VIEW OF ALIGNMENT FIXTURE



                             75         75




                                  150        200


               18




                                                   30
FRONT VIEW OF FIXTURE
                            19
                            00
                            18
        21                  00        21
        013                           0
                                      13
         0                            0
                                           29
                                           0
                                           17
                                 10        5
                    HAND
                    WHEEL        0
                                            20
                                      25         30
                                      0          90

                                                      30



                                                           30


BALL
WHEEL


                            25
                            00
FREQUENTLY USED SEAMLESS STEEL PIPES



                                                Adjustable v blocks
PIPE OD X THICK       SPECIFICATION

   370 X 35            SA213TP304H
   360 X 30            SA335P91
   560 X 70            SA335P22
   270 X 50            SA335P12
   550 X 65            SA335P11
   560 X 60            SA312TP316
   320 X 90            SA335P92
   660 X 80            SA335P5
   711.2X45            SA335P9
   660.4X75            SA192          •The adjustable v blocks are used to
   457.2X95            SA312TP321     support & keep the circular section such
   457 X 80            SA335P92
   457 X 60                           as pipes to a required height .
                       SA335P23
   406.4X55
   368 X 60                           •This is also used to align the pipes in
   324 X 50
   219.2X32
                                      vertical axis
   720 X 65
WEIGHT OF THE USED
                  PIPES
  WT=VOLUME X DENSITY =3.142/4 X(D1^2- D2^2) X L
DESCRIPTION   OD      THK    ID     LENGTH   VOLUME       DENSITY   WT IN KG   * Since the weight of pipe (660x80 )
  370 X 35    370     35    300      2000     73679.9        8       589.44    is maximum ie. 2.333 ton ,the design
  360 X 30    360     30    300      2000     62211.6        8       497.69    will be made by considering this
  560 X 70    560     70    420      2000     215541.2       8       1724.33   weight
  270 X 50    270     50    170      2000      69124         8       552.99
  550 X 65    550     65    420      2000     198103.1       8       1584.82   * The fixture has to be withstand the
  560 X 60    560     60    440      2000     188520         8       1508.16   load of 2500 kg vertical load along
  320 X 90    320     90    140      2000     130078.8       8       1040.63
                                                                               with its own weight .
  660 X 80    660     80    500      2000     291577.6       8      2332.62

 711.2X45
              711.2   45    621.2    2000    188388.036      8       1507.10   * The 03 layer of plate has to be a
 660.4X75     660.4   75    510.4    2000    275899.02       8       2207.19   capacity to bear the static load &
 457.2X95
              457.2   95    267.2    2000    216226.156      8       1729.81
                                                                               dynamic load by avoiding from any
  457 X 80    457     80    297      2000    189525.44       8       1516.20
                                                                               bending moment .
  457 X 60    457     60    337      2000    149684.88       8       1197.48

 406.4X55
              406.4   55    296.4    2000    121450.868      8       971.61
                                                                               *The two adjustable V- block has to
  368 X 60    368     60    248      2000    116128.32       8       929.03
                                                                               be with stand the above load . ie 1.25
  324 X 50    324     50    224      2000     86090.8        8       688.73
                                                                               ton on each block
 219.2X32
              219.2   32    155.2    2000    37643.6736      8       301.15

  720 X 65    720     65    590      2000     267541.3       8       2140.33
PLATE MATLS : PLAIN CARBON
STEELAISI-SAE1020             HANDLE (OD x length):25X100
                              WT=0.39X4=1.56 KG
UPPER PLATE SIZE :
1800X1000X42 MM               HANDLE STUB : 65X50
WT1 =volume x density         WT=0.43 KG
=1.8x1x42x7.86 =594.2 kg
                              BEARING (CYLINDERICAL ROLLER TYPE)
MIDLE PLATE SIZE              UPPER PLATE : (4 NOS)
:1900X1600X42                 BEARING SIZE: SKF NU2211
WT2 =volume x density         (d=55,D=100,B=25,,static force=4650 kgf,
=1.8x1.6x42x7.86=951 kg       dynamic force=5400 ,N=8000 rpm ) -----
                              PSGDB-pg4.21
LOWER PLATE SIZE              SHAFT : 55x1054 .
:2500X1650X50                 Wt=19.66 kg
WT3 =volume x density
=2.5x1.65x50x7.86= 1621 KG   MIDDLE PLATE : (4 NOS)
                             BEARING SIZE: SKF NU2212
LEAD SCREW : 800 X50X3 pitch (d=60,D=110,B=28,,static force=6200 kgf,
SQUARE THREAD                dynamic force=7100 ,N=6000 rpm ) -----
WT=13 KG                     PSGDB-pg4.21
LEAD SCREW NUT :40 ( 02 NOS) SHAFT :60x1660
WT= 0 . 50 KG                Wt=36.84 kg

SHAFT : 50X1700 X4 NOS        STRAP /SCREW SUPPORT PLATE : 120X100X60
WT=10.79 X4 = 43.16 KG        ( 04 NOS)
                              Wt=.12x.1x60x7.86x4=22.64 kg
DESIGN OF V-BLOCK
Angle of v-block=90 degree
Weight of v block
Wt of V-plates=2(volume x density)=2(4.96m^3 x 7.86)=78kg
Wt of lower plate=530 x 70 x .210 x 7.86=61.24kg
Wt of base plate=300 x 20 x.250 x7.86=13.75kg
Wt of screw area=3.142/4 x(80)^2 x 350=13.5kg
Wt of collar =350 x(75^2-45^2)=31.1kg

