Se ha denunciado esta presentación.
Utilizamos tu perfil de LinkedIn y tus datos de actividad para personalizar los anuncios y mostrarte publicidad más relevante. Puedes cambiar tus preferencias de publicidad en cualquier momento.
Próxima SlideShare
Production and Operation Management
Descargar para leer sin conexión y ver en pantalla completa.



Descargar para leer sin conexión

Production and Operations Management- Chapters 1-8

Descargar para leer sin conexión

Libros relacionados

Gratis con una prueba de 30 días de Scribd

Ver todo

Audiolibros relacionados

Gratis con una prueba de 30 días de Scribd

Ver todo

Production and Operations Management- Chapters 1-8

  1. 1. Introduction to Operations Management 1 C H A P T E R
  2. 2. OM Defined <ul><li>Operations management : </li></ul><ul><li>The business function responsible for planning, coordinating, and controlling the resources needed to produce a company’s products and services </li></ul>Page
  3. 3. Simplified Organizational Chart Page
  4. 4. Information Flows Page
  5. 5. Information Flows To & From Operations Page
  6. 6. The Role of OM in the Business Page
  7. 7. Value Added Defined Page Inputs in $$ Transformation Process Outputs in $$$ Value Added by Process
  8. 8. Service - Manufacturing <ul><li>Services : </li></ul><ul><li>Intangible product </li></ul><ul><li>No inventories </li></ul><ul><li>High customer contact </li></ul><ul><li>Short response time </li></ul><ul><li>Labor intensive </li></ul><ul><li>Manufacturing : </li></ul><ul><li>Tangible product </li></ul><ul><li>Can be inventoried </li></ul><ul><li>Low customer contact </li></ul><ul><li>Capital intensive </li></ul><ul><li>Long response time </li></ul>Page
  9. 9. Service-Manufacturing Continuum Page
  10. 10. OM Decisions <ul><li>Strategic decisions : </li></ul><ul><ul><li>Decisions that set the direction for the entire company. </li></ul></ul><ul><ul><li>Broad in scope & long-term in nature </li></ul></ul><ul><li>Tactical decisions : </li></ul><ul><ul><li>Short-term & specific in nature </li></ul></ul><ul><ul><li>Bound by the strategic decisions </li></ul></ul>Page
  11. 11. Example Page
  12. 12. Major Historical Developments <ul><li>Industrial Revolution Late 1700s </li></ul><ul><li>Scientific Management Early 1900s </li></ul><ul><li>Human Relations Movement 1930s to 1960s </li></ul><ul><li>Management Science Mid-1900s </li></ul><ul><li>Computer Age 1970s </li></ul><ul><li>Just-In-Time Systems 1980s </li></ul><ul><li>Total Quality Management (TQM) 1980s </li></ul><ul><li>Reengineering 1980s </li></ul><ul><li>Flexibility 1990s </li></ul><ul><li>Time-based Competition 1990s </li></ul><ul><li>Supply Chain Management 1990s </li></ul><ul><li>Global Competition 1990s </li></ul><ul><li>Environmental Issues 1990s </li></ul><ul><li>Electronic Commerce Late 1990s – Early 21 st Century </li></ul>Page
  13. 13. Industrial Revolution Late 1700s <ul><li>Replaced traditional craft methods </li></ul><ul><li>Substituted machine power for labor </li></ul><ul><li>Major contributions: </li></ul><ul><ul><li>James Watt (1764): steam engine </li></ul></ul><ul><ul><li>Adam Smith (1776): division of labor </li></ul></ul><ul><ul><li>Eli Whitney (1790): interchangeable parts </li></ul></ul>Page
  14. 14. Scientific Management Early 1900s <ul><li>Separated ‘planning’ from ‘doing’ </li></ul><ul><li>Management’s job was to discover worker’s physical limits through measurement, analysis & observation </li></ul><ul><li>Major contributors: </li></ul><ul><ul><li>Fredrick Taylor: stopwatch time studies </li></ul></ul><ul><ul><li>Henry Ford: moving assembly line </li></ul></ul>Page
  15. 15. Human Relations Movement 1930s to 1960s <ul><li>Recognition that factors other than money contribute to worker productivity </li></ul><ul><li>Major contributions: </li></ul><ul><ul><li>Understanding of the Hawthorn effect : </li></ul></ul><ul><ul><li>Study of Western Electric plant in Hawthorn, Illinois intended to study impact of environmental factors (light & heat) on productivity, but found workers responded to management’s attention regardless of environmental changes </li></ul></ul><ul><ul><li>Job enlargement </li></ul></ul><ul><ul><li>Job enrichment </li></ul></ul>Page
  16. 16. Management Science Mid-1900s <ul><li>Developed new quantitative techniques for common OM problems: </li></ul><ul><ul><li>Major contributions include: inventory modeling, linear programming, project management, forecasting, statistical sampling, & quality control techniques </li></ul></ul><ul><ul><li>Played a large role in supporting American military operations during World War II </li></ul></ul>Page
  17. 17. Computer Age 1970s <ul><li>Provided the tool necessary to support the widespread use of Management Science’s quantitative techniques – the ability to process huge amounts of data quickly & relatively cheaply </li></ul><ul><li>Major contributions include the development of Material Requirements Planning (MRP) systems for production control </li></ul>Page
  18. 18. Developments: 1980s Japanese Influence <ul><li>Just-In-Time (JIT): </li></ul><ul><ul><li>Techniques designed to achieve high-volume production using coordinated material flows, continuous improvement, & elimination of waste </li></ul></ul><ul><li>Total Quality Management (TQM): </li></ul><ul><ul><li>Techniques designed to achieve high levels of product quality through shared responsibility & by eliminating the root causes of product defects </li></ul></ul><ul><li>Business Process Reengineering: </li></ul><ul><ul><li>‘ Clean sheet’ redesign of work processes to increase efficiency, improve quality & reduce costs </li></ul></ul>Page
  19. 19. Developments: 1990s <ul><li>Flexibility: </li></ul><ul><ul><li>Offer a greater variety of product choices on a mass scale (mass customization) </li></ul></ul><ul><li>Time-based competition: </li></ul><ul><ul><li>Developing new product designs & delivering customer orders more quickly than competitors </li></ul></ul><ul><li>Supply Chain Management </li></ul><ul><ul><li>Cooperating with suppliers & customers to reduce overall costs of the supply chain & increase responsiveness to customers </li></ul></ul>Page
  20. 20. Developments: 1990s <ul><li>Global competition: </li></ul><ul><ul><li>International trade agreements open new markets for expansion & lower barriers to the entry of foreign competitors (e.g.: NAFTA & GATT) </li></ul></ul><ul><ul><li>Creates the need for decision-making tools for facility location, compliance with with local regulations, tailoring product offerings to local tastes, managing distribution networks, … </li></ul></ul><ul><li>Environmental issues: </li></ul><ul><ul><li>Pressure from consumers & regulators to reduce, reuse & recycle solid wastes & discharges to air & water </li></ul></ul>Page
  21. 21. Electronic Commerce <ul><li>Internet & related technologies enable new methods of business transactions: </li></ul><ul><ul><li>E-tailing creates a new outlet for retail goods & services with global access and 24-7 availability </li></ul></ul><ul><ul><li>Internet provides a cheap network for coordinating supply chain management information </li></ul></ul><ul><li>Developing influence of broadband & wireless </li></ul>Page
  22. 22. Operations Strategy & Competitiveness 2 C H A P T E R
  23. 23. The Role of Business Strategy <ul><li>Business Strategy : </li></ul><ul><ul><li>The firm’s long-range plan based on an understanding of the marketplace </li></ul></ul><ul><ul><li>Defines how a company intends to differentiate itself from competitors </li></ul></ul><ul><ul><li>Individual employees & functional units use the strategy to align their efforts with each other to accomplish the overall game plan </li></ul></ul>Page
