SlideShare una empresa de Scribd logo
1 de 32
Descargar para leer sin conexión
IDSA GUIDELINES




Diagnosis and Management of Complicated
Intra-abdominal Infection in Adults and Children:
Guidelines by the Surgical Infection Society
and the Infectious Diseases Society of America
Joseph S. Solomkin,1 John E. Mazuski,2 John S. Bradley,3 Keith A. Rodvold,7,8 Ellie J. C. Goldstein,5 Ellen J. Baron,6
Patrick J. O’Neill,9 Anthony W. Chow,16 E. Patchen Dellinger,10 Soumitra R. Eachempati,11 Sherwood Gorbach,12
Mary Hilfiker,4 Addison K. May,13 Avery B. Nathens,17 Robert G. Sawyer,14 and John G. Bartlett15
1
 Department of Surgery, the University of Cincinnati College of Medicine, Cincinnati, Ohio; 2Department of Surgery, Washington University School
of Medicine, Saint Louis, Missouri; Departments of 3Pediatric Infectious Diseases and 4Surgery, Rady Children’s Hospital of San Diego, San
Diego, 5R. M. Alden Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, 6Department of Pathology, Stanford University
School of Medicine, Palo Alto, California; Departments of 7Pharmacy Practice and 8Medicine, University of Illinois at Chicago, Chicago;
9
 Department of Surgery, The Trauma Center at Maricopa Medical Center, Phoenix, Arizona; 10Department of Surgery, University of Washington,
Seattle; 11Department of Surgery, Cornell Medical Center, New York, New York; 12Department of Medicine, Tufts University School of Medicine,
Boston, Massachusetts; 13Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; 14Department of Surgery, University
of Virginia, Charlottesville; 15Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and 16Department of
Medicine, University of British Columbia, Vancouver, British Columbia, and 17St Michael’s Hospital, Toronto, Ontario, Canada


Evidence-based guidelines for managing patients with intra-abdominal infection were prepared by an Expert
Panel of the Surgical Infection Society and the Infectious Diseases Society of America. These updated guidelines
replace those previously published in 2002 and 2003. The guidelines are intended for treating patients who
either have these infections or may be at risk for them. New information, based on publications from the
period 2003–2008, is incorporated into this guideline document. The panel has also added recommendations
for managing intra-abdominal infection in children, particularly where such management differs from that
of adults; for appendicitis in patients of all ages; and for necrotizing enterocolitis in neonates.

EXECUTIVE SUMMARY                                                                    Pharmacists, Pediatric Infectious Diseases Society, and
                                                                                     Society of Infectious Diseases Pharmacists.
The 2009 update of the guidelines contains evidence-
                                                                                        These guidelines make therapeutic recommendations
based recommendations for the initial diagnosis and sub-
                                                                                     on the basis of the severity of infection, which is defined
sequent management of adult and pediatric patients with
                                                                                     for these guidelines as a composite of patient age, phys-
complicated and uncomplicated intra-abdominal infec-
                                                                                     iologic derangements, and background medical con-
tion. The multifaceted nature of these infections has led
                                                                                     ditions. These values are captured by severity scoring
to collaboration and endorsement of these recommen-
                                                                                     systems, but for the individual patient, clinical judg-
dations by the following organizations: American Society
                                                                                     ment is at least as accurate as a numerical score [1–4].
for Microbiology, American Society of Health-System
                                                                                     “High risk” is intended to describe patients with a range


   Received 7 October 2009; accepted 9 October 2009; electronically published           This guideline might be updated periodically. To be sure you have the most
23 December 2009.                                                                    recent version, check the Web site of the journal (http://www.journals.uchicago
   Reprints or correspondence: Dr Joseph S. Solomkin, Dept of Surgery, University    .edu/page/cid/IDSAguidelines.html).
of Cincinnati College of Medicine, 231 Albert B. Sabin Way, Cincinnati OH 45267-        It is important to realize that guidelines cannot always account for individual
0558 (joseph.solomkin@uc.edu).                                                       variation among patients. They are not intended to supplant physician judgment
Clinical Infectious Diseases 2010; 50:133–64                                         with respect to particular patients or special clinical situations. The Infectious
   2009 by the Infectious Diseases Society of America. All rights reserved.          Diseases Society of America considers adherence to these guidelines to be
1058-4838/2010/5002-0001$15.00                                                       voluntary, with the ultimate determination regarding their application to be made
DOI: 10.1086/649554                                                                  by the physician in the light of each patient’s individual circumstances.



                                                                                Complicated Intra-abdominal Infection Guidelines • CID 2010:50 (15 January) • 133
of reasons for increased rates of treatment failure in addition     Table 1. Clinical Factors Predicting Failure of Source Control
to a higher severity of infection, particularly patients with an    for Intra-abdominal Infection
anatomically unfavorable infection or a health care–associated
                                                                    Delay in the initial intervention (124 h)
infection [5] (Table 1).
                                                                    High severity of illness (APACHE II score   15)
                                                                    Advanced age
Initial Diagnostic Evaluation                                       Comorbidity and degree of organ dysfunction
  1. Routine history, physical examination, and laboratory          Low albumin level
studies will identify most patients with suspected intra-abdom-     Poor nutritional status
                                                                    Degree of peritoneal involvement or diffuse peritonitis
inal infection for whom further evaluation and management
                                                                    Inability to achieve adequate debridement or control of drainage
is warranted (A-II).
                                                                    Presence of malignancy
  2. For selected patients with unreliable physical examination
findings, such as those with an obtunded mental status or spinal      NOTE. APACHE, Acute Physiology and Chronic Health Evaluation.

cord injury or those immunosuppressed by disease or therapy,
intra-abdominal infection should be considered if the patient       version or resection, and restore anatomic and physiological
presents with evidence of infection from an undetermined            function to the extent feasible is recommended for nearly all
source (B-III).                                                     patients with intra-abdominal infection (B-II).
  3. Further diagnostic imaging is unnecessary in patients with       12. Patients with diffuse peritonitis should undergo an emer-
obvious signs of diffuse peritonitis and in whom immediate          gency surgical procedure as soon as is possible, even if ongoing
surgical intervention is to be performed (B-III).                   measures to restore physiologic stability need to be continued
  4. In adult patients not undergoing immediate laparotomy,         during the procedure (B-II).
computed tomography (CT) scan is the imaging modality of              13. Where feasible, percutaneous drainage of abscesses and
choice to determine the presence of an intra-abdominal infec-       other well-localized fluid collections is preferable to surgical
tion and its source (A-II).                                         drainage (B-II).
                                                                      14. For hemodynamically stable patients without evidence
Fluid Resuscitation                                                 of acute organ failure, an urgent approach should be taken.
  5. Patients should undergo rapid restoration of intravascular     Intervention may be delayed for as long as 24 h if appropriate
volume and additional measures as needed to promote phys-           antimicrobial therapy is given and careful clinical monitoring
iological stability (A-II).                                         is provided (B-II).
  6. For patients with septic shock, such resuscitation should        15. In patients with severe peritonitis, mandatory or sched-
begin immediately when hypotension is identified (A-II).             uled relaparotomy is not recommended in the absence of in-
  7. For patients without evidence of volume depletion, in-         testinal discontinuity, abdominal fascial loss that prevents ab-
travenous fluid therapy should begin when the diagnosis of           dominal wall closure, or intra-abdominal hypertension (A-II).
intra-abdominal infection is first suspected (B-III).                  16. Highly selected patients with minimal physiological de-
                                                                    rangement and a well-circumscribed focus of infection, such
Timing of Initiation of Antimicrobial Therapy                       as a periappendiceal or pericolonic phlegmon, may be treated
 8. Antimicrobial therapy should be initiated once a patient        with antimicrobial therapy alone without a source control pro-
receives a diagnosis of an intra-abdominal infection or once        cedure, provided that very close clinical follow-up is possible
such an infection is considered likely. For patients with septic    (B-II).
shock, antibiotics should be administered as soon as possible
(A-III).                                                            Microbiologic Evaluation
 9. For patients without septic shock, antimicrobial therapy         17. Blood cultures do not provide additional clinically rel-
should be started in the emergency department (B-III).              evant information for patients with community-acquired intra-
 10. Satisfactory antimicrobial drug levels should be main-         abdominal infection and are therefore not routinely recom-
tained during a source control intervention, which may ne-          mended for such patients (B-III).
cessitate additional administration of antimicrobials just before    18. If a patient appears clinically toxic or is immunocom-
initiation of the procedure (A-I).                                  promised, knowledge of bacteremia may be helpful in deter-
                                                                    mining duration of antimicrobial therapy (B-III).
Elements of Appropriate Intervention                                 19. For community-acquired infections, there is no proven
 11. An appropriate source control procedure to drain in-           value in obtaining a routine Gram stain of the infected material
fected foci, control ongoing peritoneal contamination by di-        (C-III).



134 • CID 2010:50 (15 January) • Solomkin et al
Table 2. Agents and Regimens that May Be Used for the Initial Empiric Treatment of Extra-biliary Complicated Intra-abdominal
Infection

                                                                                             Community-acquired infection in adults
                                                                          Mild-to-moderate severity:                           High risk or severity:
                                                                     perforated or abscessed appendicitis                 severe physiologic disturbance,
                        Community-acquired infection                        and other infections of                               advanced age,
Regimen                    in pediatric patients                           mild-to-moderate severity                      or immunocompromised state
Single agent     Ertapenem, meropenem, imipenem-            Cefoxitin, ertapenem, moxifloxacin,                       Imipenem-cilastatin, meropenem, dori-
                   cilastatin, ticarcillin-clavulanate, and   tigecycline, and ticarcillin-clavulanic                  penem, and piperacillin-tazobactam
                   piperacillin-tazobactam                    acid
Combination      Ceftriaxone, cefotaxime, cefepime, or      Cefazolin, cefuroxime, ceftriaxone,                      Cefepime, ceftazidime, ciprofloxacin, or
                   ceftazidime, each in combination with      cefotaxime, ciprofloxacin, or levoflox-                    levofloxacin, each in combination
                   metronidazole; gentamicin or tobra-        acin, each in combination with                           with metronidazolea
                   mycin, each in combination with met-       metronidazolea
                   ronidazole or clindamycin, and with or
                   without ampicillin
  a
    Because of increasing resistance of Escherichia coli to fluoroquinolones, local population susceptibility profiles and, if available, isolate susceptibility should
be reviewed.



  20. For health care–associated infections, Gram stains may                         least 0.5 mL of fluid or 0.5 g of tissue should be transported
help define the presence of yeast (C-III).                                            in an anaerobic transport tube. Alternately, for recovery of
  21. Routine aerobic and anaerobic cultures from lower-risk                         anaerobic bacteria, 1–10 mL of fluid can be inoculated directly
patients with community-acquired infection are considered op-                        into an anaerobic blood culture bottle (A-I).
tional in the individual patient but may be of value in detecting                      27. Susceptibility testing for Pseudomonas, Proteus, Acine-
epidemiological changes in the resistance patterns of pathogens                      tobacter, Staphylococcus aureus, and predominant Enterobac-
associated with community-acquired intra-abdominal infection                         teriaceae, as determined by moderate-to-heavy growth, should
and in guiding follow-up oral therapy (B-II).                                        be performed, because these species are more likely than others
  22. If there is significant resistance (ie, resistance in 10%–                      to yield resistant organisms (A-III).
20% of isolates) of a common community isolate (eg, Esche-
richia coli) to an antimicrobial regimen in widespread local use,                    RECOMMENDED ANTIMICROBIAL REGIMENS
routine culture and susceptibility studies should be obtained                           The antimicrobials and combinations of antimicrobials de-
for perforated appendicitis and other community-acquired in-                         tailed in Tables 2–4 are considered adequate for empiric treat-
tra-abdominal infections (B-III).                                                    ment of community- and health care–associated intra-abdom-
  23. Anaerobic cultures are not necessary for patients with                         inal infection as indicated.
community-acquired intra-abdominal infection if empiric an-
timicrobial therapy active against common anaerobic pathogens                        Community-Acquired Infection of Mild-to-Moderate Sever-
is provided (B-III).                                                                 ity in Adults
  24. For higher-risk patients, cultures from the site of infec-                       28. Antibiotics used for empiric treatment of community-
tion should be routinely obtained, particularly in patients with                     acquired intra-abdominal infection should be active against
prior antibiotic exposure, who are more likely than other pa-                        enteric gram-negative aerobic and facultative bacilli and enteric
tients to harbor resistant pathogens (A-II).                                         gram-positive streptococci (A-I).
  25. The specimen collected from the intra-abdominal focus                            29. Coverage for obligate anaerobic bacilli should be pro-
of infection should be representative of the material associated                     vided for distal small bowel, appendiceal, and colon-derived
with the clinical infection (B-III).                                                 infection and for more proximal gastrointestinal perforations
  26. Cultures should be performed from 1 specimen, pro-                             in the presence of obstruction or paralytic ileus (A-I).
vided it is of sufficient volume (at least 1 mL of fluid or tissue,                      30. For adult patients with mild-to-moderate community-
preferably more) and is transported to the laboratory in an                          acquired infection, the use of ticarcillin-clavulanate, cefoxitin,
appropriate transport system. For optimal recovery of aerobic                        ertapenem, moxifloxacin, or tigecycline as single-agent therapy
bacteria, 1–10 mL of fluid should be inoculated directly into                         or combinations of metronidazole with cefazolin, cefuroxime,
an aerobic blood culture bottle. In addition, 0.5 mL of fluid                         ceftriaxone, cefotaxime, levofloxacin, or ciprofloxacin are pref-
should be sent to the laboratory for Gram stain and, if indi-                        erable to regimens with substantial anti-Pseudomonal activity
cated, fungal cultures. If anaerobic cultures are requested, at                      (Table 2) (A-I).



                                                                     Complicated Intra-abdominal Infection Guidelines • CID 2010:50 (15 January) • 135
Table 3. Recommendations for Empiric Antimicrobial Therapy for Health Care–Associated Complicated Intra-abdominal Infection

                                                                                                  Regimen

Organisms seen in health care–associated                                                     Ceftazidime or cefepime,
                                                             a
infection at the local institution              Carbapenem         Piperacillin-tazobactam   each with metronidazole      Aminoglycoside         Vancomycin

!20% Resistant Pseudomonas aeruginosa,       Recommended           Recommended               Recommended                Not recommended      Not recommended
  ESBL-producing Enterobacteriaceae,
  Acinetobacter, or other MDR GNB
ESBL-producing Enterobacteriaceae            Recommended           Recommended               Not recommended            Recommended          Not recommended
P aeruginosa 120% resistant to
 .                                           Recommended           Recommended               Not recommended            Recommended          Not recommended
   ceftazidime
MRSA                                         Not recommended       Not recommended           Not recommended            Not recommended      Recommended

  NOTE. ESBL, extended-spectrum b-lactamase; GNB, gram-negative bacilli; MDR, multidrug resistant; MRSA, methicillin-resistant Staphylococcus aureus.
“Recommended” indicates that the listed agent or class is recommended for empiric use, before culture and susceptibility data are available, at institutions that
encounter these isolates from other health care–associated infections. These may be unit- or hospital-specific.
  a
      Imipenem-cilastatin, meropenem, or doripenem




  31. Ampicillin-sulbactam is not recommended for use be-                          metronidazole, is recommended for patients with high-severity
cause of high rates of resistance to this agent among com-                         community-acquired intra-abdominal infection, as defined by
munity-acquired E. coli (B-II).                                                    APACHE II scores 115 or other variables listed in Table 1 (Table
  32. Cefotetan and clindamycin are not recommended for                            2) (A-I).
use because of increasing prevalence of resistance to these agents                   39. Quinolone-resistant E. coli have become common in
among the Bacteroides fragilis group (B-II).                                       some communities, and quinolones should not be used unless
  33. Because of the availability of less toxic agents demon-                      hospital surveys indicate 190% susceptibility of E. coli to quin-
strated to be at least equally effective, aminoglycosides are not                  olones (A-II).
recommended for routine use in adults with community-                                40. Aztreonam plus metronidazole is an alternative, but ad-
acquired intra-abdominal infection (B-II).                                         dition of an agent effective against gram-positive cocci is rec-
  34. Empiric coverage of Enterococcus is not necessary in pa-                     ommended (B-III).
tients with community-acquired intra-abdominal infection                             41. In adults, routine use of an aminoglycoside or another
(A-I).                                                                             second agent effective against gram-negative facultative and
  35. Empiric antifungal therapy for Candida is not recom-                         aerobic bacilli is not recommended in the absence of evidence
mended for adult and pediatric patients with community-                            that the patient is likely to harbor resistant organisms that
acquired intra-abdominal infection (B-II).                                         require such therapy (A-I).
  36. The use of agents listed as appropriate for higher-severity                    42. Empiric use of agents effective against enterococci is rec-
community-acquired infection and health care–associated in-                        ommended (B-II).
fection is not recommended for patients with mild-to-moderate                        43. Use of agents effective against methicillin-resistant S. au-
community-acquired infection, because such regimens may                            reus (MRSA) or yeast is not recommended in the absence of
carry a greater risk of toxicity and facilitate acquisition of more-               evidence of infection due to such organisms (B-III).
resistant organisms (B-II).                                                          44. In these high-risk patients, antimicrobial regimens
  37. For those patients with intra-abdominal infection of                         should be adjusted according to culture and susceptibility re-
mild-to-moderate severity, including acute diverticulitis and                      ports to ensure activity against the predominant pathogens iso-
various forms of appendicitis, who will not undergo a source                       lated in culture (A-III).
control procedure, regimens listed for treatment of mild-to-
moderate–severity infection are recommended, with a possi-                         Health Care–Associated Infection in Adults
bility of early oral therapy (B-III).                                                45. Empiric antibiotic therapy for health care–associated in-
                                                                                   tra-abdominal infection should be driven by local microbio-
High-Risk Community-Acquired Infection in Adults                                   logic results (A-II).
 38. The empiric use of antimicrobial regimens with broad-                           46. To achieve empiric coverage of likely pathogens, mul-
spectrum activity against gram-negative organisms, including                       tidrug regimens that include agents with expanded spectra of
meropenem, imipenem-cilastatin, doripenem, piperacillin-                           activity against gram-negative aerobic and facultative bacilli
tazobactam, ciprofloxacin or levofloxacin in combination with                        may be needed. These agents include meropenem, imipenem-
metronidazole, or ceftazidime or cefepime in combination with                      cilastatin, doripenem, piperacillin-tazobactam, or ceftazidime



136 • CID 2010:50 (15 January) • Solomkin et al
Table 4. Agents and Regimens that May Be Used for the Initial Empiric Treatment of Biliary Infection in Adults

 Infection                                                                                                        Regimen
 Community-acquired acute cholecystitis of mild-to-moderate severity            Cefazolin, cefuroxime, or ceftriaxone
 Community-acquired acute cholecystitis of severe physiologic disturbance,      Imipenem-cilastatin, meropenem, doripenem, piperacillin-tazobactam,
   advanced age, or immunocompromised state                                       ciprofloxacin, levofloxacin, or cefepime, each in combination with
                                                                                                a
                                                                                  metronidazole
 Acute cholangitis following bilio-enteric anastamosis of any severity          Imipenem-cilastatin, meropenem, doripenem, piperacillin-tazobactam,
                                                                                  ciprofloxacin, levofloxacin, or cefepime, each in combination with
                                                                                                a
                                                                                  metronidazole
 Health care–associated biliary infection of any severity                       Imipenem-cilastatin, meropenem, doripenem, piperacillin-tazobactam,
                                                                                  ciprofloxacin, levofloxacin, or cefepime, each in combination with metroni-
                                                                                                                             a
                                                                                  dazole, vancomycin added to each regimen
   a
    Because of increasing resistance of Escherichia coli to fluoroquinolones, local population susceptibility profiles and, if available, isolate susceptibility
 should be reviewed.