Wt of nut=0.5kg
Wt of handle=.39kg x 4=1.56kg
Supporting strap=(.5 x 75 x120 x 10 x 7.86)x 4 =2.4kg
Total wt of one V-blocks=78+61.24+13.75+13.5+31.1+.5+1.56+2.4=202.05kg
ie.203kg
V-BLOCK WT=203kg
METAL : Mild Steel Plate
Screw nut : Chromium

Wt of two v-blocks=203 x2=406kg
Pipe wt=2500kg
Load on first surface plate=2500+406=2906kg
V BLOCK DESIGN
The adjustable V block has to carry a load of 2.5 ton of pipes metal
Max height to be lift (vertical) =175 mm
W=2.5 ton=2500x10=25000N since 1 kgf=10 N appx
H1=175 mm,(asume Screw matls comp strength=100 mpa,tensile
strength=200 mpa,
Nut is phosphorus bronze having elastic limit=100 mpa in tension ,&
90 mpa compn),80mpa shear
Ie. σet= σec=200N/MM^2,FOS=2)
Since screw is under compression ,
W= ∏/4dc^2xσec/FOS
25500=Maj dia c^2x200/2 Min dia(dc) Pitch(p)
Nominal
dia(d1)   ∏/4d
        bolt(d)
                 Majdianut(D
                 )
                                             Depth of
                                             thread bolt
                                                         Depth of
                                                         thread nut
                                                                    Core
                                                                    area(Ac)

So dc =18 mm 36.5
36      36        Standard dia=30 mm {Pg-6263.25
                             30     6        3             book} 707 per avl it
                                                                       (as
has take as 80 mm)



Torque required to rotate the screw in nut
D=(d0+dc)/2=(36+30)/2=33 mm
Tan alpha =p / ∏ d=6/(∏x33)=0.579
Asume µ =Tan θ =.014
Torque =pxd/2 =w [tan α+tan θi)/(1-tan α x tan θ)] x d/2
=25500[.0579+.14/(1-.0579x.14)]x33/2=83946 Nmm
Tensile stress due to axial load=σc=W/A=w/ (∏/4 d^2)=25500/(3.142 /
Max principal stress due to tensile & compressive
                                                                  Thickness of nut collar
σc max=1/2 [σc+ √ {σc^2+ (4τ^2)]=.5[36+ √
                                                                  W= ∏d1t1 τ
(36^2+4x15.8^2)=42 N/mm^2                                         25500=3.142x50xt1x80/2
Since design vale ie 100mpa is much higher than this value        T1=8 mm
design is safe                                                    Thickness of nut collar=8mm
Max =1/2 [σc+ √ (4τ^2)=.5x √(36^2+4x15.8^2)]=24 N/mm^2
Since this value is less than asume value (100 mpa) design safe

Design of nut
Height of nut=nxp=no of threadxpitch
T=thickness of screw =p/2=6/2=3 mm
Asume load is UDL &
Bearing preassure =Pb=18 N/mm^2
Pb =w/{ ∏/4(d1^2-d2^2)}xn
18=25500/[3.142/4(36^2-30^2)xn
No of thread (n)=5
Take n=10 nos
Height of nut =h=nx6=10x6=60 mm
Shear stress on screw =w/(∏ndt)=25500/(∏x10x30x3)=9 N/mm^2
Shear stress on nut= w/(∏nd1t)=25500/ (∏x10x36x3)=8 N/mm^2
Since develop stress is less than asume stress ,design is safe
Collar design
Considering crushing of collar
Od of nut
W= ∏/4(D^2-d^2) σt                    σt= σt asume / Fos
25500= ∏/4(D1^2-36^2) 100/2
D1=50 mm
Od of nut=50 mm
W= ∏/4(D2^2-d^2) σc
25500=3.142[D^2- 50^2}x90/2
D=60 mm ie outer dia of collar
Plate design
Due to impact load low -carbon steel with case hardening is preferred
First plate size=(1800 x 1000 x 42)mm^3
Area=1800 x 1 =1.8 m^2
Force=mass x acceleration due to gravity = 2906 x9.81 =28507.86
ie.28508N=28058KN
Stress=force/area=28508/1.8=15837.7 ie.15838N/m^2

For rolling action:
Shaft design
The shaft is subjected to bending moment only
M/I= σb/y
M=bending moment
I=moment of inertia
σb=bending stress
y=distance
Since total 28.5KN ie.29KN on both shaft
Load on shaft=28.5KN + plate wt=28.5+(594.2 x9.81)=34.337 ie.34.4KN
Load on each bearing=34.4/4=8.584 ie.8.6KN
Wt of four bearings=4 x (3.142(R^2-r^2)x thk=4x3.8kg=15.2kg
First plate design
Assuming concentrating load(ie. Creating maximum stress),
 t1=k √ [(a x b x f)/(σt(a^2+b^2)]
 a=length of plate
 b=breadth of plate
 k=coefficient=3.45
 P=load
σt =design stress
        =697N/mm^2 (for C45 steel)
So t1=3.45[(1800x1000x28508)/(697x(1800^2+1000^2)]^(1/2)=14.4mm
1stPlate thickness assumed as =20mm