  24. 24. Operations Strategy <ul><li>OM Strategy : </li></ul><ul><ul><li>The long-range plan for the design & use of the operations function to support the overall business strategy: </li></ul></ul><ul><ul><ul><li>The location, size, & type of facilities </li></ul></ul></ul><ul><ul><ul><li>The worker skills & talents required </li></ul></ul></ul><ul><ul><ul><li>The technology & processes to be used </li></ul></ul></ul><ul><ul><ul><li>How product & service quality will be controlled </li></ul></ul></ul><ul><ul><li>Operating efficiency  an operating strategy </li></ul></ul>Page
  25. 25. Developing a Business Strategy <ul><li>Mission : </li></ul><ul><ul><li>A statement defining what business the firm is in, who its customers are, & how its core beliefs shape its decision-making </li></ul></ul><ul><li>Environmental scanning : </li></ul><ul><ul><li>Monitoring the external environment for market opportunities & competitive threats </li></ul></ul><ul><li>Core competencies : </li></ul><ul><ul><li>Internal strengths & weaknesses of the firm (e.g.: personnel with special expertise, access to unique technology, & things the firm does better than competitors) </li></ul></ul>Page
  26. 26. Putting it all Together Page Business Strategy: Defined long-range plan for the company Environmental Scanning: Monitoring the business environment for market trends, threats, and opportunities Mission: Statement that defines What our business is; Who our clients are; and How our values define our business Core Competencies: Our unique strengths that help us win in the marketplace
  27. 27. Developing an Operations Strategy <ul><li>Identify the competitive priorities required to support the business strategy: </li></ul><ul><li>Common priorities include: </li></ul><ul><ul><li>Cost : low production costs enables the company to price its product below competitors </li></ul></ul><ul><ul><li>Quality : higher performance or a more consistent product can support a price premium </li></ul></ul><ul><ul><li>Time : faster delivery or consistent on-time delivery can support a price premium </li></ul></ul><ul><ul><li>Flexibility : highly customized products or volume flexibility can support a price premium </li></ul></ul>Page
  28. 28. Translate Priorities into Design Page Business Strategy Operations Strategy: Based on Competitive Priorities Design of Operations: Structure & Infrastructure
  29. 29. Design of Operations <ul><li>Structure: </li></ul><ul><ul><li>Facilities </li></ul></ul><ul><ul><li>Flow of work </li></ul></ul><ul><ul><li>Technology </li></ul></ul><ul><li>Infrastructure: </li></ul><ul><ul><li>Planning & control systems </li></ul></ul><ul><ul><li>Work design & compensation </li></ul></ul>Page
  30. 30. Competing on Low Cost <ul><li>Eliminate wasted labor, materials, and facilities </li></ul><ul><li>Emphasize efficient processes & high productivity </li></ul><ul><li>Often limit the product range & offer little customization </li></ul><ul><li>May invest in automation to increase productivity </li></ul>Page
  31. 31. Competing on Quality <ul><li>High performance design: </li></ul><ul><ul><li>Superior features, high durability, & excellent customer service </li></ul></ul><ul><li>Product & service consistency: </li></ul><ul><ul><li>Error free delivery </li></ul></ul><ul><ul><li>Close tolerances </li></ul></ul>Page
  32. 32. Competing on Time <ul><li>Rapid delivery: </li></ul><ul><ul><li>How quickly an order is received after the order is placed </li></ul></ul><ul><li>On-time delivery: </li></ul><ul><ul><li>Sometimes items can arrive too quickly </li></ul></ul><ul><ul><ul><li>JIT firms try to avoid clutter of excess inventory </li></ul></ul></ul><ul><ul><li>Ability to deliver exactly when expected </li></ul></ul><ul><ul><ul><li>Not too early or too late </li></ul></ul></ul>Page
  33. 33. Competing on Flexibility <ul><li>Product flexibility : </li></ul><ul><ul><li>Easily switch the production process from one item to another (substitution) </li></ul></ul><ul><ul><li>Easily customize output to meet the specific requirements of a customer </li></ul></ul><ul><li>Volume flexibility : </li></ul><ul><ul><li>Rapidly increase or decrease the amount of product being produced to match demand </li></ul></ul>Page
  34. 34. Understand Tradeoffs Example: Made-to-Order Pizza Page Fresh, Natural Ingredients Toppings & Crust Choice Slow to Cook Expensive Ingredients Low Volume Ovens QUALITY QUALITY & DESIGN FLEXIBILITY VOLUME FLEXIBILITY TIME COST
  35. 35. Distinguish Order Qualifiers from Order Winners <ul><li>Order Qualifiers : </li></ul><ul><ul><li>Competitive priorities that a product must meet to even be considered for purchase </li></ul></ul><ul><ul><li>Generally, represented by features shared by all competitors in a given market niche </li></ul></ul><ul><li>Order Winners : </li></ul><ul><ul><li>Competitive priorities that distinguish the firm’s offerings from competitors & ultimately win the customer’s order </li></ul></ul>Page
  36. 36. Productivity Page
  37. 37. Productivity Measures <ul><li>Partial Measures: </li></ul><ul><ul><li>A ratio of outputs to only one input (e.g.: labor productivity, machine utilization, energy efficiency) </li></ul></ul><ul><li>Multifactor Measures: </li></ul><ul><ul><li>A ratio of outputs to several, but not all, inputs </li></ul></ul><ul><li>Total Productivity Measures: </li></ul><ul><ul><li>The ratio of outputs to all inputs </li></ul></ul>Page
  38. 38. Labor Productivity <ul><li>Example: </li></ul><ul><ul><li>Assume two workers paint twenty-four tables in eight hours: </li></ul></ul><ul><ul><li>Inputs: 16 hours of labor (2 workers x 8 hours) </li></ul></ul><ul><ul><li>Outputs: 24 painted tables </li></ul></ul>Page
  39. 39. Multifactor Productivity <ul><li>Convert all inputs & outputs to $ value </li></ul><ul><li>Example: </li></ul><ul><ul><li>200 units produced sell for $12.00 each </li></ul></ul><ul><ul><li>Materials cost $6.50 per unit </li></ul></ul><ul><ul><li>40 hours of labor were required at $10 an hour </li></ul></ul>Page
  40. 40. Interpreting Productivity Measures <ul><li>Is the productivity measure of 1.41 in the previous example good or bad? </li></ul><ul><li>Can’t tell without a reference point </li></ul><ul><li>Compare to previous measures ( e.g.: last week) or to another benchmark </li></ul>Page
  41. 41. Productivity Growth Rate <ul><li>Can be used to compare a process’ productivity at a given time (P 2 ) to the same process’ productivity at an earlier time (P 1 ) </li></ul>Page
  42. 42. Productivity Growth Rate <ul><li>Example: </li></ul><ul><ul><li>Last week a company produced 150 units using 200 hours of labor </li></ul></ul><ul><ul><li>This week, the same company produced 180 units using 250 hours of labor </li></ul></ul>Page
  43. 43. Product Design & Process Selection 3 C H A P T E R
  44. 44. Product & Service Design <ul><li>The process of deciding on the unique characteristics of a company’s product & service offerings </li></ul><ul><li>Serves to define a company’s customer base, image, competition and future growth </li></ul>Page
  45. 45. Products versus Services <ul><li>Products: </li></ul><ul><ul><li>Tangible offerings </li></ul></ul><ul><ul><li>Dimensions, materials, tolerances & performance standards </li></ul></ul><ul><li>Services: </li></ul><ul><ul><li>Intangible offerings </li></ul></ul><ul><ul><li>Physical elements + sensory, esthetic, & psychological benefits </li></ul></ul>Page