or cefepime in combination with metronidazole. Aminogly-                          rected against Enterococcus faecalis. Antibiotics that can poten-
cosides or colistin may be required (Table 3) (B-III).                            tially be used against this organism, on the basis of susceptibility
 47. Broad-spectrum antimicrobial therapy should be tai-                          testing of the individual isolate, include ampicillin, piperacillin-
lored when culture and susceptibility reports become available,                   tazobactam, and vancomycin (B-III).
to reduce the number and spectra of administered agents (B-                         57. Empiric therapy directed against vancomycin-resistant
III).                                                                             Enterococcus faecium is not recommended unless the patient is
                                                                                  at very high risk for an infection due to this organism, such
Antifungal Therapy                                                                as a liver transplant recipient with an intra-abdominal infection
  48. Antifungal therapy for patients with severe community-                      originating in the hepatobiliary tree or a patient known to be
acquired or health care–associated infection is recommended                       colonized with vancomycin-resistant E. faecium (B-III).
if Candida is grown from intra-abdominal cultures (B-II).
  49. Fluconazole is an appropriate choice for treatment if                       Anti-MRSA Therapy
Candida albicans is isolated (B-II).                                                58. Empiric antimicrobial coverage directed against MRSA
  50. For fluconazole-resistant Candida species, therapy with                      should be provided to patients with health care–associated in-
an echinocandin (caspofungin, micafungin, or anidulafungin)                       tra-abdominal infection who are known to be colonized with
is appropriate (B-III).                                                           the organism or who are at risk of having an infection due to
  51. For the critically ill patient, initial therapy with an echi-               this organism because of prior treatment failure and significant
nocandin instead of a triazole is recommended (B-III).                            antibiotic exposure (B-II).
  52. Because of toxicity, amphotericin B is not recommended                        59. Vancomycin is recommended for treatment of suspected
as initial therapy (B-II).                                                        or proven intra-abdominal infection due to MRSA (A-III).
  53. In neonates, empiric antifungal therapy should be started
if Candida is suspected. If C. albicans is isolated, fluconazole                   Cholecystitis and Cholangitis in Adults
is an appropriate choice (B-II).                                                    60. Ultrasonography is the first imaging technique used for
                                                                                  suspected acute cholecystitis or cholangitis (A-I).
Anti-enterococcal Therapy                                                           61. Patients with suspected infection and either acute cho-
 54. Antimicrobial therapy for enterococci should be given                        lecystitis or cholangitis should receive antimicrobial therapy, as
when enterococci are recovered from patients with health care–                    recommended in Table 4, although anaerobic therapy is not
associated infection (B-III).                                                     indicated unless a biliary-enteric anastamosis is present (B-II).
 55. Empiric anti-enterococcal therapy is recommended for                           62. Patients undergoing cholecystectomy for acute chole-
patients with health care–associated intra-abdominal infection,                   cystitis should have antimicrobial therapy discontinued within
particularly those with postoperative infection, those who have                   24 h unless there is evidence of infection outside the wall of
previously received cephalosporins or other antimicrobial                         the gallbladder (B-II).
agents selecting for Enterococcus species, immunocompromised                        63. For community-acquired biliary infection, antimicrobial
patients, and those with valvular heart disease or prosthetic                     activity against enterococci is not required, because the path-
intravascular materials (B-II).                                                   ogenicity of enterococci has not been demonstrated. For se-
 56. Initial empiric anti-enterococcal therapy should be di-                      lected immunosuppressed patients, particularly those with he-



                                                                   Complicated Intra-abdominal Infection Guidelines • CID 2010:50 (15 January) • 137
Table 5. Initial Intravenous Pediatric Dosages of Antibiotics for Treatment of Com-
                           plicated Intra-abdominal Infection

                                                                                              a
                           Antibiotic, age range                                         Dosage                     Frequency of dosing
                                       b
                           Amikacin                                  15–22.5 mg/kg/day                              Every 8–24 h
                                                     c
                           Ampicillin sodium                         200 mg/kg/day                                  Every 6 h
                                                             c
                           Ampicillin-sulbactam                      200 mg/kg/day of ampicillin component          Every 6 h
                                             c
                           Aztreonam                                 90–120 mg/kg/day                               Every 6–8 h
                                       c
                           Cefepime                                  100 mg/kg/day                                  Every 12 h
                                             c
                           Cefotaxime                                150–200 mg/kg/day                              Every 6–8 h
                                         c
                           Cefotetan                                 40–80 mg/kg/day                                Every 12 h
                                     c
                           Cefoxitin                                 160 mg/kg/day                                  Every 4–6 h
                                                 c
                           Ceftazidime                               150 mg/kg/day                                  Every 8 h
                                             c
                           Ceftriaxone                               50–75 mg/kg/day                                Every 12–24 h
                                             c
                           Cefuroxime                                150 mg/kg/day                                  Every 6–8 h
                           Ciprofloxacin                              20-30 mg/kg/day                                Every 12 h
                           Clindamycin                               20–40 mg/kg/day                                Every 6–8 h
                           Ertapenem
                             3 months to 12 years                    15 mg/kg twice daily (not to exceed 1 g/day)   Every 12 h
                                 13 years                            1 g/day                                        Every 24 h
                                             b
                           Gentamicin                                3–7.5 mg/kg/day                                Every 2–4 h
                                                         c
                           Imipenem-cilastatin                       60–100 mg/kg/day                               Every 6 h
                                                 c
                           Meropenem                                 60 mg/kg/day                                   Every 8 h
                           Metronidazole                             30–40 mg/kg/day                                Every 8 h
                                                                 c
                           Piperacillin-tazobactam                   200–300 mg/kg/day of piperacillin component    Every 6–8 h
                                                             c
                           Ticarcillin-clavulanate                   200–300 mg/kg/day of ticarcillin component     Every 4–6 h
                                             b
                           Tobramycin                                3.0–7.5 mg/kg/day                              Every 8–24 h
                                                 b
                           Vancomycin                                40 mg/kg/day as 1 h infusion                   Every 6–8 h
                             a
                                Dosages are based on normal renal and hepatic function. Dose in mg/kg should be based on
                           total body weight. Further information on pediatric dosing can be obtained elsewhere [186–188].
                             b
                                Antibiotic serum concentrations and renal function should be monitored.
                             c
                                b-Lactam antibiotic dosages should be maximized if undrained intra-abdominal abscesses may
                           be present.



patic transplantation, enterococcal infection may be significant                              otics, ciprofloxacin plus metronidazole or an aminoglycoside-
and require treatment (B-III).                                                               based regimen are recommended (B-III).
                                                                                               68. Necrotizing enterocolitis in neonates is managed with
Pediatric Infection                                                                          fluid resuscitation, intravenous broad-spectrum antibiotics
  64. Routine use of broad-spectrum agents is not indicated                                  (potentially including antifungal agents), and bowel decom-
for all children with fever and abdominal pain for whom there                                pression. Urgent or emergent operative intervention, consisting
is a low suspicion of complicated appendicitis or other acute                                of either laparotomy or percutaneous drainage, should be per-
intra-abdominal infection (B-III).                                                           formed when there is evidence of bowel perforation. Intra-
  65. Selection of specific antimicrobial therapy for pediatric                               operative Gram stains and cultures should be obtained (B-III).
patients with complicated intra-abdominal infection should be                                  69. Broad-spectrum antibiotics that may be useful in neo-
based on considerations of the origin of infection (community                                nates with this condition include ampicillin, gentamicin, and
vs health care), severity of illness, and safety of the antimicrobial                        metronidazole; ampicillin, cefotaxime, and metronidazole; or
agents in specific pediatric age groups (A-II).
                                                                                             meropenem. Vancomycin may be used instead of ampicillin
  66. Acceptable broad-spectrum antimicrobial regimens for
                                                                                             for suspected MRSA or ampicillin-resistant enterococcal infec-
pediatric patients with complicated intra-abdominal infection
                                                                                             tion. Fluconazole or amphotericin B should be used if the Gram
include an aminoglycoside-based regimen, a carbapenem (im-
                                                                                             stain or cultures of specimens obtained at operation are con-
ipenem, meropenem, or ertapenem), a b-lactam/b-lactamase–
                                                                                             sistent with a fungal infection (B-II).
inhibitor combination (piperacillin-tazobactam or ticarcillin-
clavulanate), or an advanced-generation cephalosporin (cefo-
taxime, ceftriaxone, ceftazidime, or cefepime) with metroni-                                 Pharmacokinetic Considerations
dazole (Tables 2 and 5) (B-II).                                                               70. Empiric therapy of patients with complicated intra-
  67. For children with severe reactions to b-lactam antibi-                                 abdominal infection requires the use of antibiotics at optimal


138 • CID 2010:50 (15 January) • Solomkin et al
Table 6. Initial Intravenous Adult Dosages of Antibiotics for Empiric Treatment of Complicated Intra-abdominal
          Infection

                                                                                                         a
          Antibiotic                                                                        Adult dosage

          b-lactam/b-lactamase inhibitor combination
                                                                           b
            Piperacillin-tazobactam                     3.375 g every 6 h
            Ticarcillin-clavulanic acid                 3.1 g every 6 h; FDA labeling indicates 200 mg/kg/day in divided doses every 6 h for
                                                          moderate infection and 300 mg/kg/day in divided doses every 4 h for severe
                                                          infection
          Carbapenems
            Doripenem                                   500 mg every 8 h
            Ertapenem                                   1 g every 24 h
            Imipenem/cilistatin                         500 mg every 6 h or 1 g every 8 h
            Meropenem                                   1 g every 8 h
          Cephalosporins
            Cefazolin                                   1–2 g every 8 h
            Cefepime                                    2 g every 8–12 h
            Cefotaxime                                  1–2 g every 6–8 h
            Cefoxitin                                   2 g every 6 h
            Ceftazidime                                 2 g every 8 h
            Ceftriaxone                                 1–2 g every 12–24 h
            Cefuroxime                                  1.5 g every 8 h
          Tigecycline                                   100 mg initial dose, then 50 mg every 12 h
          Fluoroquinolones
            Ciprofloxacin                                400 mg every 12 h
            Levofloxacin                                 750 mg every 24 h
            Moxifloxacin                                 400 mg every 24 h
          Metronidazole                                 500 mg every 8–12 h or 1500 mg every 24 h
          Aminoglycosides
                                                                  c            d
            Gentamicin or tobramycin                    5–7 mg/kg every 24 h
                                                                      c            d
            Amikacin                                    15–20 mg/kg every 24 h
          Aztreonam                                     1–2 g every 6–8 h
                                                                      e                d
          Vancomycin                                    15–20 mg/kg every 8–12 h

            NOTE. FDA, United States Food and Drug Administration.
            a
                Dosages are based on normal renal and hepatic function.
            b
                For Pseudomonas aeruginosa infection, dosage may be increased to 3.375 g every 4 h or 4.5 g every 6 h.
            c
                Initial dosage regimens for aminoglycosides should be based on adjusted body weight.
            d
                Serum drug-concentration monitoring should be considered for dosage individualization.
            e
                Initial dosage regimens for vancomycin should be based on total body weight.



doses to ensure maximum efficacy and minimal toxicity and                       antimicrobial therapy in high-severity community-acquired or
to reduce antimicrobial resistance (Tables 5 and 6) (B-II).                    health care–associated infection should be based on pathogenic
 71. Individualized daily administration of aminoglycosides                    potential and density of identified organisms (B-III).
according to lean body mass and estimated extracellular fluid                    75. Microbes recovered from blood cultures should be as-
volume is preferred for patients receiving these agents for intra-             sumed to be significant if they have established pathogenic
abdominal infection (B-III).                                                   potential or are present in 2 blood cultures (A-I) or if they
                                                                               are recovered in moderate or heavy concentrations from sam-
Use of Microbiology Results to Guide Antimicrobial Therapy
                                                                               ples obtained from drainage (B-II).
  72. Lower-risk patients with community-acquired intra-
abdominal infection do not require alteration of therapy if a
satisfactory clinical response to source control and initial ther-             Duration of Therapy for Complicated Intra-abdominal In-
apy occurs, even if unsuspected and untreated pathogens are                    fections in Adults
later reported (B-III).                                                          76. Antimicrobial therapy of established infection should be
  73. If resistant bacteria were identified at the time of initial              limited to 4–7 days, unless it is difficult to achieve adequate
intervention and there are persistent signs of infection, path-                source control. Longer durations of therapy have not been
ogen-directed therapy is recommended for patients with lower                   associated with improved outcome (B-III).
severity disease (B-III).                                                        77. For acute stomach and proximal jejunum perforations,
  74. Use of culture and susceptibility results to determine                   in the absence of acid-reducing therapy or malignancy and


                                                                Complicated Intra-abdominal Infection Guidelines • CID 2010:50 (15 January) • 139
when source control is achieved within 24 h, prophylactic anti-       If ciprofloxacin or levofloxacin is used, metronidazole should
infective therapy directed at aerobic gram-positive cocci for 24      be added.
h is adequate (B-II).                                                   87. Drug susceptibility results of isolated gram-negative aer-
  78. In the presence of delayed operation for acute stomach          obic and facultative organisms, if available, should be used as
and proximal jejunum perforations, the presence of gastric ma-        a guide to agent selection in children and adults (B-III).
lignancy or the presence of therapy reducing gastric acidity,           88. Because many of the patients who are managed without
antimicrobial therapy to cover mixed flora (eg, as seen in com-        a primary source control procedure may be treated in the out-
plicated colonic infection) should be provided (B-III).               patient setting, the oral regimens recommended (see recom-
  79. Bowel injuries attributable to penetrating, blunt, or iat-      mendations 83 and 86) can also be used as either primary
rogenic trauma that are repaired within 12 h and any other            therapy or step-down therapy following initial intravenous an-
intraoperative contamination of the operative field by enteric         timicrobial therapy (B-III).
contents should be treated with antibiotics for 24 h (A-I).
  80. Acute appendicitis without evidence of perforation, ab-         Suspected Treatment Failure
scess, or local peritonitis requires only prophylactic adminis-         89. In patients who have persistent or recurrent clinical evi-
tration of narrow spectrum regimens active against aerobic and        dence of intra-abdominal infection after 4–7 days of therapy,
facultative and obligate anaerobes; treatment should be dis-          appropriate diagnostic investigation should be undertaken. This
continued within 24 h (A-I).                                          should include CT or ultrasound imaging. Antimicrobial ther-
  81. The administration of prophylactic antibiotics to pa-           apy effective against the organisms initially identified should
tients with severe necrotizing pancreatitis prior to the diagnosis    be continued (A-III).
of infection is not recommended (A-I).                                  90. Extra-abdominal sources of infection and noninfectious
                                                                      inflammatory conditions should also be investigated if the pa-
                                                                      tient is not experiencing a satisfactory clinical response to a
Use of Oral or Outpatient Intravenous Antimicrobial                   microbiologically adequate initial empiric antimicrobial regi-
Therapy                                                               men (A-II).
 82. For children and adults whose signs and symptoms of                91. For patients who do not respond initially and for whom
infection are resolved, no further antibiotic therapy is required     a focus of infection remains, both aerobic and anaerobic cul-
(B-III).                                                              tures should be performed from 1 specimen, provided it is of
 83. For adults recovering from intra-abdominal infection,            sufficient volume (at least 1.0 mL of fluid or tissue) and is
completion of the antimicrobial course with oral forms of mox-        transported to the laboratory in an anaerobic transport system
ifloxacin, ciprofloxacin plus metronidazole, levofloxacin plus           (C-III). Inoculation of 1–10 mL of fluid directly into an an-
metronidazole, an oral cephalosporin with metronidazole, or           aerobic blood culture broth bottle may improve yield.
amoxicillin-clavulanic acid (B-II) is acceptable in patients able
to tolerate an oral diet and in patients in whom susceptibility       Pathways for the Diagnosis and Management of Patients with
studies do not demonstrate resistance (B-II).                         Suspected Acute Appendicitis
 84. If culture and susceptibility testing identify organisms           92. Local hospitals should establish clinical pathways to stan-
that are only susceptible to intravenous therapy, such therapy        dardize diagnosis, in-hospital management, discharge, and out-
may be administered outside of the hospital (B-III).                  patient management (B-II).
 85. For children, outpatient parenteral antibiotic manage-             93. Pathways should be designed by collaborating clinicians
ment may be considered when subsequent drainage procedures            involved in the care of these patients, including but not limited
are not likely to be required but symptoms of ongoing intra-          to surgeons, infectious diseases specialists, primary care prac-
abdominal inflammation persist in the context of decreasing            titioners, emergency medicine physicians, radiologists, nursing
fever, controlled pain, ability to tolerate oral fluids, and ability   providers, and pharmacists, and should reflect local resources
to ambulate (B-II).                                                   and local standards of care (B-II).
 86. For oral step-down therapy in children, intra-abdominal            94. Although no clinical findings are unequivocal in iden-
cultures at the time of the drainage procedure are recom-             tifying patients with appendicitis, a constellation of findings,
mended to allow for the use of the narrowest-spectrum, best-          including characteristic abdominal pain, localized abdominal
tolerated, and safest oral therapy. A second- or third-generation     tenderness, and laboratory evidence of acute inflammation, will
cephalosporin in combination with metronidazole, or amoxi-            generally identify most patients with suspected appendicitis
cillin-clavulanate, may be options if the isolated organisms are      (A-II).
susceptible to these agents. Fluoroquinolones, such as cipro-           95. Helical CT of the abdomen and pelvis with intravenous,
floxacin or levofloxacin, may be used to treat susceptible Pseu-        but not oral or rectal, contrast is the recommended imaging
domonas, Enterobacter, Serratia, and Citrobacter species (B-III).     procedure for patients with suspected appendicitis (B-II).


140 • CID 2010:50 (15 January) • Solomkin et al
Table 7. Strength of Recommendation and Quality of Evidence

                       Assessment                                             Type of evidence
                       Strength of recommendation
                         Grade A                         Good evidence to support a recommendation for use
                        Grade B                          Moderate evidence to support a recommendation for use
                        Grade C                          Poor evidence to support a recommendation
                       Quality of evidence
                        Level I                          Evidence from at least 1 properly designed randomized,
                                                           controlled trial
                         Level II                        Evidence from at least 1 well-designed clinical trial, with-
                                                           out randomization; from cohort or case-controlled ana-
                                                           lytic studies (preferably from 11 center); from multiple
                                                           time series; or from dramatic results of uncontrolled
                                                           experiments
                         Level III                       Evidence from opinions of respected authorities, based
                                                           on clinical experience, descriptive studies, or reports of
                                                           expert committees

                         NOTE. Adapted from the Canadian Task Force on the Periodic Health Examination [11].