First shaft row design
Load on each shaft=34.4/2=17.2kN
Length=1800+(30x2)+(20x2)=1900mm
Considering shaft as an simple supported beam with UDL on it,
M=WL^2/8
   =17.28x1000x1.9^2/8=7761Nm^2=791kgfm
Max bending moment= (3.141/32)xsigmabxd^3=7761
                       =>(3.141/32)x.114d^3=7761
                       =>d=90mm              (DDB-PG 7.20 ,R20 SERIES)
Bearing design
Force fall on bearing=34.4kn+shaft force=34.4 KN+(2x97.06x9.81)=36.3 KN
Shaft wt=( OD90 & L 1900) =97.06KG
There will be 04 no's of bearing are required at this stage
Force fall on each bearing =36300/4=9076 N=9076/9.81=925 KGF
From data book the standard size of bearing is =SKF6318
qty-=04 nos
[d=90,D=190,B=43,r=4,static force=9800KGF,Dynamic force =11200 KGF]
Second plate design
Weight falling on 2nd plate =34.4kn+shaftwt above the plate+4 bearing
wt=34400/9.81+(2x97.06)+(4x7.42)=3731 kg
Force falling on 2nd plate=3731x9.81=36596N=36.6KN
So 2nd plate has to be a capacity to withstand 36.6KN Force
Plate size =1800x1600
Thickness of plate (t2)=k3√[abf/{σt(a^2+b^2)}]                    k3=3.45 pg253

3.45 √[1800x1600x36600/{697(1800^2+1600^2)}]=17.7 ie 25 mm              (std
size )
T2=thick of 2nd plate=25 mm
Second plate shaft design
There will be 02 nos of shaft
Load on each shaft=(36.6KN+plate force) /2={36600+(680x9.81)}/2=21632N
Required shaft length=1700 mm
M=WL^2/8=21700x1.7^2/8=7840 NM^2
Since max bending moment (M)=∏/32xσbxd^3                                              σb=920kgf, DDB-7.24
SO d2=96 MM ie. 100 mm
Bearing size
From DDB PG-4.14,
BEARING size-SKF100BC03
{d=100,D=215,B=47,r=4,static capacity=13200kgf,dynamic capacity=13700kgf }
Bottom plate /3rd plate design
Load falls on this plate =(21.7KNX2)+(shaft wtx2)+bearing wt
=(21700x2)+(2x105x9.81)+(4x10.5x9.81)=45.9 KN ie.46 KN force
Plate size=2500X1680
Thickness of plate (t3)=K3 √ [(a x b x f)/(σt(a^2+b^2)]
=3.45     √ [(2500x1680x4600)/[697(2500^2+1680^2]=25mm
Thickness of 3rd plate (t3)=30mm
Wt of matls upto this plate =46kn/9.81 +3rd plate wt
=4690+972=5.7ton
Lead screw design to provide to & fro motion to 1st plate
W=∏/4xdc^2xσt
28500= ∏/4xdc^2x100                       since σt=100N/MM^2
.dc=20 mm
Standard size of scre thread=25 mm                              Pg-626 D book
Nominal   Maj dia   Majdianut   Min       Pitch(p)   Depth of   Depth of   Core
dia(d1)   bolt(d)   (D)         dia(dc)              thread     thread     area(Ac)
                                                     bolt       nut

28        28        28.5        25        3          1.5        1.75       491
Length of the stud =600 mm
Other end there is a supporting rod of 18 mm dia which has to
fit with bush in the supporting strap having length =600 mm
2nd plate Rack & pinion design
Length of rack=1500 mm
Module =3
Press angle=20degree
No of teeth in pinion=12
Centre distance =ZM/2+H=51.8 mm
Pitch dia=d=zm=36
Addendum for pinion=M(1+X)=4.8
Addendum forrack=3
Bearing size=SKF6309 (with housing)
[d=45,D=100,B=25,stat force=3000.Dyn=4150)
Qty=2 nos
Shaft=45 mm having length 1500mm
Rotating wheel design
Wheel dia=170 mm, having 04 support with hub
Hub dia for 1st plate=90 id & 110 od
Hub dia for 2nd plate= 100 id & 120 od
Stand & bottom wheel design
There are 04 nos of ball wheel rqd having 360 deg movement in
their own axis .

More Related Content

What's hot

MET 304 Belt drives
MET 304 Belt drivesMET 304 Belt drives
MET 304 Belt drives
hotman1991
 
Thermitrex Sks Crane Rail Process
Thermitrex Sks Crane Rail ProcessThermitrex Sks Crane Rail Process
Thermitrex Sks Crane Rail Process
Thermitrex
 
Como calcular a potencia do motor e selecionar o redutor no acionamento de ma...
Como calcular a potencia do motor e selecionar o redutor no acionamento de ma...Como calcular a potencia do motor e selecionar o redutor no acionamento de ma...
Como calcular a potencia do motor e selecionar o redutor no acionamento de ma...
Luiz Roberto Prado
 
160316_Proposal for SAMAN FARAZ GHESHM Ultra Low Coal Seam Longwall Mining Un...
160316_Proposal for SAMAN FARAZ GHESHM Ultra Low Coal Seam Longwall Mining Un...160316_Proposal for SAMAN FARAZ GHESHM Ultra Low Coal Seam Longwall Mining Un...
160316_Proposal for SAMAN FARAZ GHESHM Ultra Low Coal Seam Longwall Mining Un...
Serena Fu
 

What's hot (19)

Spur gear problem and solution
Spur gear   problem and solutionSpur gear   problem and solution
Spur gear problem and solution
 
3. v belt and sample problem
3. v belt and sample problem3. v belt and sample problem
3. v belt and sample problem
 
MET 304 Belt drives
MET 304 Belt drivesMET 304 Belt drives
MET 304 Belt drives
 
Design of block brakes
Design of block brakesDesign of block brakes
Design of block brakes
 
Worm gear design
Worm gear designWorm gear design
Worm gear design
 
Iai isb sspa_catalog
Iai isb sspa_catalogIai isb sspa_catalog
Iai isb sspa_catalog
 
10 main body of thesis chap 6
10 main body of thesis chap 610 main body of thesis chap 6
10 main body of thesis chap 6
 
Circular vibrating screen product introduction pdf
Circular vibrating screen product introduction pdfCircular vibrating screen product introduction pdf
Circular vibrating screen product introduction pdf
 
