SlideShare una empresa de Scribd logo
1 de 41
Vladimir S. Aslanov
                 aslanov_vs@mail.ru




Attitude Dynamics of Re-entry Vehicle

        Theoretical Mechanics Department
                   www.termech.ru

     Samara State Aerospace University, Russia
                    www.ssau.ru




                        2012
1. Statement of the problem
         We study of the Re-entry Vehicle (RV) motion about of mass center in the
            planetary atmospheres by regular and chaotic dynamics methods




The dynamics of a rotating body studied famous mathematicians of all time as Euler, Poinsot, Lagrange and Kovalevskaya. The
research of the dynamics of rotating bodies is very important for numerous applications such as the dynamics of satellites and re-
entries. In this area we note the papers scientists as Yaroshevsky, Belezky, Rumyantsev, J.Nicolaides, G.Gross, C.Murphy et al.
Types of the Re-entry Vehicles.




                                  3
1. Statement of the problem

                              Aims of research

•   To obtain nonlinear mathematical models of the spatial motion of the re-
    entry about center of mass in the atmosphere.
•   To divide the motion on the unperturbed and perturbed.
•   To find to the exact and approximate analytical solutions of the
    unperturbed motion.
•   To deduce the approximate solutions of the equations of perturbed
    motion.
•   To determine the nonlinear response and to explore its stability.
•   To study the motion of spacecraft in the atmosphere of the methods of
    chaotic dynamics.
•   To solve the problem of identification of the spacecraft motion over the
    small number of the measurements.




                                                                               4
2. The motion equations
                 The motion equations of the RV in an inertial frame
                                                            
            dK                  dei  
                                                        2
                                                      d r  F
                K  M,                ei  0,      2
                                                           g             (1)
            dt                     dt                 dt       m

                                                     Coordinate systems
        
K  I   is angular momentum,
                         
I is inertia tensor,      is angular velocity,
 
F , M are aerodynamic force and moment,

ei is unit vectors,
m is mass of the RV,

g is gravitational acceleration.




                                                                             5
2. The motion equations
                              The motion equations of the RV mass center
                 dV        qS             d    cos      V2              dH
                     cxa     g sin  ,            g  ,                   V sin          (2)
                 dt        m              dt     V         r               dt
                                                                           V 2
V , H,        are velocity, altitude of flight and trajectory          q       is the dynamic pressure.
               inclination angle;                                           2
                                                       Iz  I y
The small asymmetry:             ( yT , zT , i               , I xy , I xz , mx , my , mz )  0( ) (3)
                                                          I
where          is a small parameter.
  The motion equations about of the RV mass center
                     d 2
                         2
                             F ( , z )   Ф ( ,  , z ),
                      dt
                     d
                            R / I x  (G  R cos  ) cos  / sin 2   Ф ( , z ),                       (4)
                      dt
                     dz
                            Фz ( ,  , z ), ( z  R, G, q )
                      dt
     F (, z )  (G  R cos )(R  G cos ) / sin3   M  (, z ),                                        (5)

     Ф  D0 ( , z )  D1 ( , z )sin   D ( , z ) cos   D3 ( , z )sin 2  D ( , z) cos 2
                         
                                             2
                                                                 
                                                                                     4
                                                                                                           (6)
                                                                                       , R, G, q             6
3. The undisturbed motion
                        The equations of the undisturbed motion       0

                    d 2  G  R cos   R  G cos  
                                                        M    0                      (7)
                    dt 2             sin 3 
                                                        qSL
The restoring aerodynamic moment     M     m       , m    a sin   b sin 2 (8)
                                                         I




              xT
       xT 
              L
                                 *  0,  *  0, *     are the equilibrium position
                                                                                                 7
3. The undisturbed motion
        Types of the RV




      m    a sin   b sin 2




         m    a sin 




                                     8
3. The undisturbed motion
                                         Energy integral of equation (7)

                  1  d    R 2  G 2  2 RG cos 
                             2

                                                  a cos   b cos 2   E                                                (9)
                  2  dt           2sin 2



Change of variables               u  cos  lead to the equation
                                                     2
                                               du 
                                                 f u                                                                   (10)
                                               dt 
where       f  u   2 1  u 2  E  au  bu 2   2GRu  G 2  R 2                                                      (11)

Separating the variables in the equation (10) and integrating it we obtain
                                                 u                     u
                                                          du                             du
                                      t  t0    
                                                 u0       f u 
                                                                      
                                                                       u0   a0u  a1u  a2u  a3u  a4
                                                                               4     3            2                         (12)


The integral (12) reduces to the incomplete elliptic integral of the 1st, 2nd and 3rd kind:
             
                        d                                                                   
                                                                                                                d
 F ( , k )  
                                                   
                                     , E ( , k )  1  k sin  d , П ( , n, k )  
                                                               2        2

             0     1  k 2 sin 2                     0                                       0   (1  n sin 2  ) 1  k 2 sin 2 

                                                                                                                                     9
3. The undisturbed motion
                             The general solution for              m    a sin 

                                     cos   (u1  u2 )cn 2   (t  t0 )  K , k   u2                            (13)

где   cn   (t  t0 )  K , k   cos am   (t  t0 )  K , k  are elliptic cosine
                    
      K  k   F ( , k ) is the complete elliptic integral of 1st kind
                     2
        am   (t  t0 )  K , k  Is the amplitude-function
                                              The approximate solution
                                       cos   B(1  cos y)(m  cos y)2  u2                                        (14)

Where y   (t  t0 ) / K , B  (u1  u2 ) p / 8, m  (2  p) / p,
                                                     2



                              
           p  2 1 1 k 2 / 1 1 k 2           
                                            The angle of proper rotation
             R  G  R cos   t   cos  
             t
   0    
                       sin 2   t 
                                                             
                                             dt  f П   t  , n1 , k  , П   t  , n2 , k  , П  n1 , k  , П  n2 , k    
          0                                
             Ix                            
                                                                                                                    (15)
                                                                                                                                   10
3. The undisturbed motion
                           The general solution for             m    a sin   b sin 2

                                                                               M
                                             cos   u  L                                                                 (16)
                                                                 1  Ncn   
                                                                                t 0, k 


where   1, 2 depends on the type roots of the polynomial:                                     f u   0


                                               The angle of proper rotation
                                                     [Vadim Serov]


              R  G  R cos   t   cos  
              t
    0    
                        sin 2   t 
                                                                
                                              dt  f ab П   t  , n1 , k  , П   t  , n2 , k  , П  n1 , k  , П  n2 , k    
           0                                
              Ix                            




                                                                                                                                   11
4. The disturbed motion
                  4.1. The simplest form of the perturbed motion
               (asymmetry and damping moments are not available)
                                Equation of the motion
d 2  G  R cos   R  G cos                                         dq
                                    a  q  sin   b  q  sin 2  0,      Фq  t    (17)
dt 2             sin 3                                                   dt

The dependence of the dynamic                             The dependence of the attack
      pressure from time                                        angle from time




                                                                                             12
4. The disturbed motion
              The adiabatic invariant is the integral of the perturbed motion
                                        max
                                               d     1  d 
                                                            T        2

                                Ig 
                                       
                                              dt
                                                  d         dt  const
                                                      2 0  dt 
                                                                                             (18)
                                        min

Substituting solutions (13) or (16) (18), we obtain an implicit dependence of the
amplitude of the angle of attack of the dynamic pressure

                           V 2
                I g (q           ,  max )  f  K  k  , E (k ), i (k , ni )   const   (19)
                            2

                                   The approximate solutions

                                                max   max  q                            (20)

          Minimal angle of attack is determined from the energy integral (9)

                                    d     
                                  E     0   E  max   E  min                       (21)
                                    dt     

                                                                                                    13
4. The disturbed motion
                         4.2. Perturbed motion of an axisymmetric RV (no asymmetry)

The motion equation
 d 2  G  R cos   R  G cos  
                                     a  q  sin   b  q  sin 2   Ф  , z  ,
 dt 2
                      sin 
                          3

 dz                                                                                      (22)
       Фz ( , z ), ( z  R, G, q)
 dt                                                               Comparison of the results
where      Ф , z  , z   Ф , z   2 , z                     
Averaging equations (Volosov method )

d max                  1 t T           1
                                             t T
                                                  E
         F ( max , z )  T               T  z
                                 dt 
                                                     z dt 
 dt
                             t                t
                      W ( max , z ) 
                                     z     z  ,   (23)
                          z             
     t T
dz 
  
dt T t   z ( (t ), z)dt   z  z  ,

where         , z  z    , z  K  k  , E (k ),  i (k , ni ) 
                                                                                                14
4. The disturbed motion
                         4.3. Disturbed motion of the asymmetric Re-entry Vehicle

                  The equation of motion in the form of two-frequency system

          y  ( z )  Y ( y, , z ),
          
            Ф ( y, z ),
                                                                                                             (24)
          z  Фz ( y, , z ),
          
          Фz  D0z ( y, z)  D1z ( y, z) sin  D2z ( y, z) cos  D3z ( y, z) sin 2  D4z ( y, z) cos 2.

where z  ( R, G ,  max , q ),   y  (t  t0 ) is the phase of the attack angle

             Фz  y,  , z   Фz  y  2 ,   2 , z  , Ф  y, z   Ф  y  2 , z  ,
                                                                                                              (25)
             Y  y,  , z   Y  y  2 ,   2 , z 