  96. All female patients should undergo diagnostic imaging.             symptoms and signs of infection resolve or a definitive diagnosis
Those of child-bearing potential should undergo pregnancy                is made (B-III).
testing prior to imaging and, if in the first trimester of preg-            104. Operative intervention for acute, nonperforated ap-
nancy, should undergo ultrasound or magnetic resonance in-               pendicitis may be performed as soon as is reasonably feasible.
stead of imaging ionizing radiation (B-II). If these studies do          Surgery may be deferred for a short period of time as appro-
not define the pathology present, laparoscopy or limited CT               priate according to individual institutional circumstances (B-
scanning may be considered (B-III).                                      II).
  97. Imaging should be performed for all children, particu-               105. Both laparoscopic and open appendectomy are ac-
larly those aged !3 years, when the diagnosis of appendicitis            ceptable procedures, and use of either approach should be dic-
is not certain. CT imaging is preferred, although to avoid use           tated by the surgeon’s expertise in performing that particular
of ionizing radiation in children, ultrasound is a reasonable            procedure (A-I).
alternative (B-III).                                                       106. Nonoperative management of selected patients with
  98. For patients with imaging study findings negative for               acute, nonperforated appendicitis can be considered if there is
suspected appendicitis, follow-up at 24 h is recommended to
                                                                         a marked improvement in the patient’s condition prior to op-
ensure resolution of signs and symptoms, because of the low
                                                                         eration (B-II).
but measurable risk of false-negative results (B-III).
                                                                           107. Nonoperative management may also be considered as
  99. For patients with suspected appendicitis that can neither
                                                                         part of a specific approach for male patients, provided that the
be confirmed nor excluded by diagnostic imaging, careful fol-
                                                                         patient is admitted to the hospital for 48 h and shows sustained
low-up is recommended (A-III).
                                                                         improvement in clinical symptoms and signs within 24 h while
  100. Patients may be hospitalized if the index of suspicion
                                                                         receiving antimicrobial therapy (A-II).
is high (A-III).
                                                                           108. Patients with perforated appendicitis should undergo
  101. Antimicrobial therapy should be administered to all
                                                                         urgent intervention to provide adequate source control (B-III).
patients who receive a diagnosis of appendicitis (A-II).
  102. Appropriate antimicrobial therapy includes agents ef-               109. Patients with a well-circumscribed periappendiceal ab-
fective against facultative and aerobic gram-negative organisms          scess can be managed with percutaneous drainage or operative
and anaerobic organisms, as detailed in Table 2 for the treat-           drainage when necessary. Appendectomy is generally deferred
ment of patients with community-acquired intra-abdominal                 in such patients (A-II).
infection (A-I).                                                           110. Selected patients who present several days after devel-
  103. For patients with suspected appendicitis whose diag-              opment of an inflammatory process and have a periappendiceal
nostic imaging studies are equivocal, antimicrobial therapy              phlegmon or a small abscess not amenable to percutaneous
should be initiated along with appropriate pain medication and           drainage may delay or avoid a source control procedure to
antipyretics, if indicated. For adults, antimicrobial therapy            avert a potentially more morbid procedure than simple ap-
should be provided for a minimum of 3 days, until clinical               pendectomy. Such patients are treated with antimicrobial ther-


                                                           Complicated Intra-abdominal Infection Guidelines • CID 2010:50 (15 January) • 141
apy and careful inpatient follow-up, in a manner analogous to         VI. What Are Appropriate Antimicrobial Regimens for Pa-
patients with acute diverticulitis (B-II).                          tients with Community-Acquired Intra-abdominal Infection of
 111. The use of interval appendectomy after percutaneous           Mild-to-Moderate Severity?
drainage or nonoperative management of perforated appen-              VII. What Are Appropriate Antimicrobial Regimens for Pa-
dicitis is controversial and may not be necessary (A-II).           tients with Community-Acquired Intra-abdominal Infection of
                                                                    High Severity?
                                                                      VIII. What Antimicrobial Regimens Should Be Used in Pa-
INTRODUCTION
                                                                    tients with Health Care–Associated Intra-abdominal Infection,
Complicated intra-abdominal infection extends beyond the            Particularly with Regard to Candida, Enterococcus, and MRSA?
hollow viscus of origin into the peritoneal space and is asso-        IX. What Are Appropriate Diagnostic and Antimicrobial
ciated with either abscess formation or peritonitis. These guide-   Therapeutic Strategies for Acute Cholecystitis and Cholangitis?
lines do not include management of nonperforated primary              X. What Are Appropriate Antimicrobial Regimens for Pe-
enteritis and/or colitis or perforations due to diseases that are   diatric Patients with Community-Acquired Intra-abdominal
rare in North America. This term is not meant to describe the       Infection?
infection’s severity or anatomy. Uncomplicated infection in-          XI. What Constitutes Appropriate Antibiotic Dosing?
volves intramural inflammation of the gastrointestinal tract and       XII. How Should Microbiological Culture Results Be Used
has a substantial probability of progressing to complicated in-     to Adjust Antimicrobial Therapy?
fection if not adequately treated.                                    XIII. What Is the Appropriate Duration of Therapy for Pa-
   Complicated intra-abdominal infection is a common prob-          tients with Complicated Intra-abdominal Infection?
lem, with appendicitis alone affecting ∼300,000 patients/year         XIV. What Patients Should Be Considered for Oral or Out-
and consuming 11 million hospital days [6]. Intra-abdominal         patient Antimicrobial Therapy and What Regimens Should Be
infection is the second most common cause of infectious mor-        Used?
tality in the intensive care unit [7]. Nonetheless, this disease      XV. How Should Suspected Treatment Failure Be Managed?
classification encompasses a variety of processes that affect sev-     XVI. What Are the Key Elements that Should Be Considered
eral different organs. The requirement for intervention in most     in Developing a Local Appendicitis Pathway?
cases and the controversies surrounding the choice and nature
of the procedure performed add another layer of complexity          PRACTICE GUIDELINES
to the management of these patients.
   Appropriate management of these infections has evolved           “Practice guidelines are systematically developed statements to
considerably, because of advances in supportive intensive care,     assist practitioners and patients in making decisions about ap-
diagnostic imaging, minimally invasive intervention, and an-        propriate health care for specific clinical circumstances” [8, p
timicrobial therapy. These guidelines are intended to provide       8]. Attributes of good guidelines include validity, reliability,
a framework involving these various care measures. Given the        reproducibility, clinical applicability, clinical flexibility, clarity,
frequency of acute appendicitis, the information in this doc-       multidisciplinary process, review of evidence, and documen-
ument is suitable for developing local management guidelines        tation [8].
for pediatric and adult patients with suspected acute
appendicitis.                                                       Update Methodology
   The following clinical questions will be addressed in this       Panel composition. A panel of experts in infectious diseases,
guideline:                                                          surgery, pharmacology and microbiology was assembled by the
                                                                    Infectious Diseases Society of America (IDSA) and the Surgical
  I. What Are the Appropriate Procedures for Initial Evalua-        Infection Society (SIS) to prepare these guidelines. The panelists
tion of Patients with Suspected Intra-abdominal Infection?          had both clinical and laboratory experience.
  II. When Should Fluid Resuscitation Be Started for Patients         Literature review and analysis. The Panel reviewed studies
with Suspected Intra-abdominal Infection?                           on the site of origin of intra-abdominal infections, their mi-
  III. When Should Antimicrobial Therapy Be Initiated for           crobiology, the laboratory approach to diagnosis of infection,
Patients with Suspected or Confirmed Intra-abdominal                 the selection and duration of antibiotic therapy, and use of
Infection?                                                          ancillary therapeutic aids. The Panel further reviewed the initial
  IV. What Are the Proper Procedures for Obtaining Adequate         diagnostic work-ups, resuscitations, timings of intervention,
Source Control?                                                     and source control elements for infection. Previous guidelines
  V. When and How Should Microbiological Specimens Be               detail recommendations made in 2002 and 2003 [9, 10].
Obtained and Processed?                                               These guidelines are based on randomized clinical trials using


142 • CID 2010:50 (15 January) • Solomkin et al
antimicrobials for treatment of intra-abdominal infection pub-      sultancies, stock ownership, honoraria, research funding, expert
lished from 2002 through December 2008. The 2002 cut-off            testimony, and membership on company advisory committees.
was used because relevant literature available through 2002 was     The Panel made decisions on a case-by-case basis as to whether
used for the previous guidelines. The Medline database was          an individual’s role should be limited as a result of a conflict.
searched using multiple strategies in which the names of specific    No limiting conflicts were identified.
antimicrobials or more general descriptors (ie, cephalosporins)        Revision dates. At annual intervals, the Panel Chair, the
were paired with words and phrases indicating an intra-             IDSA, and SIS will determine the need for revisions to the
abdominal infection (ie, peritonitis or appendicitis). Articles     guideline on the basis of an examination of current literature.
were also retrieved for review by searches for resuscitation,       If necessary, the entire Panel will be reconvened to discuss
septic shock, CT scan, imaging, appendicitis, diverticulitis,       potential changes. When appropriate, the Panel will recom-
source control, wound closure, and drainage. The Panel mem-         mend revision of the guideline for approval by the IDSA and
bers contributed reference lists in these areas. This search in-    SIS.
cluded studies that were in the Medline database as of Decem-
                                                                    RECOMMENDATIONS FOR THE DIAGNOSIS
ber 2008. The Cochrane database was also searched for relevant
                                                                    AND MANAGEMENT OF COMPLICATED INTRA-
trials.
                                                                    ABDOMINAL INFECTION IN ADULTS AND
   Process overview. In evaluating the information regarding
                                                                    CHILDREN
the management of intra-abdominal infection, the Panel fol-
lowed a process used to develop other IDSA guidelines [11].
The published studies were first categorized according to study      I. WHAT ARE THE APPROPRIATE PROCEDURES
design and quality, and in turn, the recommendations devel-         FOR INITIAL EVALUATION OF PATIENTS WITH
oped from these studies were graded according to the strength       SUSPECTED INTRA-ABDOMINAL INFECTION?
of evidence behind them. The level of evidence and the strength
of the recommendation for a particular point were defined as         Recommendations
described elsewhere [11] (Table 7).                                   1. Routine history, physical examination, and laboratory
   Consensus development on the basis of evidence. The              studies will identify most patients with suspected intra-abdom-
Panel met on 4 occasions, 3 times via teleconference and once       inal infection for whom further evaluation and management
in person, to complete the guideline. The meetings were held        is warranted (A-II).
to discuss the questions to be addressed, to make writing as-         2. For selected patients with unreliable physical examination
signments, and to discuss recommendations. There was a large        findings, such as those with an obtunded mental status or spinal
volume of e-mail comments, because drafts were regularly cir-       cord injury or those immunosuppressed by disease or therapy,
culated electronically. All panel members participated in the       intra-abdominal infection should be considered if the patient
preparation and review of the draft guideline. Feedback from        presents with evidence of infection from an undetermined
external peer reviewers was obtained. The guideline was re-         source (B-III).
                                                                      3. Further diagnostic imaging is unnecessary in patients with
viewed and endorsed by the Pediatric Infectious Diseases So-
                                                                    obvious signs of diffuse peritonitis and in whom immediate
ciety, the American Society for Microbiology, the American
                                                                    surgical intervention is to be performed (B-III).
Society of Health-System Pharmacists, and the Society of In-
                                                                      4. In adult patients not undergoing immediate laparotomy,
fectious Disease Pharmacists. The guideline was also reviewed
                                                                    CT scan is the imaging modality of choice to determine the
and approved by the IDSA Standards and Practice Guidelines
                                                                    presence of an intra-abdominal infection and its source (A-II).
Committee, the IDSA Board of Directors, the SIS Therapeutics
and Guidelines Committee, and the SIS Executive Council prior       Evidence Summary
to dissemination.                                                   Patients with intra-abdominal infection typically present with
   Guidelines and conflict of interest. All members of the           rapid-onset abdominal pain and symptoms of gastrointestinal
Expert Panel complied with the IDSA policy regarding conflicts       dysfunction (loss of appetite, nausea, vomiting, bloating, and/
of interest, which requires disclosure of any financial or other     or obstipation), with or without signs of inflammation (pain,
interest that might be construed as constituting an actual, po-     tenderness, fever, tachycardia, and/or tachypnea). Often, a care-
tential, or apparent conflict. Members of the Expert Panel were      ful history and physical examination will provide a limited
provided a conflict of interest disclosure statement from the        differential diagnosis and a clear assessment of the degree of
IDSA and were asked to identify ties to companies developing        the patient’s physiologic disturbance. This assessment, in turn,
products that might be affected by promulgation of the guide-       allows for immediate decisions regarding the need for and in-
line. Information was requested regarding employment, con-          tensity of resuscitation/rehydration, appropriate diagnostic test-


                                                       Complicated Intra-abdominal Infection Guidelines • CID 2010:50 (15 January) • 143
ing, the need for and timing of initiation of antimicrobial ther-    sults in increased tidal volume as well as increased breathing
apy, and whether emergent intervention is required. On the           frequency, resulting in a respiratory alkalosis and further evap-
basis of these findings, the timing and nature of operative or        orative water loss. There is compelling historically controlled
percutaneous intervention can be determined. The clinician           data that patients with perforated or abscessed appendicitis
must be alert to the fact that signs of sepsis may be minimal        benefit from administration of fluids even absent septic shock
in elderly patients and in patients receiving corticosteroids or     [21].
other immunosuppressive therapy.                                        For patients with septic shock or organ failure, more-ag-
   The value of a range of symptoms, signs, and physical find-        gressive fluid therapy should be provided. We recommend fol-
ings in the diagnostic work-up for intra-abdominal infection         lowing The Surviving Sepsis Campaign guidelines for managing
has been most fully studied in relation to acute appendicitis        septic shock [22]. Key recommendations include early goal-
[12–14]. The findings of several analyses involving both chil-        directed resuscitation during the first 6 h after recognition (ad-
dren and adults are that no scoring system provides greater          ministration of either crystalloid or colloid fluid resuscitation,
diagnostic sensitivity or specificity than clinical impression, al-   fluid challenge to restore mean circulating filling pressure, re-
though the analyses used to generate and then verify these           duction in rate of fluid administration with increasing filling
systems have identified independent variables and their positive      pressures and no improvement in tissue perfusion, vasopressor
and negative predictive values, which may help focus the at-         preference for norepinephrine or dopamine to maintain an
tention of treating clinicians [13, 15].                             initial target of mean arterial pressure 65 mm Hg, dobutam-
   In general, CT is the preferred imaging modality [16]; helical    ine inotropic therapy when cardiac output remains low despite
scanning is preferred [17]. A recent meta-analysis found that        fluid resuscitation and combined inotropic/vasopressor ther-
pooled sensitivity and specificity for diagnosis of appendicitis      apy, and stress-dose steroid therapy given only in septic shock
in children were 88% and 94%, respectively, for ultrasound           after blood pressure is identified to be poorly responsive to
studies and 94% and 95%, respectively, for CT studies. Pooled        fluid and vasopressor therapy).
sensitivity and specificity for diagnosis in adults were 83% and
                                                                     III. WHEN SHOULD ANTIMICROBIAL THERAPY
93%, respectively, for ultrasound studies and 94% and 94%,
                                                                     BE INITIATED FOR PATIENTS WITH SUSPECTED
respectively, for CT studies [18]. No such studies have been
                                                                     OR CONFIRMED INTRA-ABDOMINAL
performed on other intra-abdominal processes.
                                                                     INFECTION?
II. WHEN SHOULD FLUID RESUSCITATION BE
STARTED FOR PATIENTS WITH SUSPECTED                                  Recommendations
INTRA-ABDOMINAL INFECTION?                                            8. Antimicrobial therapy should be initiated once a patient
                                                                     receives a diagnosis of an intra-abdominal infection or once
Recommendations                                                      such an infection is considered likely. For patients with septic
  5. Patients should undergo rapid restoration of intravascular      shock, antibiotics should be administered as soon as possible
volume and additional measures as needed to promote phys-            (A-III).
iological stability (A-II).                                           9. For patients without septic shock, antimicrobial therapy
  6. For patients with septic shock, such resuscitation should       should be started in the emergency department (B-III).
begin immediately when hypotension is identified (A-II).               10. Satisfactory antimicrobial drug levels should be main-
  7. For patients without evidence of volume depletion, in-          tained during a source control intervention, which may ne-
travenous fluid therapy should begin when the diagnosis of            cessitate additional administration of antimicrobials just before
intra-abdominal infection is first suspected (B-III).                 initiation of the procedure (A-I).

Evidence Summary                                                     Evidence Summary
Volume depletion is common in febrile patients and is wors-          Delaying antimicrobial therapy has been associated with poorer
ened by poor fluid intake because of nausea and/or vomiting           outcomes in patients with septic shock, including those with
and in the presence of ileus induced by intra-abdominal in-          intra-abdominal infection [23]; however, the study [23] was of
flammation. Much of the fluid loss is attributable to tachypnea.       low quality, as judged by the methodologic quality score system
Commonly, patients experience a panting response through             presented by van Nieuwenhoven et al [24]. On the basis of this
which tidal volume is minimized and breathing frequency is           study [24], sepsis guidelines have recommended that antibiotics
maximized [19, 20]. Blood-gas tensions and pH are maintained         be administered within 1 h of recognition of septic shock [22].
during this hyperventilation, and the associated heat loss by        In patients without hemodynamic or organ compromises, the
evaporation helps regulate body temperature. A second pattern        Expert Panel members agreed that antibacterials should be ad-
of breathing adopted in hyperthermia, thermal hyperpnea, re-         ministered within 8 h after presentation.


144 • CID 2010:50 (15 January) • Solomkin et al
In patients undergoing a source control procedure, antimi-          be continued intraoperatively. For hemodynamically stable pa-
crobial therapy provides for surgical wound prophylaxis and            tients without peritonitis, delay of up to 1 day may be appro-
treatment of pathogens that are potentially disseminated during        priate. The Expert Panel notes that this decision is a complex
the procedure, in addition to providing ongoing therapy for            calculation based on a variety of patient-, institution-, and sur-
the infection. Antimicrobial therapy is, therefore, also consid-       geon-specific factors, and a greater or lesser delay may be ap-
ered to be wound prophylaxis for all patients undergoing in-           propriate, with most patients benefiting from a more urgent
tervention. The rules for prophylaxis in elective surgical pro-        approach.
cedures include use of agents that are likely to be effective             Source control failure is more likely to occur in patients with
against the contaminating organisms and administration within          delayed (124 h) procedural intervention, higher severity of ill-
1 h before the operation [25, 26].                                     ness (APACHE II score 15), advanced age (170 years), pre-
                                                                       existing chronic medical conditions, poor nutritional status,
IV. WHAT ARE THE PROPER PROCEDURES FOR                                 and a higher degree of peritoneal involvement and is heralded
OBTAINING ADEQUATE SOURCE CONTROL?                                     by persistent or recurrent intra-abdominal infection, anasto-
                                                                       motic failure, or fistula formation [28–32].
Recommendations                                                           Well-localized fluid collections of appropriate density may
  11. An appropriate source control procedure to drain in-             be drained percutaneously with acceptable morbidity and
fected foci, control ongoing peritoneal contamination by di-           mortality [47, 33–35]. Percutaneous drainage of appropriately
version or resection, and restore anatomic and physiological           selected infectious sources may result in significantly less
function to the extent feasible is recommended for nearly all          physiologic alterations in patients and may eliminate or re-
patients with intra-abdominal infection (B-II).                        duce the need for open techniques. Open surgical techniques
  12. Patients with diffuse peritonitis should undergo an emer-        are likely required for poorly localized, loculated, complex,
gency surgical procedure as soon as is possible, even if ongoing       or diffuse fluid collections and necrotic tissue, high density
measures to restore physiologic stability need to be continued         fluid, or percutaneously inaccessible collections. The majority
during the procedure (B-II).                                           of patients respond to a single intervention without significant
  13. Where feasible, percutaneous drainage of abscesses and           complication.
other well-localized fluid collections is preferable to surgical           Given the range of diseases and the various risk factors for
drainage (B-II).                                                       poor outcome in nonappendiceal disease, clinical practice has
  14. For hemodynamically stable patients without evidence             been driven by uncontrolled case series [36–42]. Percutaneous
of acute organ failure, an urgent approach should be taken.
                                                                       techniques have continued to evolve, and many abscesses that
Intervention may be delayed for as long as 24 h if appropriate
                                                                       were previously considered to be best approached by laparot-
antimicrobial therapy is given and careful clinical monitoring
                                                                       omy are now often approached by interventional radiography
is provided (B-II).
                                                                       [43].
  15. In patients with severe peritonitis, mandatory or sched-
                                                                          It is important to discuss radiographic findings with the
uled relaparotomy is not recommended in the absence of in-
                                                                       surgeon to avoid inappropriate abscess drainage in the presence
testinal discontinuity, abdominal fascial loss that prevents ab-
                                                                       of free hollow-organ perforation and acute peritonitis. Acute
dominal wall closure, or intra-abdominal hypertension (A-II).
                                                                       peritonitis is best treated surgically rather than with percuta-
  16. Highly selected patients with minimal physiological de-
                                                                       neous drainage.
rangement and a well-circumscribed focus of infection, such
                                                                          There are some patients in whom drainage catheter place-
as a periappendiceal or pericolonic phlegmon, may be treated
                                                                       ment is not appropriate, and laparotomy is the procedure of
with antimicrobial therapy alone without a source control pro-
                                                                       choice. If clinical evaluation suggests peritonitis, the patient
cedure, provided that very close clinical follow-up is possible
                                                                       should proceed to surgery even if imaging demonstrates drain-
(B-II).
                                                                       able collections, except in extreme circumstances in which a
Evidence Summary                                                       patient is deemed unfit for surgical intervention. Extraluminal
Source control is defined as any single procedure or series of          air and fluid in a “contained” distribution immediately adjacent
procedures that eliminate infectious foci, control factors that        to underlying diseased bowel (eg, in diverticulitis or appen-
promote ongoing infection, and correct or control anatomic de-         dicitis) can be drained. However, a patient with a similar abscess
rangements to restore normal physiologic function [27]. The            but with extensive and massive free air or fluid remote from
timing of intervention is a key decision, particularly in the pres-    the perforation site should usually undergo surgery for such
ence of diffuse peritonitis. Patients with diffuse peritonitis from    an “uncontained” perforation. There is only a limited role for
a perforated viscus cannot be fully resuscitated until ongoing         catheter placement in some pancreatitis-related collections.
soiling has been controlled. In such patients, resuscitation should       When laparotomy is undertaken for nonappendiceal intra-