Deluxe Book Stitchers M30-AST & M30-BST (32MM) Machines - Printfinish.com
Deluxe Book Stitchers M30-AST & M30-BST (32MM) Machines - Printfinish.comDeluxe Book Stitchers M30-AST & M30-BST (32MM) Machines - Printfinish.com
Deluxe Book Stitchers M30-AST & M30-BST (32MM) Machines - Printfinish.com
 
Trole talha 2 t
Trole talha 2 tTrole talha 2 t
Trole talha 2 t
 
Thermitrex Sks Crane Rail Process
Thermitrex Sks Crane Rail ProcessThermitrex Sks Crane Rail Process
Thermitrex Sks Crane Rail Process
 
Design of Roller Chain Drive theory by Prof. Sagar A. Dhotare
Design of Roller Chain Drive theory  by Prof. Sagar A. DhotareDesign of Roller Chain Drive theory  by Prof. Sagar A. Dhotare
Design of Roller Chain Drive theory by Prof. Sagar A. Dhotare
 
Elemen Mesin II - Rodagigi Lurus
Elemen Mesin II - Rodagigi LurusElemen Mesin II - Rodagigi Lurus
Elemen Mesin II - Rodagigi Lurus
 
Transmision manual hiunday
Transmision manual  hiundayTransmision manual  hiunday
Transmision manual hiunday
 
Como calcular a potencia do motor e selecionar o redutor no acionamento de ma...
Como calcular a potencia do motor e selecionar o redutor no acionamento de ma...Como calcular a potencia do motor e selecionar o redutor no acionamento de ma...
Como calcular a potencia do motor e selecionar o redutor no acionamento de ma...
 
Rotary vibrating screen product introduction
Rotary vibrating screen product introductionRotary vibrating screen product introduction
Rotary vibrating screen product introduction
 
Introduction of Spur Gear theory by_Prof. Sagar Dhotare
Introduction of Spur Gear theory by_Prof. Sagar DhotareIntroduction of Spur Gear theory by_Prof. Sagar Dhotare
Introduction of Spur Gear theory by_Prof. Sagar Dhotare
 
160316_Proposal for SAMAN FARAZ GHESHM Ultra Low Coal Seam Longwall Mining Un...
160316_Proposal for SAMAN FARAZ GHESHM Ultra Low Coal Seam Longwall Mining Un...160316_Proposal for SAMAN FARAZ GHESHM Ultra Low Coal Seam Longwall Mining Un...
160316_Proposal for SAMAN FARAZ GHESHM Ultra Low Coal Seam Longwall Mining Un...
 
Belt drives and chain drives
Belt drives and chain drivesBelt drives and chain drives
Belt drives and chain drives
 

Viewers also liked

Lobotzke Oz Clinic
Lobotzke Oz ClinicLobotzke Oz Clinic
Lobotzke Oz Clinic
brandonk12
 
preguntas del III corte
preguntas del III cortepreguntas del III corte
preguntas del III corte
VilmaBracho
 
Workab Presentation Day 4
Workab Presentation Day 4Workab Presentation Day 4
Workab Presentation Day 4
Jaime de la Cal
 
Biz Performance Overview
Biz Performance OverviewBiz Performance Overview
Biz Performance Overview
David Brown
 
CV Sarah Stefanini - Español
CV Sarah Stefanini - EspañolCV Sarah Stefanini - Español
CV Sarah Stefanini - Español
Sarah Stefanini
 
Bitácora 4
Bitácora 4Bitácora 4
Bitácora 4
Sthiven
 

Viewers also liked (20)

Trabalho aco cearense
Trabalho aco cearenseTrabalho aco cearense
Trabalho aco cearense
 
Lobotzke Oz Clinic
Lobotzke Oz ClinicLobotzke Oz Clinic
Lobotzke Oz Clinic
 
preguntas del III corte
preguntas del III cortepreguntas del III corte
preguntas del III corte
 
Ingsistemas
IngsistemasIngsistemas
Ingsistemas
 
Rocky mountains michael
Rocky mountains michaelRocky mountains michael
Rocky mountains michael
 
Workab Presentation Day 4
Workab Presentation Day 4Workab Presentation Day 4
Workab Presentation Day 4
 
AngloGold Ashanti Colombia
AngloGold Ashanti ColombiaAngloGold Ashanti Colombia
AngloGold Ashanti Colombia
 
Edital TRT-15 - Tecnico e analista (2013)
Edital TRT-15 - Tecnico e analista (2013)Edital TRT-15 - Tecnico e analista (2013)
Edital TRT-15 - Tecnico e analista (2013)
 
Biz Performance Overview
Biz Performance OverviewBiz Performance Overview
Biz Performance Overview
 
Zimbra COMO DEBEMOS UTILIZARLO
Zimbra COMO DEBEMOS UTILIZARLOZimbra COMO DEBEMOS UTILIZARLO
Zimbra COMO DEBEMOS UTILIZARLO
 
Balan o souza_cruz
Balan o souza_cruzBalan o souza_cruz
Balan o souza_cruz
 
Pompe sommerse Flygt - Fornid
Pompe sommerse Flygt - FornidPompe sommerse Flygt - Fornid
Pompe sommerse Flygt - Fornid
 
Andy J Climate change and silvo-pastoral systems
Andy J Climate change and silvo-pastoral systemsAndy J Climate change and silvo-pastoral systems
Andy J Climate change and silvo-pastoral systems
 
Construcao da competencia
Construcao da competenciaConstrucao da competencia
Construcao da competencia
 
CV Sarah Stefanini - Español
CV Sarah Stefanini - EspañolCV Sarah Stefanini - Español
CV Sarah Stefanini - Español
 