  46. 46. Strategic Importance <ul><li>Products & service offerings must support the company’s business strategy by satisfying the target customers’ needs & preferences </li></ul><ul><li>If not, the company will lose its customer base and its market position will erode </li></ul>Page
  47. 47. Step–by-Step <ul><li>Idea Development: </li></ul><ul><ul><li>A need is identified & a product idea to satisfy it is put together </li></ul></ul><ul><li>Product Screening: </li></ul><ul><ul><li>Initial ideas are evaluated for difficulty & likelihood of success </li></ul></ul><ul><li>Preliminary Design & Testing </li></ul><ul><ul><li>Market testing & prototype development </li></ul></ul><ul><li>Final Design </li></ul><ul><ul><li>Product & service characteristics are set </li></ul></ul>Page
  48. 48. Idea Development <ul><li>Existing & target customers </li></ul><ul><ul><li>Customer surveys & focus groups </li></ul></ul><ul><li>Benchmarking </li></ul><ul><ul><li>Studying “best in class” companies from your industry or others and comparing their practices & performance to your own </li></ul></ul><ul><li>Reverse engineering </li></ul><ul><ul><li>Disassembling a competitor’s product & analyzing its design characteristics & how it was made </li></ul></ul><ul><li>Suppliers, employees and technical advances </li></ul>Page
  49. 49. Product Screening <ul><li>Operations: </li></ul><ul><ul><li>Are production requirements consistent with existing capacity? </li></ul></ul><ul><ul><li>Are the necessary labor skills & raw materials available? </li></ul></ul><ul><li>Marketing: </li></ul><ul><ul><li>How large is the market niche? </li></ul></ul><ul><ul><li>What is the long-term potential for the product? </li></ul></ul><ul><li>Finance: </li></ul><ul><ul><li>What is the expected return on investment? </li></ul></ul>Page
  50. 50. Preliminary Design & Testing <ul><li>General performance characteristics are translated into technical specifications </li></ul><ul><li>Prototypes are built & tested (maybe offered for sale on a small scale) </li></ul><ul><li>Bugs are worked out & designs are refined </li></ul>Page
  51. 51. Final Design <ul><li>Specifications are set & then used to: </li></ul><ul><ul><li>Develop processing and service delivery instructions </li></ul></ul><ul><ul><li>Guide equipment selection </li></ul></ul><ul><ul><li>Outline jobs to be performed </li></ul></ul><ul><ul><li>Negotiate contracts with suppliers and distributors </li></ul></ul>Page
  52. 52. Break-Even Analysis Page
  53. 53. Break-Even Analysis <ul><li>Total cost = fixed costs + variable costs (quantity): </li></ul><ul><li>Revenue = selling price (quantity) </li></ul><ul><li>Break-even point is where total costs = revenue: </li></ul>Page
  54. 54. Example <ul><li>A firm estimates that the fixed cost of producing a line of footwear is $52,000 with a $9 variable cost for each pair produced. They want to know: </li></ul><ul><ul><li>If each pair sells for $25, how many pairs must they sell to break-even? </li></ul></ul><ul><ul><li>If they sell 4000 pairs at $25 each, how much money will they make? </li></ul></ul>Page
  55. 55. Example Solved <ul><li>Break-even point: </li></ul><ul><li>Profit = total revenue – total costs </li></ul>Page
  56. 56. Design for Manufacture (DFM) <ul><li>Guidelines: </li></ul><ul><ul><li>Minimize the number of parts </li></ul></ul><ul><ul><li>Use common or standardized parts </li></ul></ul><ul><ul><li>Use modular design </li></ul></ul><ul><ul><li>Avoid the need for tools (e.g.: snap together components) </li></ul></ul><ul><ul><li>Simplify operations </li></ul></ul>Page
  57. 57. DFM Example Page
  58. 58. DFM Benefits <ul><li>Lower costs: </li></ul><ul><ul><li>Lower inventories (fewer, standardized components) </li></ul></ul><ul><ul><li>Less labor required (simpler flows, easier tasks) </li></ul></ul><ul><li>Higher quality: </li></ul><ul><ul><li>Simple, easy-to-make products means fewer opportunities to make mistakes </li></ul></ul>Page
  59. 59. Product Life Cycle Page
  60. 60. Concurrent Engineering <ul><li>A design approach that uses multifunctional teams to simultaneously design the product & process </li></ul><ul><li>Replaces a traditional ‘over-the-wall’ approach where one group does their part & then hands off the design to the next group </li></ul>Page
  61. 61. Sequential Design Page
  62. 62. Concurrent Engineering Page
  63. 63. Concurrent Engineering Benefits <ul><li>Representatives from the different groups can better consider trade-offs in cost & design choices as each decision is being made </li></ul><ul><li>Development time is reduced due to less rework (traditionally, groups would argue with earlier decisions & try to get them changed) </li></ul><ul><li>Emphasis is on problem-solving (not placing blame on the ‘other group’ for mistakes) </li></ul>Page
  64. 64. Process Selection <ul><li>Intermittent operations: </li></ul><ul><ul><li>Capable of producing a large variety of product designs in relatively low volumes </li></ul></ul><ul><li>Continuous operations: </li></ul><ul><ul><li>Capable of producing one (or a few) standardized designs in very high volumes </li></ul></ul>Page
  65. 65. Intermittent versus Continuous Page
  66. 66. Intermittent Operations <ul><li>Pros: </li></ul><ul><ul><li>Very flexible </li></ul></ul><ul><li>Cons: </li></ul><ul><ul><li>Material handling & variable costs are high </li></ul></ul><ul><ul><li>Work scheduling is difficult </li></ul></ul>Page
  67. 67. Continuous Operations <ul><li>Pros </li></ul><ul><ul><li>Highly efficient to produce large volumes (low variable costs) </li></ul></ul><ul><li>Cons </li></ul><ul><ul><li>Inflexible to design changes </li></ul></ul><ul><ul><li>Susceptible to component failure </li></ul></ul><ul><ul><li>High fixed costs for capital equipment </li></ul></ul>Page
  68. 68. Continuum of Process Types <ul><li>Projects </li></ul><ul><ul><li>Used for one-at-a-time products made exactly to customer specifications </li></ul></ul><ul><li>Batch processes: </li></ul><ul><ul><li>Used for small quantities (batches) with a high level of customization </li></ul></ul><ul><li>Line processes: </li></ul><ul><ul><li>Used for relatively high volumes with little customization </li></ul></ul><ul><li>Continuous processes: </li></ul><ul><ul><li>Used for very high volume standardized products (often commodities) </li></ul></ul>Page
  69. 69. Continuum of Process Types Page
  70. 70. Vertical Integration <ul><li>How much of the supply chain is owned by a company? </li></ul><ul><ul><li>A supply chain is the series of linked activities from raw material extraction to the final customer (Chapter 4) </li></ul></ul><ul><li>Consider the direction of integration: </li></ul><ul><ul><li>Forward (toward customers) </li></ul></ul><ul><ul><li>Backward (toward suppliers) </li></ul></ul>Page
  71. 71. Make-or-Buy <ul><li>Outsourcing decisions should consider: </li></ul><ul><ul><li>Long-term strategic impact </li></ul></ul><ul><ul><li>Existing capacity available </li></ul></ul><ul><ul><li>Expertise required & available </li></ul></ul><ul><ul><li>Quality issues </li></ul></ul><ul><ul><li>Ramp up speed & delivery issues </li></ul></ul><ul><ul><li>Total costs </li></ul></ul>Page
  72. 72. Process Flowcharting <ul><li>Graphically defines the operation, step-by-step </li></ul><ul><li>Used to help visualize the flow of work & information: </li></ul><ul><ul><li>Can help identify potential problem areas </li></ul></ul><ul><ul><li>Format can be as simple or detailed as needed </li></ul></ul>Page
  73. 73. Example Page