                               The average frequency of the proper rotation
                                                           2
                                                         1
                                                        2 
                                               ( z )       Ф ( y, z )dy                                    (26)
                                                           0

                                                                                                                     15
4. The disturbed motion
                                     The nonlinear resonance

                                ( z )  m( z )n( z )O()             (27)

Where   m, n   are integer and prime numbers


Approximate formulas for the frequencies(b=0):

                                           1 1                     R2
             2   R / 4,
                     2
                     a
                         2
                                      R     sign( R  G ) a 
                                                                 2
                                                                          (28)
                                           Ix 2                    4

Main resonance (m=n):                                                  (29)


 Resonance roll (m=0):        0                                         (30)




                                                                                 16
4. The disturbed motion
                                The example of the main resonance(b=0)

                                       qSl                      qSl
      F ( )  zт cos  sin 
                                        , R   zт sin  cos      , q   Фq ( z ), G  const (31)
                                                                       
                                        I                         I
The main resonance (m=n):             
                                                                                точка 2
Point 1:

   y  0,   0, N1  qS sin  max , M R   z  qSl sin  max                   N2
                                                                        N1
                                                                                      N3
Point 2:
                                                           точка 1                             точка 3
                  
   y       ,        , N 2  qS sin  , M R  0                               N4
        2          2
Point 3:
   y   ,    , N3  qS sin  min , M R  z  qSl sin  min
Point 4:                                                                        точка 4
        3      3
   y      ,     , N 4  qS sin  , M R  0
         2       2
                                                                                                     17
4. The disturbed motion
                       The pendulum system. Analysis of the resonances

 Change of the variable:          = my / n           (32)    The phase portrait

                The pendulum system
        d 2             dz
             +Q( ,z)=0,      f z (  ,z)             (33)
        d 2
                         d
Where    ,
Q(  , z )  Q0 ( z )  Q1 ( z )sin  
                                                        (34)
 Q2 ( z ) cos   Q3 ( z )sin 2   Q4 ( z ) cos 2 

             The integral of energy          0
                         2
                 1  d 
                      W ()  E                      (35)
                 2  d 

Where      W ( ,z)  Q0   Q1 cos   Q2 sin        (36)
                       1            1
                       Q3 cos 2   Q4 sin 2  .
                       2            2                                                18
4. The disturbed motion
                   The capture and pass through the resonance

The main resonance and the resonance roll                Types of the motions

 рад.
                                                               проход


                                                                   захват




                                                  min    *                 max
                                                                                    




                                     t,сек                          движение в малой
 0            50   100     150     200                              окрестности центра




                                                                                    19
4. The disturbed motion
                                       The stability of the resonance


Substitution of variables                *   ,    *   ,    d  / d ,  *  0    (37)

 The motion equations in the vicinity of the center:                          *

         d                           d 
                   G (  * , z ),        2 (  * , z )   P(  * , z ),
          d                            d
                                                                                                 (38)
         dz
               f z ( * , z)
         d

                         Q Q                                               Q                (39)
          G( * , z)                     f z (  * , z ),  2 (  * , z )             0
                            z      *
Wherе                         /
                                                                                 *

  The Lyapunov function


                                         VA       2
                                                          
                                                               2 2
                                                                    2
                                                                       
                                                                                                        20
4. The disturbed motion
The influence of the nonlinear resonance on the RV motion
               гр ад
       150
                                 устойчивы й резонанс
       125
                           неустойчивы й резонанс
       100

        75

        50
                                                              проход
        25
                   безрезонансное движ ение
                                                                               h,км
         0
                           65             45             25                5
               к  /с
        11                  безрезонансное движ ение
                                                               проход
        10
         9
         8
         7
         6
               неустойчивы й резонанс
         5
         4                        устойчивы й резонанс                     h,км

                            65            45            25             5
                                                                                      21
4. The disturbed motion
4.4. Features of the disturbed motion of the Re-entry Vehicle with the biharmonic moment

    The biharmonic moment                                                        The phase portrait
    m  , t   a  t  sin   b  t  sin 2




    The three the equilibrium position:
              *  0,  *  0, *  
  Three the areas exist if                  W   u*1   W   u*2   0 (40)

  u*1 , u*2 are roots of the equation               W   u   0       (41)
                                                                                                      22
4. The disturbed motion




         A0-stable; A1,A2 - unstable                       A0-unstable; A1,A2 - stable

            A1,A2 – stable if                    
                                  E ( z )  W* or f*  0                   (42)

               A0 – stable if                   
                                  E ( z )  W* or f*  0                   (43)
E - average value of the total energy, calculated in neighborhood separatrix
W* - value of the potential energy, calculated at the saddle point u=u*
                                                     
               f  f (u , z )  2(1  u 2 )[ E ( z )  W (u , z )]  O( 2 ) (44)
               *      *            *             *
                                                                                         23
4. Возмущенное движения
                                      E ( z )  W  m , z                                               (45)
   m - the amplitude value of the angle of attack
                    The derivatives by virtue of the averaged equations

                   W                    W                                          W
           E ( z)                m 
                                                         z  F ( m , z )   m 
                                                                                                   z
                                                                                                         (46)
                         m            z     m                                 z     m


                                                    W
                                       W (* , z )                       z
                                                                                                         (47)
                                                      z           *


   The criterion of stability of the disturbed motion in neighborhood the separatrix
                                                                       m
                                                            W                                            (48)
                                     F ( m , z )   m 
                                                                           z
                                                                             
                                                             z        *



A1,A2 – stable if                                         0                                             (49)

 A0 – stable if                                           0                                             (50)
                                                                                                                 24
4. The disturbed motion
At the moment of time t* the phase trajectory
intersects the separatrix. Areas A1 and A2 are
stable, therefore the system can continue the
further motion both in area A1, and in area A2.
5. Chaotic oscillations of the RV
                Chaotic behavior of an asymmetric body
          with the biharmonic moment (classical formulation)
    New notation: nutation angle                  ,       inertia moments A  I x , B  I y , C  I z ,
                     generalized momentums                            
                                                             p  I x , p  I x R, p  I xG.
                                                  B A
           Small parameter                                                                          (51)
                                                   A
                                                                                                      (52)
  Hamiltonian:         H  H 0   H1  O( )         2



                      p  p cos 
                                        2
                 2                                2
                                                 p                                                   (53)
             p
Where   H0                                         a cos   b cos 
                                                                        2

            2A           2 A sin 2             2C
                p  p cos   cos   p sin  sin  
                                                                    2

        H1                                                                                        (54)
                               2 A sin 2 
 Canonical equations
                     H           H
              qi 
              
                     pi
                         , pi  
                           
                                  qi
                                            
                                      , qi   ,  , , pi  p , p , p                            (55)

                                                                                                             26
5. Chaotic oscillations of the RV
                                      Unperturbed system                        0  H  H0

                  p , p    
                                p  p cos   p  p cos  
                                                               a sin   b sin 2 ,
                    A                     A sin 3 
                                                                                               (56)
                    p  p  p cos   cos         p  p cos  , p , p  co nst
                                         ,                             
                    C           A sin 2                 A sin 2 

The Euler case: a=0, b=0. The Lagrange case: a>0, b=0.


             Homoclinic trajectories - separatrices

                                             4
cos  ( j ) (t )  u0                                                 , j  1, 2
                          2   (4   )C j exp(t )  C j exp( t )
                                        2    1



                                                                          (57)



                                                                                                      27
5. Chaotic oscillations of the RV
                                                            Melnikov function

               
                     H 0      H 0        H 0  ( j )
M j  t0     g p       g       g p        (t  t0 ), p (t  t0 ), p ,   t  t0   dt 
                                                                   ( j)              ( j)

              
                     p                 p                                                                   (58)
                   
  0 , p   g p  ( j ) (t  t0 ), p ( j ) (t  t0 ), p ,  ( j )  t  t0  dt
                   
                                                                                            Melnikov function for
                                                                                              areas А1 and А2
 Where

           H1           H        H1
   g         , g p   1 , g 
           p                   p




                                                                                                                       28
5. Chaotic oscillations of the RV
                   The Poincare sections




Asymmetry    0                           Asymmetry     0.01



                                                                  29
5. Chaotic oscillations of the RV
                        The Poincare sections



Asymmetry     0.05




                                                   30
6. Chaotic oscillations of the Re-entry Vehicle with a
               moving center of mass
          Mass center of the RV moves along the axis of symmetry

                             xc  ( xc )0  xc sin(t )                         (59)


                             The motion equation of the RV


        
        
              G  R cos   R  G cos    a sin   b sin 2             
                          sin  3
                                                                                 (60)
          ( a sin   b sin 2 ) sin(t )   m ( )


                                    Melnikov system
             f1  g1 ,
         
             G  R cos   R  G cos   / sin 3   a sin   b sin 2 
          
                                                                                 (61)
          (a sin   b sin 2 ) sin    1  sin     f 2  g 2 ,
                                                    2


          
          
                                                                                        31
6. Chaotic oscillations of the Re-entry Vehicle with a
               moving center of mass
                                             The homoclinic trajectories

                                                                     4
                        cos  ( j ) (t )  u0                                                 , j  1, 2   (62)
                                                  2   (4   )C j exp(t )  C j exp( t )
                                                                2    1




                                                      Melnikov function
                                        
             M (t0 , 0 )   { f1[qi ) (t )] g2[qi ) (t ), t  t0  0 ]}dt  M (i )  M (i )
                 (i )
                 