Cartilha - Eleições 2016
Cartilha - Eleições 2016 Cartilha - Eleições 2016
Cartilha - Eleições 2016
 
Ejpractico3excel
Ejpractico3excelEjpractico3excel
Ejpractico3excel
 
Bitácora 4
Bitácora 4Bitácora 4
Bitácora 4
 
Informaticai
InformaticaiInformaticai
Informaticai
 
Acceso al Conocimiento, Una Guía Para Todos
Acceso al Conocimiento, Una Guía Para TodosAcceso al Conocimiento, Una Guía Para Todos
Acceso al Conocimiento, Una Guía Para Todos
 

Similar to 2nd review

SEW Power Presses: SNX Serese Power Press Brochure
SEW Power Presses: SNX Serese Power Press BrochureSEW Power Presses: SNX Serese Power Press Brochure
SEW Power Presses: SNX Serese Power Press Brochure
Singhal Power Presses Pvt. Ltd.,
 
ASI Technical Reference Guide
ASI Technical Reference GuideASI Technical Reference Guide
ASI Technical Reference Guide
cshebesta
 
Longwall AFC changing - innovation
Longwall AFC changing - innovationLongwall AFC changing - innovation
Longwall AFC changing - innovation
VR M
 
MAIN CANOPY BAJAJ HR(22.09.2016)
MAIN CANOPY BAJAJ HR(22.09.2016)MAIN CANOPY BAJAJ HR(22.09.2016)
MAIN CANOPY BAJAJ HR(22.09.2016)
sufiyan shaikh
 
Lecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16 (1).pdf
Lecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16 (1).pdfLecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16 (1).pdf
Lecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16 (1).pdf
ssuserd8a85b
 
Lecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16 (1).pdf
Lecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16 (1).pdfLecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16 (1).pdf
Lecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16 (1).pdf
ssuserd8a85b
 
Xlpe pdf
Xlpe pdfXlpe pdf
Xlpe pdf
idinjan
 
FIBRO (GERMANY) OILLESS PARTS CATALOGUE
FIBRO (GERMANY) OILLESS PARTS CATALOGUEFIBRO (GERMANY) OILLESS PARTS CATALOGUE
FIBRO (GERMANY) OILLESS PARTS CATALOGUE
VIVEK KUMAR
 
Entrance arch japanese
Entrance arch japaneseEntrance arch japanese
Entrance arch japanese
daidesign
 
Awaji Technical Brochure
Awaji Technical BrochureAwaji Technical Brochure
Awaji Technical Brochure
Jeremy Francis
 

Similar to 2nd review (20)

Connections
Connections Connections
Connections
 
SEW Power Presses: SNX Serese Power Press Brochure
SEW Power Presses: SNX Serese Power Press BrochureSEW Power Presses: SNX Serese Power Press Brochure
SEW Power Presses: SNX Serese Power Press Brochure
 
ASI Technical Reference Guide
ASI Technical Reference GuideASI Technical Reference Guide
ASI Technical Reference Guide
 
Longwall AFC changing - innovation
Longwall AFC changing - innovationLongwall AFC changing - innovation
Longwall AFC changing - innovation
 
MAIN CANOPY BAJAJ HR(22.09.2016)
MAIN CANOPY BAJAJ HR(22.09.2016)MAIN CANOPY BAJAJ HR(22.09.2016)
MAIN CANOPY BAJAJ HR(22.09.2016)
 
Dynaboltinstall
DynaboltinstallDynaboltinstall
Dynaboltinstall
 
Lecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16.pdf
Lecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16.pdfLecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16.pdf
Lecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16.pdf
 
Lecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16 (1).pdf
Lecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16 (1).pdfLecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16 (1).pdf
Lecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16 (1).pdf
 
Lecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16 (1).pdf
Lecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16 (1).pdfLecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16 (1).pdf
Lecture-5-Slabs-and-Flat-Slabs-PHG-N-Rev13-15-Oct-16 (1).pdf
 
Jaw Crusher
Jaw CrusherJaw Crusher
Jaw Crusher
 
Svedala 1208
Svedala 1208Svedala 1208
Svedala 1208
 
Benefits of Using Angle Heads for VMC|Kuvam Technologies
  Benefits of Using Angle Heads for VMC|Kuvam Technologies  Benefits of Using Angle Heads for VMC|Kuvam Technologies
Benefits of Using Angle Heads for VMC|Kuvam Technologies
 
Gantry girder Analyse & design
Gantry girder Analyse & designGantry girder Analyse & design
Gantry girder Analyse & design
 
Xlpe pdf
Xlpe pdfXlpe pdf
Xlpe pdf
 
FIBRO (GERMANY) OILLESS PARTS CATALOGUE
FIBRO (GERMANY) OILLESS PARTS CATALOGUEFIBRO (GERMANY) OILLESS PARTS CATALOGUE
FIBRO (GERMANY) OILLESS PARTS CATALOGUE
 
Entrance arch japanese
Entrance arch japaneseEntrance arch japanese
Entrance arch japanese
 
Week 9 Lecture Material_watermark.pdf
Week 9 Lecture Material_watermark.pdfWeek 9 Lecture Material_watermark.pdf
Week 9 Lecture Material_watermark.pdf
 
Awaji Technical Brochure
Awaji Technical BrochureAwaji Technical Brochure
Awaji Technical Brochure
 
Tk catalog english_18_1
Tk catalog english_18_1Tk catalog english_18_1
Tk catalog english_18_1
 
Footing-Biaxial_pdf-a.pdf
Footing-Biaxial_pdf-a.pdfFooting-Biaxial_pdf-a.pdf
Footing-Biaxial_pdf-a.pdf
 