  74. 74. Process Technology <ul><li>Automation </li></ul><ul><li>Automated Material Handling: </li></ul><ul><ul><li>Automated guided vehicles (AGV) </li></ul></ul><ul><ul><li>Automated storage & retrieval systems (AS/RS) </li></ul></ul><ul><li>Computer-Aided Design (CAD) software </li></ul><ul><li>Robotics & Numerically-Controlled (NC) equipment </li></ul><ul><li>Flexible Manufacturing Systems (FMS) </li></ul><ul><li>Computer-Integrated Manufacturing (CIM) </li></ul>Page
  75. 75. Supply Chain Management 4 C H A P T E R
  76. 76. What is a Supply Chain? <ul><li>A network of activities that deliver a finished product or service to the customer. </li></ul><ul><ul><li>The connected links of external suppliers, internal processes, and external distributors. </li></ul></ul>Page
  77. 77. Components of a Typical Supply Chain Page External Suppliers Internal Functions External Distributors INFORMATION
  78. 78. A Basic Supply Chain Page
  79. 79. Supply Chain Management <ul><li>Supply Chain Management entails: </li></ul><ul><ul><li>Coordinating the movement of goods and delivery of services. </li></ul></ul><ul><ul><li>Sharing information between members of the supply chain. </li></ul></ul><ul><ul><ul><li>For example: sales, forecasts, promotional campaigns, and inventory levels. </li></ul></ul></ul>Page
  80. 80. Page Supply Chain for Milk Products
  81. 81. External Suppliers <ul><li>External suppliers provide the necessary raw materials, services, and component parts. </li></ul><ul><li>Purchased materials & services frequently represent 50% (or more) of the costs of goods sold. </li></ul><ul><li>Suppliers are frequently members of several supply chains – often in different roles. </li></ul>Page
  82. 82. External Suppliers <ul><li>Tier one suppliers: </li></ul><ul><ul><li>Directly supplies materials or services to the firm that does business with the final customer </li></ul></ul><ul><li>Tier two suppliers: </li></ul><ul><ul><li>Provides materials or services to tier one suppliers </li></ul></ul><ul><li>Tier three suppliers: </li></ul><ul><ul><li>Providers materials or services to tier two suppliers </li></ul></ul>Page
  83. 83. Internal Functions <ul><li>Vary by industry & firm, but might include: </li></ul><ul><ul><li>Processing </li></ul></ul><ul><ul><li>Purchasing </li></ul></ul><ul><ul><li>Production Planning & Control </li></ul></ul><ul><ul><li>Quality Assurance </li></ul></ul><ul><ul><li>Shipping </li></ul></ul>Page
  84. 84. Logistics & Distribution <ul><li>Logistics: getting the right material to the right place at the right time in the right quantity: </li></ul><ul><ul><li>Traffic Management: </li></ul></ul><ul><ul><ul><li>The selection, scheduling & control of carriers (e.g.: trucks & rail) for both incoming & outgoing materials & products </li></ul></ul></ul><ul><ul><li>Distribution Management: </li></ul></ul><ul><ul><ul><li>The packaging, storing & handling of products in transit to the end-user. </li></ul></ul></ul>Page
  85. 85. Information Sharing <ul><li>Supply chain partners can benefit by sharing information on sales, demand forecasts, inventory levels & marketing campaigns </li></ul><ul><li>Inaccurate or distorted information leads to the Bullwhip Effect </li></ul>Page
  86. 86. Typical Information Flow Page
  87. 87. The Bullwhip Effect <ul><li>If information isn’t shared, everyone has to guess what is going on downstream. </li></ul><ul><li>Guessing wrong leads to too much or too little inventory: </li></ul><ul><ul><li>If too much, firms hold off buying more until inventories fall (leading suppliers to think demand has fallen). </li></ul></ul><ul><ul><li>If too little, firms demand a rush order & order more than usual to avoid being caught short in the future (leading suppliers to think demand has risen). </li></ul></ul>Page
  88. 88. The Bullwhip Effect <ul><li>Farther away from the customer, the quality of information gets worse & worse as supply chain members base their guesses on the bad guesses of their partners. </li></ul><ul><li>The result is increasingly inefficient inventory management, manufacturing, & logistics </li></ul>Page
  89. 89. Short-Circuit the Bullwhip <ul><li>Make information transparent: </li></ul><ul><ul><li>Use Electronic Data Interchange (EDI) to support Just-In-Time supplier replenishment </li></ul></ul><ul><ul><li>Use bar codes & electronic scanning to capture & share point-of-sale data </li></ul></ul><ul><li>Eliminate wholesale price promotions & quantity discounts </li></ul><ul><li>Allocate scarce items in proportion to past sales to avoid attempts to ‘game’ the system </li></ul>Page
  90. 90. Electronic Data Interchange <ul><li>The most common method of using computer-to-computer links to exchange data between supply chain partners in a standardized format. </li></ul><ul><li>Benefits include: </li></ul><ul><ul><li>Quick transfer of information </li></ul></ul><ul><ul><li>Reduced paperwork & administration </li></ul></ul><ul><ul><li>Improved data accuracy & tracking capability </li></ul></ul>Page
  91. 91. Vertical Integration <ul><li>A measure of how much of the supply chain is controlled by the manufacturer. </li></ul><ul><ul><li>Backward integration: </li></ul></ul><ul><ul><ul><li>Acquiring control of raw material suppliers. </li></ul></ul></ul><ul><ul><li>Forward integration: </li></ul></ul><ul><ul><ul><li>Acquiring control of distribution channels. </li></ul></ul></ul>Page
  92. 92. Outsourcing <ul><li>Entails paying third-party suppliers to provide raw materials and services, rather than making them in-house. </li></ul><ul><li>Outsourcing is increasing as many firms try to focus their internal operations on what they do best. </li></ul>Page
  93. 93. Whether to Outsource? <ul><li>What volume is required? </li></ul><ul><li>Are items of similar quality available in the marketplace? </li></ul><ul><li>Is long-term demand for the item stable? </li></ul><ul><li>Is the item critical to success of the firm? </li></ul><ul><li>Does the item represent a core competency of the firm? </li></ul>Page
  94. 94. Breakeven Analysis Page
  95. 95. Example: The Bagel Shop <ul><li>Bill & Nancy plan to open a small bagel shop. </li></ul><ul><ul><li>The local baker has offered to sell them bagels at 40 cents each. However, they will need to invest $1,000 in bread racks to transport the bagels back & forth from the bakery to their store. </li></ul></ul><ul><ul><li>Alternatively, they can bake the bagels at their store for 15 cents each if they invest $15,00 in kitchen equipment. </li></ul></ul><ul><ul><li>They expect to sell 60,000 bagels each year. </li></ul></ul><ul><li>What should they do? </li></ul>Page
  96. 96. Example Solved <ul><li>Interpretation: </li></ul><ul><ul><li>They anticipate selling 60,000 bagels (greater than the indifference point of 56,000). </li></ul></ul><ul><ul><li>Therefore, make the bagels in-house. </li></ul></ul>Page
  97. 97. Developing a Supply Base <ul><li>How to chose between suppliers? </li></ul><ul><li>One supplier or many per item? </li></ul><ul><li>Whether to partner with suppliers? </li></ul>Page
  98. 98. Criteria for Choosing Suppliers <ul><li>Cost: </li></ul><ul><ul><li>Cost per unit & transaction costs </li></ul></ul><ul><li>Quality: </li></ul><ul><ul><li>Conformance to specifications </li></ul></ul><ul><li>On-time delivery: </li></ul><ul><ul><li>Speed & predictability </li></ul></ul>Page
  99. 99. Arguments for One Supplier per Item <ul><li>May only be one practical source for the item </li></ul><ul><ul><li>Patent issues, geography, or quality considerations) </li></ul></ul><ul><li>The supply chain is integrated to support JIT or EDI </li></ul><ul><ul><li>Making multiple suppliers impractical </li></ul></ul><ul><li>Availability of quantity discounts </li></ul><ul><li>Supplier may be more responsive if it’s guaranteed all your business for the item </li></ul><ul><li>Contract might bind you to using only one supplier </li></ul><ul><li>Deliveries may be scheduled more easily </li></ul>Page