                                                          Complicated Intra-abdominal Infection Guidelines • CID 2010:50 (15 January) • 145
abdominal infection, a range of factors will determine the extent     22. If there is significant resistance (ie, resistance in 10%–
(if any) of bowel resection, whether an anastamosis or ostomy       20% of isolates) of a common community isolate (eg, E. coli)
is created, what tissue is debrided, what type of drainage (if      to an antimicrobial regimen in widespread local use, routine
any) is necessary, and what wound management technique is           culture and susceptibility studies should be obtained for per-
used. These questions have not been addressed in controlled         forated appendicitis and other community-acquired intra-
trials, and specific guidelines cannot be provided.                  abdominal infections (B-III).
    Three general strategies should be considered for critically      23. Anaerobic cultures are not necessary for patients with
ill patients who are either physiologically unstable or at high     community-acquired intra-abdominal infection if empiric an-
risk of experiencing failed source control. These include (1)       timicrobial therapy active against common anaerobic pathogens
laparostomy or the “open abdomen,” (2) planned re-laparot-          is provided (B-III).
omy, and (3) on-demand re-laparotomy [44].                            24. For higher-risk patients, cultures from the site of infec-
    Generally accepted indications for laparostomy in which nei-    tion should be routinely obtained, particularly in patients with
ther the fascia nor skin are closed include severe physiologic      prior antibiotic exposure, who are more likely than other pa-
derangements intraoperatively that preclude completion of the       tients to harbor resistant pathogens (A-II).
planned procedure, intra-abdominal hypertension, and loss of          25. The specimen collected from the intra-abdominal focus
abdominal soft-tissue preventing immediate fascial closure.         of infection should be representative of the material associated
Generally accepted indications for either laparostomy or            with the clinical infection (B-III).
planned re-laparotomy include settings in which adequate              26. Cultures should be performed from 1 specimen, pro-
source control cannot be obtained at the index procedure, con-      vided it is of sufficient volume (at least 1 mL of fluid or tissue,
trol or re-establishment of hollow viscus continuity cannot be      preferably more) and is transported to the laboratory in an
safely performed, and possible ongoing intestinal ischemia re-      appropriate transport system. For optimal recovery of aerobic
quiring a second-look operation to ensure enteric viability [45].   bacteria, 1–10 mL of fluid should be inoculated directly into
Unless clear indications for re-laparotomy exist, re-laparotomy     an aerobic blood culture bottle. In addition, 0.5 mL of fluid
on demand has been shown to reduce use of health care ser-          should be sent to the laboratory for Gram stain and, if indi-
vices, costs, and laparotomies with similar outcomes.               cated, fungal cultures. If anaerobic cultures are requested, at
                                                                    least 0.5 mL of fluid or 0.5 g of tissue should be transported
V. WHEN AND HOW SHOULD                                              in an anaerobic transport tube. Alternately, for recovery of
MICROBIOLOGICAL SPECIMENS BE OBTAINED                               anaerobic bacteria, 1–10 mL of fluid can be inoculated directly
AND PROCESSED?                                                      into an anaerobic blood culture bottle (A-I).
                                                                      27. Susceptibility testing for Pseudomonas, Proteus, Acine-
Gram Stain and Blood Cultures
                                                                    tobacter, Staphylococcus aureus, and predominant Enterobac-
                                                                    teriaceae, as determined by moderate-to-heavy growth, should
Recommendations                                                     be performed, because these species are more likely than others
  17. Blood cultures do not provide additional clinically rel-      to yield resistant organisms (A-III).
evant information for patients with community-acquired intra-
abdominal infection and are therefore not routinely recom-          Evidence Summary
mended for such patients (B-III).                                   Blood cultures are seldom useful adjuncts for diagnosing intra-
  18. If a patient appears clinically toxic or is immunocom-        abdominal infection, even in health care–associated or com-
promised, knowledge of bacteremia may be helpful in deter-          plicated cases. Published rates of bacteremia related to the or-
mining duration of antimicrobial therapy (B-III).                   ganisms present in the infected abdominal site range from 0%
  19. For community-acquired infections, there is no proven         in a large appendicitis series [46] to 5% in a percutaneous
value in obtaining a routine Gram stain of the infected material    drainage series [47]. Bacteremia appears to be more common
(C-III).                                                            in patients in the intensive care unit and is associated with
  20. For health care–associated infections, Gram stains may        increased mortality [48].
help define the presence of yeast (C-III).                              The organisms isolated in bacteremia that accompanied
  21. Routine aerobic and anaerobic cultures from lower-risk        community-acquired complicated intra-abdominal infection
patients with community-acquired infection are considered op-       have low potential for forming endocarditis on normal valves
tional in the individual patient but may be of value in detecting   or metastatic abscesses. Positive blood cultures for the organ-
epidemiological changes in the resistance patterns of pathogens     isms that may do so, including S. aureus, Candida species, and
associated with community-acquired intra-abdominal infection        Streptococcus milleri [49], are so rarely reported prior to therapy
and in guiding follow-up oral therapy (B-II).                       for these infections that blood cultures are not recommended.



146 • CID 2010:50 (15 January) • Solomkin et al
There are few data indicating that Gram stain, culture, and            Table 8. Organisms Identified in 3 Randomized Prospective Tri-
susceptibility data provide information likely to alter outcome           als of Investigational Antibiotics for Complicated Intra-abdominal
in patients with a community-acquired complicated intra-                  Infection, including 1237 Microbiologically Confirmed Infections
abdominal infection. For patients with perforated or gangre-
                                                                                                                                      Patients, %
nous appendicitis, many surgeons do not obtain cultures [50,              Organism                                                    (n p 1237)
51]. For patients with health care–associated infection, anti-            Facultative and aerobic gram-negative
microbial therapy that fails to cover eventual pathogens has                Escherichia coli                                               71
been associated with higher rates of treatment failure and mor-             Klebsiella species                                             14
tality [52]. Thus, Gram stains may be of value in detecting                 Pseudomonas aeruginosa                                         14
gram-positive cocci or yeast that would lead to additional em-              Proteus mirabilis                                               5
piric antimicrobial therapy before definitive culture results are            Enterobacter species                                            5
available.                                                                Anaerobic
                                                                            Bacteroides fragilis                                           35
   Local susceptibility patterns for S. aureus and for enterococci
                                                                            Other Bacteroides species                                      71
might warrant addition of an MRSA-active agent until results
                                                                            Clostridium species                                            29
of cultures and susceptibility testing are available [52]. For en-
                                                                            Prevotella species                                             12
terococci, local susceptibilities should be monitored for peni-             Peptostreptococcus species                                     17
cillin and vancomycin resistance. If yeasts are identified on a              Fusobacterium species                                           9
Gram stain, additional therapy for Candida species may be                   Eubacterium species                                            17
considered.                                                               Gram-positive aerobic cocci
   The major pathogens in community-acquired intra-abdom-                   Streptococcus species                                          38
inal infection are coliforms (Enterobacteriaceae, especially E.             Enterococcus faecalis                                          12
coli) and anaerobes (especially B. fragilis) (Table 8). Pathogens           Enterococcus faecium                                            3
                                                                            Enterococcus species                                            8
are nearly always present in concentrations 1 10 5 organ-
                                                                            Staphylococcus aureus                                           4
isms/g of tissue or 1 10 5 organisms/mL of exudate. This
would correspond to moderate or heavy growth on the primary                 NOTE. Adapted from [77, 165, 189]. The frequency of specific Bacteroides
                                                                          species and other anaerobes is provided elsewhere [59].
isolation plates. The primary focus should, therefore, be on the
predominant organisms isolated from these cultures.
   Most intra-abdominal infections involve anaerobic bacteria,            ative organisms, such as Pseudomonas aeruginosa, will impact
but laboratories show great variation in reliably performing in           the selection of appropriate empiric antibiotic therapy [64–66].
vitro susceptibility tests. Sentinel studies of B. fragilis, the major    Routine cultures from patients with community-acquired intra-
pathogen, show uniform susceptibility to metronidazole, car-              abdominal infection may facilitate recognition of local changes
bapenems, and some b-lactam/b-lactamase inhibitors [53–57].               in resistance and, thereby, optimal selection of antimicrobial
Studies of the activity of quinolones against B. fragilis isolates        agents for both definitive treatment and oral step-down therapy.
have yielded conflicting data, in part because of the use of               There are marked differences in susceptibility patterns within
abdominal abscess versus bacteremic isolates [58–61]. Suscep-             and between different communities and institutions. These ep-
tibility testing of individual anaerobic isolates should be con-          idemiologic data are of considerable value in defining the most
sidered when there is persistent isolation of the organism, bac-          suitable antimicrobial therapy for intra-abdominal infection.
teremia, or when prolonged therapy is needed because of                   The failure to provide adequate antimicrobial therapy in such
immunosuppression or prosthetic infection. Laboratories can               patients has been repeatedly associated with an increased in-
purify and hold isolates for additional testing if requested by           cidence of therapeutic failure and, in some cases, increased
the clinician [62].                                                       mortality [52, 67].
   In many locations, there is increasing resistance to selected             Certain communities and age groups have an inexplicably
antibiotics among community-acquired strains of gram-nega-                high incidence of P. aeruginosa infection associated with com-
tive organisms. These include the widespread prevalence of                munity-acquired appendicitis [64–66, 68]. Even if therapy with
ampicillin/sulbactam-resistant E. coli worldwide, the high pen-           a broader spectrum is used empirically, culture results may
etration of fluoroquinolone-resistant E. coli in Latin America             allow the clinician to narrow the spectrum of therapy consid-
and East Asia, and locations with a high prevalence of extended-          erably for more-prolonged, definitive therapy.
spectrum b-lactamase–producing strains of Klebsiella species                 Complete inoculation of all appropriate media (8 agar plates,
and E. coli [63]. In some populations and communities, a rel-             a Gram stain, and a broth enrichment tube) for aerobic and
atively high prevalence of more-resistant nonenteric gram-neg-            anaerobic bacterial cultures alone calls for 0.05 mL of tissue or



                                                             Complicated Intra-abdominal Infection Guidelines • CID 2010:50 (15 January) • 147
Guidelines By The Surgical Infection
Guidelines By The Surgical Infection
Guidelines By The Surgical Infection
Guidelines By The Surgical Infection
Guidelines By The Surgical Infection
Guidelines By The Surgical Infection
Guidelines By The Surgical Infection
Guidelines By The Surgical Infection
Guidelines By The Surgical Infection
Guidelines By The Surgical Infection
Guidelines By The Surgical Infection
Guidelines By The Surgical Infection
Guidelines By The Surgical Infection
Guidelines By The Surgical Infection
Guidelines By The Surgical Infection
Guidelines By The Surgical Infection
Guidelines By The Surgical Infection

Más contenido relacionado

La actualidad más candente

Surgical vs Conservative Management of Colonic Diverticulitis
Surgical vs Conservative Management of Colonic DiverticulitisSurgical vs Conservative Management of Colonic Diverticulitis
Surgical vs Conservative Management of Colonic DiverticulitisVedica Sethi
 
Acg guideline cdifficile_april_2013
Acg guideline cdifficile_april_2013Acg guideline cdifficile_april_2013
Acg guideline cdifficile_april_2013cesar gaytan
 
Slide deck cancer care during covid 19 pandemic
Slide deck cancer care during covid 19 pandemicSlide deck cancer care during covid 19 pandemic
Slide deck cancer care during covid 19 pandemicmadurai
 
Pegintron and decompensated cirrhosis due to hcv final with glutathione
Pegintron and decompensated cirrhosis due to hcv final with glutathionePegintron and decompensated cirrhosis due to hcv final with glutathione
Pegintron and decompensated cirrhosis due to hcv final with glutathioneShendy Sherif
 
Malattie infiammatorie intestinali
Malattie infiammatorie intestinaliMalattie infiammatorie intestinali
Malattie infiammatorie intestinaliASMaD
 
Artículo neuroanestesia
Artículo neuroanestesiaArtículo neuroanestesia
Artículo neuroanestesiaDra Jomeini
 
Drug Evaluetio during the Covid19 pandemic
Drug Evaluetio during the Covid19 pandemicDrug Evaluetio during the Covid19 pandemic
Drug Evaluetio during the Covid19 pandemicValentina Corona
 
Alternative medicines in women with chronic vaginitis april 2011
Alternative medicines in women with chronic vaginitis april 2011Alternative medicines in women with chronic vaginitis april 2011
Alternative medicines in women with chronic vaginitis april 2011Tito Chavez
 
KNOWLEDGE AND PRACTICES AMONG SURGEONS REGARDING CROSS INFECTION CONTROL PROC...
KNOWLEDGE AND PRACTICES AMONG SURGEONS REGARDING CROSS INFECTION CONTROL PROC...KNOWLEDGE AND PRACTICES AMONG SURGEONS REGARDING CROSS INFECTION CONTROL PROC...
KNOWLEDGE AND PRACTICES AMONG SURGEONS REGARDING CROSS INFECTION CONTROL PROC...Anil Haripriya
 
Urology in the time of corona
Urology in the time of coronaUrology in the time of corona
Urology in the time of coronaValentina Corona
 
Factors Related to HCV Screening in French General Practice
Factors Related to HCV Screening in French General PracticeFactors Related to HCV Screening in French General Practice
Factors Related to HCV Screening in French General PracticeMichel Rotily
 
Risk factors of chronic liver disease amongst patients receiving care in a Ga...
Risk factors of chronic liver disease amongst patients receiving care in a Ga...Risk factors of chronic liver disease amongst patients receiving care in a Ga...
Risk factors of chronic liver disease amongst patients receiving care in a Ga...iosrjce
 
Treatment of hospital acquired, ventilator-associated, and healthcare-associa...
Treatment of hospital acquired, ventilator-associated, and healthcare-associa...Treatment of hospital acquired, ventilator-associated, and healthcare-associa...
Treatment of hospital acquired, ventilator-associated, and healthcare-associa...Christian Wilhelm
 
Epidemiology of Covid-19 in a long-Term Care Facility in King County, Washington
Epidemiology of Covid-19 in a long-Term Care Facility in King County, WashingtonEpidemiology of Covid-19 in a long-Term Care Facility in King County, Washington
Epidemiology of Covid-19 in a long-Term Care Facility in King County, WashingtonValentina Corona
 
Fever Ill Ad
Fever Ill AdFever Ill Ad
Fever Ill Adkk 555888
 

La actualidad más candente (20)

Surgical vs Conservative Management of Colonic Diverticulitis
Surgical vs Conservative Management of Colonic DiverticulitisSurgical vs Conservative Management of Colonic Diverticulitis
Surgical vs Conservative Management of Colonic Diverticulitis
 
Acg guideline cdifficile_april_2013
Acg guideline cdifficile_april_2013Acg guideline cdifficile_april_2013
Acg guideline cdifficile_april_2013
 
Slide deck cancer care during covid 19 pandemic
Slide deck cancer care during covid 19 pandemicSlide deck cancer care during covid 19 pandemic
Slide deck cancer care during covid 19 pandemic
 
Pegintron and decompensated cirrhosis due to hcv final with glutathione
Pegintron and decompensated cirrhosis due to hcv final with glutathionePegintron and decompensated cirrhosis due to hcv final with glutathione
Pegintron and decompensated cirrhosis due to hcv final with glutathione
 
Malattie infiammatorie intestinali
Malattie infiammatorie intestinaliMalattie infiammatorie intestinali
Malattie infiammatorie intestinali
 
Abdominal tuberculosis
Abdominal tuberculosisAbdominal tuberculosis
Abdominal tuberculosis
 
Artículo neuroanestesia
Artículo neuroanestesiaArtículo neuroanestesia
Artículo neuroanestesia
 
Drug Evaluetio during the Covid19 pandemic
Drug Evaluetio during the Covid19 pandemicDrug Evaluetio during the Covid19 pandemic
Drug Evaluetio during the Covid19 pandemic
 
Alternative medicines in women with chronic vaginitis april 2011
Alternative medicines in women with chronic vaginitis april 2011Alternative medicines in women with chronic vaginitis april 2011
Alternative medicines in women with chronic vaginitis april 2011
 
KNOWLEDGE AND PRACTICES AMONG SURGEONS REGARDING CROSS INFECTION CONTROL PROC...
KNOWLEDGE AND PRACTICES AMONG SURGEONS REGARDING CROSS INFECTION CONTROL PROC...KNOWLEDGE AND PRACTICES AMONG SURGEONS REGARDING CROSS INFECTION CONTROL PROC...
KNOWLEDGE AND PRACTICES AMONG SURGEONS REGARDING CROSS INFECTION CONTROL PROC...
 
Urology in the time of corona
Urology in the time of coronaUrology in the time of corona
Urology in the time of corona
 
Between Scylla Charybdis
Between Scylla CharybdisBetween Scylla Charybdis
Between Scylla Charybdis
 
CARBUNCLE, MODALITIES OF TREATMENT – CASE REPORT
CARBUNCLE, MODALITIES OF TREATMENT – CASE REPORTCARBUNCLE, MODALITIES OF TREATMENT – CASE REPORT
CARBUNCLE, MODALITIES OF TREATMENT – CASE REPORT
 
Brucellosis
BrucellosisBrucellosis
Brucellosis
 
Factors Related to HCV Screening in French General Practice
Factors Related to HCV Screening in French General PracticeFactors Related to HCV Screening in French General Practice
Factors Related to HCV Screening in French General Practice
 
Risk factors of chronic liver disease amongst patients receiving care in a Ga...
Risk factors of chronic liver disease amongst patients receiving care in a Ga...Risk factors of chronic liver disease amongst patients receiving care in a Ga...
Risk factors of chronic liver disease amongst patients receiving care in a Ga...
 
Aspergillosis 2008 guideline
Aspergillosis 2008 guidelineAspergillosis 2008 guideline
Aspergillosis 2008 guideline
 
Treatment of hospital acquired, ventilator-associated, and healthcare-associa...
Treatment of hospital acquired, ventilator-associated, and healthcare-associa...Treatment of hospital acquired, ventilator-associated, and healthcare-associa...
Treatment of hospital acquired, ventilator-associated, and healthcare-associa...
 