Recently uploaded

1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 

Recently uploaded (20)

ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
 
Role Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxRole Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptx
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 

2nd review

  • 1. FIXTURE DESIGN AND DEVELOPMENT FOR ALIGNMENT & WELDING TO PIPES Batch no. VII Guided By NAME OF THE STUDENTS Prof K S Sundar  Pradeep Behera, Regn no. – 112082038 SOME/SASTRA University  Pralay Shankar Mohanty Regn no. – 112082039  Sibani Shankar Mishra Regn no. – 112082050
  • 2. # As per our shop visit we have found that the pipes are welding by utilizing so many time in alignment & welding with more man power & effort .So we have planned to prepare a fixture which can be help full for reducing the man effort as well as man power with time .. # This savings will be a good impact for company & to reduce fatigue for labor & time Index –of First Review About the project To whom and how this fixturet will be helpful Drawings Cost effectiveness Advantages Project Fabrication plan
  • 3. requirement of alignment 1-allignment is the main & basic need for joining of two materials . 2-The pipes which are being to joint with each other by butt welding are machined for edge preparation .After edge preparation the both pipes kept in aligned position in such a manner that the three axis should be match with each other. 3-The joining of two pipes is more essential for boiler industry .The seamless steel pipes which has the crucial role for boiler parts such as header ,steam lines , elbow joint ,bend joint etc are procured /prepared from small length for transportation & machine facility point of view ,some times formed bend pipes also .These are required to form long pipes by joining with one another .
  • 4. After alignment of pipes End prepared pipes After welding
  • 5. OBJECTIVES OF THE FIXTURE * To reduce the cycle time. * To reduce additional man power. * To reduce manufacturing cost. * To increase productivity. * To reduce effort of man power * To avoid fatigue * To improve quality of the product. * To create safe working environment. * To reduce human effort.
  • 6. DESCRIPTION OF THE FIXTURE The main parts of the fixture are- 1. Rollers 2. Shaft 3. Bearing & Housing 4. lead screw & half nut 5. Column 6. Base Plate 7. Hand Wheel 8. Adjustable v blocks 9.Stand Wheels
  • 7. FIXTURE FOR ALIGNING & WELDING THE END PREPARED PIPES
  • 8. COST BENEFITS Old Method New Method 1.Man power:1 welder and 2 Helper,1 1.Man power:1 welder and fitter,1 crane operator fitter,1 crane operator 2.Alignment time for one joint : 2.Alignment time for one joint : 1 hour 15min (15/60 Hrs) 3.Cost for 1 no joint: 3.Cost for 1 no joint: Rs.150x1x5(man hr) =Rs.750 Rs.150x1x (15/60*3)(man hr) =Rs.112.5 4- total 10 joint is possible in three shift 4- total 10 joint is possible in three shift 5- Yearly joint cost : 10 x 300 x 750 = 22,50,000 INR 5- Yearly joint cost : 10 x 300 x 112.5 = 3,37,500 INR Total savings per annum : 19,12,500 INR
  • 9. SIDE VIEW OF ALIGNMENT FIXTURE 75 75 150 200 18 30
  • 10. FRONT VIEW OF FIXTURE 19 00 18 21 00 21 013 0 13 0 0 29 0 17 10 5 HAND WHEEL 0 20 25 30 0 90 30 30 BALL WHEEL 25 00
  • 11. FREQUENTLY USED SEAMLESS STEEL PIPES Adjustable v blocks PIPE OD X THICK SPECIFICATION 370 X 35 SA213TP304H 360 X 30 SA335P91 560 X 70 SA335P22 270 X 50 SA335P12 550 X 65 SA335P11 560 X 60 SA312TP316 320 X 90 SA335P92 660 X 80 SA335P5 711.2X45 SA335P9 660.4X75 SA192 •The adjustable v blocks are used to 457.2X95 SA312TP321 support & keep the circular section such 457 X 80 SA335P92 457 X 60 as pipes to a required height . SA335P23 406.4X55 368 X 60 •This is also used to align the pipes in 324 X 50 219.2X32 vertical axis 720 X 65
