SlideShare una empresa de Scribd logo
1 de 12
Descargar para leer sin conexión
Scalars, Vectors and Tensors
A scalar is a physical quantity that it represented by a dimensional num-
ber at a particular point in space and time. Examples are hydrostatic pres-
sure and temperature.
A vector is a bookkeeping tool to keep track of two pieces of information
(typically magnitude and direction) for a physical quantity. Examples are
position, force and velocity. The vector has three components.
velocity vector v = v1x1 + v2x2 + v3x3 =
i
vixi =


v1
v2
v3


Figure 1: The Velocity Vector
The magnitude of the velocity is a scalar v ≡ |v|
What happens when we need to keep track of three pieces of information
for a given physical quantity?
We need a tensor. Examples are stress and strain. The tensor has nine
components.
stress tensor σij =


σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 (1-25)
For stress, we keep track of a magnitude, direction and which plane the
component acts on.
1
The Stress Tensor
stress tensor σij =


σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 (1-25)
The first subscript keeps track of the plane the component acts on (de-
scribed by its unit normal vector), while the second subscript keeps track of
the direction. Each component represents a magnitude for that particular
plane and direction.
Figure 2: Four of the nine components of the stress tensor acting on a small
cubic fluid element.
The stress tensor is always symmetric σij = σji (1-26)
Thus there are only six independent components of the stress tensor.
Tensor calculus will not be required in this course.
2
The Stress Tensor
EXAMPLE: SIMPLE SHEAR
σ12 = σ21 ≡ σ = F/A (1-27)
σ13 = σ31 = σ32 = σ32 = 0 (1-28)
σij =


σ11 σ 0
σ σ22 0
0 0 σ33

 (1-29)
EXAMPLE: SIMPLE EXTENSION
σij =


σ11 0 0
0 σ22 0
0 0 σ33

 (1-30)
EXAMPLE: HYDROSTATIC PRESSURE
σij =


−P 0 0
0 −P 0
0 0 −P

 (1-30)
The minus sign is because pressure compresses the fluid element.
Polymers (and most liquids) are nearly incompressible. For an incom-
pressible fluid, the hydrostatic pressure does not affect any properties. For
this reason only differences in normal stresses are important.
In simple shear, the first and second normal stress differences are:
N1 ≡ σ11 − σ22 (1-32)
N2 ≡ σ22 − σ33 (1-33)
The Extra Stress Tensor is defined as
τij ≡
σij + P for i = j
σij for i = j
(1-35)
3
Strain and Strain Rate Tensors
Strain is a dimensionless measure of local deformation. Since we want
to relate it to the stress tensor, we had best define the strain tensor to be
symmetric.
γij(t1, t2) ≡
∂ui(t2)
∂xj(t1)
+
∂uj(t2)
∂xi(t1)
(1-37)
u = u1x1 + u2x2 + u3x3 is the displacement vector of a fluid element at
time t2 relative to its position at time t1.
Figure 3: Displacement Vectors for two Fluid Elements A and B.
The strain rate tensor (or rate of deformation tensor) is the time deriva-
tive of the strain tensor.
˙γij ≡ dγij/dt (1-38)
The components of the local velocity vector are vi = dui/dt (1-39). Since
the coordinates xi and time t are independent variables, we can switch the
order of differentiations.
˙γij ≡
∂vi
∂xj
+
∂vj
∂xi
(1-40)
4
Strain and Strain Rate Tensors
EXAMPLE: SIMPLE SHEAR
γij =


0 γ 0
γ 0 0
0 0 0


Where the scalar γ = ∂u1/∂x2 + ∂u2/∂x1 (1-41)
˙γij =


0 ˙γ 0
˙γ 0 0
0 0 0

 (1-51)
Where the scalar ˙γ ≡ dγ/dt.
EXAMPLE: SIMPLE EXTENSION
γij =


2ε 0 0
0 −ε 0
0 0 −ε

 (1-47)
Where the scalar ε ≡ ∂u1/∂x1.
˙γij =


2 ˙ε 0 0
0 − ˙ε 0
0 0 − ˙ε

 (1-48)
Where the scalar ˙ε ≡ dε/dt.
5
The Newtonian Fluid
Newton’s Law is written in terms of the extra stress tensor
τij = η ˙γij (1-49)
Equation (1-49) is valid for all components of the extra stress tensor in
any flow of a Newtonian fluid. All low molar mass liquids are Newtonian
(such as water, benzene, etc.)
EXAMPLE: SIMPLE SHEAR
˙γij =


0 ˙γ 0
˙γ 0 0
0 0 0

 (1-48)
τij =


0 η ˙γ 0
η ˙γ 0 0
0 0 0

 (1-48)
The normal components are all zero
σ11 = σ22 = σ33 = 0 (1-53)
and the normal stress differences are thus both zero for the Newtonian
fluid
N1 = N2 = 0 (1-54)
EXAMPLE: SIMPLE EXTENSION
˙γij =