Epidemiology of Covid-19 in a long-Term Care Facility in King County, Washington
Epidemiology of Covid-19 in a long-Term Care Facility in King County, WashingtonEpidemiology of Covid-19 in a long-Term Care Facility in King County, Washington
Epidemiology of Covid-19 in a long-Term Care Facility in King County, Washington
 
Fever Ill Ad
Fever Ill AdFever Ill Ad
Fever Ill Ad
 

Similar a Guidelines By The Surgical Infection

abdominal sepsis
abdominal sepsisabdominal sepsis
abdominal sepsisSa Ju
 
Intra-abdominal Infection Guidelines 2010
Intra-abdominal Infection Guidelines 2010Intra-abdominal Infection Guidelines 2010
Intra-abdominal Infection Guidelines 2010Sun Yai-Cheng
 
Neutropenia por cancer y uso de antibioticos guia idsa 2010
Neutropenia por cancer y uso de antibioticos guia idsa 2010Neutropenia por cancer y uso de antibioticos guia idsa 2010
Neutropenia por cancer y uso de antibioticos guia idsa 2010Mauricio Alejandro Usme Arango
 
diagnosis and management of mdr iai role of carbapenems and tigecycli.._
diagnosis and management of mdr iai role of carbapenems and  tigecycli.._diagnosis and management of mdr iai role of carbapenems and  tigecycli.._
diagnosis and management of mdr iai role of carbapenems and tigecycli.._Ankit Gajjar
 
s13017-019-0247-0.pdf
s13017-019-0247-0.pdfs13017-019-0247-0.pdf
s13017-019-0247-0.pdfTrinhLe306072
 
guia pancreatitis aguda 2019.pdf
guia pancreatitis aguda 2019.pdfguia pancreatitis aguda 2019.pdf
guia pancreatitis aguda 2019.pdfJcGaldos1
 
Acs0818 Intra Abdominal Infection
Acs0818 Intra Abdominal InfectionAcs0818 Intra Abdominal Infection
Acs0818 Intra Abdominal Infectionmedbookonline
 
Test Bank For Pathophysiology 7th Edition by Jacquelyn L. Banasik.pdf
Test Bank For Pathophysiology 7th Edition by Jacquelyn L. Banasik.pdfTest Bank For Pathophysiology 7th Edition by Jacquelyn L. Banasik.pdf
Test Bank For Pathophysiology 7th Edition by Jacquelyn L. Banasik.pdfnursing premium
 
BMJ Open-2016-Conway Morris--2
BMJ Open-2016-Conway Morris--2BMJ Open-2016-Conway Morris--2
BMJ Open-2016-Conway Morris--2Tracey Mare
 
2011 cap in children
2011 cap in children2011 cap in children
2011 cap in childrenGerman Bri
 
Guideline useofantimicrobialagentsinneutropenicpatients
Guideline useofantimicrobialagentsinneutropenicpatientsGuideline useofantimicrobialagentsinneutropenicpatients
Guideline useofantimicrobialagentsinneutropenicpatientsnegrulo2013
 
Antibiotic therapy in_patients_with_septic_shock
Antibiotic therapy in_patients_with_septic_shockAntibiotic therapy in_patients_with_septic_shock
Antibiotic therapy in_patients_with_septic_shockNHS
 
Pie diabético guia 2012 idsa infectious disease society american
Pie diabético guia 2012 idsa infectious disease society americanPie diabético guia 2012 idsa infectious disease society american
Pie diabético guia 2012 idsa infectious disease society americanNataly Conde Quintana
 
pancreatitis aguda .pdf
pancreatitis aguda .pdfpancreatitis aguda .pdf
pancreatitis aguda .pdfRoblesKR
 

Similar a Guidelines By The Surgical Infection (20)

abdominal sepsis
abdominal sepsisabdominal sepsis
abdominal sepsis
 
Idsa neutropenia febril
Idsa neutropenia febrilIdsa neutropenia febril
Idsa neutropenia febril
 
Intra-abdominal Infection Guidelines 2010
Intra-abdominal Infection Guidelines 2010Intra-abdominal Infection Guidelines 2010
Intra-abdominal Infection Guidelines 2010
 
Guía neumonía 2011
Guía neumonía 2011Guía neumonía 2011
Guía neumonía 2011
 
Neutropenia febril
Neutropenia febrilNeutropenia febril
Neutropenia febril
 
Neutropenia por cancer y uso de antibioticos guia idsa 2010
Neutropenia por cancer y uso de antibioticos guia idsa 2010Neutropenia por cancer y uso de antibioticos guia idsa 2010
Neutropenia por cancer y uso de antibioticos guia idsa 2010
 
diagnosis and management of mdr iai role of carbapenems and tigecycli.._
diagnosis and management of mdr iai role of carbapenems and  tigecycli.._diagnosis and management of mdr iai role of carbapenems and  tigecycli.._
diagnosis and management of mdr iai role of carbapenems and tigecycli.._
 
severe-acute-pancreatitis.pdf
severe-acute-pancreatitis.pdfsevere-acute-pancreatitis.pdf
severe-acute-pancreatitis.pdf
 
s13017-019-0247-0.pdf
s13017-019-0247-0.pdfs13017-019-0247-0.pdf
s13017-019-0247-0.pdf
 
guia pancreatitis aguda 2019.pdf
guia pancreatitis aguda 2019.pdfguia pancreatitis aguda 2019.pdf
guia pancreatitis aguda 2019.pdf
 
Acs0818 Intra Abdominal Infection
Acs0818 Intra Abdominal InfectionAcs0818 Intra Abdominal Infection
Acs0818 Intra Abdominal Infection
 
Test Bank For Pathophysiology 7th Edition by Jacquelyn L. Banasik.pdf
Test Bank For Pathophysiology 7th Edition by Jacquelyn L. Banasik.pdfTest Bank For Pathophysiology 7th Edition by Jacquelyn L. Banasik.pdf
Test Bank For Pathophysiology 7th Edition by Jacquelyn L. Banasik.pdf
 
BMJ Open-2016-Conway Morris--2
BMJ Open-2016-Conway Morris--2BMJ Open-2016-Conway Morris--2
BMJ Open-2016-Conway Morris--2
 
2011 cap in children
2011 cap in children2011 cap in children
2011 cap in children
 
Guideline useofantimicrobialagentsinneutropenicpatients
Guideline useofantimicrobialagentsinneutropenicpatientsGuideline useofantimicrobialagentsinneutropenicpatients
Guideline useofantimicrobialagentsinneutropenicpatients
 
Osteo3
Osteo3Osteo3
Osteo3
 
Antibiotic therapy in_patients_with_septic_shock
Antibiotic therapy in_patients_with_septic_shockAntibiotic therapy in_patients_with_septic_shock
Antibiotic therapy in_patients_with_septic_shock
 
Pie diabético guia 2012 idsa infectious disease society american
Pie diabético guia 2012 idsa infectious disease society americanPie diabético guia 2012 idsa infectious disease society american
Pie diabético guia 2012 idsa infectious disease society american
 
Diarrhea
DiarrheaDiarrhea
Diarrhea
 
pancreatitis aguda .pdf
pancreatitis aguda .pdfpancreatitis aguda .pdf
pancreatitis aguda .pdf
 

Más de usapuka

Propuesta coordinador tics 014
Propuesta coordinador tics 014Propuesta coordinador tics 014
Propuesta coordinador tics 014usapuka
 
Caja Complementaria - Situación
Caja Complementaria - SituaciónCaja Complementaria - Situación
Caja Complementaria - Situaciónusapuka
 
Tercera ventana compras cumunitarias
Tercera ventana compras cumunitariasTercera ventana compras cumunitarias
Tercera ventana compras cumunitariasusapuka
 
Hepatitis Crónica por Virus C
Hepatitis Crónica por Virus CHepatitis Crónica por Virus C
Hepatitis Crónica por Virus Cusapuka
 
Enfermedades Infeccionsas y Microbiología Clínica
Enfermedades Infeccionsas y Microbiología ClínicaEnfermedades Infeccionsas y Microbiología Clínica
Enfermedades Infeccionsas y Microbiología Clínicausapuka
 
Agora docente
Agora docenteAgora docente
Agora docenteusapuka
 
Agora docente
Agora docenteAgora docente
Agora docenteusapuka
 
Informe de progreso escolar
Informe de progreso escolarInforme de progreso escolar
Informe de progreso escolarusapuka
 
Hacia un bicentenario
Hacia un bicentenarioHacia un bicentenario
Hacia un bicentenariousapuka
 
Afiche postitulo 2012
Afiche postitulo 2012Afiche postitulo 2012
Afiche postitulo 2012usapuka
 
Agora educativa capacitacion 012
Agora educativa  capacitacion 012Agora educativa  capacitacion 012
Agora educativa capacitacion 012usapuka
 
Reflexiones y aportes sobre algunos temas vinculados a la reforma del código ...
Reflexiones y aportes sobre algunos temas vinculados a la reforma del código ...Reflexiones y aportes sobre algunos temas vinculados a la reforma del código ...
Reflexiones y aportes sobre algunos temas vinculados a la reforma del código ...usapuka
 
A las escuelas carta para la semana de oración
A las escuelas carta para la semana de oraciónA las escuelas carta para la semana de oración
A las escuelas carta para la semana de oraciónusapuka
 
Proyecto agora primer convocatoria
Proyecto agora primer convocatoriaProyecto agora primer convocatoria
Proyecto agora primer convocatoriausapuka
 
Proyector y pantalla
Proyector y pantallaProyector y pantalla
Proyector y pantallausapuka
 
Difusion taller ine sadi 2012
Difusion taller ine sadi 2012Difusion taller ine sadi 2012
Difusion taller ine sadi 2012usapuka
 
Segunda venta compras comunitarias
Segunda venta compras comunitariasSegunda venta compras comunitarias
Segunda venta compras comunitariasusapuka
 
Articulo de escorpionismo
Articulo de escorpionismoArticulo de escorpionismo
Articulo de escorpionismousapuka
 
Ecumenismo y Dialogo
Ecumenismo y DialogoEcumenismo y Dialogo
Ecumenismo y Dialogousapuka
 
Decreto 1374 11 reglamenta regimen genberal de pasantias secundario
Decreto 1374 11 reglamenta regimen genberal de pasantias secundarioDecreto 1374 11 reglamenta regimen genberal de pasantias secundario
Decreto 1374 11 reglamenta regimen genberal de pasantias secundariousapuka
 

Más de usapuka (20)

Propuesta coordinador tics 014
Propuesta coordinador tics 014Propuesta coordinador tics 014
Propuesta coordinador tics 014
 
Caja Complementaria - Situación
Caja Complementaria - SituaciónCaja Complementaria - Situación
Caja Complementaria - Situación
 
Tercera ventana compras cumunitarias
Tercera ventana compras cumunitariasTercera ventana compras cumunitarias
Tercera ventana compras cumunitarias
 
Hepatitis Crónica por Virus C
Hepatitis Crónica por Virus CHepatitis Crónica por Virus C
Hepatitis Crónica por Virus C
 
Enfermedades Infeccionsas y Microbiología Clínica
Enfermedades Infeccionsas y Microbiología ClínicaEnfermedades Infeccionsas y Microbiología Clínica
Enfermedades Infeccionsas y Microbiología Clínica
 
Agora docente
Agora docenteAgora docente
Agora docente
 
Agora docente
Agora docenteAgora docente
Agora docente
 
Informe de progreso escolar
Informe de progreso escolarInforme de progreso escolar
Informe de progreso escolar
 
Hacia un bicentenario
Hacia un bicentenarioHacia un bicentenario
Hacia un bicentenario
 
Afiche postitulo 2012
Afiche postitulo 2012Afiche postitulo 2012
Afiche postitulo 2012
 
Agora educativa capacitacion 012
Agora educativa  capacitacion 012Agora educativa  capacitacion 012
Agora educativa capacitacion 012
 
Reflexiones y aportes sobre algunos temas vinculados a la reforma del código ...
Reflexiones y aportes sobre algunos temas vinculados a la reforma del código ...Reflexiones y aportes sobre algunos temas vinculados a la reforma del código ...
Reflexiones y aportes sobre algunos temas vinculados a la reforma del código ...
 
A las escuelas carta para la semana de oración
A las escuelas carta para la semana de oraciónA las escuelas carta para la semana de oración
A las escuelas carta para la semana de oración
 
Proyecto agora primer convocatoria
Proyecto agora primer convocatoriaProyecto agora primer convocatoria
Proyecto agora primer convocatoria
 
Proyector y pantalla
Proyector y pantallaProyector y pantalla
Proyector y pantalla
 
Difusion taller ine sadi 2012
Difusion taller ine sadi 2012Difusion taller ine sadi 2012
Difusion taller ine sadi 2012
 
Segunda venta compras comunitarias
Segunda venta compras comunitariasSegunda venta compras comunitarias
Segunda venta compras comunitarias
 
Articulo de escorpionismo
Articulo de escorpionismoArticulo de escorpionismo
Articulo de escorpionismo
 
Ecumenismo y Dialogo
Ecumenismo y DialogoEcumenismo y Dialogo
Ecumenismo y Dialogo
 
Decreto 1374 11 reglamenta regimen genberal de pasantias secundario
Decreto 1374 11 reglamenta regimen genberal de pasantias secundarioDecreto 1374 11 reglamenta regimen genberal de pasantias secundario
Decreto 1374 11 reglamenta regimen genberal de pasantias secundario
 

Último

Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...
Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...
Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...rajnisinghkjn
 
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...narwatsonia7
 
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Call Girl Lucknow Mallika 7001305949 Independent Escort Service Lucknow
Call Girl Lucknow Mallika 7001305949 Independent Escort Service LucknowCall Girl Lucknow Mallika 7001305949 Independent Escort Service Lucknow
Call Girl Lucknow Mallika 7001305949 Independent Escort Service Lucknownarwatsonia7
 
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbers
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbersBook Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbers
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbersnarwatsonia7
 
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service MumbaiLow Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbaisonalikaur4
 
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort ServiceCollege Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort ServiceNehru place Escorts
 
Call Girl Surat Madhuri 7001305949 Independent Escort Service Surat
Call Girl Surat Madhuri 7001305949 Independent Escort Service SuratCall Girl Surat Madhuri 7001305949 Independent Escort Service Surat
Call Girl Surat Madhuri 7001305949 Independent Escort Service Suratnarwatsonia7
 
Call Girls Thane Just Call 9910780858 Get High Class Call Girls Service
Call Girls Thane Just Call 9910780858 Get High Class Call Girls ServiceCall Girls Thane Just Call 9910780858 Get High Class Call Girls Service
Call Girls Thane Just Call 9910780858 Get High Class Call Girls Servicesonalikaur4
 
Asthma Review - GINA guidelines summary 2024
Asthma Review - GINA guidelines summary 2024Asthma Review - GINA guidelines summary 2024
Asthma Review - GINA guidelines summary 2024Gabriel Guevara MD
 
Call Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service Available
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls ITPL Just Call 7001305949 Top Class Call Girl Service Available
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...narwatsonia7
 
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original PhotosBook Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photosnarwatsonia7
 
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call NowKolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call NowNehru place Escorts
 
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...narwatsonia7
 
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service JaipurHigh Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipurparulsinha
 
Call Girls Kanakapura Road Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Kanakapura Road Just Call 7001305949 Top Class Call Girl Service A...Call Girls Kanakapura Road Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Kanakapura Road Just Call 7001305949 Top Class Call Girl Service A...narwatsonia7
 
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service MumbaiVIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbaisonalikaur4
 

Último (20)

Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...
Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...
Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...
 
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...
 
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
 
Call Girl Lucknow Mallika 7001305949 Independent Escort Service Lucknow
Call Girl Lucknow Mallika 7001305949 Independent Escort Service LucknowCall Girl Lucknow Mallika 7001305949 Independent Escort Service Lucknow
Call Girl Lucknow Mallika 7001305949 Independent Escort Service Lucknow
 
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbers
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbersBook Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbers
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbers
 
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service MumbaiLow Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
 
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort ServiceCollege Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
 
Call Girl Surat Madhuri 7001305949 Independent Escort Service Surat
Call Girl Surat Madhuri 7001305949 Independent Escort Service SuratCall Girl Surat Madhuri 7001305949 Independent Escort Service Surat
Call Girl Surat Madhuri 7001305949 Independent Escort Service Surat
 
Call Girls Thane Just Call 9910780858 Get High Class Call Girls Service
Call Girls Thane Just Call 9910780858 Get High Class Call Girls ServiceCall Girls Thane Just Call 9910780858 Get High Class Call Girls Service
Call Girls Thane Just Call 9910780858 Get High Class Call Girls Service
 
Asthma Review - GINA guidelines summary 2024
Asthma Review - GINA guidelines summary 2024Asthma Review - GINA guidelines summary 2024
Asthma Review - GINA guidelines summary 2024
 
Call Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service Available
 
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service Available
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls ITPL Just Call 7001305949 Top Class Call Girl Service Available
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service Available
 
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...
 
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
 
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original PhotosBook Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
 
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call NowKolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
 
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
 
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service JaipurHigh Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
 
Call Girls Kanakapura Road Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Kanakapura Road Just Call 7001305949 Top Class Call Girl Service A...Call Girls Kanakapura Road Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Kanakapura Road Just Call 7001305949 Top Class Call Girl Service A...
 
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service MumbaiVIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
 