  • 12. WEIGHT OF THE USED PIPES WT=VOLUME X DENSITY =3.142/4 X(D1^2- D2^2) X L DESCRIPTION OD THK ID LENGTH VOLUME DENSITY WT IN KG * Since the weight of pipe (660x80 ) 370 X 35 370 35 300 2000 73679.9 8 589.44 is maximum ie. 2.333 ton ,the design 360 X 30 360 30 300 2000 62211.6 8 497.69 will be made by considering this 560 X 70 560 70 420 2000 215541.2 8 1724.33 weight 270 X 50 270 50 170 2000 69124 8 552.99 550 X 65 550 65 420 2000 198103.1 8 1584.82 * The fixture has to be withstand the 560 X 60 560 60 440 2000 188520 8 1508.16 load of 2500 kg vertical load along 320 X 90 320 90 140 2000 130078.8 8 1040.63 with its own weight . 660 X 80 660 80 500 2000 291577.6 8 2332.62 711.2X45 711.2 45 621.2 2000 188388.036 8 1507.10 * The 03 layer of plate has to be a 660.4X75 660.4 75 510.4 2000 275899.02 8 2207.19 capacity to bear the static load & 457.2X95 457.2 95 267.2 2000 216226.156 8 1729.81 dynamic load by avoiding from any 457 X 80 457 80 297 2000 189525.44 8 1516.20 bending moment . 457 X 60 457 60 337 2000 149684.88 8 1197.48 406.4X55 406.4 55 296.4 2000 121450.868 8 971.61 *The two adjustable V- block has to 368 X 60 368 60 248 2000 116128.32 8 929.03 be with stand the above load . ie 1.25 324 X 50 324 50 224 2000 86090.8 8 688.73 ton on each block 219.2X32 219.2 32 155.2 2000 37643.6736 8 301.15 720 X 65 720 65 590 2000 267541.3 8 2140.33
  • 13. PLATE MATLS : PLAIN CARBON STEELAISI-SAE1020 HANDLE (OD x length):25X100 WT=0.39X4=1.56 KG UPPER PLATE SIZE : 1800X1000X42 MM HANDLE STUB : 65X50 WT1 =volume x density WT=0.43 KG =1.8x1x42x7.86 =594.2 kg BEARING (CYLINDERICAL ROLLER TYPE) MIDLE PLATE SIZE UPPER PLATE : (4 NOS) :1900X1600X42 BEARING SIZE: SKF NU2211 WT2 =volume x density (d=55,D=100,B=25,,static force=4650 kgf, =1.8x1.6x42x7.86=951 kg dynamic force=5400 ,N=8000 rpm ) ----- PSGDB-pg4.21 LOWER PLATE SIZE SHAFT : 55x1054 . :2500X1650X50 Wt=19.66 kg WT3 =volume x density =2.5x1.65x50x7.86= 1621 KG MIDDLE PLATE : (4 NOS) BEARING SIZE: SKF NU2212 LEAD SCREW : 800 X50X3 pitch (d=60,D=110,B=28,,static force=6200 kgf, SQUARE THREAD dynamic force=7100 ,N=6000 rpm ) ----- WT=13 KG PSGDB-pg4.21 LEAD SCREW NUT :40 ( 02 NOS) SHAFT :60x1660 WT= 0 . 50 KG Wt=36.84 kg SHAFT : 50X1700 X4 NOS STRAP /SCREW SUPPORT PLATE : 120X100X60 WT=10.79 X4 = 43.16 KG ( 04 NOS) Wt=.12x.1x60x7.86x4=22.64 kg
  • 14. DESIGN OF V-BLOCK Angle of v-block=90 degree Weight of v block Wt of V-plates=2(volume x density)=2(4.96m^3 x 7.86)=78kg Wt of lower plate=530 x 70 x .210 x 7.86=61.24kg Wt of base plate=300 x 20 x.250 x7.86=13.75kg Wt of screw area=3.142/4 x(80)^2 x 350=13.5kg Wt of collar =350 x(75^2-45^2)=31.1kg Wt of nut=0.5kg Wt of handle=.39kg x 4=1.56kg Supporting strap=(.5 x 75 x120 x 10 x 7.86)x 4 =2.4kg Total wt of one V-blocks=78+61.24+13.75+13.5+31.1+.5+1.56+2.4=202.05kg ie.203kg V-BLOCK WT=203kg METAL : Mild Steel Plate Screw nut : Chromium Wt of two v-blocks=203 x2=406kg Pipe wt=2500kg Load on first surface plate=2500+406=2906kg
  • 15. V BLOCK DESIGN The adjustable V block has to carry a load of 2.5 ton of pipes metal Max height to be lift (vertical) =175 mm W=2.5 ton=2500x10=25000N since 1 kgf=10 N appx H1=175 mm,(asume Screw matls comp strength=100 mpa,tensile strength=200 mpa, Nut is phosphorus bronze having elastic limit=100 mpa in tension ,& 90 mpa compn),80mpa shear Ie. σet= σec=200N/MM^2,FOS=2) Since screw is under compression , W= ∏/4dc^2xσec/FOS 25500=Maj dia c^2x200/2 Min dia(dc) Pitch(p) Nominal dia(d1) ∏/4d bolt(d) Majdianut(D ) Depth of thread bolt Depth of thread nut Core area(Ac) So dc =18 mm 36.5 36 36 Standard dia=30 mm {Pg-6263.25 30 6 3 book} 707 per avl it (as has take as 80 mm) Torque required to rotate the screw in nut D=(d0+dc)/2=(36+30)/2=33 mm Tan alpha =p / ∏ d=6/(∏x33)=0.579 Asume µ =Tan θ =.014 Torque =pxd/2 =w [tan α+tan θi)/(1-tan α x tan θ)] x d/2 =25500[.0579+.14/(1-.0579x.14)]x33/2=83946 Nmm Tensile stress due to axial load=σc=W/A=w/ (∏/4 d^2)=25500/(3.142 /
  • 16. Max principal stress due to tensile & compressive Thickness of nut collar σc max=1/2 [σc+ √ {σc^2+ (4τ^2)]=.5[36+ √ W= ∏d1t1 τ (36^2+4x15.8^2)=42 N/mm^2 25500=3.142x50xt1x80/2 Since design vale ie 100mpa is much higher than this value T1=8 mm design is safe Thickness of nut collar=8mm Max =1/2 [σc+ √ (4τ^2)=.5x √(36^2+4x15.8^2)]=24 N/mm^2 Since this value is less than asume value (100 mpa) design safe Design of nut Height of nut=nxp=no of threadxpitch T=thickness of screw =p/2=6/2=3 mm Asume load is UDL & Bearing preassure =Pb=18 N/mm^2 Pb =w/{ ∏/4(d1^2-d2^2)}xn 18=25500/[3.142/4(36^2-30^2)xn No of thread (n)=5 Take n=10 nos Height of nut =h=nx6=10x6=60 mm Shear stress on screw =w/(∏ndt)=25500/(∏x10x30x3)=9 N/mm^2 Shear stress on nut= w/(∏nd1t)=25500/ (∏x10x36x3)=8 N/mm^2 Since develop stress is less than asume stress ,design is safe Collar design Considering crushing of collar Od of nut W= ∏/4(D^2-d^2) σt σt= σt asume / Fos 25500= ∏/4(D1^2-36^2) 100/2 D1=50 mm Od of nut=50 mm W= ∏/4(D2^2-d^2) σc 25500=3.142[D^2- 50^2}x90/2 D=60 mm ie outer dia of collar