  100. 100. Arguments for Multiple Suppliers per Item <ul><li>No single supplier may have sufficient capacity </li></ul><ul><li>Competition may result in better pricing or service </li></ul><ul><li>Multiple suppliers spreads the risk of supply chain interruption </li></ul><ul><li>Eliminates purchaser’s dependence on a single source of supply </li></ul><ul><li>Provides greater volume flexibility </li></ul><ul><li>Government regulation may require multiple suppliers </li></ul><ul><ul><li>Antitrust issues </li></ul></ul><ul><li>Allows testing new suppliers without risking a complete disruption of material flow </li></ul>Page
  101. 101. Partnering with Suppliers <ul><li>Involves developing a long-term, mutually-beneficial relationship: </li></ul><ul><ul><li>Requires trust to share information, risk, opportunities, & investing in compatible technology </li></ul></ul><ul><ul><li>Work together to reduce waste and inefficiency & develop new products </li></ul></ul><ul><ul><li>Agree to share the gains </li></ul></ul>Page
  102. 102. The Role of Warehouses <ul><li>General Warehouses: </li></ul><ul><ul><li>Used for long-term storage of goods </li></ul></ul><ul><li>Distribution Warehouses: </li></ul><ul><ul><li>Transportation consolidation: </li></ul></ul><ul><ul><ul><li>Consolidate LTL into TL deliveries </li></ul></ul></ul><ul><ul><li>Product mixing & blending: </li></ul></ul><ul><ul><ul><li>Group multiple items from various suppliers </li></ul></ul></ul><ul><ul><li>Improve service: </li></ul></ul><ul><ul><ul><li>Reduced response time </li></ul></ul></ul><ul><ul><ul><li>Allow for last-minute customization </li></ul></ul></ul>Page
  103. 103. Future Challenges <ul><li>Household Replenishment: </li></ul><ul><ul><li>Fulfilling consumer demand at the point of use (the home). </li></ul></ul><ul><ul><li>Often called ‘the last mile’ problem. </li></ul></ul><ul><li>Freeze Point Delay (Postponement): </li></ul><ul><ul><li>Last minute customization to provide exactly what the consumer wants while maintaining very small inventories </li></ul></ul>Page
  104. 104. Total Quality Management 5 C H A P T E R
  105. 105. What is TQM? <ul><li>Total Quality Management </li></ul><ul><ul><li>An integrated effort designed to improve quality performance at every level of the organization. </li></ul></ul><ul><li>Customer-defined quality </li></ul><ul><ul><li>The meaning of quality as defined by the customer. </li></ul></ul>Page
  106. 106. Defining Quality <ul><li>Conformance to Specifications </li></ul><ul><ul><li>How well the product or service meets the targets and tolerances determined by its designers </li></ul></ul><ul><li>Fitness for Use </li></ul><ul><ul><li>Definition of quality that evaluates how well the product performs for its intended use. </li></ul></ul><ul><li>Value for Price Paid </li></ul><ul><ul><li>Quality defined in terms of product or service usefulness for the price paid. </li></ul></ul>Page
  107. 107. Defining Quality <ul><li>Support Services </li></ul><ul><ul><li>Quality defined in terms of the support provided after the product or service is purchased </li></ul></ul><ul><li>Psychological Criteria </li></ul><ul><ul><li>A way of defining quality that focuses on judgmental evaluations of what constitutes product or service excellence. </li></ul></ul>Page
  108. 108. Manufacturing vs. Service <ul><li>Manufacturing produces a tangible product </li></ul><ul><ul><li>Quality is often defined by tangible characteristics </li></ul></ul><ul><ul><li>Conformance, Performance, Reliability, Features </li></ul></ul><ul><li>Service produces an intangible product </li></ul><ul><ul><li>Quality is often defined by perceptual factors </li></ul></ul><ul><ul><li>Courtesy, Friendliness, Promptness, Atmosphere, Consistency </li></ul></ul>Page
  109. 109. Changing Focus of Quality Management Page
  110. 110. Overview of TQM Philosophy <ul><li>Focus on identifying root causes of reoccurring problems & correcting them </li></ul><ul><ul><li>A proactive, not reactive approach </li></ul></ul><ul><li>Allow customers to determine what’s important (customer-driven quality) </li></ul><ul><li>Involve everyone in the organization </li></ul>Page
  111. 111. TQM Philosophy <ul><li>Maintain a Customer Focus: </li></ul><ul><ul><li>Identify and meet current customer needs </li></ul></ul><ul><ul><li>Continually gather data (look for changing preferences) </li></ul></ul><ul><li>Continuous Improvement: </li></ul><ul><ul><li>Continually strive to improve </li></ul></ul><ul><ul><li>Good enough, isn’t good enough </li></ul></ul><ul><li>Quality at the Source: </li></ul><ul><ul><li>Find the source of quality problems & correct them </li></ul></ul>Page
  112. 112. TQM Philosophy <ul><li>Employee Empowerment: </li></ul><ul><ul><li>Empower all employees to find quality problems and correct them </li></ul></ul><ul><li>Focus on internal & external customer needs: </li></ul><ul><ul><li>External customers: </li></ul></ul><ul><ul><ul><li>People who purchase the company’s goods and services </li></ul></ul></ul><ul><ul><li>Internal customers: </li></ul></ul><ul><ul><ul><li>Other downstream employees who rely on preceding employees to do their job </li></ul></ul></ul>Page
  113. 113. TQM Philosophy <ul><li>Understanding Quality Tools: </li></ul><ul><ul><li>All employees should be trained to properly utilize quality control tools </li></ul></ul><ul><li>Team Approach: </li></ul><ul><ul><li>Quality is an organization-wide effort </li></ul></ul><ul><ul><li>Quality circles: work groups acting as problem-solving teams </li></ul></ul><ul><li>Benchmarking </li></ul><ul><ul><li>Studying the business practices of other companies for purposes of comparison. </li></ul></ul>Page
  114. 114. TQM Philosophy <ul><li>Manage Supplier Quality: </li></ul><ul><ul><li>Ensuring that suppliers engage in the same high quality practices </li></ul></ul><ul><ul><li>Strategic partnering with key suppliers </li></ul></ul><ul><li>Quality of Design: </li></ul><ul><ul><li>Determining which features will be included in the final design of a product to meet customers’ needs & preferences </li></ul></ul><ul><li>Ease of Use: </li></ul><ul><ul><li>Ergonomics, easy to understand directions, etc. </li></ul></ul>Page
  115. 115. TQM Philosophy <ul><li>Quality of Conformance to Design: </li></ul><ul><ul><li>Degree to which the product conforms to it’s design specifications (a measure of consistency & lack of variation) </li></ul></ul><ul><li>Post-Sale Service: </li></ul><ul><ul><li>Assisting with issues that arise after the purchase </li></ul></ul><ul><ul><li>Warranty & repair issues, follow through on any promises to build a continuing relationship with the customer </li></ul></ul>Page
  116. 116. Costs of Quality Page
  117. 117. Ways to Improve Quality <ul><li>PDSA Cycle </li></ul><ul><li>Quality Function Deployment </li></ul><ul><li>Problem-solving tools </li></ul>Page
  118. 118. Plan-Do-Study-Act Cycle (PDSA) Page
  119. 119. Plan-Do-Study-Act Cycle (PDSA) <ul><li>Plan : Plan experiments to uncover the root cause of problems </li></ul><ul><li>Do : Conduct the experiments </li></ul><ul><li>Study : Study the data generated </li></ul><ul><li>Act : Implement improvements or start over </li></ul><ul><li>Repeat : Continuously improve </li></ul>Page