                                    (              (
                                                                                                            (63)
                                        



                             
    где M                     i ) (a sin  i )  b sin 2 i ) ) sin(t  t0  0 )dt ,
          (i )                     (             (               (
                           
                                                                                                           (64)
        M     (1  sin  )( ) dt
          (i )                                2     (i )
                                                    
                                                            (i ) 2
                                                            
                                 


                                      The absence condition of the chaos


                                                            M(i )  M (i )                                (65)


                                                                                                                   32
6. Chaotic oscillations of the Re-entry Vehicle with a
               moving center of mass
                    The Poincare sections




                                                    33
7. Identification of the spacecraft motion by
                        measuring
                    7.1. General Terms of the integral method
                                                                                                    (66)
The vector of measurements :                    d  (d1 , d 2 ,.., d m )
The vector of calculated values :               g ( )   g1 , g 2, ..., g m                      (67)

             
Where   1 , 2, ..., l       is the vector of estimated parameters
                                                          
                                                                                           
                                                                     N m
The least square method (LSM)                               argmin   j d ij  g ij   2      (68)
                                                                      i 1 j 1

We know the set of independent first integrals

                                                 
                                    H k ,d j  const, k  1,2,.. p; j  1,2,..m                  (69)


or the slowly varying functions
                                                               
                                                          dH k ,d j     O                     (70)
                                                              dt
The new criterion

                                                 k  H k  , dij   H k  , gij   
                                                 N    p                                         2
                                  
                                   arg min                                                        (71)
                                            
                                                i 1 k 1
                                                                                           
                                                                                                           34
7. Identification of the spacecraft motion by
                         measuring
         7.2. Identification of the rotational motion of the spacecraft
                                   on the orbit
Measurements of the angular velocity                            x
                                                           d  u ,u ,u
                                                                    y   z                                  (72)

                                                              x 0 ,  y 0 ,  z 0 , I x , I y , I z 
                                                                                                            (73)
The vector of calculated values

The two first integrals depending the angular velocity of


                                  K  x   x     y K y   z K z  / 2  H1 ,
                                                                                                            (74)
                                 K  K  K  H2
                                   2
                                   x
                                               2
                                               y
                                                       2
                                                       z



K  I     K x , K y , K z  is the angular momentum, , ,  Are the directional cosines.
        


                                                   The new criterion


                              k  H k  ,  uji   H k  ,  jip    , j  x, y, z
                             N     2                                                        2
                
                 arg min                                                                                  (75)
                                  
                             i 1 k 1
                                                                             
                                                                                                                   35
7. Identification of the spacecraft motion by
                        measuring
                                             Sample
The number of measurements of the angular velocity N=20
        Mathematical expectations and standard deviations of estimates of the
              moments of inertia for different measurement intervals t 


                         The least square method           The integral method

             t      2        10      25       40      2       10      25        40

             MIx    1.499    1.499   1.499    1.493   1.491   1.494   1.499   1.500

             I x   0.011    0.009   0.437    0.571   0.082   0.063   0.092   0.074
             MIy    5.627    5.619   6.477    7.007   5.604   5.604   5.612   5.605
             I y   0.027    0.025   1.651    3.183   0.043   0.046   0.041   0.043

The advantages of the integral method:
           1. The accuracy of the method is independent of the measurement step.
           2. The method does not require a large number of calculations.
                                                                                      36
7Identification of the spacecraft motion by
                          measuring
  7.3. Identification of the motion of the spacecraft during descent in the
                                  atmosphere
                                                                                
Measurements of the angular velocity and acceleration d  x ,  y , z , nx , n y , nz (76)              
  The vector of calculated values:                x0 , D                                                  (77)
          x0 is vector the initial conditions,
         D    are parameters of the spacecraft .
  The slowly varying functions:
                                       R  I x x ,    G
                                                               1
                                                               n
                                                                  I x x nx   y n y   z nz  ,
                                                                                                               (78)
                                          1                                     ci  nx  
                                                                          n 1             i 1

                                       E     I x x  I  y  I  z  q             
                                                    2       2       2

                                          2I 
                                                                         i 0 i  1  n       
                                                                                                
      E is the kinetic energy.

                                            The new criterion

                                                                                                 
                            N
                   argmin   R Riu  Rip                                      E Eiu  Eip 
                 ~                                2                         2                  2
                                                       G Giu  Gip                                          (79)
                          i 1 
                                                                                                
                                                                                                 
                                                                                                                      37
7. Identification of the spacecraft motion by
                         measuring
                                                   Sample
 The number of measurements N=50

          Mathematical expectations and standard deviations of estimates of the
                                    stability margin m 
                                                                  z


                t ,c           0.2         2.0         4.0             8.0      16.0
               t ,c          0.011       0.105        0.221          0.421      0.842
               M m
                             -0.0599     -0.0599     -0.0799            -         -
                      z

                 m
                             0.0006      0.0001       0.0306            -         -
                      z

               M ~           -0.0624     -0.0604     -0.0604         -0.0604   -0.0604
                  mz
                 ~          0.0033      0.0011       0.0011         0.0010    0.0012
                  mz

               K m m
                  ~          0.5264      0.6579       0.0696            -         -
                  z       z


The advantages of the integral method:
                                1. The accuracy of the method is independent of the measurement step.
                                2. The method does not require a large number of calculations.
                                                                                                    38
The main results were published in the
                  following papers and book
•   Асланов В.С. Пространственное движение тела в атмосфере, М:. Физматлит, 160 с., 2004.
    (Aslanov V.S. Spatial Motion of a Body at Descent in the Atmosphere, Moscow: Fizmatlit, 2004, 160
    pages)
•   Aslanov V.S. Spatial chaotic vibrations when there is a periodic change in the position of the centre
    of mass of a body in the atmosphere- Journal of Applied Mathematics and Mechanics 73 (2009) 179–
    187.
•   Aslanov V.S. and Ledkov A.S. Analysis of the resonance and ways of its elimination at the descent
    of spacecrafts in the rarefied atmosphere - Aerospace Science and Technology 13 (2009) 224–231.
•   Aslanov V.S. Resonance at motion of a body in the Mars’s atmosphere under biharmonical moment -
    WSEAS TRANSACTIONS on SYSTEMS AND CONTROL, Issue 1, Volume 3, January 2008, (ISSN:
    1991-8763), pp. 33-39.
•   Aslanov V. S. and Doroshin A. V. Influence of Disturbances on the Angular Motion of a Spacecraft in
    the Powered Section of Its Descent - Cosmic Research ISSN 0010-9525, Vol. 46, No. 2, 2008, pp. 166-
    171.
•   Aslanov V.S. Resonance at Descent in the Mars’s Atmosphere of Analogue of the Beagle 2 Lander -
    Proceedings of 3rd WSEAS International Conference on DYNAMICAL SYSTEMS and CONTROL
    (CONTROL'07), Arcachon, France, October 13-15, 2007, 178-181.
•   Aslanov V. S. and Ledkov A.S. Features of Rotational Motion of a Spacecraft Descending in the
    Martian Atmosphere - Cosmic Research ISSN 0010-9525, 2007, Vol. 45, No. 4, 331-337.
•   Aslanov V. S. Doroshin A. V. and Kruglov G.E. The mothion of coaxial bodies of varying
    composition on the active leg of descent - Cosmic Research ISSN 0010-9525, Vol. 43, No. 3, 2005, pp.
    213-221.

                                                                                                      39
The main results were published in the
                  following papers and book
•   Aslanov V. S. The motion of a rotating body in a resisting medium - Mechanics of Solids, 2005, vol.
    40, no2, pp. 21-32.
•   Aslanov V.S. and Timbyi I.A. Action-angle canonical variables for the motion of a rigid body under
    the action of a biharmonic torque - Mechanics of Solids, Vol. 38, No. 1, pp. 13-23, 2003.
•   Aslanov V. S. and Doroshin A. V. Stabilization of a Reentry Vehicle by a Partial Spin-up during
    Uncontrolled Descent - Cosmic Research ISSN 0010-9525, Vol. 40, No. 2, 2002, pp. 178-185.
•   Aslanov V. S. and Myasnikov S. V. Analysis of Nonlinear Resonances during Spacecraft Descent in
    the Atmosphere - Cosmic Research ISSN 0010-9525, Vol. 35, No. 6, 1997, pp. 616-622.
•   Aslanov V. S. and Timbay I. A. Transient Modes of Spacecraft Angular Motion on the Upper Section
    of the Reentry Trajectory - Cosmic Research ISSN 0010-9525, Vol. 35, No. 3, 1997, pp. 260-267.
•   Aslanov V. S. and Myasnikov S. V. Stability of Nonlinear Resonance Modes of Spacecraft Motion in
    the Atmosphere - Cosmic Research ISSN 0010-9525, Vol. 34, No. 6, 1996, pp. 579-584.
•   Aslanov V. S. and Timbay I. A. Some Problem of the Reentry Vehicles Dynamics- Cosmic Research
    ISSN 0010-9525, Vol. 33, No. 6, 1995.
•   Aslanov V.S. Nonlinear Resonances of the Slightly Asymmetric Reentry Vehicles - Cosmic
    Research ISSN 0010-9525, Vol. 30, No. 5, 1992.
•   Aslanov V.S. Definition of Rotary Movement of a Space Vehicle by Results of Measurements -
    Cosmic Research ISSN 0010-9525, Vol. 27, No. 3, 1989.
•   Aslanov V.S. Two Kinds of Nonlinear Resonant Movement of an Asymmetric Reentry Vehicle -
    Cosmic Research ISSN 0010-9525, Vol. 26, No. 2, 1988.
•   Aslanov V. S. and Boyko V.V. Nonlinear Resonant Movement of an Asymmetric Reentry Vehicle -
    Cosmic Research ISSN 0010-9525, Vol. 23, No. 3, 1985.