  • 17. Plate design Due to impact load low -carbon steel with case hardening is preferred First plate size=(1800 x 1000 x 42)mm^3 Area=1800 x 1 =1.8 m^2 Force=mass x acceleration due to gravity = 2906 x9.81 =28507.86 ie.28508N=28058KN Stress=force/area=28508/1.8=15837.7 ie.15838N/m^2 For rolling action: Shaft design The shaft is subjected to bending moment only M/I= σb/y M=bending moment I=moment of inertia σb=bending stress y=distance Since total 28.5KN ie.29KN on both shaft Load on shaft=28.5KN + plate wt=28.5+(594.2 x9.81)=34.337 ie.34.4KN Load on each bearing=34.4/4=8.584 ie.8.6KN Wt of four bearings=4 x (3.142(R^2-r^2)x thk=4x3.8kg=15.2kg
  • 18. First plate design Assuming concentrating load(ie. Creating maximum stress), t1=k √ [(a x b x f)/(σt(a^2+b^2)] a=length of plate b=breadth of plate k=coefficient=3.45 P=load σt =design stress =697N/mm^2 (for C45 steel) So t1=3.45[(1800x1000x28508)/(697x(1800^2+1000^2)]^(1/2)=14.4mm 1stPlate thickness assumed as =20mm First shaft row design Load on each shaft=34.4/2=17.2kN Length=1800+(30x2)+(20x2)=1900mm Considering shaft as an simple supported beam with UDL on it, M=WL^2/8 =17.28x1000x1.9^2/8=7761Nm^2=791kgfm Max bending moment= (3.141/32)xsigmabxd^3=7761 =>(3.141/32)x.114d^3=7761 =>d=90mm (DDB-PG 7.20 ,R20 SERIES)
  • 19. Bearing design Force fall on bearing=34.4kn+shaft force=34.4 KN+(2x97.06x9.81)=36.3 KN Shaft wt=( OD90 & L 1900) =97.06KG There will be 04 no's of bearing are required at this stage Force fall on each bearing =36300/4=9076 N=9076/9.81=925 KGF From data book the standard size of bearing is =SKF6318 qty-=04 nos [d=90,D=190,B=43,r=4,static force=9800KGF,Dynamic force =11200 KGF] Second plate design Weight falling on 2nd plate =34.4kn+shaftwt above the plate+4 bearing wt=34400/9.81+(2x97.06)+(4x7.42)=3731 kg Force falling on 2nd plate=3731x9.81=36596N=36.6KN So 2nd plate has to be a capacity to withstand 36.6KN Force Plate size =1800x1600 Thickness of plate (t2)=k3√[abf/{σt(a^2+b^2)}] k3=3.45 pg253 3.45 √[1800x1600x36600/{697(1800^2+1600^2)}]=17.7 ie 25 mm (std size ) T2=thick of 2nd plate=25 mm Second plate shaft design There will be 02 nos of shaft Load on each shaft=(36.6KN+plate force) /2={36600+(680x9.81)}/2=21632N
  • 20. Required shaft length=1700 mm M=WL^2/8=21700x1.7^2/8=7840 NM^2 Since max bending moment (M)=∏/32xσbxd^3 σb=920kgf, DDB-7.24 SO d2=96 MM ie. 100 mm Bearing size From DDB PG-4.14, BEARING size-SKF100BC03 {d=100,D=215,B=47,r=4,static capacity=13200kgf,dynamic capacity=13700kgf } Bottom plate /3rd plate design Load falls on this plate =(21.7KNX2)+(shaft wtx2)+bearing wt =(21700x2)+(2x105x9.81)+(4x10.5x9.81)=45.9 KN ie.46 KN force Plate size=2500X1680 Thickness of plate (t3)=K3 √ [(a x b x f)/(σt(a^2+b^2)] =3.45 √ [(2500x1680x4600)/[697(2500^2+1680^2]=25mm Thickness of 3rd plate (t3)=30mm Wt of matls upto this plate =46kn/9.81 +3rd plate wt =4690+972=5.7ton Lead screw design to provide to & fro motion to 1st plate W=∏/4xdc^2xσt 28500= ∏/4xdc^2x100 since σt=100N/MM^2 .dc=20 mm Standard size of scre thread=25 mm Pg-626 D book Nominal Maj dia Majdianut Min Pitch(p) Depth of Depth of Core dia(d1) bolt(d) (D) dia(dc) thread thread area(Ac) bolt nut 28 28 28.5 25 3 1.5 1.75 491
  • 21. Length of the stud =600 mm Other end there is a supporting rod of 18 mm dia which has to fit with bush in the supporting strap having length =600 mm 2nd plate Rack & pinion design Length of rack=1500 mm Module =3 Press angle=20degree No of teeth in pinion=12 Centre distance =ZM/2+H=51.8 mm Pitch dia=d=zm=36 Addendum for pinion=M(1+X)=4.8 Addendum forrack=3 Bearing size=SKF6309 (with housing) [d=45,D=100,B=25,stat force=3000.Dyn=4150) Qty=2 nos Shaft=45 mm having length 1500mm Rotating wheel design Wheel dia=170 mm, having 04 support with hub Hub dia for 1st plate=90 id & 110 od Hub dia for 2nd plate= 100 id & 120 od Stand & bottom wheel design There are 04 nos of ball wheel rqd having 360 deg movement in their own axis .