  120. 120. Quality Function Deployment <ul><li>Compares customer requirements & product’s characteristics </li></ul><ul><li>Understand how the product delivers quality to the customer </li></ul>Page
  121. 121. Comparing “Voices” Page Voice of the Customer Voice of the Engineer Customer-based Benchmarks
  122. 122. QFD <ul><li>In addition, QFD: </li></ul><ul><li>Provides for competitive evaluation (benchmarks) </li></ul><ul><li>Considers design trade-offs & synergies </li></ul><ul><li>Facilitates target setting & developing product specifications </li></ul>Page
  123. 123. Setting Specifications Page Trade-offs Targets Technical Benchmarks
  124. 124. Problem Solving Tools <ul><li>Cause-and-Effect Diagrams </li></ul><ul><li>Flow Charts </li></ul><ul><li>Check Lists </li></ul><ul><li>Control Charts </li></ul><ul><li>Scatter Diagrams </li></ul><ul><li>Pareto Charts </li></ul><ul><li>Histograms </li></ul>Page
  125. 125. Cause-and-Effect Diagrams <ul><li>Also called Fishbone Diagrams </li></ul><ul><li>Help identify potential causes of specific ‘effects’ (quality problems) </li></ul>Page
  126. 126. Flow Charts <ul><li>Diagrams of the steps involved in an operation or process </li></ul>Page
  127. 127. Checklists <ul><li>Simple forms used to record the appearance of common defects and the number of occurrences </li></ul>Page
  128. 128. Control Charts <ul><li>Track whether a process is operating as expected </li></ul>Page
  129. 129. Scatter Diagrams <ul><li>Illustrate how two variables are related to each other </li></ul>Page
  130. 130. Pareto Analysis <ul><li>Helps identify the degree of importance of different quality problems </li></ul>Page
  131. 131. Histograms <ul><li>Illustrate a frequency distribution </li></ul>Page
  132. 132. Quality Awards <ul><li>Malcolm Baldrige National Quality Award is given annually to companies demonstrating excellence </li></ul><ul><ul><li>Manufacturing </li></ul></ul><ul><ul><li>Service </li></ul></ul><ul><ul><li>Small Business </li></ul></ul><ul><ul><li>Education </li></ul></ul><ul><ul><li>Healthcare </li></ul></ul>Page
  133. 133. MBNQA Criteria Page
  134. 134. Quality Standards <ul><li>ISO 9000 Standards: </li></ul><ul><ul><li>Set of internationally recognized quality standards </li></ul></ul><ul><ul><li>Companies are periodically audited & certified </li></ul></ul><ul><li>ISO 14000: </li></ul><ul><ul><li>Focuses on a company’s environmental responsibility </li></ul></ul><ul><li>QS 9000: </li></ul><ul><ul><li>Auto industry’s version of ISO 9000 </li></ul></ul>Page
  135. 135. Quality Gurus <ul><li>W. Edwards Deming </li></ul><ul><li>Joseph Juran </li></ul><ul><li>Phillip Crosby </li></ul>Page
  136. 136. W. Edwards Deming <ul><li>Focus on optimizing the system - not individual components </li></ul><ul><li>Management is responsible for the system (source of 85% of problems) </li></ul><ul><li>Continuous improvement (focus on prevention, not after-the-fact inspection) </li></ul><ul><li>Understand variation (special versus common causes) </li></ul>Page
  137. 137. Joseph Juran <ul><li>Quality = fitness for use </li></ul><ul><li>Developed the quality trilogy: </li></ul><ul><ul><li>Quality planning (future orientation/design quality) </li></ul></ul><ul><ul><li>Quality control (statistical control of variation) </li></ul></ul><ul><ul><li>Quality improvement (continuous improvement) </li></ul></ul><ul><li>Emphasized the costs of quality: </li></ul><ul><ul><li>Understand the trade-offs between prevention & appraisal costs with failure costs </li></ul></ul>Page
  138. 138. Phillip Crosby <ul><li>Quality requires leadership: </li></ul><ul><ul><li>Do it right the first time </li></ul></ul><ul><ul><li>The goal is zero defects </li></ul></ul><ul><li>Argued that ‘quality is free’: </li></ul><ul><ul><li>The benefits far outweigh the cost of achieving zero defects </li></ul></ul>Page
  139. 139. Statistical Quality Control 6 C H A P T E R
  140. 140. Quality Control Methods <ul><li>Descriptive statistics: </li></ul><ul><ul><li>Used to describe distributions of data </li></ul></ul><ul><li>Statistical process control (SPC): </li></ul><ul><ul><li>Used to determine whether a process is performing as expected </li></ul></ul><ul><li>Acceptance sampling: </li></ul><ul><ul><li>Used to accept or reject entire batches by only inspecting a few items </li></ul></ul>Page
  141. 141. Descriptive Statistics <ul><li>Mean (x-bar): </li></ul><ul><ul><li>The average or central tendency of a data set </li></ul></ul><ul><li>Standard deviation (sigma): </li></ul><ul><ul><li>Describes the amount of spread or observed variation in the data set </li></ul></ul><ul><li>Range: </li></ul><ul><ul><li>Another measure of spread </li></ul></ul><ul><ul><li>The range measures the difference between the largest & smallest observed values in the data set </li></ul></ul>Page
  142. 142. The Normal Distribution Page
  143. 143. Equations <ul><li>Mean: </li></ul><ul><li>Standard deviation: </li></ul>Page
  144. 144. Impact of Standard Deviation Page
  145. 145. Skewed Distributions (One Form of Non-Normal Distribution) Page
  146. 146. SPC Methods <ul><li>Control charts </li></ul><ul><ul><li>Use statistical limits to identify when a sample of data falls within a normal range of variation </li></ul></ul>Page
  147. 147. Setting Limits Requires Balancing Risks <ul><li>Control limits are based on a willingness to think something’s wrong, when it’s actually not (Type I or alpha error), balanced against the sensitivity of the tool - the ability to quickly reveal a problem (failure is Type II or beta error) </li></ul>Page
  148. 148. Types of Data <ul><li>Variable level data: </li></ul><ul><ul><li>Can be measured using a continuous scale </li></ul></ul><ul><ul><li>Examples: length, weight, time, & temperature </li></ul></ul><ul><li>Attribute level data: </li></ul><ul><ul><li>Can only be described by discrete characteristics </li></ul></ul><ul><ul><li>Example: defective & not defective </li></ul></ul>Page
  149. 149. Control Charts for Variable Data <ul><li>Mean (x-bar) charts </li></ul><ul><ul><li>Tracks the central tendency (the average value observed) over time </li></ul></ul><ul><li>Range (R) charts: </li></ul><ul><ul><li>Tracks the spread of the distribution over time (estimates the observed variation) </li></ul></ul>Page
  150. 150. x-Bar Computations Page
  151. 151. Example <ul><li>Assume the standard deviation of the process is given as 1.13 ounces </li></ul><ul><li>Management wants a 3-sigma chart (only 0.26% chance of alpha error) </li></ul><ul><li>Observed values shown in the table are in ounces </li></ul>Page Time 1 Time 2 Time 3 Observation 1 15.8 16.1 16.0 Observation 2 16.0 16.0 15.9 Observation 3 15.8 15.8 15.9 Observation 4 15.9 15.9 15.8 Sample means 15.875 15.975 15.9
  152. 152. Computations <ul><li>Center line (x-double bar): </li></ul><ul><li>Control limits: </li></ul>Page
  153. 153. 2 nd Method Using R-bar Page
  154. 154. Control Chart Factors Page
  155. 155. Example Page Time 1 Time 2 Time 3 Observation 1 15.8 16.1 16.0 Observation 2 16.0 16.0 15.9 Observation 3 15.8 15.8 15.9 Observation 4 15.9 15.9 15.8 Sample means 15.875 15.975 15.9 Sample ranges 0.2 0.3 0.2
  156. 156. Computations Page
  157. 157. Example x-bar Chart Page
  158. 158. R-chart Computations (Use D3 & D4 Factors: Table 6-1) Page
  159. 159. Example R-chart Page
  160. 160. Using x-bar & R-charts <ul><li>Use together </li></ul><ul><li>Reveal different problems </li></ul>Page
  161. 161. Control Charts for Attribute Data <ul><li>p-Charts: </li></ul><ul><ul><li>Track the proportion defective in a sample </li></ul></ul><ul><li>c-Charts: </li></ul><ul><ul><li>Track the average number of defects per unit of output </li></ul></ul>Page