2 ˙ε 0 0
0 − ˙ε 0
0 0 − ˙ε

 (1-48)
τij = η


2 ˙ε 0 0
0 − ˙ε 0
0 0 − ˙ε

 (1-55)
6
Vector Calculus (p. 1)
velocity v = vxi + vyj + vzk
i, j, k are unit vectors in the x, y,
z directions
acceleration a = dv
dt
= axi + ayj + azk
a = dv
dt
involves vectors so it represents three equations:
ax = dvx
dt
ay = dvy
dt
az = dvz
dt
∴ a =
dvx
dt
i +
dvy
dt
j +
dvz
dt
k
The vector is simply notation (bookkeeping).
Divergence n. · v ≡ ∂vx
∂x
+ ∂vy
∂y
+ ∂vz
∂z
If ∂vx
∂x
> 0 and ∂vy
∂y
> 0 and ∂vz
∂z
> 0
and vx > 0 and vy > 0 and vz > 0
then you have an explosion! ∴ the name divergence.
7
Vector Calculus (p. 2)
Gradient n. P ≡ ∂P
∂x
i + ∂P
∂y
j + ∂P
∂z
k
3-D analog of a derivative
Gradient operator makes a vector from the scalar P.
(whereas divergence made a scalar from the vector v).
Laplacian n. 2
v ≡ ∂2vx
∂x2 + ∂2vy
∂y2 + ∂2vz
∂z2
2
v =
∂2
vx
∂x2
+
∂2
vx
∂y2
+
∂2
vx
∂z2
i
+
∂2
vy
∂x2
+
∂2
vy
∂y2
+
∂2
vy
∂z2
j
+
∂2
vz
∂x2
+
∂2
vz
∂y2
+
∂2
vz
∂z2
k
Laplacian operator makes a vector from a the vector v.
Also written as · v, divergence of the gradient of v.
8
Conservation of Mass in a Fluid (p. 2)
THE EQUATION OF CONTINUITY
Consider a Control Volume
ρ = density (scalar)
v = velocity vector
n = unit normal vector on surface
ρ(v · n)dA = net flux out of the control volume through small area dA.
S
ρ(v · n)dA = net flow rate (mass per unit time) out of control volume.
V
ρdV = total mass inside the control volume.
d
dt V
ρdV = rate of accumulation of mass inside the control volume.
Mass Balance: d
dt V
ρdV = − S
ρ(v · n)dA
9
Conservation of Mass in a Fluid (p. 2)
d
dt V
ρdV = −
S
ρ(v · n)dA
Integral mass balance can be written as a differential equation using the
Divergence Theorem.
Divergence Theorem:
S
ρ(v · n)dA =
V
· (ρv)dV
V
∂ρ
∂t
+ · (ρv) dV = 0
Control volume was chosen arbitrarily
∴
∂ρ
∂t
+ · (ρv) = 0
Derived for a control volume but applicable to any point in space.
Cornerstone of continuum mechanics!!!
Applies for both gases and liquids.
10
Conservation of Mass in a Liquid
A liquid is incompressible
Density ρ is always the same
∂ρ
∂t
= 0 ρ = constant
Integral Mass Balance
d
dt V
ρdV = −
S
ρ(v · n)dA
becomes
S
(v · n)dA = 0
Continuity Equation ∂ρ
∂t
+ · (ρv) = 0
becomes · v = 0 for incompressible liquids
In Cartesian coordinates:
v = vxi + vyj + vzk
∂vx
∂x
+
∂vy
∂y
+
∂vz
∂z
= 0 (1-57)
11
Incompressible Continuity Equation for
Liquids
Cartesian Coordinates: x, y, z
∂vx
∂x
+
∂vy
∂y
+
∂vz
∂z
= 0
Cylindrical Coordinates: r, θ, z
1
r
∂
∂r
(rvr) +
1
r
∂vθ
∂θ
+
∂vz
∂z
= 0
Spherical Coordinates: r, θ, ϕ
1
r2
∂
∂r
(r2
vr) +
1
r sin θ
∂
∂θ
(vθ sin θ) +
1
r sin θ
∂vϕ
∂ϕ
= 0
All are simply · v = 0
12

Más contenido relacionado

La actualidad más candente

Fluid dynamics 1
Fluid dynamics 1Fluid dynamics 1
Fluid dynamics 1guest7b51c7
 
Stress and strain- mechanics of solid
Stress and strain- mechanics of solidStress and strain- mechanics of solid
Stress and strain- mechanics of solidKaushal Patel
 
elastic constants
elastic constantselastic constants
elastic constantsKaran Patel
 
Chapter1 fm-introduction to fluid mechanics-converted
Chapter1  fm-introduction to fluid mechanics-convertedChapter1  fm-introduction to fluid mechanics-converted
Chapter1 fm-introduction to fluid mechanics-convertedSatishkumarP9
 