Guidelines By The Surgical Infection

  • 1. IDSA GUIDELINES Diagnosis and Management of Complicated Intra-abdominal Infection in Adults and Children: Guidelines by the Surgical Infection Society and the Infectious Diseases Society of America Joseph S. Solomkin,1 John E. Mazuski,2 John S. Bradley,3 Keith A. Rodvold,7,8 Ellie J. C. Goldstein,5 Ellen J. Baron,6 Patrick J. O’Neill,9 Anthony W. Chow,16 E. Patchen Dellinger,10 Soumitra R. Eachempati,11 Sherwood Gorbach,12 Mary Hilfiker,4 Addison K. May,13 Avery B. Nathens,17 Robert G. Sawyer,14 and John G. Bartlett15 1 Department of Surgery, the University of Cincinnati College of Medicine, Cincinnati, Ohio; 2Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri; Departments of 3Pediatric Infectious Diseases and 4Surgery, Rady Children’s Hospital of San Diego, San Diego, 5R. M. Alden Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, 6Department of Pathology, Stanford University School of Medicine, Palo Alto, California; Departments of 7Pharmacy Practice and 8Medicine, University of Illinois at Chicago, Chicago; 9 Department of Surgery, The Trauma Center at Maricopa Medical Center, Phoenix, Arizona; 10Department of Surgery, University of Washington, Seattle; 11Department of Surgery, Cornell Medical Center, New York, New York; 12Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts; 13Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; 14Department of Surgery, University of Virginia, Charlottesville; 15Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and 16Department of Medicine, University of British Columbia, Vancouver, British Columbia, and 17St Michael’s Hospital, Toronto, Ontario, Canada Evidence-based guidelines for managing patients with intra-abdominal infection were prepared by an Expert Panel of the Surgical Infection Society and the Infectious Diseases Society of America. These updated guidelines replace those previously published in 2002 and 2003. The guidelines are intended for treating patients who either have these infections or may be at risk for them. New information, based on publications from the period 2003–2008, is incorporated into this guideline document. The panel has also added recommendations for managing intra-abdominal infection in children, particularly where such management differs from that of adults; for appendicitis in patients of all ages; and for necrotizing enterocolitis in neonates. EXECUTIVE SUMMARY Pharmacists, Pediatric Infectious Diseases Society, and Society of Infectious Diseases Pharmacists. The 2009 update of the guidelines contains evidence- These guidelines make therapeutic recommendations based recommendations for the initial diagnosis and sub- on the basis of the severity of infection, which is defined sequent management of adult and pediatric patients with for these guidelines as a composite of patient age, phys- complicated and uncomplicated intra-abdominal infec- iologic derangements, and background medical con- tion. The multifaceted nature of these infections has led ditions. These values are captured by severity scoring to collaboration and endorsement of these recommen- systems, but for the individual patient, clinical judg- dations by the following organizations: American Society ment is at least as accurate as a numerical score [1–4]. for Microbiology, American Society of Health-System “High risk” is intended to describe patients with a range Received 7 October 2009; accepted 9 October 2009; electronically published This guideline might be updated periodically. To be sure you have the most 23 December 2009. recent version, check the Web site of the journal (http://www.journals.uchicago Reprints or correspondence: Dr Joseph S. Solomkin, Dept of Surgery, University .edu/page/cid/IDSAguidelines.html). of Cincinnati College of Medicine, 231 Albert B. Sabin Way, Cincinnati OH 45267- It is important to realize that guidelines cannot always account for individual 0558 (joseph.solomkin@uc.edu). variation among patients. They are not intended to supplant physician judgment Clinical Infectious Diseases 2010; 50:133–64 with respect to particular patients or special clinical situations. The Infectious 2009 by the Infectious Diseases Society of America. All rights reserved. Diseases Society of America considers adherence to these guidelines to be 1058-4838/2010/5002-0001$15.00 voluntary, with the ultimate determination regarding their application to be made DOI: 10.1086/649554 by the physician in the light of each patient’s individual circumstances. Complicated Intra-abdominal Infection Guidelines • CID 2010:50 (15 January) • 133
  • 2. of reasons for increased rates of treatment failure in addition Table 1. Clinical Factors Predicting Failure of Source Control to a higher severity of infection, particularly patients with an for Intra-abdominal Infection anatomically unfavorable infection or a health care–associated Delay in the initial intervention (124 h) infection [5] (Table 1). High severity of illness (APACHE II score 15) Advanced age Initial Diagnostic Evaluation Comorbidity and degree of organ dysfunction 1. Routine history, physical examination, and laboratory Low albumin level studies will identify most patients with suspected intra-abdom- Poor nutritional status Degree of peritoneal involvement or diffuse peritonitis inal infection for whom further evaluation and management Inability to achieve adequate debridement or control of drainage is warranted (A-II). Presence of malignancy 2. For selected patients with unreliable physical examination findings, such as those with an obtunded mental status or spinal NOTE. APACHE, Acute Physiology and Chronic Health Evaluation. cord injury or those immunosuppressed by disease or therapy, intra-abdominal infection should be considered if the patient version or resection, and restore anatomic and physiological presents with evidence of infection from an undetermined function to the extent feasible is recommended for nearly all source (B-III). patients with intra-abdominal infection (B-II). 3. Further diagnostic imaging is unnecessary in patients with 12. Patients with diffuse peritonitis should undergo an emer- obvious signs of diffuse peritonitis and in whom immediate gency surgical procedure as soon as is possible, even if ongoing surgical intervention is to be performed (B-III). measures to restore physiologic stability need to be continued 4. In adult patients not undergoing immediate laparotomy, during the procedure (B-II). computed tomography (CT) scan is the imaging modality of 13. Where feasible, percutaneous drainage of abscesses and choice to determine the presence of an intra-abdominal infec- other well-localized fluid collections is preferable to surgical tion and its source (A-II). drainage (B-II). 14. For hemodynamically stable patients without evidence Fluid Resuscitation of acute organ failure, an urgent approach should be taken. 5. Patients should undergo rapid restoration of intravascular Intervention may be delayed for as long as 24 h if appropriate volume and additional measures as needed to promote phys- antimicrobial therapy is given and careful clinical monitoring iological stability (A-II). is provided (B-II). 6. For patients with septic shock, such resuscitation should 15. In patients with severe peritonitis, mandatory or sched- begin immediately when hypotension is identified (A-II). uled relaparotomy is not recommended in the absence of in- 7. For patients without evidence of volume depletion, in- testinal discontinuity, abdominal fascial loss that prevents ab- travenous fluid therapy should begin when the diagnosis of dominal wall closure, or intra-abdominal hypertension (A-II). intra-abdominal infection is first suspected (B-III). 16. Highly selected patients with minimal physiological de- rangement and a well-circumscribed focus of infection, such Timing of Initiation of Antimicrobial Therapy as a periappendiceal or pericolonic phlegmon, may be treated 8. Antimicrobial therapy should be initiated once a patient with antimicrobial therapy alone without a source control pro- receives a diagnosis of an intra-abdominal infection or once cedure, provided that very close clinical follow-up is possible such an infection is considered likely. For patients with septic (B-II). shock, antibiotics should be administered as soon as possible (A-III). Microbiologic Evaluation 9. For patients without septic shock, antimicrobial therapy 17. Blood cultures do not provide additional clinically rel- should be started in the emergency department (B-III). evant information for patients with community-acquired intra- 10. Satisfactory antimicrobial drug levels should be main- abdominal infection and are therefore not routinely recom- tained during a source control intervention, which may ne- mended for such patients (B-III). cessitate additional administration of antimicrobials just before 18. If a patient appears clinically toxic or is immunocom- initiation of the procedure (A-I). promised, knowledge of bacteremia may be helpful in deter- mining duration of antimicrobial therapy (B-III). Elements of Appropriate Intervention 19. For community-acquired infections, there is no proven 11. An appropriate source control procedure to drain in- value in obtaining a routine Gram stain of the infected material fected foci, control ongoing peritoneal contamination by di- (C-III). 134 • CID 2010:50 (15 January) • Solomkin et al
  • 3. Table 2. Agents and Regimens that May Be Used for the Initial Empiric Treatment of Extra-biliary Complicated Intra-abdominal Infection Community-acquired infection in adults Mild-to-moderate severity: High risk or severity: perforated or abscessed appendicitis severe physiologic disturbance, Community-acquired infection and other infections of advanced age, Regimen in pediatric patients mild-to-moderate severity or immunocompromised state Single agent Ertapenem, meropenem, imipenem- Cefoxitin, ertapenem, moxifloxacin, Imipenem-cilastatin, meropenem, dori- cilastatin, ticarcillin-clavulanate, and tigecycline, and ticarcillin-clavulanic penem, and piperacillin-tazobactam piperacillin-tazobactam acid Combination Ceftriaxone, cefotaxime, cefepime, or Cefazolin, cefuroxime, ceftriaxone, Cefepime, ceftazidime, ciprofloxacin, or ceftazidime, each in combination with cefotaxime, ciprofloxacin, or levoflox- levofloxacin, each in combination metronidazole; gentamicin or tobra- acin, each in combination with with metronidazolea mycin, each in combination with met- metronidazolea ronidazole or clindamycin, and with or without ampicillin a Because of increasing resistance of Escherichia coli to fluoroquinolones, local population susceptibility profiles and, if available, isolate susceptibility should be reviewed. 20. For health care–associated infections, Gram stains may least 0.5 mL of fluid or 0.5 g of tissue should be transported help define the presence of yeast (C-III). in an anaerobic transport tube. Alternately, for recovery of 21. Routine aerobic and anaerobic cultures from lower-risk anaerobic bacteria, 1–10 mL of fluid can be inoculated directly patients with community-acquired infection are considered op- into an anaerobic blood culture bottle (A-I). tional in the individual patient but may be of value in detecting 27. Susceptibility testing for Pseudomonas, Proteus, Acine- epidemiological changes in the resistance patterns of pathogens tobacter, Staphylococcus aureus, and predominant Enterobac- associated with community-acquired intra-abdominal infection teriaceae, as determined by moderate-to-heavy growth, should and in guiding follow-up oral therapy (B-II). be performed, because these species are more likely than others 22. If there is significant resistance (ie, resistance in 10%– to yield resistant organisms (A-III). 20% of isolates) of a common community isolate (eg, Esche- richia coli) to an antimicrobial regimen in widespread local use, RECOMMENDED ANTIMICROBIAL REGIMENS routine culture and susceptibility studies should be obtained The antimicrobials and combinations of antimicrobials de- for perforated appendicitis and other community-acquired in- tailed in Tables 2–4 are considered adequate for empiric treat- tra-abdominal infections (B-III). ment of community- and health care–associated intra-abdom- 23. Anaerobic cultures are not necessary for patients with inal infection as indicated. community-acquired intra-abdominal infection if empiric an- timicrobial therapy active against common anaerobic pathogens Community-Acquired Infection of Mild-to-Moderate Sever- is provided (B-III). ity in Adults 24. For higher-risk patients, cultures from the site of infec- 28. Antibiotics used for empiric treatment of community- tion should be routinely obtained, particularly in patients with acquired intra-abdominal infection should be active against prior antibiotic exposure, who are more likely than other pa- enteric gram-negative aerobic and facultative bacilli and enteric tients to harbor resistant pathogens (A-II). gram-positive streptococci (A-I). 25. The specimen collected from the intra-abdominal focus 29. Coverage for obligate anaerobic bacilli should be pro- of infection should be representative of the material associated vided for distal small bowel, appendiceal, and colon-derived with the clinical infection (B-III). infection and for more proximal gastrointestinal perforations 26. Cultures should be performed from 1 specimen, pro- in the presence of obstruction or paralytic ileus (A-I). vided it is of sufficient volume (at least 1 mL of fluid or tissue, 30. For adult patients with mild-to-moderate community- preferably more) and is transported to the laboratory in an acquired infection, the use of ticarcillin-clavulanate, cefoxitin, appropriate transport system. For optimal recovery of aerobic ertapenem, moxifloxacin, or tigecycline as single-agent therapy bacteria, 1–10 mL of fluid should be inoculated directly into or combinations of metronidazole with cefazolin, cefuroxime, an aerobic blood culture bottle. In addition, 0.5 mL of fluid ceftriaxone, cefotaxime, levofloxacin, or ciprofloxacin are pref- should be sent to the laboratory for Gram stain and, if indi- erable to regimens with substantial anti-Pseudomonal activity cated, fungal cultures. If anaerobic cultures are requested, at (Table 2) (A-I). Complicated Intra-abdominal Infection Guidelines • CID 2010:50 (15 January) • 135
  • 4. Table 3. Recommendations for Empiric Antimicrobial Therapy for Health Care–Associated Complicated Intra-abdominal Infection Regimen Organisms seen in health care–associated Ceftazidime or cefepime, a infection at the local institution Carbapenem Piperacillin-tazobactam each with metronidazole Aminoglycoside Vancomycin !20% Resistant Pseudomonas aeruginosa, Recommended Recommended Recommended Not recommended Not recommended ESBL-producing Enterobacteriaceae, Acinetobacter, or other MDR GNB ESBL-producing Enterobacteriaceae Recommended Recommended Not recommended Recommended Not recommended P aeruginosa 120% resistant to . Recommended Recommended Not recommended Recommended Not recommended ceftazidime MRSA Not recommended Not recommended Not recommended Not recommended Recommended NOTE. ESBL, extended-spectrum b-lactamase; GNB, gram-negative bacilli; MDR, multidrug resistant; MRSA, methicillin-resistant Staphylococcus aureus. “Recommended” indicates that the listed agent or class is recommended for empiric use, before culture and susceptibility data are available, at institutions that encounter these isolates from other health care–associated infections. These may be unit- or hospital-specific. a Imipenem-cilastatin, meropenem, or doripenem 31. Ampicillin-sulbactam is not recommended for use be- metronidazole, is recommended for patients with high-severity cause of high rates of resistance to this agent among com- community-acquired intra-abdominal infection, as defined by munity-acquired E. coli (B-II). APACHE II scores 115 or other variables listed in Table 1 (Table 32. Cefotetan and clindamycin are not recommended for 2) (A-I). use because of increasing prevalence of resistance to these agents 39. Quinolone-resistant E. coli have become common in among the Bacteroides fragilis group (B-II). some communities, and quinolones should not be used unless 33. Because of the availability of less toxic agents demon- hospital surveys indicate 190% susceptibility of E. coli to quin- strated to be at least equally effective, aminoglycosides are not olones (A-II). recommended for routine use in adults with community- 40. Aztreonam plus metronidazole is an alternative, but ad- acquired intra-abdominal infection (B-II). dition of an agent effective against gram-positive cocci is rec- 34. Empiric coverage of Enterococcus is not necessary in pa- ommended (B-III). tients with community-acquired intra-abdominal infection 41. In adults, routine use of an aminoglycoside or another (A-I). second agent effective against gram-negative facultative and 35. Empiric antifungal therapy for Candida is not recom- aerobic bacilli is not recommended in the absence of evidence mended for adult and pediatric patients with community- that the patient is likely to harbor resistant organisms that acquired intra-abdominal infection (B-II). require such therapy (A-I). 36. The use of agents listed as appropriate for higher-severity 42. Empiric use of agents effective against enterococci is rec- community-acquired infection and health care–associated in- ommended (B-II). fection is not recommended for patients with mild-to-moderate 43. Use of agents effective against methicillin-resistant S. au- community-acquired infection, because such regimens may reus (MRSA) or yeast is not recommended in the absence of carry a greater risk of toxicity and facilitate acquisition of more- evidence of infection due to such organisms (B-III). resistant organisms (B-II). 44. In these high-risk patients, antimicrobial regimens 37. For those patients with intra-abdominal infection of should be adjusted according to culture and susceptibility re- mild-to-moderate severity, including acute diverticulitis and ports to ensure activity against the predominant pathogens iso- various forms of appendicitis, who will not undergo a source lated in culture (A-III). control procedure, regimens listed for treatment of mild-to- moderate–severity infection are recommended, with a possi- Health Care–Associated Infection in Adults bility of early oral therapy (B-III). 45. Empiric antibiotic therapy for health care–associated in- tra-abdominal infection should be driven by local microbio- High-Risk Community-Acquired Infection in Adults logic results (A-II). 38. The empiric use of antimicrobial regimens with broad- 46. To achieve empiric coverage of likely pathogens, mul- spectrum activity against gram-negative organisms, including tidrug regimens that include agents with expanded spectra of meropenem, imipenem-cilastatin, doripenem, piperacillin- activity against gram-negative aerobic and facultative bacilli tazobactam, ciprofloxacin or levofloxacin in combination with may be needed. These agents include meropenem, imipenem- metronidazole, or ceftazidime or cefepime in combination with cilastatin, doripenem, piperacillin-tazobactam, or ceftazidime 136 • CID 2010:50 (15 January) • Solomkin et al
  • 5. Table 4. Agents and Regimens that May Be Used for the Initial Empiric Treatment of Biliary Infection in Adults Infection Regimen Community-acquired acute cholecystitis of mild-to-moderate severity Cefazolin, cefuroxime, or ceftriaxone Community-acquired acute cholecystitis of severe physiologic disturbance, Imipenem-cilastatin, meropenem, doripenem, piperacillin-tazobactam, advanced age, or immunocompromised state ciprofloxacin, levofloxacin, or cefepime, each in combination with a metronidazole Acute cholangitis following bilio-enteric anastamosis of any severity Imipenem-cilastatin, meropenem, doripenem, piperacillin-tazobactam, ciprofloxacin, levofloxacin, or cefepime, each in combination with a metronidazole Health care–associated biliary infection of any severity Imipenem-cilastatin, meropenem, doripenem, piperacillin-tazobactam, ciprofloxacin, levofloxacin, or cefepime, each in combination with metroni- a dazole, vancomycin added to each regimen a Because of increasing resistance of Escherichia coli to fluoroquinolones, local population susceptibility profiles and, if available, isolate susceptibility should be reviewed. or cefepime in combination with metronidazole. Aminogly- rected against Enterococcus faecalis. Antibiotics that can poten- cosides or colistin may be required (Table 3) (B-III). tially be used against this organism, on the basis of susceptibility 47. Broad-spectrum antimicrobial therapy should be tai- testing of the individual isolate, include ampicillin, piperacillin- lored when culture and susceptibility reports become available, tazobactam, and vancomycin (B-III). to reduce the number and spectra of administered agents (B- 57. Empiric therapy directed against vancomycin-resistant III). Enterococcus faecium is not recommended unless the patient is at very high risk for an infection due to this organism, such Antifungal Therapy as a liver transplant recipient with an intra-abdominal infection 48. Antifungal therapy for patients with severe community- originating in the hepatobiliary tree or a patient known to be acquired or health care–associated infection is recommended colonized with vancomycin-resistant E. faecium (B-III). if Candida is grown from intra-abdominal cultures (B-II). 49. Fluconazole is an appropriate choice for treatment if Anti-MRSA Therapy Candida albicans is isolated (B-II). 58. Empiric antimicrobial coverage directed against MRSA 50. For fluconazole-resistant Candida species, therapy with should be provided to patients with health care–associated in- an echinocandin (caspofungin, micafungin, or anidulafungin) tra-abdominal infection who are known to be colonized with is appropriate (B-III). the organism or who are at risk of having an infection due to 51. For the critically ill patient, initial therapy with an echi- this organism because of prior treatment failure and significant nocandin instead of a triazole is recommended (B-III). antibiotic exposure (B-II). 52. Because of toxicity, amphotericin B is not recommended 59. Vancomycin is recommended for treatment of suspected as initial therapy (B-II). or proven intra-abdominal infection due to MRSA (A-III). 53. In neonates, empiric antifungal therapy should be started if Candida is suspected. If C. albicans is isolated, fluconazole Cholecystitis and Cholangitis in Adults is an appropriate choice (B-II). 60. Ultrasonography is the first imaging technique used for suspected acute cholecystitis or cholangitis (A-I). Anti-enterococcal Therapy 61. Patients with suspected infection and either acute cho- 54. Antimicrobial therapy for enterococci should be given lecystitis or cholangitis should receive antimicrobial therapy, as when enterococci are recovered from patients with health care– recommended in Table 4, although anaerobic therapy is not associated infection (B-III). indicated unless a biliary-enteric anastamosis is present (B-II). 55. Empiric anti-enterococcal therapy is recommended for 62. Patients undergoing cholecystectomy for acute chole- patients with health care–associated intra-abdominal infection, cystitis should have antimicrobial therapy discontinued within particularly those with postoperative infection, those who have 24 h unless there is evidence of infection outside the wall of previously received cephalosporins or other antimicrobial the gallbladder (B-II). agents selecting for Enterococcus species, immunocompromised 63. For community-acquired biliary infection, antimicrobial patients, and those with valvular heart disease or prosthetic activity against enterococci is not required, because the path- intravascular materials (B-II). ogenicity of enterococci has not been demonstrated. For se- 56. Initial empiric anti-enterococcal therapy should be di- lected immunosuppressed patients, particularly those with he- Complicated Intra-abdominal Infection Guidelines • CID 2010:50 (15 January) • 137