  162. 162. Process Capability <ul><li>A measure of the ability of a process to meet preset design specifications: </li></ul><ul><ul><li>Determines whether the process can do what we are asking it to do </li></ul></ul><ul><li>Design specifications (a/k/a tolerance limits): </li></ul><ul><ul><li>Preset by design engineers to define the acceptable range of individual product characteristics (e.g.: physical dimensions, elapsed time, etc.) </li></ul></ul><ul><ul><li>Based upon customer expectations & how the product works (not statistics!) </li></ul></ul>Page
  163. 163. Measuring Process Capability <ul><li>Compare the width of design specifications & observed process output </li></ul>Page
  164. 164. Capability Indexes <ul><li>Centered Process (C p ): </li></ul><ul><li>Any Process (C pk ): </li></ul>Page
  165. 165. Example <ul><li>Design specifications call for a target value of 16.0 +/-0.2 microns (USL = 16.2 & LSL = 15.8) </li></ul><ul><li>Observed process output has a mean of 15.9 and a standard deviation of 0.1 microns </li></ul>Page
  166. 166. Computations <ul><li>C p : </li></ul><ul><li>C pk : </li></ul>Page
  167. 167. Three Sigma Capability <ul><li>Until now, we assumed process output should be modeled as +/- 3 standard deviations </li></ul><ul><li>By doing so, we ignore the 0.26% of output that falls outside +/- 3 sigma range </li></ul><ul><li>The result: a 3-sigma capable process produces 2600 defects for every million units produced </li></ul>Page
  168. 168. Six Sigma Capability <ul><li>Six sigma capability assumes the process is capable of producing output where +/- 6 standard deviations fall within the design specifications (even when the mean output drifts up to 1.5 standard deviations off target) </li></ul><ul><li>The result: only 3.4 defects for every million produced </li></ul>Page
  169. 169. 3-Sigma versus 6-Sigma Page
  170. 170. Just-In-Time Systems 7 C H A P T E R
  171. 171. Just-In-Time <ul><li>Getting the right quantity of goods to the right place – exactly when needed! </li></ul><ul><li>Just-In-Time= not late & not early </li></ul>Page
  172. 172. Philosophy of JIT <ul><li>Elimination of waste </li></ul><ul><li>Broad view of operations </li></ul><ul><li>Simplicity </li></ul><ul><li>Continuous improvement </li></ul><ul><li>Visibility </li></ul><ul><li>Flexibility </li></ul>Page
  173. 173. Eliminate Waste <ul><li>Waste is anything that doesn’t add value: </li></ul><ul><ul><li>Unsynchronized production </li></ul></ul><ul><ul><li>Inefficient & unstreamlined layouts </li></ul></ul><ul><ul><li>Unnecessary material handling </li></ul></ul><ul><ul><li>Scrap & rework </li></ul></ul>Page
  174. 174. Broad View of Operations <ul><li>Understanding that operations is part of a larger system </li></ul><ul><li>Goal is to optimize the system – not each part: </li></ul><ul><ul><li>Avoid narrow view: “That’s not in my job description!” </li></ul></ul><ul><ul><li>Avoid sub-optimization </li></ul></ul>Page
  175. 175. Simplicity <ul><li>It’s often easy to develop complex solutions to problems by adding extra steps </li></ul><ul><li>Goal is to find a simpler way to do things right: </li></ul><ul><ul><li>Less chance to forget extra step </li></ul></ul><ul><ul><li>Fewer opportunities to make mistakes </li></ul></ul><ul><ul><li>More efficient </li></ul></ul>Page
  176. 176. Continuous Improvement <ul><li>Traditional viewpoint: “It’s good enough” </li></ul><ul><li>JIT viewpoint: “If it’s not perfect, make it better” </li></ul>Page
  177. 177. Visibility <ul><li>Waste can only be eliminated after it’s discovered </li></ul><ul><li>Clutter hides waste </li></ul><ul><li>JIT requires good housekeeping </li></ul>Page
  178. 178. Visibility Page
  179. 179. Flexibility <ul><li>Easy to make volume changes: </li></ul><ul><ul><li>Ramp up & down to meet demand </li></ul></ul><ul><li>Easy to switch from one product to another: </li></ul><ul><ul><li>Build a mix of products without wasting time with long changeovers </li></ul></ul>Page
  180. 180. Three Elements of JIT Page
  181. 181. JIT Manufacturing <ul><li>Kanbans & pull production systems </li></ul><ul><li>Quick setups & small lots </li></ul><ul><li>Uniform plant loading </li></ul><ul><li>Flexible resources </li></ul><ul><li>Efficient facility layouts </li></ul>Page
  182. 182. Pull Production & Kanbans Page
  183. 183. Number of Kanbans Required <ul><li>N = number of containers </li></ul><ul><li>D = demand rate at the withdraw station </li></ul><ul><li>T = lead time from supply station </li></ul><ul><li>C = container size </li></ul>Page
  184. 184. Quick Setups & Small Lots <ul><li>Setup times = time required to get ready </li></ul><ul><ul><li>E.g .: clean & calibrate equipment, changing tools, etc. </li></ul></ul><ul><li>Internal versus external setups </li></ul><ul><ul><li>Stop production or setup will still running </li></ul></ul><ul><li>Internal setups = lost production time </li></ul><ul><ul><li>Inefficient setups = waste </li></ul></ul>Page
  185. 185. Uniform Plant Loading Page
  186. 186. Flexible Resources <ul><li>General purpose equipment: </li></ul><ul><ul><li>E.g .: drills, lathes, printer-fax-copiers, etc. </li></ul></ul><ul><ul><li>Capable of being setup to do many different things </li></ul></ul><ul><li>Multifunctional workers: </li></ul><ul><ul><li>Cross-trained to perform several different duties </li></ul></ul>Page
  187. 187. Efficient Facility Layouts <ul><li>Workstations in close physical proximity to reduce transport & movement </li></ul><ul><li>Streamlined flow of material </li></ul><ul><li>Often use: </li></ul><ul><ul><li>Cellular Manufacturing (instead of job shops) </li></ul></ul><ul><ul><li>U-shaped lines: (allows material handler to quickly drop off materials & pick up finished work) </li></ul></ul>Page
  188. 188. Job Shop Layout Page
  189. 189. Cellular Manufacturing Page
  190. 190. TQM & JIT <ul><li>Quality at the Source </li></ul><ul><li>Jidoka (authority to stop line) </li></ul><ul><li>Poka-yoke (foolproof the process) </li></ul><ul><li>Preventive maintenance </li></ul>Page
  191. 191. Respect for People: The Role of Workers <ul><li>Cross-trained workers </li></ul><ul><li>Actively engaged in problem-solving </li></ul><ul><li>Workers are empowered </li></ul><ul><li>Everyone responsible for quality </li></ul><ul><li>Workers gather performance data </li></ul><ul><li>Team approaches used for problem-solving </li></ul><ul><li>Decision made bottom-up </li></ul><ul><li>Workers responsible for preventive maintenance </li></ul>Page
  192. 192. Page Respect for People: The Role of Management <ul><li>Responsible for culture of mutual trust </li></ul><ul><li>Serve as coaches & facilitators </li></ul><ul><li>Support culture with appropriate incentive system </li></ul><ul><li>Responsible for developing workers </li></ul><ul><li>Provide multi-functional training </li></ul><ul><li>Facilitate teamwork </li></ul>
  193. 193. Supplier Relations & JIT <ul><li>Use single-source suppliers </li></ul><ul><li>Build long-term relationships </li></ul><ul><li>Co-locate facilities to reduce transport </li></ul><ul><li>Stable delivery schedules </li></ul><ul><li>Share cost & other information </li></ul>Page
  194. 194. Benefits of JIT <ul><li>Smaller inventories </li></ul><ul><li>Improved quality </li></ul><ul><li>Reduced space requirements </li></ul><ul><li>Shorter lead times </li></ul><ul><li>Lower production costs </li></ul><ul><li>Increased productivity </li></ul><ul><li>Increased machine utilization </li></ul><ul><li>Greater flexibility </li></ul>Page