3. Elastic Constants.pptx
3. Elastic Constants.pptx3. Elastic Constants.pptx
3. Elastic Constants.pptxMbaloch5
 
6 7 irrotational flow
6 7 irrotational flow6 7 irrotational flow
6 7 irrotational flownavala
 
Chapter 1. introduction to fluid mechanics
Chapter 1. introduction to fluid mechanicsChapter 1. introduction to fluid mechanics
Chapter 1. introduction to fluid mechanicskidanemariam tesera
 
Stress in Bar of Uniformly Tapering Rectangular Cross Section | Mechanical En...
Stress in Bar of Uniformly Tapering Rectangular Cross Section | Mechanical En...Stress in Bar of Uniformly Tapering Rectangular Cross Section | Mechanical En...
Stress in Bar of Uniformly Tapering Rectangular Cross Section | Mechanical En...Transweb Global Inc
 
Lecture 2 principal stress and strain
Lecture 2 principal stress and strainLecture 2 principal stress and strain
Lecture 2 principal stress and strainDeepak Agarwal
 
Navier stokes equation
Navier stokes equationNavier stokes equation
Navier stokes equationnaveensapare
 
Concentrated Stress & Stress Tensor
Concentrated Stress & Stress TensorConcentrated Stress & Stress Tensor
Concentrated Stress & Stress TensorHassan Raza
 
Tensor 1
Tensor  1Tensor  1
Tensor 1BAIJU V
 
Elements of Solid Mechanics.ppt
Elements of  Solid Mechanics.pptElements of  Solid Mechanics.ppt
Elements of Solid Mechanics.pptSadia Textile
 

La actualidad más candente (20)

what is Poisons Ratio
what is Poisons Ratiowhat is Poisons Ratio
what is Poisons Ratio
 
Fluid dynamics 1
Fluid dynamics 1Fluid dynamics 1
Fluid dynamics 1
 
Stress and strain- mechanics of solid
Stress and strain- mechanics of solidStress and strain- mechanics of solid
Stress and strain- mechanics of solid
 
elastic constants
elastic constantselastic constants
elastic constants
 
Chapter1 fm-introduction to fluid mechanics-converted
Chapter1  fm-introduction to fluid mechanics-convertedChapter1  fm-introduction to fluid mechanics-converted
Chapter1 fm-introduction to fluid mechanics-converted
 
3. Elastic Constants.pptx
3. Elastic Constants.pptx3. Elastic Constants.pptx
3. Elastic Constants.pptx
 
theories of failure
theories of failure theories of failure
theories of failure
 
Fluid kinematics
Fluid kinematics Fluid kinematics
Fluid kinematics
 
6 7 irrotational flow
6 7 irrotational flow6 7 irrotational flow
6 7 irrotational flow
 
Chapter 1. introduction to fluid mechanics
Chapter 1. introduction to fluid mechanicsChapter 1. introduction to fluid mechanics
Chapter 1. introduction to fluid mechanics
 
Stress in Bar of Uniformly Tapering Rectangular Cross Section | Mechanical En...
Stress in Bar of Uniformly Tapering Rectangular Cross Section | Mechanical En...Stress in Bar of Uniformly Tapering Rectangular Cross Section | Mechanical En...
Stress in Bar of Uniformly Tapering Rectangular Cross Section | Mechanical En...
 
Eulers equation
Eulers equationEulers equation
Eulers equation
 
Lecture 2 principal stress and strain
Lecture 2 principal stress and strainLecture 2 principal stress and strain
Lecture 2 principal stress and strain
 
Laminar turbulent
Laminar turbulentLaminar turbulent
Laminar turbulent
 
Navier stokes equation
Navier stokes equationNavier stokes equation
Navier stokes equation
 
Concentrated Stress & Stress Tensor
Concentrated Stress & Stress TensorConcentrated Stress & Stress Tensor
Concentrated Stress & Stress Tensor
 
Tensor 1
Tensor  1Tensor  1
Tensor 1
 
Theories of failure
Theories of failureTheories of failure
Theories of failure
 
Strength of Materials
Strength of MaterialsStrength of Materials
Strength of Materials
 
Elements of Solid Mechanics.ppt
Elements of  Solid Mechanics.pptElements of  Solid Mechanics.ppt
Elements of Solid Mechanics.ppt
 

Similar a 03 tensors

02 conservation equations
02 conservation equations02 conservation equations
02 conservation equationsanees solangi
 
Introduction to basic principles of fluid mechanics
Introduction to basic principles of fluid mechanicsIntroduction to basic principles of fluid mechanics
Introduction to basic principles of fluid mechanicsAlwin Johnnie DoraiRaj
 
Ph 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSPh 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSChandan Singh
 