  • 6. Table 5. Initial Intravenous Pediatric Dosages of Antibiotics for Treatment of Com- plicated Intra-abdominal Infection a Antibiotic, age range Dosage Frequency of dosing b Amikacin 15–22.5 mg/kg/day Every 8–24 h c Ampicillin sodium 200 mg/kg/day Every 6 h c Ampicillin-sulbactam 200 mg/kg/day of ampicillin component Every 6 h c Aztreonam 90–120 mg/kg/day Every 6–8 h c Cefepime 100 mg/kg/day Every 12 h c Cefotaxime 150–200 mg/kg/day Every 6–8 h c Cefotetan 40–80 mg/kg/day Every 12 h c Cefoxitin 160 mg/kg/day Every 4–6 h c Ceftazidime 150 mg/kg/day Every 8 h c Ceftriaxone 50–75 mg/kg/day Every 12–24 h c Cefuroxime 150 mg/kg/day Every 6–8 h Ciprofloxacin 20-30 mg/kg/day Every 12 h Clindamycin 20–40 mg/kg/day Every 6–8 h Ertapenem 3 months to 12 years 15 mg/kg twice daily (not to exceed 1 g/day) Every 12 h 13 years 1 g/day Every 24 h b Gentamicin 3–7.5 mg/kg/day Every 2–4 h c Imipenem-cilastatin 60–100 mg/kg/day Every 6 h c Meropenem 60 mg/kg/day Every 8 h Metronidazole 30–40 mg/kg/day Every 8 h c Piperacillin-tazobactam 200–300 mg/kg/day of piperacillin component Every 6–8 h c Ticarcillin-clavulanate 200–300 mg/kg/day of ticarcillin component Every 4–6 h b Tobramycin 3.0–7.5 mg/kg/day Every 8–24 h b Vancomycin 40 mg/kg/day as 1 h infusion Every 6–8 h a Dosages are based on normal renal and hepatic function. Dose in mg/kg should be based on total body weight. Further information on pediatric dosing can be obtained elsewhere [186–188]. b Antibiotic serum concentrations and renal function should be monitored. c b-Lactam antibiotic dosages should be maximized if undrained intra-abdominal abscesses may be present. patic transplantation, enterococcal infection may be significant otics, ciprofloxacin plus metronidazole or an aminoglycoside- and require treatment (B-III). based regimen are recommended (B-III). 68. Necrotizing enterocolitis in neonates is managed with Pediatric Infection fluid resuscitation, intravenous broad-spectrum antibiotics 64. Routine use of broad-spectrum agents is not indicated (potentially including antifungal agents), and bowel decom- for all children with fever and abdominal pain for whom there pression. Urgent or emergent operative intervention, consisting is a low suspicion of complicated appendicitis or other acute of either laparotomy or percutaneous drainage, should be per- intra-abdominal infection (B-III). formed when there is evidence of bowel perforation. Intra- 65. Selection of specific antimicrobial therapy for pediatric operative Gram stains and cultures should be obtained (B-III). patients with complicated intra-abdominal infection should be 69. Broad-spectrum antibiotics that may be useful in neo- based on considerations of the origin of infection (community nates with this condition include ampicillin, gentamicin, and vs health care), severity of illness, and safety of the antimicrobial metronidazole; ampicillin, cefotaxime, and metronidazole; or agents in specific pediatric age groups (A-II). meropenem. Vancomycin may be used instead of ampicillin 66. Acceptable broad-spectrum antimicrobial regimens for for suspected MRSA or ampicillin-resistant enterococcal infec- pediatric patients with complicated intra-abdominal infection tion. Fluconazole or amphotericin B should be used if the Gram include an aminoglycoside-based regimen, a carbapenem (im- stain or cultures of specimens obtained at operation are con- ipenem, meropenem, or ertapenem), a b-lactam/b-lactamase– sistent with a fungal infection (B-II). inhibitor combination (piperacillin-tazobactam or ticarcillin- clavulanate), or an advanced-generation cephalosporin (cefo- taxime, ceftriaxone, ceftazidime, or cefepime) with metroni- Pharmacokinetic Considerations dazole (Tables 2 and 5) (B-II). 70. Empiric therapy of patients with complicated intra- 67. For children with severe reactions to b-lactam antibi- abdominal infection requires the use of antibiotics at optimal 138 • CID 2010:50 (15 January) • Solomkin et al
  • 7. Table 6. Initial Intravenous Adult Dosages of Antibiotics for Empiric Treatment of Complicated Intra-abdominal Infection a Antibiotic Adult dosage b-lactam/b-lactamase inhibitor combination b Piperacillin-tazobactam 3.375 g every 6 h Ticarcillin-clavulanic acid 3.1 g every 6 h; FDA labeling indicates 200 mg/kg/day in divided doses every 6 h for moderate infection and 300 mg/kg/day in divided doses every 4 h for severe infection Carbapenems Doripenem 500 mg every 8 h Ertapenem 1 g every 24 h Imipenem/cilistatin 500 mg every 6 h or 1 g every 8 h Meropenem 1 g every 8 h Cephalosporins Cefazolin 1–2 g every 8 h Cefepime 2 g every 8–12 h Cefotaxime 1–2 g every 6–8 h Cefoxitin 2 g every 6 h Ceftazidime 2 g every 8 h Ceftriaxone 1–2 g every 12–24 h Cefuroxime 1.5 g every 8 h Tigecycline 100 mg initial dose, then 50 mg every 12 h Fluoroquinolones Ciprofloxacin 400 mg every 12 h Levofloxacin 750 mg every 24 h Moxifloxacin 400 mg every 24 h Metronidazole 500 mg every 8–12 h or 1500 mg every 24 h Aminoglycosides c d Gentamicin or tobramycin 5–7 mg/kg every 24 h c d Amikacin 15–20 mg/kg every 24 h Aztreonam 1–2 g every 6–8 h e d Vancomycin 15–20 mg/kg every 8–12 h NOTE. FDA, United States Food and Drug Administration. a Dosages are based on normal renal and hepatic function. b For Pseudomonas aeruginosa infection, dosage may be increased to 3.375 g every 4 h or 4.5 g every 6 h. c Initial dosage regimens for aminoglycosides should be based on adjusted body weight. d Serum drug-concentration monitoring should be considered for dosage individualization. e Initial dosage regimens for vancomycin should be based on total body weight. doses to ensure maximum efficacy and minimal toxicity and antimicrobial therapy in high-severity community-acquired or to reduce antimicrobial resistance (Tables 5 and 6) (B-II). health care–associated infection should be based on pathogenic 71. Individualized daily administration of aminoglycosides potential and density of identified organisms (B-III). according to lean body mass and estimated extracellular fluid 75. Microbes recovered from blood cultures should be as- volume is preferred for patients receiving these agents for intra- sumed to be significant if they have established pathogenic abdominal infection (B-III). potential or are present in 2 blood cultures (A-I) or if they are recovered in moderate or heavy concentrations from sam- Use of Microbiology Results to Guide Antimicrobial Therapy ples obtained from drainage (B-II). 72. Lower-risk patients with community-acquired intra- abdominal infection do not require alteration of therapy if a satisfactory clinical response to source control and initial ther- Duration of Therapy for Complicated Intra-abdominal In- apy occurs, even if unsuspected and untreated pathogens are fections in Adults later reported (B-III). 76. Antimicrobial therapy of established infection should be 73. If resistant bacteria were identified at the time of initial limited to 4–7 days, unless it is difficult to achieve adequate intervention and there are persistent signs of infection, path- source control. Longer durations of therapy have not been ogen-directed therapy is recommended for patients with lower associated with improved outcome (B-III). severity disease (B-III). 77. For acute stomach and proximal jejunum perforations, 74. Use of culture and susceptibility results to determine in the absence of acid-reducing therapy or malignancy and Complicated Intra-abdominal Infection Guidelines • CID 2010:50 (15 January) • 139
  • 8. when source control is achieved within 24 h, prophylactic anti- If ciprofloxacin or levofloxacin is used, metronidazole should infective therapy directed at aerobic gram-positive cocci for 24 be added. h is adequate (B-II). 87. Drug susceptibility results of isolated gram-negative aer- 78. In the presence of delayed operation for acute stomach obic and facultative organisms, if available, should be used as and proximal jejunum perforations, the presence of gastric ma- a guide to agent selection in children and adults (B-III). lignancy or the presence of therapy reducing gastric acidity, 88. Because many of the patients who are managed without antimicrobial therapy to cover mixed flora (eg, as seen in com- a primary source control procedure may be treated in the out- plicated colonic infection) should be provided (B-III). patient setting, the oral regimens recommended (see recom- 79. Bowel injuries attributable to penetrating, blunt, or iat- mendations 83 and 86) can also be used as either primary rogenic trauma that are repaired within 12 h and any other therapy or step-down therapy following initial intravenous an- intraoperative contamination of the operative field by enteric timicrobial therapy (B-III). contents should be treated with antibiotics for 24 h (A-I). 80. Acute appendicitis without evidence of perforation, ab- Suspected Treatment Failure scess, or local peritonitis requires only prophylactic adminis- 89. In patients who have persistent or recurrent clinical evi- tration of narrow spectrum regimens active against aerobic and dence of intra-abdominal infection after 4–7 days of therapy, facultative and obligate anaerobes; treatment should be dis- appropriate diagnostic investigation should be undertaken. This continued within 24 h (A-I). should include CT or ultrasound imaging. Antimicrobial ther- 81. The administration of prophylactic antibiotics to pa- apy effective against the organisms initially identified should tients with severe necrotizing pancreatitis prior to the diagnosis be continued (A-III). of infection is not recommended (A-I). 90. Extra-abdominal sources of infection and noninfectious inflammatory conditions should also be investigated if the pa- tient is not experiencing a satisfactory clinical response to a Use of Oral or Outpatient Intravenous Antimicrobial microbiologically adequate initial empiric antimicrobial regi- Therapy men (A-II). 82. For children and adults whose signs and symptoms of 91. For patients who do not respond initially and for whom infection are resolved, no further antibiotic therapy is required a focus of infection remains, both aerobic and anaerobic cul- (B-III). tures should be performed from 1 specimen, provided it is of 83. For adults recovering from intra-abdominal infection, sufficient volume (at least 1.0 mL of fluid or tissue) and is completion of the antimicrobial course with oral forms of mox- transported to the laboratory in an anaerobic transport system ifloxacin, ciprofloxacin plus metronidazole, levofloxacin plus (C-III). Inoculation of 1–10 mL of fluid directly into an an- metronidazole, an oral cephalosporin with metronidazole, or aerobic blood culture broth bottle may improve yield. amoxicillin-clavulanic acid (B-II) is acceptable in patients able to tolerate an oral diet and in patients in whom susceptibility Pathways for the Diagnosis and Management of Patients with studies do not demonstrate resistance (B-II). Suspected Acute Appendicitis 84. If culture and susceptibility testing identify organisms 92. Local hospitals should establish clinical pathways to stan- that are only susceptible to intravenous therapy, such therapy dardize diagnosis, in-hospital management, discharge, and out- may be administered outside of the hospital (B-III). patient management (B-II). 85. For children, outpatient parenteral antibiotic manage- 93. Pathways should be designed by collaborating clinicians ment may be considered when subsequent drainage procedures involved in the care of these patients, including but not limited are not likely to be required but symptoms of ongoing intra- to surgeons, infectious diseases specialists, primary care prac- abdominal inflammation persist in the context of decreasing titioners, emergency medicine physicians, radiologists, nursing fever, controlled pain, ability to tolerate oral fluids, and ability providers, and pharmacists, and should reflect local resources to ambulate (B-II). and local standards of care (B-II). 86. For oral step-down therapy in children, intra-abdominal 94. Although no clinical findings are unequivocal in iden- cultures at the time of the drainage procedure are recom- tifying patients with appendicitis, a constellation of findings, mended to allow for the use of the narrowest-spectrum, best- including characteristic abdominal pain, localized abdominal tolerated, and safest oral therapy. A second- or third-generation tenderness, and laboratory evidence of acute inflammation, will cephalosporin in combination with metronidazole, or amoxi- generally identify most patients with suspected appendicitis cillin-clavulanate, may be options if the isolated organisms are (A-II). susceptible to these agents. Fluoroquinolones, such as cipro- 95. Helical CT of the abdomen and pelvis with intravenous, floxacin or levofloxacin, may be used to treat susceptible Pseu- but not oral or rectal, contrast is the recommended imaging domonas, Enterobacter, Serratia, and Citrobacter species (B-III). procedure for patients with suspected appendicitis (B-II). 140 • CID 2010:50 (15 January) • Solomkin et al
  • 9. Table 7. Strength of Recommendation and Quality of Evidence Assessment Type of evidence Strength of recommendation Grade A Good evidence to support a recommendation for use Grade B Moderate evidence to support a recommendation for use Grade C Poor evidence to support a recommendation Quality of evidence Level I Evidence from at least 1 properly designed randomized, controlled trial Level II Evidence from at least 1 well-designed clinical trial, with- out randomization; from cohort or case-controlled ana- lytic studies (preferably from 11 center); from multiple time series; or from dramatic results of uncontrolled experiments Level III Evidence from opinions of respected authorities, based on clinical experience, descriptive studies, or reports of expert committees NOTE. Adapted from the Canadian Task Force on the Periodic Health Examination [11]. 96. All female patients should undergo diagnostic imaging. symptoms and signs of infection resolve or a definitive diagnosis Those of child-bearing potential should undergo pregnancy is made (B-III). testing prior to imaging and, if in the first trimester of preg- 104. Operative intervention for acute, nonperforated ap- nancy, should undergo ultrasound or magnetic resonance in- pendicitis may be performed as soon as is reasonably feasible. stead of imaging ionizing radiation (B-II). If these studies do Surgery may be deferred for a short period of time as appro- not define the pathology present, laparoscopy or limited CT priate according to individual institutional circumstances (B- scanning may be considered (B-III). II). 97. Imaging should be performed for all children, particu- 105. Both laparoscopic and open appendectomy are ac- larly those aged !3 years, when the diagnosis of appendicitis ceptable procedures, and use of either approach should be dic- is not certain. CT imaging is preferred, although to avoid use tated by the surgeon’s expertise in performing that particular of ionizing radiation in children, ultrasound is a reasonable procedure (A-I). alternative (B-III). 106. Nonoperative management of selected patients with 98. For patients with imaging study findings negative for acute, nonperforated appendicitis can be considered if there is suspected appendicitis, follow-up at 24 h is recommended to a marked improvement in the patient’s condition prior to op- ensure resolution of signs and symptoms, because of the low eration (B-II). but measurable risk of false-negative results (B-III). 107. Nonoperative management may also be considered as 99. For patients with suspected appendicitis that can neither part of a specific approach for male patients, provided that the be confirmed nor excluded by diagnostic imaging, careful fol- patient is admitted to the hospital for 48 h and shows sustained low-up is recommended (A-III). improvement in clinical symptoms and signs within 24 h while 100. Patients may be hospitalized if the index of suspicion receiving antimicrobial therapy (A-II). is high (A-III). 108. Patients with perforated appendicitis should undergo 101. Antimicrobial therapy should be administered to all urgent intervention to provide adequate source control (B-III). patients who receive a diagnosis of appendicitis (A-II). 102. Appropriate antimicrobial therapy includes agents ef- 109. Patients with a well-circumscribed periappendiceal ab- fective against facultative and aerobic gram-negative organisms scess can be managed with percutaneous drainage or operative and anaerobic organisms, as detailed in Table 2 for the treat- drainage when necessary. Appendectomy is generally deferred ment of patients with community-acquired intra-abdominal in such patients (A-II). infection (A-I). 110. Selected patients who present several days after devel- 103. For patients with suspected appendicitis whose diag- opment of an inflammatory process and have a periappendiceal nostic imaging studies are equivocal, antimicrobial therapy phlegmon or a small abscess not amenable to percutaneous should be initiated along with appropriate pain medication and drainage may delay or avoid a source control procedure to antipyretics, if indicated. For adults, antimicrobial therapy avert a potentially more morbid procedure than simple ap- should be provided for a minimum of 3 days, until clinical pendectomy. Such patients are treated with antimicrobial ther- Complicated Intra-abdominal Infection Guidelines • CID 2010:50 (15 January) • 141
  • 10. apy and careful inpatient follow-up, in a manner analogous to VI. What Are Appropriate Antimicrobial Regimens for Pa- patients with acute diverticulitis (B-II). tients with Community-Acquired Intra-abdominal Infection of 111. The use of interval appendectomy after percutaneous Mild-to-Moderate Severity? drainage or nonoperative management of perforated appen- VII. What Are Appropriate Antimicrobial Regimens for Pa- dicitis is controversial and may not be necessary (A-II). tients with Community-Acquired Intra-abdominal Infection of High Severity? VIII. What Antimicrobial Regimens Should Be Used in Pa- INTRODUCTION tients with Health Care–Associated Intra-abdominal Infection, Complicated intra-abdominal infection extends beyond the Particularly with Regard to Candida, Enterococcus, and MRSA? hollow viscus of origin into the peritoneal space and is asso- IX. What Are Appropriate Diagnostic and Antimicrobial ciated with either abscess formation or peritonitis. These guide- Therapeutic Strategies for Acute Cholecystitis and Cholangitis? lines do not include management of nonperforated primary X. What Are Appropriate Antimicrobial Regimens for Pe- enteritis and/or colitis or perforations due to diseases that are diatric Patients with Community-Acquired Intra-abdominal rare in North America. This term is not meant to describe the Infection? infection’s severity or anatomy. Uncomplicated infection in- XI. What Constitutes Appropriate Antibiotic Dosing? volves intramural inflammation of the gastrointestinal tract and XII. How Should Microbiological Culture Results Be Used has a substantial probability of progressing to complicated in- to Adjust Antimicrobial Therapy? fection if not adequately treated. XIII. What Is the Appropriate Duration of Therapy for Pa- Complicated intra-abdominal infection is a common prob- tients with Complicated Intra-abdominal Infection? lem, with appendicitis alone affecting ∼300,000 patients/year XIV. What Patients Should Be Considered for Oral or Out- and consuming 11 million hospital days [6]. Intra-abdominal patient Antimicrobial Therapy and What Regimens Should Be infection is the second most common cause of infectious mor- Used? tality in the intensive care unit [7]. Nonetheless, this disease XV. How Should Suspected Treatment Failure Be Managed? classification encompasses a variety of processes that affect sev- XVI. What Are the Key Elements that Should Be Considered eral different organs. The requirement for intervention in most in Developing a Local Appendicitis Pathway? cases and the controversies surrounding the choice and nature of the procedure performed add another layer of complexity PRACTICE GUIDELINES to the management of these patients. Appropriate management of these infections has evolved “Practice guidelines are systematically developed statements to considerably, because of advances in supportive intensive care, assist practitioners and patients in making decisions about ap- diagnostic imaging, minimally invasive intervention, and an- propriate health care for specific clinical circumstances” [8, p timicrobial therapy. These guidelines are intended to provide 8]. Attributes of good guidelines include validity, reliability, a framework involving these various care measures. Given the reproducibility, clinical applicability, clinical flexibility, clarity, frequency of acute appendicitis, the information in this doc- multidisciplinary process, review of evidence, and documen- ument is suitable for developing local management guidelines tation [8]. for pediatric and adult patients with suspected acute appendicitis. Update Methodology The following clinical questions will be addressed in this Panel composition. A panel of experts in infectious diseases, guideline: surgery, pharmacology and microbiology was assembled by the Infectious Diseases Society of America (IDSA) and the Surgical I. What Are the Appropriate Procedures for Initial Evalua- Infection Society (SIS) to prepare these guidelines. The panelists tion of Patients with Suspected Intra-abdominal Infection? had both clinical and laboratory experience. II. When Should Fluid Resuscitation Be Started for Patients Literature review and analysis. The Panel reviewed studies with Suspected Intra-abdominal Infection? on the site of origin of intra-abdominal infections, their mi- III. When Should Antimicrobial Therapy Be Initiated for crobiology, the laboratory approach to diagnosis of infection, Patients with Suspected or Confirmed Intra-abdominal the selection and duration of antibiotic therapy, and use of Infection? ancillary therapeutic aids. The Panel further reviewed the initial IV. What Are the Proper Procedures for Obtaining Adequate diagnostic work-ups, resuscitations, timings of intervention, Source Control? and source control elements for infection. Previous guidelines V. When and How Should Microbiological Specimens Be detail recommendations made in 2002 and 2003 [9, 10]. Obtained and Processed? These guidelines are based on randomized clinical trials using 142 • CID 2010:50 (15 January) • Solomkin et al