                                                                                                      40
The main results were published in the
                  following papers and book
•   Aslanov V. S., Boyko V.V. and Timbay I. A. Spatial Fluctuations of the Symmetric Reentry Vehicle at
    Any Corners of Attack - Cosmic Research ISSN 0010-9525, Vol. 19, No. 5, 1981.
•   Aslanov V. S. Definition of Amplitude of Spatial Fluctuations of the Slightly Asymmetric Reentry
    Vehicles - Cosmic Research ISSN 0010-9525, Vol. 18, No. 2, 1980.
•   Aslanov V. S. About Rotary Movement of the Symmetric Reentry Vehicle - Cosmic Research ISSN
    0010-9525, Vol. 14, No. 4, 1976.




                                                                                                     41

Más contenido relacionado

La actualidad más candente

Stress and fatigue analysis of landing gear axle of a trainer aircraft
Stress and fatigue analysis of landing gear axle of a trainer aircraftStress and fatigue analysis of landing gear axle of a trainer aircraft
Stress and fatigue analysis of landing gear axle of a trainer aircrafteSAT Journals
 
Effect of bird strike on Jet Engine
Effect of bird strike on Jet EngineEffect of bird strike on Jet Engine
Effect of bird strike on Jet EngineMahendra Gehlot
 
DEVELOPMENT OF A NEUROFUZZY CONTROL SYSTEM FOR THE GUIDANCE OF AIR ...
DEVELOPMENT OF A  NEUROFUZZY  CONTROL   SYSTEM   FOR   THE  GUIDANCE  OF AIR ...DEVELOPMENT OF A  NEUROFUZZY  CONTROL   SYSTEM   FOR   THE  GUIDANCE  OF AIR ...
DEVELOPMENT OF A NEUROFUZZY CONTROL SYSTEM FOR THE GUIDANCE OF AIR ...Ahmed Momtaz Hosny, PhD
 
High Speed Aerodynamics
High Speed AerodynamicsHigh Speed Aerodynamics
High Speed AerodynamicsSuhail Ahmed
 
Thrust augmentation
Thrust augmentationThrust augmentation
Thrust augmentationBuddhikaaero
 
Aircraft landing gear system
Aircraft landing gear systemAircraft landing gear system
Aircraft landing gear systemKrishikesh Singh
 
Propulsion 2 questions for aeronautical students
Propulsion 2 questions for aeronautical studentsPropulsion 2 questions for aeronautical students
Propulsion 2 questions for aeronautical studentssundaraero
 
Morphing of aircraft wings
Morphing of aircraft wingsMorphing of aircraft wings
Morphing of aircraft wingsShazaan Sayeed
 
Turbo jet engine
Turbo jet engineTurbo jet engine
Turbo jet engineAsha A
 
1. introduction aerodynamics
1. introduction aerodynamics1. introduction aerodynamics
1. introduction aerodynamicsAhmed Atef Hamada
 
Aircraft control systems
Aircraft control systemsAircraft control systems
Aircraft control systemsSanjay Singh
 
Automobile wind tunnels, icing tunnels,and propeller tunnels
Automobile wind tunnels, icing tunnels,and propeller tunnelsAutomobile wind tunnels, icing tunnels,and propeller tunnels
Automobile wind tunnels, icing tunnels,and propeller tunnelsChinthana Ruwanpathirana
 
Waypoint Flight Parameter Comparison of an Autonomous Uav
Waypoint  Flight  Parameter  Comparison  of an Autonomous UavWaypoint  Flight  Parameter  Comparison  of an Autonomous Uav
Waypoint Flight Parameter Comparison of an Autonomous Uavijaia
 
CFD analysis of aerofoil
CFD analysis of aerofoilCFD analysis of aerofoil
CFD analysis of aerofoilNeel Thakkar
 

La actualidad más candente (20)

Stress and fatigue analysis of landing gear axle of a trainer aircraft
Stress and fatigue analysis of landing gear axle of a trainer aircraftStress and fatigue analysis of landing gear axle of a trainer aircraft
Stress and fatigue analysis of landing gear axle of a trainer aircraft
 
Effect of bird strike on Jet Engine
Effect of bird strike on Jet EngineEffect of bird strike on Jet Engine
Effect of bird strike on Jet Engine
 
DEVELOPMENT OF A NEUROFUZZY CONTROL SYSTEM FOR THE GUIDANCE OF AIR ...
DEVELOPMENT OF A  NEUROFUZZY  CONTROL   SYSTEM   FOR   THE  GUIDANCE  OF AIR ...DEVELOPMENT OF A  NEUROFUZZY  CONTROL   SYSTEM   FOR   THE  GUIDANCE  OF AIR ...
DEVELOPMENT OF A NEUROFUZZY CONTROL SYSTEM FOR THE GUIDANCE OF AIR ...
 
High Speed Aerodynamics
High Speed AerodynamicsHigh Speed Aerodynamics
High Speed Aerodynamics
 
Thrust augmentation
Thrust augmentationThrust augmentation
Thrust augmentation
 
Aircraft landing gear system
Aircraft landing gear systemAircraft landing gear system
Aircraft landing gear system
 
Final Report Wind Tunnel
Final Report Wind TunnelFinal Report Wind Tunnel
Final Report Wind Tunnel
 
Propulsion 2 questions for aeronautical students
Propulsion 2 questions for aeronautical studentsPropulsion 2 questions for aeronautical students
Propulsion 2 questions for aeronautical students
 
Morphing of aircraft wings
Morphing of aircraft wingsMorphing of aircraft wings
Morphing of aircraft wings
 
Turbo jet engine
Turbo jet engineTurbo jet engine
Turbo jet engine
 
Wind Tunnel Ex
Wind Tunnel ExWind Tunnel Ex
Wind Tunnel Ex
 
1. introduction aerodynamics
1. introduction aerodynamics1. introduction aerodynamics
1. introduction aerodynamics
 
unmanned aerial vehicles
 unmanned aerial vehicles unmanned aerial vehicles
unmanned aerial vehicles
 
Aircraft propulsion system
Aircraft propulsion systemAircraft propulsion system
Aircraft propulsion system
 
Stall and Spins - Awareness and Avoidance
Stall and Spins - Awareness and AvoidanceStall and Spins - Awareness and Avoidance
Stall and Spins - Awareness and Avoidance
 
Aircraft control systems
Aircraft control systemsAircraft control systems
Aircraft control systems
 
Automobile wind tunnels, icing tunnels,and propeller tunnels
Automobile wind tunnels, icing tunnels,and propeller tunnelsAutomobile wind tunnels, icing tunnels,and propeller tunnels
Automobile wind tunnels, icing tunnels,and propeller tunnels
 
Waypoint Flight Parameter Comparison of an Autonomous Uav
Waypoint  Flight  Parameter  Comparison  of an Autonomous UavWaypoint  Flight  Parameter  Comparison  of an Autonomous Uav
Waypoint Flight Parameter Comparison of an Autonomous Uav
 
Scramjet engine
Scramjet engineScramjet engine
Scramjet engine
 
CFD analysis of aerofoil
CFD analysis of aerofoilCFD analysis of aerofoil
CFD analysis of aerofoil
 

Destacado

The Removal of Large Space Debris Using Tethered Space Tug
The Removal of Large Space Debris Using Tethered Space TugThe Removal of Large Space Debris Using Tethered Space Tug
The Removal of Large Space Debris Using Tethered Space TugTheoretical mechanics department
 
Научно-исследовательская работа кафедры Теоретической механики
Научно-исследовательская работа кафедры Теоретической механикиНаучно-исследовательская работа кафедры Теоретической механики
Научно-исследовательская работа кафедры Теоретической механикиРуслан Пикалов
 
Mathematical models and analysis of the space tether systems motion
Mathematical models and analysis of the space tether systems motion Mathematical models and analysis of the space tether systems motion
Mathematical models and analysis of the space tether systems motion Theoretical mechanics department
 
Динамика твёрдого тела: случай Лагранжа
Динамика твёрдого тела: случай ЛагранжаДинамика твёрдого тела: случай Лагранжа
Динамика твёрдого тела: случай ЛагранжаTheoretical mechanics department
 
Написание научной статьи на английском языке
Написание научной статьи на английском языкеНаписание научной статьи на английском языке
Написание научной статьи на английском языкеTheoretical mechanics department
 
The Dynamics of Tethered Debris With Flexible Appendages and Residual Fuel
The Dynamics of Tethered Debris With Flexible Appendages and Residual FuelThe Dynamics of Tethered Debris With Flexible Appendages and Residual Fuel
The Dynamics of Tethered Debris With Flexible Appendages and Residual FuelTheoretical mechanics department
 
On problems of active space debris removal using tethered towing
On problems of active space debris removal using tethered towingOn problems of active space debris removal using tethered towing
On problems of active space debris removal using tethered towingTheoretical mechanics department
 

Destacado (20)