Methods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserMethods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserTony Yen
 
Navier strokes equation
Navier strokes equationNavier strokes equation
Navier strokes equationNEERAJ JAIN
 
vector and tensor.pptx
vector and tensor.pptxvector and tensor.pptx
vector and tensor.pptxSourav Poddar
 
02_Conservation_Laws.pdf
02_Conservation_Laws.pdf02_Conservation_Laws.pdf
02_Conservation_Laws.pdfssuser3ed452
 
nozzle_diffuser_circulation-2022 (1).pdf
nozzle_diffuser_circulation-2022 (1).pdfnozzle_diffuser_circulation-2022 (1).pdf
nozzle_diffuser_circulation-2022 (1).pdfchandanraj961610
 
009b (PPT) Viscous Flow -2.pdf .
009b (PPT) Viscous Flow -2.pdf           .009b (PPT) Viscous Flow -2.pdf           .
009b (PPT) Viscous Flow -2.pdf .happycocoman
 
Stress Measures And Failure Criteria
Stress Measures And Failure CriteriaStress Measures And Failure Criteria
Stress Measures And Failure CriteriaAlan Ho
 
WavesAppendix.pdf
WavesAppendix.pdfWavesAppendix.pdf
WavesAppendix.pdfcfisicaster
 
Theory of elasticity and plasticity (Equations sheet part 01) Att 8676
Theory of elasticity and plasticity (Equations sheet part 01) Att 8676Theory of elasticity and plasticity (Equations sheet part 01) Att 8676
Theory of elasticity and plasticity (Equations sheet part 01) Att 8676Shekh Muhsen Uddin Ahmed
 
Transport phenomena Solved problems
Transport phenomena Solved problemsTransport phenomena Solved problems
Transport phenomena Solved problemsWolkite University
 

Similar a 03 tensors (20)

02 conservation equations
02 conservation equations02 conservation equations
02 conservation equations
 
Introduction to basic principles of fluid mechanics
Introduction to basic principles of fluid mechanicsIntroduction to basic principles of fluid mechanics
Introduction to basic principles of fluid mechanics
 
QMC: Operator Splitting Workshop, Optimization and Control in Free ans Moving...
QMC: Operator Splitting Workshop, Optimization and Control in Free ans Moving...QMC: Operator Splitting Workshop, Optimization and Control in Free ans Moving...
QMC: Operator Splitting Workshop, Optimization and Control in Free ans Moving...
 
NS Equation .pdf
NS Equation .pdfNS Equation .pdf
NS Equation .pdf
 
Ph 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSPh 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICS
 
Fluid Mechanics (2).pdf
Fluid Mechanics (2).pdfFluid Mechanics (2).pdf
Fluid Mechanics (2).pdf
 
Methods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserMethods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenser
 
Navier strokes equation
Navier strokes equationNavier strokes equation
Navier strokes equation
 
vector and tensor.pptx
vector and tensor.pptxvector and tensor.pptx
vector and tensor.pptx
 
Forced convection
Forced convectionForced convection
Forced convection
 
wave_equation
wave_equationwave_equation
wave_equation
 
02_Conservation_Laws.pdf
02_Conservation_Laws.pdf02_Conservation_Laws.pdf
02_Conservation_Laws.pdf
 
nozzle_diffuser_circulation-2022 (1).pdf
nozzle_diffuser_circulation-2022 (1).pdfnozzle_diffuser_circulation-2022 (1).pdf
nozzle_diffuser_circulation-2022 (1).pdf
 
009b (PPT) Viscous Flow -2.pdf .
009b (PPT) Viscous Flow -2.pdf           .009b (PPT) Viscous Flow -2.pdf           .
009b (PPT) Viscous Flow -2.pdf .
 
Stress Measures And Failure Criteria
Stress Measures And Failure CriteriaStress Measures And Failure Criteria
Stress Measures And Failure Criteria
 
UDA 5 - P.pdf
UDA 5 - P.pdfUDA 5 - P.pdf
UDA 5 - P.pdf
 
WavesAppendix.pdf
WavesAppendix.pdfWavesAppendix.pdf
WavesAppendix.pdf
 
Theory of elasticity and plasticity (Equations sheet part 01) Att 8676
Theory of elasticity and plasticity (Equations sheet part 01) Att 8676Theory of elasticity and plasticity (Equations sheet part 01) Att 8676
Theory of elasticity and plasticity (Equations sheet part 01) Att 8676
 
Transport phenomena Solved problems
Transport phenomena Solved problemsTransport phenomena Solved problems
Transport phenomena Solved problems
 
Vectors and Kinematics
Vectors and KinematicsVectors and Kinematics
Vectors and Kinematics
 

Más de Tino Lc

Lección 1 importnacia de las pruebas de hipótesis
Lección 1 importnacia de las pruebas de hipótesisLección 1 importnacia de las pruebas de hipótesis
Lección 1 importnacia de las pruebas de hipótesisTino Lc
 