  • 11. antimicrobials for treatment of intra-abdominal infection pub- sultancies, stock ownership, honoraria, research funding, expert lished from 2002 through December 2008. The 2002 cut-off testimony, and membership on company advisory committees. was used because relevant literature available through 2002 was The Panel made decisions on a case-by-case basis as to whether used for the previous guidelines. The Medline database was an individual’s role should be limited as a result of a conflict. searched using multiple strategies in which the names of specific No limiting conflicts were identified. antimicrobials or more general descriptors (ie, cephalosporins) Revision dates. At annual intervals, the Panel Chair, the were paired with words and phrases indicating an intra- IDSA, and SIS will determine the need for revisions to the abdominal infection (ie, peritonitis or appendicitis). Articles guideline on the basis of an examination of current literature. were also retrieved for review by searches for resuscitation, If necessary, the entire Panel will be reconvened to discuss septic shock, CT scan, imaging, appendicitis, diverticulitis, potential changes. When appropriate, the Panel will recom- source control, wound closure, and drainage. The Panel mem- mend revision of the guideline for approval by the IDSA and bers contributed reference lists in these areas. This search in- SIS. cluded studies that were in the Medline database as of Decem- RECOMMENDATIONS FOR THE DIAGNOSIS ber 2008. The Cochrane database was also searched for relevant AND MANAGEMENT OF COMPLICATED INTRA- trials. ABDOMINAL INFECTION IN ADULTS AND Process overview. In evaluating the information regarding CHILDREN the management of intra-abdominal infection, the Panel fol- lowed a process used to develop other IDSA guidelines [11]. The published studies were first categorized according to study I. WHAT ARE THE APPROPRIATE PROCEDURES design and quality, and in turn, the recommendations devel- FOR INITIAL EVALUATION OF PATIENTS WITH oped from these studies were graded according to the strength SUSPECTED INTRA-ABDOMINAL INFECTION? of evidence behind them. The level of evidence and the strength of the recommendation for a particular point were defined as Recommendations described elsewhere [11] (Table 7). 1. Routine history, physical examination, and laboratory Consensus development on the basis of evidence. The studies will identify most patients with suspected intra-abdom- Panel met on 4 occasions, 3 times via teleconference and once inal infection for whom further evaluation and management in person, to complete the guideline. The meetings were held is warranted (A-II). to discuss the questions to be addressed, to make writing as- 2. For selected patients with unreliable physical examination signments, and to discuss recommendations. There was a large findings, such as those with an obtunded mental status or spinal volume of e-mail comments, because drafts were regularly cir- cord injury or those immunosuppressed by disease or therapy, culated electronically. All panel members participated in the intra-abdominal infection should be considered if the patient preparation and review of the draft guideline. Feedback from presents with evidence of infection from an undetermined external peer reviewers was obtained. The guideline was re- source (B-III). 3. Further diagnostic imaging is unnecessary in patients with viewed and endorsed by the Pediatric Infectious Diseases So- obvious signs of diffuse peritonitis and in whom immediate ciety, the American Society for Microbiology, the American surgical intervention is to be performed (B-III). Society of Health-System Pharmacists, and the Society of In- 4. In adult patients not undergoing immediate laparotomy, fectious Disease Pharmacists. The guideline was also reviewed CT scan is the imaging modality of choice to determine the and approved by the IDSA Standards and Practice Guidelines presence of an intra-abdominal infection and its source (A-II). Committee, the IDSA Board of Directors, the SIS Therapeutics and Guidelines Committee, and the SIS Executive Council prior Evidence Summary to dissemination. Patients with intra-abdominal infection typically present with Guidelines and conflict of interest. All members of the rapid-onset abdominal pain and symptoms of gastrointestinal Expert Panel complied with the IDSA policy regarding conflicts dysfunction (loss of appetite, nausea, vomiting, bloating, and/ of interest, which requires disclosure of any financial or other or obstipation), with or without signs of inflammation (pain, interest that might be construed as constituting an actual, po- tenderness, fever, tachycardia, and/or tachypnea). Often, a care- tential, or apparent conflict. Members of the Expert Panel were ful history and physical examination will provide a limited provided a conflict of interest disclosure statement from the differential diagnosis and a clear assessment of the degree of IDSA and were asked to identify ties to companies developing the patient’s physiologic disturbance. This assessment, in turn, products that might be affected by promulgation of the guide- allows for immediate decisions regarding the need for and in- line. Information was requested regarding employment, con- tensity of resuscitation/rehydration, appropriate diagnostic test- Complicated Intra-abdominal Infection Guidelines • CID 2010:50 (15 January) • 143
  • 12. ing, the need for and timing of initiation of antimicrobial ther- sults in increased tidal volume as well as increased breathing apy, and whether emergent intervention is required. On the frequency, resulting in a respiratory alkalosis and further evap- basis of these findings, the timing and nature of operative or orative water loss. There is compelling historically controlled percutaneous intervention can be determined. The clinician data that patients with perforated or abscessed appendicitis must be alert to the fact that signs of sepsis may be minimal benefit from administration of fluids even absent septic shock in elderly patients and in patients receiving corticosteroids or [21]. other immunosuppressive therapy. For patients with septic shock or organ failure, more-ag- The value of a range of symptoms, signs, and physical find- gressive fluid therapy should be provided. We recommend fol- ings in the diagnostic work-up for intra-abdominal infection lowing The Surviving Sepsis Campaign guidelines for managing has been most fully studied in relation to acute appendicitis septic shock [22]. Key recommendations include early goal- [12–14]. The findings of several analyses involving both chil- directed resuscitation during the first 6 h after recognition (ad- dren and adults are that no scoring system provides greater ministration of either crystalloid or colloid fluid resuscitation, diagnostic sensitivity or specificity than clinical impression, al- fluid challenge to restore mean circulating filling pressure, re- though the analyses used to generate and then verify these duction in rate of fluid administration with increasing filling systems have identified independent variables and their positive pressures and no improvement in tissue perfusion, vasopressor and negative predictive values, which may help focus the at- preference for norepinephrine or dopamine to maintain an tention of treating clinicians [13, 15]. initial target of mean arterial pressure 65 mm Hg, dobutam- In general, CT is the preferred imaging modality [16]; helical ine inotropic therapy when cardiac output remains low despite scanning is preferred [17]. A recent meta-analysis found that fluid resuscitation and combined inotropic/vasopressor ther- pooled sensitivity and specificity for diagnosis of appendicitis apy, and stress-dose steroid therapy given only in septic shock in children were 88% and 94%, respectively, for ultrasound after blood pressure is identified to be poorly responsive to studies and 94% and 95%, respectively, for CT studies. Pooled fluid and vasopressor therapy). sensitivity and specificity for diagnosis in adults were 83% and III. WHEN SHOULD ANTIMICROBIAL THERAPY 93%, respectively, for ultrasound studies and 94% and 94%, BE INITIATED FOR PATIENTS WITH SUSPECTED respectively, for CT studies [18]. No such studies have been OR CONFIRMED INTRA-ABDOMINAL performed on other intra-abdominal processes. INFECTION? II. WHEN SHOULD FLUID RESUSCITATION BE STARTED FOR PATIENTS WITH SUSPECTED Recommendations INTRA-ABDOMINAL INFECTION? 8. Antimicrobial therapy should be initiated once a patient receives a diagnosis of an intra-abdominal infection or once Recommendations such an infection is considered likely. For patients with septic 5. Patients should undergo rapid restoration of intravascular shock, antibiotics should be administered as soon as possible volume and additional measures as needed to promote phys- (A-III). iological stability (A-II). 9. For patients without septic shock, antimicrobial therapy 6. For patients with septic shock, such resuscitation should should be started in the emergency department (B-III). begin immediately when hypotension is identified (A-II). 10. Satisfactory antimicrobial drug levels should be main- 7. For patients without evidence of volume depletion, in- tained during a source control intervention, which may ne- travenous fluid therapy should begin when the diagnosis of cessitate additional administration of antimicrobials just before intra-abdominal infection is first suspected (B-III). initiation of the procedure (A-I). Evidence Summary Evidence Summary Volume depletion is common in febrile patients and is wors- Delaying antimicrobial therapy has been associated with poorer ened by poor fluid intake because of nausea and/or vomiting outcomes in patients with septic shock, including those with and in the presence of ileus induced by intra-abdominal in- intra-abdominal infection [23]; however, the study [23] was of flammation. Much of the fluid loss is attributable to tachypnea. low quality, as judged by the methodologic quality score system Commonly, patients experience a panting response through presented by van Nieuwenhoven et al [24]. On the basis of this which tidal volume is minimized and breathing frequency is study [24], sepsis guidelines have recommended that antibiotics maximized [19, 20]. Blood-gas tensions and pH are maintained be administered within 1 h of recognition of septic shock [22]. during this hyperventilation, and the associated heat loss by In patients without hemodynamic or organ compromises, the evaporation helps regulate body temperature. A second pattern Expert Panel members agreed that antibacterials should be ad- of breathing adopted in hyperthermia, thermal hyperpnea, re- ministered within 8 h after presentation. 144 • CID 2010:50 (15 January) • Solomkin et al
  • 13. In patients undergoing a source control procedure, antimi- be continued intraoperatively. For hemodynamically stable pa- crobial therapy provides for surgical wound prophylaxis and tients without peritonitis, delay of up to 1 day may be appro- treatment of pathogens that are potentially disseminated during priate. The Expert Panel notes that this decision is a complex the procedure, in addition to providing ongoing therapy for calculation based on a variety of patient-, institution-, and sur- the infection. Antimicrobial therapy is, therefore, also consid- geon-specific factors, and a greater or lesser delay may be ap- ered to be wound prophylaxis for all patients undergoing in- propriate, with most patients benefiting from a more urgent tervention. The rules for prophylaxis in elective surgical pro- approach. cedures include use of agents that are likely to be effective Source control failure is more likely to occur in patients with against the contaminating organisms and administration within delayed (124 h) procedural intervention, higher severity of ill- 1 h before the operation [25, 26]. ness (APACHE II score 15), advanced age (170 years), pre- existing chronic medical conditions, poor nutritional status, IV. WHAT ARE THE PROPER PROCEDURES FOR and a higher degree of peritoneal involvement and is heralded OBTAINING ADEQUATE SOURCE CONTROL? by persistent or recurrent intra-abdominal infection, anasto- motic failure, or fistula formation [28–32]. Recommendations Well-localized fluid collections of appropriate density may 11. An appropriate source control procedure to drain in- be drained percutaneously with acceptable morbidity and fected foci, control ongoing peritoneal contamination by di- mortality [47, 33–35]. Percutaneous drainage of appropriately version or resection, and restore anatomic and physiological selected infectious sources may result in significantly less function to the extent feasible is recommended for nearly all physiologic alterations in patients and may eliminate or re- patients with intra-abdominal infection (B-II). duce the need for open techniques. Open surgical techniques 12. Patients with diffuse peritonitis should undergo an emer- are likely required for poorly localized, loculated, complex, gency surgical procedure as soon as is possible, even if ongoing or diffuse fluid collections and necrotic tissue, high density measures to restore physiologic stability need to be continued fluid, or percutaneously inaccessible collections. The majority during the procedure (B-II). of patients respond to a single intervention without significant 13. Where feasible, percutaneous drainage of abscesses and complication. other well-localized fluid collections is preferable to surgical Given the range of diseases and the various risk factors for drainage (B-II). poor outcome in nonappendiceal disease, clinical practice has 14. For hemodynamically stable patients without evidence been driven by uncontrolled case series [36–42]. Percutaneous of acute organ failure, an urgent approach should be taken. techniques have continued to evolve, and many abscesses that Intervention may be delayed for as long as 24 h if appropriate were previously considered to be best approached by laparot- antimicrobial therapy is given and careful clinical monitoring omy are now often approached by interventional radiography is provided (B-II). [43]. 15. In patients with severe peritonitis, mandatory or sched- It is important to discuss radiographic findings with the uled relaparotomy is not recommended in the absence of in- surgeon to avoid inappropriate abscess drainage in the presence testinal discontinuity, abdominal fascial loss that prevents ab- of free hollow-organ perforation and acute peritonitis. Acute dominal wall closure, or intra-abdominal hypertension (A-II). peritonitis is best treated surgically rather than with percuta- 16. Highly selected patients with minimal physiological de- neous drainage. rangement and a well-circumscribed focus of infection, such There are some patients in whom drainage catheter place- as a periappendiceal or pericolonic phlegmon, may be treated ment is not appropriate, and laparotomy is the procedure of with antimicrobial therapy alone without a source control pro- choice. If clinical evaluation suggests peritonitis, the patient cedure, provided that very close clinical follow-up is possible should proceed to surgery even if imaging demonstrates drain- (B-II). able collections, except in extreme circumstances in which a Evidence Summary patient is deemed unfit for surgical intervention. Extraluminal Source control is defined as any single procedure or series of air and fluid in a “contained” distribution immediately adjacent procedures that eliminate infectious foci, control factors that to underlying diseased bowel (eg, in diverticulitis or appen- promote ongoing infection, and correct or control anatomic de- dicitis) can be drained. However, a patient with a similar abscess rangements to restore normal physiologic function [27]. The but with extensive and massive free air or fluid remote from timing of intervention is a key decision, particularly in the pres- the perforation site should usually undergo surgery for such ence of diffuse peritonitis. Patients with diffuse peritonitis from an “uncontained” perforation. There is only a limited role for a perforated viscus cannot be fully resuscitated until ongoing catheter placement in some pancreatitis-related collections. soiling has been controlled. In such patients, resuscitation should When laparotomy is undertaken for nonappendiceal intra- Complicated Intra-abdominal Infection Guidelines • CID 2010:50 (15 January) • 145
  • 14. abdominal infection, a range of factors will determine the extent 22. If there is significant resistance (ie, resistance in 10%– (if any) of bowel resection, whether an anastamosis or ostomy 20% of isolates) of a common community isolate (eg, E. coli) is created, what tissue is debrided, what type of drainage (if to an antimicrobial regimen in widespread local use, routine any) is necessary, and what wound management technique is culture and susceptibility studies should be obtained for per- used. These questions have not been addressed in controlled forated appendicitis and other community-acquired intra- trials, and specific guidelines cannot be provided. abdominal infections (B-III). Three general strategies should be considered for critically 23. Anaerobic cultures are not necessary for patients with ill patients who are either physiologically unstable or at high community-acquired intra-abdominal infection if empiric an- risk of experiencing failed source control. These include (1) timicrobial therapy active against common anaerobic pathogens laparostomy or the “open abdomen,” (2) planned re-laparot- is provided (B-III). omy, and (3) on-demand re-laparotomy [44]. 24. For higher-risk patients, cultures from the site of infec- Generally accepted indications for laparostomy in which nei- tion should be routinely obtained, particularly in patients with ther the fascia nor skin are closed include severe physiologic prior antibiotic exposure, who are more likely than other pa- derangements intraoperatively that preclude completion of the tients to harbor resistant pathogens (A-II). planned procedure, intra-abdominal hypertension, and loss of 25. The specimen collected from the intra-abdominal focus abdominal soft-tissue preventing immediate fascial closure. of infection should be representative of the material associated Generally accepted indications for either laparostomy or with the clinical infection (B-III). planned re-laparotomy include settings in which adequate 26. Cultures should be performed from 1 specimen, pro- source control cannot be obtained at the index procedure, con- vided it is of sufficient volume (at least 1 mL of fluid or tissue, trol or re-establishment of hollow viscus continuity cannot be preferably more) and is transported to the laboratory in an safely performed, and possible ongoing intestinal ischemia re- appropriate transport system. For optimal recovery of aerobic quiring a second-look operation to ensure enteric viability [45]. bacteria, 1–10 mL of fluid should be inoculated directly into Unless clear indications for re-laparotomy exist, re-laparotomy an aerobic blood culture bottle. In addition, 0.5 mL of fluid on demand has been shown to reduce use of health care ser- should be sent to the laboratory for Gram stain and, if indi- vices, costs, and laparotomies with similar outcomes. cated, fungal cultures. If anaerobic cultures are requested, at least 0.5 mL of fluid or 0.5 g of tissue should be transported V. WHEN AND HOW SHOULD in an anaerobic transport tube. Alternately, for recovery of MICROBIOLOGICAL SPECIMENS BE OBTAINED anaerobic bacteria, 1–10 mL of fluid can be inoculated directly AND PROCESSED? into an anaerobic blood culture bottle (A-I). 27. Susceptibility testing for Pseudomonas, Proteus, Acine- Gram Stain and Blood Cultures tobacter, Staphylococcus aureus, and predominant Enterobac- teriaceae, as determined by moderate-to-heavy growth, should Recommendations be performed, because these species are more likely than others 17. Blood cultures do not provide additional clinically rel- to yield resistant organisms (A-III). evant information for patients with community-acquired intra- abdominal infection and are therefore not routinely recom- Evidence Summary mended for such patients (B-III). Blood cultures are seldom useful adjuncts for diagnosing intra- 18. If a patient appears clinically toxic or is immunocom- abdominal infection, even in health care–associated or com- promised, knowledge of bacteremia may be helpful in deter- plicated cases. Published rates of bacteremia related to the or- mining duration of antimicrobial therapy (B-III). ganisms present in the infected abdominal site range from 0% 19. For community-acquired infections, there is no proven in a large appendicitis series [46] to 5% in a percutaneous value in obtaining a routine Gram stain of the infected material drainage series [47]. Bacteremia appears to be more common (C-III). in patients in the intensive care unit and is associated with 20. For health care–associated infections, Gram stains may increased mortality [48]. help define the presence of yeast (C-III). The organisms isolated in bacteremia that accompanied 21. Routine aerobic and anaerobic cultures from lower-risk community-acquired complicated intra-abdominal infection patients with community-acquired infection are considered op- have low potential for forming endocarditis on normal valves tional in the individual patient but may be of value in detecting or metastatic abscesses. Positive blood cultures for the organ- epidemiological changes in the resistance patterns of pathogens isms that may do so, including S. aureus, Candida species, and associated with community-acquired intra-abdominal infection Streptococcus milleri [49], are so rarely reported prior to therapy and in guiding follow-up oral therapy (B-II). for these infections that blood cultures are not recommended. 146 • CID 2010:50 (15 January) • Solomkin et al
  • 15. There are few data indicating that Gram stain, culture, and Table 8. Organisms Identified in 3 Randomized Prospective Tri- susceptibility data provide information likely to alter outcome als of Investigational Antibiotics for Complicated Intra-abdominal in patients with a community-acquired complicated intra- Infection, including 1237 Microbiologically Confirmed Infections abdominal infection. For patients with perforated or gangre- Patients, % nous appendicitis, many surgeons do not obtain cultures [50, Organism (n p 1237) 51]. For patients with health care–associated infection, anti- Facultative and aerobic gram-negative microbial therapy that fails to cover eventual pathogens has Escherichia coli 71 been associated with higher rates of treatment failure and mor- Klebsiella species 14 tality [52]. Thus, Gram stains may be of value in detecting Pseudomonas aeruginosa 14 gram-positive cocci or yeast that would lead to additional em- Proteus mirabilis 5 piric antimicrobial therapy before definitive culture results are Enterobacter species 5 available. Anaerobic Bacteroides fragilis 35 Local susceptibility patterns for S. aureus and for enterococci Other Bacteroides species 71 might warrant addition of an MRSA-active agent until results Clostridium species 29 of cultures and susceptibility testing are available [52]. For en- Prevotella species 12 terococci, local susceptibilities should be monitored for peni- Peptostreptococcus species 17 cillin and vancomycin resistance. If yeasts are identified on a Fusobacterium species 9 Gram stain, additional therapy for Candida species may be Eubacterium species 17 considered. Gram-positive aerobic cocci The major pathogens in community-acquired intra-abdom- Streptococcus species 38 inal infection are coliforms (Enterobacteriaceae, especially E. Enterococcus faecalis 12 coli) and anaerobes (especially B. fragilis) (Table 8). Pathogens Enterococcus faecium 3 Enterococcus species 8 are nearly always present in concentrations 1 10 5 organ- Staphylococcus aureus 4 isms/g of tissue or 1 10 5 organisms/mL of exudate. This would correspond to moderate or heavy growth on the primary NOTE. Adapted from [77, 165, 189]. The frequency of specific Bacteroides species and other anaerobes is provided elsewhere [59]. isolation plates. The primary focus should, therefore, be on the predominant organisms isolated from these cultures. Most intra-abdominal infections involve anaerobic bacteria, ative organisms, such as Pseudomonas aeruginosa, will impact but laboratories show great variation in reliably performing in the selection of appropriate empiric antibiotic therapy [64–66]. vitro susceptibility tests. Sentinel studies of B. fragilis, the major Routine cultures from patients with community-acquired intra- pathogen, show uniform susceptibility to metronidazole, car- abdominal infection may facilitate recognition of local changes bapenems, and some b-lactam/b-lactamase inhibitors [53–57]. in resistance and, thereby, optimal selection of antimicrobial Studies of the activity of quinolones against B. fragilis isolates agents for both definitive treatment and oral step-down therapy. have yielded conflicting data, in part because of the use of There are marked differences in susceptibility patterns within abdominal abscess versus bacteremic isolates [58–61]. Suscep- and between different communities and institutions. These ep- tibility testing of individual anaerobic isolates should be con- idemiologic data are of considerable value in defining the most sidered when there is persistent isolation of the organism, bac- suitable antimicrobial therapy for intra-abdominal infection. teremia, or when prolonged therapy is needed because of The failure to provide adequate antimicrobial therapy in such immunosuppression or prosthetic infection. Laboratories can patients has been repeatedly associated with an increased in- purify and hold isolates for additional testing if requested by cidence of therapeutic failure and, in some cases, increased the clinician [62]. mortality [52, 67]. In many locations, there is increasing resistance to selected Certain communities and age groups have an inexplicably antibiotics among community-acquired strains of gram-nega- high incidence of P. aeruginosa infection associated with com- tive organisms. These include the widespread prevalence of munity-acquired appendicitis [64–66, 68]. Even if therapy with ampicillin/sulbactam-resistant E. coli worldwide, the high pen- a broader spectrum is used empirically, culture results may etration of fluoroquinolone-resistant E. coli in Latin America allow the clinician to narrow the spectrum of therapy consid- and East Asia, and locations with a high prevalence of extended- erably for more-prolonged, definitive therapy. spectrum b-lactamase–producing strains of Klebsiella species Complete inoculation of all appropriate media (8 agar plates, and E. coli [63]. In some populations and communities, a rel- a Gram stain, and a broth enrichment tube) for aerobic and atively high prevalence of more-resistant nonenteric gram-neg- anaerobic bacterial cultures alone calls for 0.05 mL of tissue or Complicated Intra-abdominal Infection Guidelines • CID 2010:50 (15 January) • 147