The Removal of Large Space Debris Using Tethered Space Tug
The Removal of Large Space Debris Using Tethered Space TugThe Removal of Large Space Debris Using Tethered Space Tug
The Removal of Large Space Debris Using Tethered Space Tug
 
Научно-исследовательская работа кафедры Теоретической механики
Научно-исследовательская работа кафедры Теоретической механикиНаучно-исследовательская работа кафедры Теоретической механики
Научно-исследовательская работа кафедры Теоретической механики
 
Mathematical models and analysis of the space tether systems motion
Mathematical models and analysis of the space tether systems motion Mathematical models and analysis of the space tether systems motion
Mathematical models and analysis of the space tether systems motion
 
1U-3U+ Cubesat Deployer by JSC SRC "Progress"
1U-3U+ Cubesat Deployer by JSC SRC "Progress"1U-3U+ Cubesat Deployer by JSC SRC "Progress"
1U-3U+ Cubesat Deployer by JSC SRC "Progress"
 
Python. Обработка ошибок
Python. Обработка ошибокPython. Обработка ошибок
Python. Обработка ошибок
 
Модификация механизма Йо-Йо
Модификация механизма Йо-ЙоМодификация механизма Йо-Йо
Модификация механизма Йо-Йо
 
Dynamics of Satellite With a Tether System
Dynamics of Satellite With a Tether SystemDynamics of Satellite With a Tether System
Dynamics of Satellite With a Tether System
 
Кинематические уравнения
Кинематические уравненияКинематические уравнения
Кинематические уравнения
 
Динамика твёрдого тела: случай Лагранжа
Динамика твёрдого тела: случай ЛагранжаДинамика твёрдого тела: случай Лагранжа
Динамика твёрдого тела: случай Лагранжа
 
Углы Эйлера
Углы ЭйлераУглы Эйлера
Углы Эйлера
 
1032 pearson[2]
1032 pearson[2]1032 pearson[2]
1032 pearson[2]
 
Chaotic motions of tethered satellites with low thrust
Chaotic motions of tethered satellites with low thrust Chaotic motions of tethered satellites with low thrust
Chaotic motions of tethered satellites with low thrust
 
Uars status
Uars statusUars status
Uars status
 
Написание научной статьи на английском языке
Написание научной статьи на английском языкеНаписание научной статьи на английском языке
Написание научной статьи на английском языке
 
Casi Bench Test
Casi Bench TestCasi Bench Test
Casi Bench Test
 
Кватернионы
КватернионыКватернионы
Кватернионы
 
The Dynamics of Tethered Debris With Flexible Appendages and Residual Fuel
The Dynamics of Tethered Debris With Flexible Appendages and Residual FuelThe Dynamics of Tethered Debris With Flexible Appendages and Residual Fuel
The Dynamics of Tethered Debris With Flexible Appendages and Residual Fuel
 
Случай Эйлера
Случай ЭйлераСлучай Эйлера
Случай Эйлера
 
Основы MATLAB. Программирование
Основы MATLAB. ПрограммированиеОсновы MATLAB. Программирование
Основы MATLAB. Программирование
 
On problems of active space debris removal using tethered towing
On problems of active space debris removal using tethered towingOn problems of active space debris removal using tethered towing
On problems of active space debris removal using tethered towing
 

Similar a Attitude Dynamics of Re-entry Vehicle

Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Scienceresearchinventy
 
The Dynamics and Control of Axial Satellite Gyrostats of Variable Structure
The Dynamics and Control of Axial Satellite Gyrostats of Variable StructureThe Dynamics and Control of Axial Satellite Gyrostats of Variable Structure
The Dynamics and Control of Axial Satellite Gyrostats of Variable StructureTheoretical mechanics department
 
Geolocation techniques
Geolocation techniquesGeolocation techniques
Geolocation techniquesSpringer
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...ijceronline
 
Conversion from rectangular to polar coordinates and gradient wind
Conversion from rectangular to polar coordinates and gradient windConversion from rectangular to polar coordinates and gradient wind
Conversion from rectangular to polar coordinates and gradient windTarun Gehlot
 
Existence of Hopf-Bifurcations on the Nonlinear FKN Model
Existence of Hopf-Bifurcations on the Nonlinear FKN ModelExistence of Hopf-Bifurcations on the Nonlinear FKN Model
Existence of Hopf-Bifurcations on the Nonlinear FKN ModelIJMER
 
A recipe for multi-metric gravity
A recipe for multi-metric gravityA recipe for multi-metric gravity
A recipe for multi-metric gravityKouichiNomura1
 
Problem for the gravitational field
 Problem for the gravitational field Problem for the gravitational field
Problem for the gravitational fieldAlexander Decker
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...ijceronline
 
Adomian decomposition method for solving higher order boundary value problems
Adomian decomposition method for solving higher order boundary value problemsAdomian decomposition method for solving higher order boundary value problems
Adomian decomposition method for solving higher order boundary value problemsAlexander Decker
 
Ysu conference presentation alaverdyan
Ysu conference  presentation alaverdyanYsu conference  presentation alaverdyan
Ysu conference presentation alaverdyanGrigor Alaverdyan
 
การเคล อนท__แบบหม_น
การเคล  อนท__แบบหม_นการเคล  อนท__แบบหม_น
การเคล อนท__แบบหม_นrsurachat
 
N. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark EnergyN. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark EnergySEENET-MTP
 
20150304 ims mikiya_fujii_dist
20150304 ims mikiya_fujii_dist20150304 ims mikiya_fujii_dist
20150304 ims mikiya_fujii_distFujii Mikiya
 
An evaluation of gnss code and phase solutions
An evaluation of gnss code and phase solutionsAn evaluation of gnss code and phase solutions
An evaluation of gnss code and phase solutionsAlexander Decker
 
Ip entrance test paper 1
Ip entrance test paper 1Ip entrance test paper 1
Ip entrance test paper 1APEX INSTITUTE
 
Primer for ordinary differential equations
Primer for ordinary differential equationsPrimer for ordinary differential equations
Primer for ordinary differential equationsTarun Gehlot
 

Similar a Attitude Dynamics of Re-entry Vehicle (20)

Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
Talk spinoam photon
Talk spinoam photonTalk spinoam photon
Talk spinoam photon
 
The Dynamics and Control of Axial Satellite Gyrostats of Variable Structure
The Dynamics and Control of Axial Satellite Gyrostats of Variable StructureThe Dynamics and Control of Axial Satellite Gyrostats of Variable Structure
The Dynamics and Control of Axial Satellite Gyrostats of Variable Structure
 
Geolocation techniques
Geolocation techniquesGeolocation techniques
Geolocation techniques
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
Conversion from rectangular to polar coordinates and gradient wind
Conversion from rectangular to polar coordinates and gradient windConversion from rectangular to polar coordinates and gradient wind
Conversion from rectangular to polar coordinates and gradient wind
 
Existence of Hopf-Bifurcations on the Nonlinear FKN Model
Existence of Hopf-Bifurcations on the Nonlinear FKN ModelExistence of Hopf-Bifurcations on the Nonlinear FKN Model
Existence of Hopf-Bifurcations on the Nonlinear FKN Model
 
A recipe for multi-metric gravity
A recipe for multi-metric gravityA recipe for multi-metric gravity
A recipe for multi-metric gravity
 
Problem for the gravitational field
 Problem for the gravitational field Problem for the gravitational field
Problem for the gravitational field
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
Adomian decomposition method for solving higher order boundary value problems
Adomian decomposition method for solving higher order boundary value problemsAdomian decomposition method for solving higher order boundary value problems
Adomian decomposition method for solving higher order boundary value problems
 
Ysu conference presentation alaverdyan
Ysu conference  presentation alaverdyanYsu conference  presentation alaverdyan
Ysu conference presentation alaverdyan
 
การเคล อนท__แบบหม_น
การเคล  อนท__แบบหม_นการเคล  อนท__แบบหม_น
การเคล อนท__แบบหม_น
 
N24108113
N24108113N24108113
N24108113
 
N. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark EnergyN. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark Energy
 
20150304 ims mikiya_fujii_dist
20150304 ims mikiya_fujii_dist20150304 ims mikiya_fujii_dist
20150304 ims mikiya_fujii_dist
 
An evaluation of gnss code and phase solutions
An evaluation of gnss code and phase solutionsAn evaluation of gnss code and phase solutions
An evaluation of gnss code and phase solutions
 
Dimen
DimenDimen
Dimen
 
Ip entrance test paper 1
Ip entrance test paper 1Ip entrance test paper 1
Ip entrance test paper 1
 
Primer for ordinary differential equations
Primer for ordinary differential equationsPrimer for ordinary differential equations
Primer for ordinary differential equations
 

Más de Theoretical mechanics department

Python. Объектно-ориентированное программирование
Python. Объектно-ориентированное программирование Python. Объектно-ориентированное программирование
Python. Объектно-ориентированное программирование Theoretical mechanics department
 
Основы языка Питон: типы данных, операторы
Основы языка Питон: типы данных, операторыОсновы языка Питон: типы данных, операторы
Основы языка Питон: типы данных, операторыTheoretical mechanics department
 
Машинная арифметика. Cтандарт IEEE-754
Машинная арифметика. Cтандарт IEEE-754Машинная арифметика. Cтандарт IEEE-754
Машинная арифметика. Cтандарт IEEE-754Theoretical mechanics department
 