Esfuerzos cortantes en vigas
Esfuerzos cortantes en vigasEsfuerzos cortantes en vigas
Esfuerzos cortantes en vigasTino Lc
 
Ecuaciones para la deformacion plana
Ecuaciones para la deformacion planaEcuaciones para la deformacion plana
Ecuaciones para la deformacion planaTino Lc
 
Deformacion plana
Deformacion planaDeformacion plana
Deformacion planaTino Lc
 
Mat aplicada, espacios metricos
Mat aplicada, espacios metricosMat aplicada, espacios metricos
Mat aplicada, espacios metricosTino Lc
 
Geometria diferencial
Geometria diferencialGeometria diferencial
Geometria diferencialTino Lc
 
Tiempo y mov
Tiempo y movTiempo y mov
Tiempo y movTino Lc
 
Elipticas
ElipticasElipticas
ElipticasTino Lc
 
02 fluid models
02 fluid models02 fluid models
02 fluid modelsTino Lc
 
Introduccion a la te or ia de perturbaciones usando
Introduccion a la te or ia de perturbaciones usandoIntroduccion a la te or ia de perturbaciones usando
Introduccion a la te or ia de perturbaciones usandoTino Lc
 

Más de Tino Lc (11)

Lección 1 importnacia de las pruebas de hipótesis
Lección 1 importnacia de las pruebas de hipótesisLección 1 importnacia de las pruebas de hipótesis
Lección 1 importnacia de las pruebas de hipótesis
 
Esfuerzos cortantes en vigas
Esfuerzos cortantes en vigasEsfuerzos cortantes en vigas
Esfuerzos cortantes en vigas
 
Ecuaciones para la deformacion plana
Ecuaciones para la deformacion planaEcuaciones para la deformacion plana
Ecuaciones para la deformacion plana
 
Deformacion plana
Deformacion planaDeformacion plana
Deformacion plana
 
Splines
SplinesSplines
Splines
 
Mat aplicada, espacios metricos
Mat aplicada, espacios metricosMat aplicada, espacios metricos
Mat aplicada, espacios metricos
 
Geometria diferencial
Geometria diferencialGeometria diferencial
Geometria diferencial
 
Tiempo y mov
Tiempo y movTiempo y mov
Tiempo y mov
 
Elipticas
ElipticasElipticas
Elipticas
 
02 fluid models
02 fluid models02 fluid models
02 fluid models
 
Introduccion a la te or ia de perturbaciones usando
Introduccion a la te or ia de perturbaciones usandoIntroduccion a la te or ia de perturbaciones usando
Introduccion a la te or ia de perturbaciones usando
 

Último

Empowering Africa's Next Generation: The AI Leadership Blueprint
Empowering Africa's Next Generation: The AI Leadership BlueprintEmpowering Africa's Next Generation: The AI Leadership Blueprint
Empowering Africa's Next Generation: The AI Leadership BlueprintMahmoud Rabie
 
Videogame localization & technology_ how to enhance the power of translation.pdf
Videogame localization & technology_ how to enhance the power of translation.pdfVideogame localization & technology_ how to enhance the power of translation.pdf
Videogame localization & technology_ how to enhance the power of translation.pdfinfogdgmi
 
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve DecarbonizationUsing IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve DecarbonizationIES VE
 
AI Fame Rush Review – Virtual Influencer Creation In Just Minutes
AI Fame Rush Review – Virtual Influencer Creation In Just MinutesAI Fame Rush Review – Virtual Influencer Creation In Just Minutes
AI Fame Rush Review – Virtual Influencer Creation In Just MinutesMd Hossain Ali
 
IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019
IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019
IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019IES VE
 
Nanopower In Semiconductor Industry.pdf
Nanopower  In Semiconductor Industry.pdfNanopower  In Semiconductor Industry.pdf
Nanopower In Semiconductor Industry.pdfPedro Manuel
 
Secure your environment with UiPath and CyberArk technologies - Session 1
Secure your environment with UiPath and CyberArk technologies - Session 1Secure your environment with UiPath and CyberArk technologies - Session 1
Secure your environment with UiPath and CyberArk technologies - Session 1DianaGray10
 
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfJamie (Taka) Wang
 
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCostKubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCostMatt Ray
 
Governance in SharePoint Premium:What's in the box?
Governance in SharePoint Premium:What's in the box?Governance in SharePoint Premium:What's in the box?
Governance in SharePoint Premium:What's in the box?Juan Carlos Gonzalez
 
The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...
The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...
The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...Aggregage
 
OpenShift Commons Paris - Choose Your Own Observability Adventure
OpenShift Commons Paris - Choose Your Own Observability AdventureOpenShift Commons Paris - Choose Your Own Observability Adventure
OpenShift Commons Paris - Choose Your Own Observability AdventureEric D. Schabell
 