  195. 195. Implementing JIT Manufacturing <ul><li>Identify & fix problems </li></ul><ul><li>Reorganize workplace </li></ul><ul><ul><li>Remove clutter & designate storage </li></ul></ul><ul><li>Reduce setup times </li></ul><ul><li>Reduce lot sizes & lead times </li></ul><ul><li>Implement layout changes </li></ul><ul><ul><li>Cellular manufacturing & close proximity </li></ul></ul><ul><li>Switch to pull production </li></ul><ul><li>Extend methods to suppliers </li></ul>Page
  196. 196. JIT in Services <ul><li>Multifunctional workers </li></ul><ul><li>Reduce cycle times </li></ul><ul><li>Minimize setups </li></ul><ul><li>Parallel processing </li></ul><ul><li>Good housekeeping </li></ul><ul><li>Simple, highly-visible flow of work </li></ul>Page
  197. 197. Forecasting 8 C H A P T E R
  198. 198. Principles of Forecasting <ul><li>Forecasts are rarely perfect </li></ul><ul><li>Grouped forecasts are more accurate than individual items </li></ul><ul><li>Forecast accuracy is higher for shorter time horizons </li></ul>Page
  199. 199. Step-by-Step <ul><li>Decide what to forecast: </li></ul><ul><ul><li>Level of detail, units of analysis & time horizon required </li></ul></ul><ul><li>Evaluate & analyze appropriate data </li></ul><ul><ul><li>Identify needed data & whether it’s available </li></ul></ul><ul><li>Select & test the forecasting model </li></ul><ul><ul><li>Cost, ease of use & accuracy </li></ul></ul><ul><li>Generate the forecast </li></ul><ul><li>Monitor forecast accuracy over time </li></ul>Page
  200. 200. Types of Forecasting Methods <ul><li>Qualitative methods: </li></ul><ul><ul><li>Forecasts generated subjectively by the forecaster </li></ul></ul><ul><li>Quantitative methods: </li></ul><ul><ul><li>Forecasts generated through mathematical modeling </li></ul></ul>Page
  201. 201. Qualitative Methods <ul><li>Strengths: </li></ul><ul><ul><li>Incorporates inside information </li></ul></ul><ul><ul><li>Particularly useful when the future is expected to be very different than the past </li></ul></ul><ul><li>Weaknesses: </li></ul><ul><ul><li>Forecaster bias can reduce the accuracy of the forecast </li></ul></ul>Page
  202. 202. Types of Qualitative Models Page
  203. 203. Quantitative Methods <ul><li>Strengths: </li></ul><ul><ul><li>Consistent and objective </li></ul></ul><ul><ul><li>Can consider a lot of data at once </li></ul></ul><ul><li>Weaknesses: </li></ul><ul><ul><li>Necessary data isn’t always available </li></ul></ul><ul><ul><li>Forecast quality is dependent upon data quality </li></ul></ul>Page
  204. 204. Types of Quantitative Methods <ul><li>Time Series Models: </li></ul><ul><ul><li>Assumes the future will follow same patterns as the past </li></ul></ul><ul><li>Causal Models: </li></ul><ul><ul><li>Explores cause-and-effect relationships </li></ul></ul><ul><ul><li>Uses leading indicators to predict the future </li></ul></ul>Page
  205. 205. Patterns in Time Series Data Page
  206. 206. Logic of Time Series Models <ul><li>Data = historic pattern + random variation </li></ul><ul><li>Historic pattern may include: </li></ul><ul><ul><li>Level (long-term average) </li></ul></ul><ul><ul><li>Trend </li></ul></ul><ul><ul><li>Seasonality </li></ul></ul><ul><ul><li>Cycle </li></ul></ul>Page
  207. 207. Time Series Models <ul><li>Naive: </li></ul><ul><ul><li>The forecast is equal to the actual value observed during the last period </li></ul></ul><ul><li>Simple Mean: </li></ul><ul><ul><li>The average of all available data </li></ul></ul><ul><li>Moving Average: </li></ul><ul><ul><li>The average value over a set time period (e.g.: the last four weeks) </li></ul></ul><ul><ul><li>Each new forecast drops the oldest data point & adds a new observation </li></ul></ul>Page
  208. 208. Weighted Moving Average <ul><li>All weights must add to 100% or 1.00 </li></ul><ul><li>Allows the forecaster to emphasize one period over others </li></ul><ul><li>Differs from the simple moving average that weights all periods equally </li></ul>Page
  209. 209. Exponential Smoothing <ul><li>Forecast quality is highly dependent on selection of alpha: </li></ul><ul><ul><li>Low alpha values generate more stable forecasts </li></ul></ul><ul><ul><li>High alpha values generate forecasts that respond quickly to recent data </li></ul></ul><ul><li>Issue is whether recent changes reflect random variation or real change in long-term demand </li></ul>Page
  210. 210. Forecasting Trends <ul><li>Trend-adjusted exponential smoothing </li></ul><ul><li>Three step process: </li></ul><ul><ul><li>Smooth the level of the series: </li></ul></ul><ul><ul><li>Smooth the trend: </li></ul></ul><ul><ul><li>Calculate the forecast including trend: </li></ul></ul>Page
  211. 211. Adjusting for Seasonality <ul><li>Calculate the average demand per season </li></ul><ul><ul><li>E.g.: average quarterly demand </li></ul></ul><ul><li>Calculate a seasonal index for each season of each year: </li></ul><ul><ul><li>Divide the actual demand of each season by the average demand per season for that year </li></ul></ul><ul><li>Average the indexes by season </li></ul><ul><ul><li>E.g .: take the average of all Spring indexes, then of all Summer indexes, ... </li></ul></ul>Page
  212. 212. Adjusting for Seasonality <ul><li>Forecast demand for the next year & divide by the number of seasons </li></ul><ul><ul><li>Use regular forecasting method & divide by four for average quarterly demand </li></ul></ul><ul><li>Multiply next year’s average seasonal demand by each average seasonal index </li></ul><ul><ul><li>Result is a forecast of demand for each season of next year </li></ul></ul>Page
  213. 213. Casual Models <ul><li>Often, leading indicators hint can help predict changes in demand </li></ul><ul><li>Causal models build on these cause-and-effect relationships </li></ul><ul><li>A common tool of causal modeling is linear regression: </li></ul>Page
  214. 214. Linear Regression Page
  215. 215. Forecast Accuracy <ul><li>Forecasts are rarely perfect </li></ul><ul><li>Need to know how much we should rely on our chosen forecasting method </li></ul><ul><li>Measuring forecast error : </li></ul><ul><li>Note that over-forecasts = negative errors and under-forecasts = positive errors </li></ul>Page
  216. 216. Tracking Forecast Error Over Time <ul><li>Mean Absolute Deviation (MAD): </li></ul><ul><ul><li>A good measure of the actual error in a forecast </li></ul></ul><ul><li>Mean Square Error (MSE): </li></ul><ul><ul><li>Penalizes extreme errors </li></ul></ul><ul><li>Tracking Signal </li></ul><ul><ul><li>Exposes bias (positive or negative) </li></ul></ul>Page
  217. 217. Factors for Selecting a Forecasting Model <ul><li>The amount & type of available data </li></ul><ul><li>Degree of accuracy required </li></ul><ul><li>Length of forecast horizon </li></ul><ul><li>Presence of data patterns </li></ul>Page
  • AzfarLuqman

    Jul. 27, 2021
  • jm979416

    Sep. 4, 2020
  • return001

    Aug. 20, 2020
  • RehamIbrahimAlDwairi

    May. 10, 2020
  • DemaAlDahwi

    Mar. 31, 2020
  • JlRay

    Feb. 23, 2020
  • roselyn012895

    Feb. 23, 2020
  • MJEstremos

    Feb. 22, 2020
  • MohamedGhrabawy

    Feb. 16, 2020
  • JeffreyBorja2

    Feb. 4, 2020
  • ParitaNagrecha

    Jan. 24, 2020
  • JestinGeorge16

    Jan. 19, 2020
  • MusabAbdelrhman

    Jan. 5, 2020
  • MelatHabtamu

    Nov. 28, 2019
  • InezSmith2

    Oct. 21, 2019
  • sumitkamboj9

    Oct. 4, 2019
  • aalseri

    Sep. 28, 2019
  • JocelynEspaola1

    Sep. 15, 2019
  • keithkelley1

    Sep. 11, 2019
  • NickHayag1

    Jul. 8, 2019


Total de vistas


En Slideshare


De embebidos


Número de embebidos









Me gusta