Docking with noncooperative spent orbital stage using probe-cone mechanism
Docking with noncooperative spent orbital stage using probe-cone mechanismDocking with noncooperative spent orbital stage using probe-cone mechanism
Docking with noncooperative spent orbital stage using probe-cone mechanismTheoretical mechanics department
 
Алгоритмы и языки программирования
Алгоритмы и языки программированияАлгоритмы и языки программирования
Алгоритмы и языки программированияTheoretical mechanics department
 
Chaotic Behavior of a Passive Satellite During Towing by a Tether
Chaotic Behavior of a Passive Satellite During Towing by a TetherChaotic Behavior of a Passive Satellite During Towing by a Tether
Chaotic Behavior of a Passive Satellite During Towing by a TetherTheoretical mechanics department
 
Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+
Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+
Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+Theoretical mechanics department
 
Методы решения нелинейных уравнений
Методы решения нелинейных уравненийМетоды решения нелинейных уравнений
Методы решения нелинейных уравненийTheoretical mechanics department
 
Отделение створок головного обтекателя
Отделение створок головного обтекателяОтделение створок головного обтекателя
Отделение створок головного обтекателяTheoretical mechanics department
 

Más de Theoretical mechanics department (20)

Космический мусор
Космический мусорКосмический мусор
Космический мусор
 
Основы SciPy
Основы SciPyОсновы SciPy
Основы SciPy
 
Основы NumPy
Основы NumPyОсновы NumPy
Основы NumPy
 
Python. Объектно-ориентированное программирование
Python. Объектно-ориентированное программирование Python. Объектно-ориентированное программирование
Python. Объектно-ориентированное программирование
 
Python: ввод и вывод
Python: ввод и выводPython: ввод и вывод
Python: ввод и вывод
 
Python: Модули и пакеты
Python: Модули и пакетыPython: Модули и пакеты
Python: Модули и пакеты
 
Основы Python. Функции
Основы Python. ФункцииОсновы Python. Функции
Основы Python. Функции
 
Основы языка Питон: типы данных, операторы
Основы языка Питон: типы данных, операторыОсновы языка Питон: типы данных, операторы
Основы языка Питон: типы данных, операторы
 
Машинная арифметика. Cтандарт IEEE-754
Машинная арифметика. Cтандарт IEEE-754Машинная арифметика. Cтандарт IEEE-754
Машинная арифметика. Cтандарт IEEE-754
 
Docking with noncooperative spent orbital stage using probe-cone mechanism
Docking with noncooperative spent orbital stage using probe-cone mechanismDocking with noncooperative spent orbital stage using probe-cone mechanism
Docking with noncooperative spent orbital stage using probe-cone mechanism
 
Алгоритмы и языки программирования
Алгоритмы и языки программированияАлгоритмы и языки программирования
Алгоритмы и языки программирования
 
Deployers for nanosatellites
Deployers for nanosatellitesDeployers for nanosatellites
Deployers for nanosatellites
 
CubeSat separation dynamics
CubeSat separation dynamicsCubeSat separation dynamics
CubeSat separation dynamics
 
Chaotic Behavior of a Passive Satellite During Towing by a Tether
Chaotic Behavior of a Passive Satellite During Towing by a TetherChaotic Behavior of a Passive Satellite During Towing by a Tether
Chaotic Behavior of a Passive Satellite During Towing by a Tether
 
Основы MATLAB. Численные методы
Основы MATLAB. Численные методыОсновы MATLAB. Численные методы
Основы MATLAB. Численные методы
 
Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+
Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+
Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+
 
Методы решения нелинейных уравнений
Методы решения нелинейных уравненийМетоды решения нелинейных уравнений
Методы решения нелинейных уравнений
 
Наноспутники формата кубсат
Наноспутники формата кубсатНаноспутники формата кубсат
Наноспутники формата кубсат
 
Отделение створок головного обтекателя
Отделение створок головного обтекателяОтделение створок головного обтекателя
Отделение створок головного обтекателя
 
Метод Кейна
Метод КейнаМетод Кейна
Метод Кейна
 

Último

The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxLoriGlavin3
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxLoriGlavin3
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningLars Bell
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfMounikaPolabathina
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxBkGupta21
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESmohitsingh558521
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfPrecisely
 

Último (20)

The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptx
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine Tuning
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdf
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptx
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
 