20230202 - Introduction to tis-py
20230202 - Introduction to tis-py20230202 - Introduction to tis-py
20230202 - Introduction to tis-pyJamie (Taka) Wang
 
UiPath Clipboard AI: "A TIME Magazine Best Invention of 2023 Unveiled"
UiPath Clipboard AI: "A TIME Magazine Best Invention of 2023 Unveiled"UiPath Clipboard AI: "A TIME Magazine Best Invention of 2023 Unveiled"
UiPath Clipboard AI: "A TIME Magazine Best Invention of 2023 Unveiled"DianaGray10
 
Crea il tuo assistente AI con lo Stregatto (open source python framework)
Crea il tuo assistente AI con lo Stregatto (open source python framework)Crea il tuo assistente AI con lo Stregatto (open source python framework)
Crea il tuo assistente AI con lo Stregatto (open source python framework)Commit University
 
Salesforce Miami User Group Event - 1st Quarter 2024
Salesforce Miami User Group Event - 1st Quarter 2024Salesforce Miami User Group Event - 1st Quarter 2024
Salesforce Miami User Group Event - 1st Quarter 2024SkyPlanner
 
UiPath Studio Web workshop series - Day 7
UiPath Studio Web workshop series - Day 7UiPath Studio Web workshop series - Day 7
UiPath Studio Web workshop series - Day 7DianaGray10
 
Introduction to Matsuo Laboratory (ENG).pptx
Introduction to Matsuo Laboratory (ENG).pptxIntroduction to Matsuo Laboratory (ENG).pptx
Introduction to Matsuo Laboratory (ENG).pptxMatsuo Lab
 
Cybersecurity Workshop #1.pptx
Cybersecurity Workshop #1.pptxCybersecurity Workshop #1.pptx
Cybersecurity Workshop #1.pptxGDSC PJATK
 

Último (20)

Empowering Africa's Next Generation: The AI Leadership Blueprint
Empowering Africa's Next Generation: The AI Leadership BlueprintEmpowering Africa's Next Generation: The AI Leadership Blueprint
Empowering Africa's Next Generation: The AI Leadership Blueprint
 
Videogame localization & technology_ how to enhance the power of translation.pdf
Videogame localization & technology_ how to enhance the power of translation.pdfVideogame localization & technology_ how to enhance the power of translation.pdf
Videogame localization & technology_ how to enhance the power of translation.pdf
 
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve DecarbonizationUsing IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
 
AI Fame Rush Review – Virtual Influencer Creation In Just Minutes
AI Fame Rush Review – Virtual Influencer Creation In Just MinutesAI Fame Rush Review – Virtual Influencer Creation In Just Minutes
AI Fame Rush Review – Virtual Influencer Creation In Just Minutes
 
IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019
IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019
IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019
 
Nanopower In Semiconductor Industry.pdf
Nanopower  In Semiconductor Industry.pdfNanopower  In Semiconductor Industry.pdf
Nanopower In Semiconductor Industry.pdf
 
201610817 - edge part1
201610817 - edge part1201610817 - edge part1
201610817 - edge part1
 
Secure your environment with UiPath and CyberArk technologies - Session 1
Secure your environment with UiPath and CyberArk technologies - Session 1Secure your environment with UiPath and CyberArk technologies - Session 1
Secure your environment with UiPath and CyberArk technologies - Session 1
 
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
 
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCostKubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
 
Governance in SharePoint Premium:What's in the box?
Governance in SharePoint Premium:What's in the box?Governance in SharePoint Premium:What's in the box?
Governance in SharePoint Premium:What's in the box?
 
The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...
The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...
The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...
 
OpenShift Commons Paris - Choose Your Own Observability Adventure
OpenShift Commons Paris - Choose Your Own Observability AdventureOpenShift Commons Paris - Choose Your Own Observability Adventure
OpenShift Commons Paris - Choose Your Own Observability Adventure
 
20230202 - Introduction to tis-py
20230202 - Introduction to tis-py20230202 - Introduction to tis-py
20230202 - Introduction to tis-py
 
UiPath Clipboard AI: "A TIME Magazine Best Invention of 2023 Unveiled"
UiPath Clipboard AI: "A TIME Magazine Best Invention of 2023 Unveiled"UiPath Clipboard AI: "A TIME Magazine Best Invention of 2023 Unveiled"
UiPath Clipboard AI: "A TIME Magazine Best Invention of 2023 Unveiled"
 
Crea il tuo assistente AI con lo Stregatto (open source python framework)
Crea il tuo assistente AI con lo Stregatto (open source python framework)Crea il tuo assistente AI con lo Stregatto (open source python framework)
Crea il tuo assistente AI con lo Stregatto (open source python framework)
 
Salesforce Miami User Group Event - 1st Quarter 2024
Salesforce Miami User Group Event - 1st Quarter 2024Salesforce Miami User Group Event - 1st Quarter 2024
Salesforce Miami User Group Event - 1st Quarter 2024
 
UiPath Studio Web workshop series - Day 7
UiPath Studio Web workshop series - Day 7UiPath Studio Web workshop series - Day 7
UiPath Studio Web workshop series - Day 7
 
Introduction to Matsuo Laboratory (ENG).pptx
Introduction to Matsuo Laboratory (ENG).pptxIntroduction to Matsuo Laboratory (ENG).pptx
Introduction to Matsuo Laboratory (ENG).pptx
 
Cybersecurity Workshop #1.pptx
Cybersecurity Workshop #1.pptxCybersecurity Workshop #1.pptx
Cybersecurity Workshop #1.pptx
 

03 tensors

  • 1. Scalars, Vectors and Tensors A scalar is a physical quantity that it represented by a dimensional num- ber at a particular point in space and time. Examples are hydrostatic pres- sure and temperature. A vector is a bookkeeping tool to keep track of two pieces of information (typically magnitude and direction) for a physical quantity. Examples are position, force and velocity. The vector has three components. velocity vector v = v1x1 + v2x2 + v3x3 = i vixi =   v1 v2 v3   Figure 1: The Velocity Vector The magnitude of the velocity is a scalar v ≡ |v| What happens when we need to keep track of three pieces of information for a given physical quantity? We need a tensor. Examples are stress and strain. The tensor has nine components. stress tensor σij =   σ11 σ12 σ13 σ21 σ22 σ23 σ31 σ32 σ33   (1-25) For stress, we keep track of a magnitude, direction and which plane the component acts on. 1
  • 2. The Stress Tensor stress tensor σij =   σ11 σ12 σ13 σ21 σ22 σ23 σ31 σ32 σ33   (1-25) The first subscript keeps track of the plane the component acts on (de- scribed by its unit normal vector), while the second subscript keeps track of the direction. Each component represents a magnitude for that particular plane and direction. Figure 2: Four of the nine components of the stress tensor acting on a small cubic fluid element. The stress tensor is always symmetric σij = σji (1-26) Thus there are only six independent components of the stress tensor. Tensor calculus will not be required in this course. 2
  • 3. The Stress Tensor EXAMPLE: SIMPLE SHEAR σ12 = σ21 ≡ σ = F/A (1-27) σ13 = σ31 = σ32 = σ32 = 0 (1-28) σij =   σ11 σ 0 σ σ22 0 0 0 σ33   (1-29) EXAMPLE: SIMPLE EXTENSION σij =   σ11 0 0 0 σ22 0 0 0 σ33   (1-30) EXAMPLE: HYDROSTATIC PRESSURE σij =   −P 0 0 0 −P 0 0 0 −P   (1-30) The minus sign is because pressure compresses the fluid element. Polymers (and most liquids) are nearly incompressible. For an incom- pressible fluid, the hydrostatic pressure does not affect any properties. For this reason only differences in normal stresses are important. In simple shear, the first and second normal stress differences are: N1 ≡ σ11 − σ22 (1-32) N2 ≡ σ22 − σ33 (1-33) The Extra Stress Tensor is defined as τij ≡ σij + P for i = j σij for i = j (1-35) 3
  • 4. Strain and Strain Rate Tensors Strain is a dimensionless measure of local deformation. Since we want to relate it to the stress tensor, we had best define the strain tensor to be symmetric. γij(t1, t2) ≡ ∂ui(t2) ∂xj(t1) + ∂uj(t2) ∂xi(t1) (1-37) u = u1x1 + u2x2 + u3x3 is the displacement vector of a fluid element at time t2 relative to its position at time t1. Figure 3: Displacement Vectors for two Fluid Elements A and B. The strain rate tensor (or rate of deformation tensor) is the time deriva- tive of the strain tensor. ˙γij ≡ dγij/dt (1-38) The components of the local velocity vector are vi = dui/dt (1-39). Since the coordinates xi and time t are independent variables, we can switch the order of differentiations. ˙γij ≡ ∂vi ∂xj + ∂vj ∂xi (1-40) 4