Attitude Dynamics of Re-entry Vehicle

  • 1. Vladimir S. Aslanov aslanov_vs@mail.ru Attitude Dynamics of Re-entry Vehicle Theoretical Mechanics Department www.termech.ru Samara State Aerospace University, Russia www.ssau.ru 2012
  • 2. 1. Statement of the problem We study of the Re-entry Vehicle (RV) motion about of mass center in the planetary atmospheres by regular and chaotic dynamics methods The dynamics of a rotating body studied famous mathematicians of all time as Euler, Poinsot, Lagrange and Kovalevskaya. The research of the dynamics of rotating bodies is very important for numerous applications such as the dynamics of satellites and re- entries. In this area we note the papers scientists as Yaroshevsky, Belezky, Rumyantsev, J.Nicolaides, G.Gross, C.Murphy et al.
  • 3. Types of the Re-entry Vehicles. 3
  • 4. 1. Statement of the problem Aims of research • To obtain nonlinear mathematical models of the spatial motion of the re- entry about center of mass in the atmosphere. • To divide the motion on the unperturbed and perturbed. • To find to the exact and approximate analytical solutions of the unperturbed motion. • To deduce the approximate solutions of the equations of perturbed motion. • To determine the nonlinear response and to explore its stability. • To study the motion of spacecraft in the atmosphere of the methods of chaotic dynamics. • To solve the problem of identification of the spacecraft motion over the small number of the measurements. 4
  • 5. 2. The motion equations The motion equations of the RV in an inertial frame     dK    dei   2 d r  F  K  M,    ei  0, 2 g (1) dt dt dt m  Coordinate systems  K  I   is angular momentum,  I is inertia tensor,  is angular velocity,   F , M are aerodynamic force and moment,  ei is unit vectors, m is mass of the RV,  g is gravitational acceleration. 5
  • 6. 2. The motion equations The motion equations of the RV mass center dV qS d cos   V2  dH  cxa  g sin  ,   g  ,  V sin  (2) dt m dt V  r  dt V 2 V , H,  are velocity, altitude of flight and trajectory q is the dynamic pressure. inclination angle; 2 Iz  I y The small asymmetry:   ( yT , zT , i  , I xy , I xz , mx , my , mz )  0( ) (3) I where  is a small parameter. The motion equations about of the RV mass center d 2 2  F ( , z )   Ф ( ,  , z ), dt d  R / I x  (G  R cos  ) cos  / sin 2   Ф ( , z ), (4) dt dz   Фz ( ,  , z ), ( z  R, G, q ) dt F (, z )  (G  R cos )(R  G cos ) / sin3   M  (, z ), (5)  Ф  D0 ( , z )  D1 ( , z )sin   D ( , z ) cos   D3 ( , z )sin 2  D ( , z) cos 2   2  4 (6)    , R, G, q  6
  • 7. 3. The undisturbed motion The equations of the undisturbed motion  0 d 2  G  R cos   R  G cos     M    0 (7) dt 2 sin 3  qSL The restoring aerodynamic moment M     m   , m    a sin   b sin 2 (8) I xT xT  L  *  0,  *  0, *   are the equilibrium position 7
  • 8. 3. The undisturbed motion Types of the RV m    a sin   b sin 2 m    a sin  8
  • 9. 3. The undisturbed motion Energy integral of equation (7) 1  d  R 2  G 2  2 RG cos  2     a cos   b cos 2   E (9) 2  dt  2sin 2 Change of variables u  cos  lead to the equation 2  du     f u  (10)  dt  where f  u   2 1  u 2  E  au  bu 2   2GRu  G 2  R 2 (11) Separating the variables in the equation (10) and integrating it we obtain u u du du t  t0   u0 f u    u0 a0u  a1u  a2u  a3u  a4 4 3 2 (12) The integral (12) reduces to the incomplete elliptic integral of the 1st, 2nd and 3rd kind:  d   d F ( , k )    , E ( , k )  1  k sin  d , П ( , n, k )   2 2 0 1  k 2 sin 2  0 0 (1  n sin 2  ) 1  k 2 sin 2  9
  • 10. 3. The undisturbed motion The general solution for m    a sin  cos   (u1  u2 )cn 2   (t  t0 )  K , k   u2 (13) где cn   (t  t0 )  K , k   cos am   (t  t0 )  K , k  are elliptic cosine  K  k   F ( , k ) is the complete elliptic integral of 1st kind 2   am   (t  t0 )  K , k  Is the amplitude-function The approximate solution cos   B(1  cos y)(m  cos y)2  u2 (14) Where y   (t  t0 ) / K , B  (u1  u2 ) p / 8, m  (2  p) / p, 2   p  2 1 1 k 2 / 1 1 k 2  The angle of proper rotation  R  G  R cos   t   cos   t   0     sin 2   t    dt  f П   t  , n1 , k  , П   t  , n2 , k  , П  n1 , k  , П  n2 , k   0    Ix  (15) 10
  • 11. 3. The undisturbed motion The general solution for m    a sin   b sin 2 M cos   u  L  (16) 1  Ncn   t 0, k  where   1, 2 depends on the type roots of the polynomial: f u   0 The angle of proper rotation [Vadim Serov]  R  G  R cos   t   cos   t   0     sin 2   t    dt  f ab П   t  , n1 , k  , П   t  , n2 , k  , П  n1 , k  , П  n2 , k   0    Ix  11
  • 12. 4. The disturbed motion 4.1. The simplest form of the perturbed motion (asymmetry and damping moments are not available) Equation of the motion d 2  G  R cos   R  G cos   dq   a  q  sin   b  q  sin 2  0,   Фq  t  (17) dt 2 sin 3  dt The dependence of the dynamic The dependence of the attack pressure from time angle from time 12
  • 13. 4. The disturbed motion The adiabatic invariant is the integral of the perturbed motion  max d 1  d  T 2 Ig    dt d     dt  const 2 0  dt  (18) min Substituting solutions (13) or (16) (18), we obtain an implicit dependence of the amplitude of the angle of attack of the dynamic pressure V 2 I g (q  ,  max )  f  K  k  , E (k ), i (k , ni )   const (19) 2 The approximate solutions  max   max  q  (20) Minimal angle of attack is determined from the energy integral (9)  d  E  0   E  max   E  min  (21)  dt  13
  • 14. 4. The disturbed motion 4.2. Perturbed motion of an axisymmetric RV (no asymmetry) The motion equation d 2  G  R cos   R  G cos     a  q  sin   b  q  sin 2   Ф  , z  , dt 2 sin  3 dz (22)   Фz ( , z ), ( z  R, G, q) dt Comparison of the results where Ф , z  , z   Ф , z   2 , z   Averaging equations (Volosov method ) d max   1 t T 1 t T E F ( max , z )  T  T  z     dt    z dt  dt  t t  W ( max , z )    z     z  , (23) z  t T dz   dt T t   z ( (t ), z)dt   z  z  , where  , z  z    , z  K  k  , E (k ),  i (k , ni )  14
  • 15. 4. The disturbed motion 4.3. Disturbed motion of the asymmetric Re-entry Vehicle The equation of motion in the form of two-frequency system y  ( z )  Y ( y, , z ),    Ф ( y, z ),  (24) z  Фz ( y, , z ),  Фz  D0z ( y, z)  D1z ( y, z) sin  D2z ( y, z) cos  D3z ( y, z) sin 2  D4z ( y, z) cos 2. where z  ( R, G ,  max , q ), y  (t  t0 ) is the phase of the attack angle Фz  y,  , z   Фz  y  2 ,   2 , z  , Ф  y, z   Ф  y  2 , z  , (25) Y  y,  , z   Y  y  2 ,   2 , z  The average frequency of the proper rotation 2 1 2  ( z )  Ф ( y, z )dy (26) 0 15
  • 16. 4. The disturbed motion The nonlinear resonance ( z )  m( z )n( z )O() (27) Where m, n are integer and prime numbers Approximate formulas for the frequencies(b=0):  1 1 R2   2   R / 4, 2 a 2   R     sign( R  G ) a  2 (28)  Ix 2  4 Main resonance (m=n):   (29) Resonance roll (m=0):  0 (30) 16
  • 17. 4. The disturbed motion The example of the main resonance(b=0) qSl  qSl   F ( )  zт cos  sin   , R   zт sin  cos  , q   Фq ( z ), G  const (31)  I I The main resonance (m=n):  точка 2 Point 1: y  0,   0, N1  qS sin  max , M R   z  qSl sin  max N2 N1 N3 Point 2: точка 1 точка 3   y ,  , N 2  qS sin  , M R  0 N4 2 2 Point 3: y   ,    , N3  qS sin  min , M R  z  qSl sin  min Point 4: точка 4 3 3 y ,  , N 4  qS sin  , M R  0 2 2 17
  • 18. 4. The disturbed motion The pendulum system. Analysis of the resonances Change of the variable:  = my / n   (32) The phase portrait The pendulum system d 2 dz +Q( ,z)=0,   f z (  ,z) (33) d 2 d Where    , Q(  , z )  Q0 ( z )  Q1 ( z )sin   (34)  Q2 ( z ) cos   Q3 ( z )sin 2   Q4 ( z ) cos 2  The integral of energy    0 2 1  d     W ()  E (35) 2  d  Where W ( ,z)  Q0   Q1 cos   Q2 sin   (36) 1 1  Q3 cos 2   Q4 sin 2  . 2 2 18
  • 19. 4. The disturbed motion The capture and pass through the resonance The main resonance and the resonance roll Types of the motions  рад.  проход захват  min *  max  t,сек движение в малой 0 50 100 150 200 окрестности центра 19
  • 20. 4. The disturbed motion The stability of the resonance Substitution of variables    *   ,    *   ,    d  / d ,  *  0  (37) The motion equations in the vicinity of the center:   * d  d      G (  * , z ),   2 (  * , z )   P(  * , z ), d d (38) dz   f z ( * , z) d Q Q Q (39) G( * , z)    f z (  * , z ),  2 (  * , z )  0  z      * Wherе /       * The Lyapunov function VA 2     2 2 2  20
  • 21. 4. The disturbed motion The influence of the nonlinear resonance on the RV motion   гр ад 150 устойчивы й резонанс 125 неустойчивы й резонанс 100 75 50 проход 25 безрезонансное движ ение h,км 0 65 45 25 5  к  /с 11 безрезонансное движ ение проход 10 9 8 7 6 неустойчивы й резонанс 5 4 устойчивы й резонанс h,км 65 45 25 5 21
  • 22. 4. The disturbed motion 4.4. Features of the disturbed motion of the Re-entry Vehicle with the biharmonic moment The biharmonic moment The phase portrait m  , t   a  t  sin   b  t  sin 2 The three the equilibrium position:  *  0,  *  0, *   Three the areas exist if W   u*1   W   u*2   0 (40) u*1 , u*2 are roots of the equation W   u   0 (41) 22
  • 23. 4. The disturbed motion A0-stable; A1,A2 - unstable A0-unstable; A1,A2 - stable A1,A2 – stable if    E ( z )  W* or f*  0 (42) A0 – stable if    E ( z )  W* or f*  0 (43) E - average value of the total energy, calculated in neighborhood separatrix W* - value of the potential energy, calculated at the saddle point u=u*     f  f (u , z )  2(1  u 2 )[ E ( z )  W (u , z )]  O( 2 ) (44) * * * * 23
  • 24. 4. Возмущенное движения E ( z )  W  m , z  (45)    m - the amplitude value of the angle of attack The derivatives by virtue of the averaged equations  W W W E ( z)  m    z  F ( m , z )   m    z  (46)    m z   m z   m  W W (* , z )  z  (47) z  * The criterion of stability of the disturbed motion in neighborhood the separatrix m W (48)   F ( m , z )   m   z  z * A1,A2 – stable if 0 (49) A0 – stable if 0 (50) 24