  • 5. Strain and Strain Rate Tensors EXAMPLE: SIMPLE SHEAR γij =   0 γ 0 γ 0 0 0 0 0   Where the scalar γ = ∂u1/∂x2 + ∂u2/∂x1 (1-41) ˙γij =   0 ˙γ 0 ˙γ 0 0 0 0 0   (1-51) Where the scalar ˙γ ≡ dγ/dt. EXAMPLE: SIMPLE EXTENSION γij =   2ε 0 0 0 −ε 0 0 0 −ε   (1-47) Where the scalar ε ≡ ∂u1/∂x1. ˙γij =   2 ˙ε 0 0 0 − ˙ε 0 0 0 − ˙ε   (1-48) Where the scalar ˙ε ≡ dε/dt. 5
  • 6. The Newtonian Fluid Newton’s Law is written in terms of the extra stress tensor τij = η ˙γij (1-49) Equation (1-49) is valid for all components of the extra stress tensor in any flow of a Newtonian fluid. All low molar mass liquids are Newtonian (such as water, benzene, etc.) EXAMPLE: SIMPLE SHEAR ˙γij =   0 ˙γ 0 ˙γ 0 0 0 0 0   (1-48) τij =   0 η ˙γ 0 η ˙γ 0 0 0 0 0   (1-48) The normal components are all zero σ11 = σ22 = σ33 = 0 (1-53) and the normal stress differences are thus both zero for the Newtonian fluid N1 = N2 = 0 (1-54) EXAMPLE: SIMPLE EXTENSION ˙γij =   2 ˙ε 0 0 0 − ˙ε 0 0 0 − ˙ε   (1-48) τij = η   2 ˙ε 0 0 0 − ˙ε 0 0 0 − ˙ε   (1-55) 6
  • 7. Vector Calculus (p. 1) velocity v = vxi + vyj + vzk i, j, k are unit vectors in the x, y, z directions acceleration a = dv dt = axi + ayj + azk a = dv dt involves vectors so it represents three equations: ax = dvx dt ay = dvy dt az = dvz dt ∴ a = dvx dt i + dvy dt j + dvz dt k The vector is simply notation (bookkeeping). Divergence n. · v ≡ ∂vx ∂x + ∂vy ∂y + ∂vz ∂z If ∂vx ∂x > 0 and ∂vy ∂y > 0 and ∂vz ∂z > 0 and vx > 0 and vy > 0 and vz > 0 then you have an explosion! ∴ the name divergence. 7
  • 8. Vector Calculus (p. 2) Gradient n. P ≡ ∂P ∂x i + ∂P ∂y j + ∂P ∂z k 3-D analog of a derivative Gradient operator makes a vector from the scalar P. (whereas divergence made a scalar from the vector v). Laplacian n. 2 v ≡ ∂2vx ∂x2 + ∂2vy ∂y2 + ∂2vz ∂z2 2 v = ∂2 vx ∂x2 + ∂2 vx ∂y2 + ∂2 vx ∂z2 i + ∂2 vy ∂x2 + ∂2 vy ∂y2 + ∂2 vy ∂z2 j + ∂2 vz ∂x2 + ∂2 vz ∂y2 + ∂2 vz ∂z2 k Laplacian operator makes a vector from a the vector v. Also written as · v, divergence of the gradient of v. 8
  • 9. Conservation of Mass in a Fluid (p. 2) THE EQUATION OF CONTINUITY Consider a Control Volume ρ = density (scalar) v = velocity vector n = unit normal vector on surface ρ(v · n)dA = net flux out of the control volume through small area dA. S ρ(v · n)dA = net flow rate (mass per unit time) out of control volume. V ρdV = total mass inside the control volume. d dt V ρdV = rate of accumulation of mass inside the control volume. Mass Balance: d dt V ρdV = − S ρ(v · n)dA 9
  • 10. Conservation of Mass in a Fluid (p. 2) d dt V ρdV = − S ρ(v · n)dA Integral mass balance can be written as a differential equation using the Divergence Theorem. Divergence Theorem: S ρ(v · n)dA = V · (ρv)dV V ∂ρ ∂t + · (ρv) dV = 0 Control volume was chosen arbitrarily ∴ ∂ρ ∂t + · (ρv) = 0 Derived for a control volume but applicable to any point in space. Cornerstone of continuum mechanics!!! Applies for both gases and liquids. 10
  • 11. Conservation of Mass in a Liquid A liquid is incompressible Density ρ is always the same ∂ρ ∂t = 0 ρ = constant Integral Mass Balance d dt V ρdV = − S ρ(v · n)dA becomes S (v · n)dA = 0 Continuity Equation ∂ρ ∂t + · (ρv) = 0 becomes · v = 0 for incompressible liquids In Cartesian coordinates: v = vxi + vyj + vzk ∂vx ∂x + ∂vy ∂y + ∂vz ∂z = 0 (1-57) 11
  • 12. Incompressible Continuity Equation for Liquids Cartesian Coordinates: x, y, z ∂vx ∂x + ∂vy ∂y + ∂vz ∂z = 0 Cylindrical Coordinates: r, θ, z 1 r ∂ ∂r (rvr) + 1 r ∂vθ ∂θ + ∂vz ∂z = 0 Spherical Coordinates: r, θ, ϕ 1 r2 ∂ ∂r (r2 vr) + 1 r sin θ ∂ ∂θ (vθ sin θ) + 1 r sin θ ∂vϕ ∂ϕ = 0 All are simply · v = 0 12