  • 25. 4. The disturbed motion At the moment of time t* the phase trajectory intersects the separatrix. Areas A1 and A2 are stable, therefore the system can continue the further motion both in area A1, and in area A2.
  • 26. 5. Chaotic oscillations of the RV Chaotic behavior of an asymmetric body with the biharmonic moment (classical formulation) New notation: nutation angle   , inertia moments A  I x , B  I y , C  I z , generalized momentums  p  I x , p  I x R, p  I xG. B A Small parameter  (51) A (52) Hamiltonian: H  H 0   H1  O( ) 2  p  p cos  2 2 2 p (53) p Where H0      a cos   b cos  2 2A 2 A sin 2  2C  p  p cos   cos   p sin  sin   2 H1     (54) 2 A sin 2  Canonical equations H H qi   pi , pi    qi  , qi   ,  , , pi  p , p , p  (55) 26
  • 27. 5. Chaotic oscillations of the RV Unperturbed system   0  H  H0   p , p     p  p cos   p  p cos      a sin   b sin 2 , A A sin 3  (56) p  p  p cos   cos   p  p cos  , p , p  co nst    ,    C A sin 2  A sin 2  The Euler case: a=0, b=0. The Lagrange case: a>0, b=0. Homoclinic trajectories - separatrices 4 cos  ( j ) (t )  u0  , j  1, 2 2   (4   )C j exp(t )  C j exp( t ) 2 1 (57) 27
  • 28. 5. Chaotic oscillations of the RV Melnikov function   H 0 H 0 H 0  ( j ) M j  t0     g p  g  g p   (t  t0 ), p (t  t0 ), p ,   t  t0   dt  ( j) ( j)    p  p  (58)    0 , p   g p  ( j ) (t  t0 ), p ( j ) (t  t0 ), p ,  ( j )  t  t0  dt  Melnikov function for areas А1 and А2 Where H1 H H1 g  , g p   1 , g  p  p 28
  • 29. 5. Chaotic oscillations of the RV The Poincare sections Asymmetry  0 Asymmetry   0.01 29
  • 30. 5. Chaotic oscillations of the RV The Poincare sections Asymmetry   0.05 30
  • 31. 6. Chaotic oscillations of the Re-entry Vehicle with a moving center of mass Mass center of the RV moves along the axis of symmetry xc  ( xc )0  xc sin(t ) (59) The motion equation of the RV    G  R cos   R  G cos    a sin   b sin 2  sin  3 (60)   ( a sin   b sin 2 ) sin(t )   m ( ) Melnikov system     f1  g1 ,      G  R cos   R  G cos   / sin 3   a sin   b sin 2   (61)  (a sin   b sin 2 ) sin    1  sin     f 2  g 2 , 2    31
  • 32. 6. Chaotic oscillations of the Re-entry Vehicle with a moving center of mass The homoclinic trajectories 4 cos  ( j ) (t )  u0  , j  1, 2 (62) 2   (4   )C j exp(t )  C j exp( t ) 2 1 Melnikov function  M (t0 , 0 )   { f1[qi ) (t )] g2[qi ) (t ), t  t0  0 ]}dt  M (i )  M (i ) (i )  ( ( (63)   где M      i ) (a sin  i )  b sin 2 i ) ) sin(t  t0  0 )dt , (i ) ( ( (   (64) M     (1  sin  )( ) dt (i ) 2 (i )  (i ) 2   The absence condition of the chaos M(i )  M (i ) (65) 32
  • 33. 6. Chaotic oscillations of the Re-entry Vehicle with a moving center of mass The Poincare sections 33
  • 34. 7. Identification of the spacecraft motion by measuring 7.1. General Terms of the integral method (66) The vector of measurements : d  (d1 , d 2 ,.., d m ) The vector of calculated values : g ( )   g1 , g 2, ..., g m  (67)  Where   1 , 2, ..., l  is the vector of estimated parameters    N m The least square method (LSM)   argmin   j d ij  g ij   2 (68)  i 1 j 1 We know the set of independent first integrals   H k ,d j  const, k  1,2,.. p; j  1,2,..m (69) or the slowly varying functions  dH k ,d j   O (70) dt The new criterion  k  H k  , dij   H k  , gij    N p 2    arg min (71)  i 1 k 1   34
  • 35. 7. Identification of the spacecraft motion by measuring 7.2. Identification of the rotational motion of the spacecraft on the orbit Measurements of the angular velocity x d  u ,u ,u y z  (72)    x 0 ,  y 0 ,  z 0 , I x , I y , I z  (73) The vector of calculated values The two first integrals depending the angular velocity of  K x x   y K y   z K z  / 2  H1 , (74) K  K  K  H2 2 x 2 y 2 z  K  I     K x , K y , K z  is the angular momentum, , ,  Are the directional cosines.  The new criterion  k  H k  ,  uji   H k  ,  jip    , j  x, y, z N 2 2    arg min (75)   i 1 k 1  35
  • 36. 7. Identification of the spacecraft motion by measuring Sample The number of measurements of the angular velocity N=20 Mathematical expectations and standard deviations of estimates of the moments of inertia for different measurement intervals t  The least square method The integral method t 2 10 25 40 2 10 25 40 MIx 1.499 1.499 1.499 1.493 1.491 1.494 1.499 1.500 I x 0.011 0.009 0.437 0.571 0.082 0.063 0.092 0.074 MIy 5.627 5.619 6.477 7.007 5.604 5.604 5.612 5.605 I y 0.027 0.025 1.651 3.183 0.043 0.046 0.041 0.043 The advantages of the integral method: 1. The accuracy of the method is independent of the measurement step. 2. The method does not require a large number of calculations. 36
  • 37. 7Identification of the spacecraft motion by measuring 7.3. Identification of the motion of the spacecraft during descent in the atmosphere  Measurements of the angular velocity and acceleration d  x ,  y , z , nx , n y , nz (76)  The vector of calculated values:    x0 , D  (77) x0 is vector the initial conditions, D are parameters of the spacecraft . The slowly varying functions: R  I x x , G 1 n  I x x nx   y n y   z nz  , (78) 1  ci  nx   n 1 i 1 E  I x x  I  y  I  z  q     2 2 2 2I   i 0 i  1  n    E is the kinetic energy. The new criterion       N   argmin   R Riu  Rip   E Eiu  Eip  ~ 2 2 2  G Giu  Gip (79)  i 1     37
  • 38. 7. Identification of the spacecraft motion by measuring Sample The number of measurements N=50 Mathematical expectations and standard deviations of estimates of the stability margin m  z t ,c 0.2 2.0 4.0 8.0 16.0 t ,c 0.011 0.105 0.221 0.421 0.842 M m  -0.0599 -0.0599 -0.0799 - - z  m  0.0006 0.0001 0.0306 - - z M ~ -0.0624 -0.0604 -0.0604 -0.0604 -0.0604 mz  ~ 0.0033 0.0011 0.0011 0.0010 0.0012 mz K m m  ~ 0.5264 0.6579 0.0696 - - z z The advantages of the integral method: 1. The accuracy of the method is independent of the measurement step. 2. The method does not require a large number of calculations. 38
  • 39. The main results were published in the following papers and book • Асланов В.С. Пространственное движение тела в атмосфере, М:. Физматлит, 160 с., 2004. (Aslanov V.S. Spatial Motion of a Body at Descent in the Atmosphere, Moscow: Fizmatlit, 2004, 160 pages) • Aslanov V.S. Spatial chaotic vibrations when there is a periodic change in the position of the centre of mass of a body in the atmosphere- Journal of Applied Mathematics and Mechanics 73 (2009) 179– 187. • Aslanov V.S. and Ledkov A.S. Analysis of the resonance and ways of its elimination at the descent of spacecrafts in the rarefied atmosphere - Aerospace Science and Technology 13 (2009) 224–231. • Aslanov V.S. Resonance at motion of a body in the Mars’s atmosphere under biharmonical moment - WSEAS TRANSACTIONS on SYSTEMS AND CONTROL, Issue 1, Volume 3, January 2008, (ISSN: 1991-8763), pp. 33-39. • Aslanov V. S. and Doroshin A. V. Influence of Disturbances on the Angular Motion of a Spacecraft in the Powered Section of Its Descent - Cosmic Research ISSN 0010-9525, Vol. 46, No. 2, 2008, pp. 166- 171. • Aslanov V.S. Resonance at Descent in the Mars’s Atmosphere of Analogue of the Beagle 2 Lander - Proceedings of 3rd WSEAS International Conference on DYNAMICAL SYSTEMS and CONTROL (CONTROL'07), Arcachon, France, October 13-15, 2007, 178-181. • Aslanov V. S. and Ledkov A.S. Features of Rotational Motion of a Spacecraft Descending in the Martian Atmosphere - Cosmic Research ISSN 0010-9525, 2007, Vol. 45, No. 4, 331-337. • Aslanov V. S. Doroshin A. V. and Kruglov G.E. The mothion of coaxial bodies of varying composition on the active leg of descent - Cosmic Research ISSN 0010-9525, Vol. 43, No. 3, 2005, pp. 213-221. 39
  • 40. The main results were published in the following papers and book • Aslanov V. S. The motion of a rotating body in a resisting medium - Mechanics of Solids, 2005, vol. 40, no2, pp. 21-32. • Aslanov V.S. and Timbyi I.A. Action-angle canonical variables for the motion of a rigid body under the action of a biharmonic torque - Mechanics of Solids, Vol. 38, No. 1, pp. 13-23, 2003. • Aslanov V. S. and Doroshin A. V. Stabilization of a Reentry Vehicle by a Partial Spin-up during Uncontrolled Descent - Cosmic Research ISSN 0010-9525, Vol. 40, No. 2, 2002, pp. 178-185. • Aslanov V. S. and Myasnikov S. V. Analysis of Nonlinear Resonances during Spacecraft Descent in the Atmosphere - Cosmic Research ISSN 0010-9525, Vol. 35, No. 6, 1997, pp. 616-622. • Aslanov V. S. and Timbay I. A. Transient Modes of Spacecraft Angular Motion on the Upper Section of the Reentry Trajectory - Cosmic Research ISSN 0010-9525, Vol. 35, No. 3, 1997, pp. 260-267. • Aslanov V. S. and Myasnikov S. V. Stability of Nonlinear Resonance Modes of Spacecraft Motion in the Atmosphere - Cosmic Research ISSN 0010-9525, Vol. 34, No. 6, 1996, pp. 579-584. • Aslanov V. S. and Timbay I. A. Some Problem of the Reentry Vehicles Dynamics- Cosmic Research ISSN 0010-9525, Vol. 33, No. 6, 1995. • Aslanov V.S. Nonlinear Resonances of the Slightly Asymmetric Reentry Vehicles - Cosmic Research ISSN 0010-9525, Vol. 30, No. 5, 1992. • Aslanov V.S. Definition of Rotary Movement of a Space Vehicle by Results of Measurements - Cosmic Research ISSN 0010-9525, Vol. 27, No. 3, 1989. • Aslanov V.S. Two Kinds of Nonlinear Resonant Movement of an Asymmetric Reentry Vehicle - Cosmic Research ISSN 0010-9525, Vol. 26, No. 2, 1988. • Aslanov V. S. and Boyko V.V. Nonlinear Resonant Movement of an Asymmetric Reentry Vehicle - Cosmic Research ISSN 0010-9525, Vol. 23, No. 3, 1985. 40
  • 41. The main results were published in the following papers and book • Aslanov V. S., Boyko V.V. and Timbay I. A. Spatial Fluctuations of the Symmetric Reentry Vehicle at Any Corners of Attack - Cosmic Research ISSN 0010-9525, Vol. 19, No. 5, 1981. • Aslanov V. S. Definition of Amplitude of Spatial Fluctuations of the Slightly Asymmetric Reentry Vehicles - Cosmic Research ISSN 0010-9525, Vol. 18, No. 2, 1980. • Aslanov V. S. About Rotary Movement of the Symmetric Reentry Vehicle - Cosmic Research ISSN 0010-9525, Vol. 14, No. 4, 1976. 41