SlideShare una empresa de Scribd logo
1 de 4
Descargar para leer sin conexión
IES Al-Ándalus. Dpto Física y Química. Física y Química 4º ESO. Tema 4: Dinámica. Ejercicios resueltos.
Ejercicios resueltos por José Antonio Navarro (janavarro.fisicayquimica@gmail.com)
ALGUNOS PROBLEMAS RESUELTOS DEL TEMA 4: DINÁMICA.
P.4. Un perro de 30 kg arrastra un trineo de 50 kg con una fuerza de 90 N. El trineo, que al principio
estaba quieto, alcanza la velocidad de 3 m/s en 10 s.
a) Dibuja todas las fuerzas que actúan sobre el trineo y sobre el perro, con su nombre y su valor (las
que se puedan calcular).
b) ¿Cuánto vale la fuerza de rozamiento que existe entre el trineo y el suelo?
c) ¿Qué fuerza aplicará a partir de ese momento el perro para continuar con movimiento uniforme?
¿Por qué?
a) El diagrama de fuerzas
FgT = m·g = 500 N
FgP = m·g = 300 N
FST = FgT = 500 N, por la primera ley de Newton
(ΣF=0 en dirección vertical)
FSP = FgP = 300 N, por la primera ley de Newton
(ΣF=0 en dirección vertical)
La tensión de la cuerda es la misma en los dos extremos (3ª ley de Newton), e igual a 90 N (fuerza que aplica el
perro sobre el trineo). T = 90 N.
b) El trineo sufre un movimiento uniformemente acelerado, partiendo de v0 = 0
m/s y alcanzando una velocidad final de 3 m/s en 10 s. Podemos calcular la
aceleración a partir de estos datos.
2
s/m3,0
s10
0s/m3
t
v
a =
−
==
∆
∆
Sabiendo la aceleración, aplicamos la 2ª ley de Newton al trineo: amF ⋅=Σ
Eje y: FST – FgT = 0
Eje x: T – FrozT = m·a 90 N – FrozT = 50 kg · 0,3 N/kg 90 N – FrozT = 15 N
Por tanto: FrozT = 90 N – 15 N = 75 N
c) Para que el trineo continúe con velocidad constante (MRU), aplicando la primera ley de Newton, la resultante
de las fuerzas que actúan sobre el trineo debe ser cero. Es decir, que la fuerza que ejerza el perro (la tensión de
la cuerda) debe compensar la fuerza de rozamiento, que es de 75 N. El perro debe tirar con 75 N.
P.5. Sobre un cuerpo de 20 kg que está en reposo actúa durante 5 s una fuerza resultante de 40 N.
Luego, y durante otros 5 s, deja de actuar esa fuerza. Por fin, durante 2 s actúa una fuerza de 100
N en la misma dirección pero en sentido contrario que la primera. Haz una gráfica v-t y calcula la
posición final del móvil.
Tenemos un movimiento dividido en 3 tramos:
A: Sobre el cuerpo actúa una fuerza resultante, por lo que no está en equilibrio. Aplicando la 2ª ley de Newton
calculamos la aceleración que sufre
2
s/m2
kg20
N40
m
F
a ===
Σ
. Se trata de un MRUA.
La velocidad a los 5 s. s/m10520tavv 0 =⋅+=⋅+=
Y su posición: m2552t00tatvrr 2
2
12
2
1
00 =⋅+⋅+=⋅+⋅+=
A B C
MRUA0F →>Σ MRU0F →=Σ MRUA0F →<Σ
+− SR
gPFgTF
SPFSTF
RozPF
RozTF
T T
gTF
STF
RozTF
T
+− R.S
+− R.S
IES Al-Ándalus. Dpto Física y Química. Física y Química 4º ESO. Tema 4: Dinámica. Ejercicios resueltos.
Ejercicios resueltos por José Antonio Navarro (janavarro.fisicayquimica@gmail.com)
B: Sobre el cuerpo no actúa ninguna fuerza resultante. Se encuentra en equilibrio dinámico, por lo que, según la
primera ley de Newton, el cuerpo mantendrá su movimiento (continuará con MRU, a velocidad constante de 10
m/s, la que había adquirido en el tramo anterior).
a = 0 m/s2
, v = cte = 10 m/s, r0 = 25 m.
La posición m7551025tvrr 0 =⋅+=⋅+=
C: Ahora sobre el cuerpo actúa una fuerza resultante contraria al movimiento, por lo que no está en equilibrio.
Aplicando la 2ª ley de Newton calculamos la aceleración que sufre
2
s/m5
kg20
N100
m
F
a −=
−
==
Σ
. Se trata
de un MRUA en el que la aceleración es contraria al movimiento, por lo que frena.
La velocidad a los 2 s. s/m02)5(10tavv 0 =⋅−+=⋅+= Se detiene.
Y su posición: m852)5(21075tatvrr 2
2
12
2
1
00 =⋅−+⋅+=⋅+⋅+=
La gráfica v/t será
P.6. Sobre un automóvil de 1000 kg que se mueve una velocidad de 20 m/s actúa una fuerza resultante
constante de 3000 N en el sentido del movimiento.
a) Calcula la aceleración del móvil.
b) ¿Cuál es la velocidad del móvil 4 s después?
c) ¿Qué distancia recorre el móvil en ese tiempo?
d) Repite el problema anterior para el caso de que la
fuerza se aplique en el sentido opuesto.
a) Aplicando la segunda ley de Newton al movimiento del coche, calculamos la aceleración que sufre.
2
s/m3
kg1000
N3000
m
F
aamF ===→⋅=
Σ
Σ
b) El coche lleva un movimiento rectilíneo uniformemente aclarado, ya que posee aceleración constante.
Datos: v0 = 20 m/s, a = 3 m/s2
, t0 = 0s.
s/m324320tavv 0 =⋅+=⋅+=
c) A partir de la ecuación de movimiento m104434200tatvrr 2
2
12
2
1
00 =⋅+⋅+=⋅+⋅+=
La distancia recorrida (desplazamiento) m104m0m104rrr 0 =−=−=∆
d) La única diferencia respecto a los apartados anteriores estriba en que ahora la fuerza resultante se opone al
movimiento, con lo que el coche frena. Ahora la resultante es N3000F −=Σ
La aceleración
2
s/m3
kg1000
N3000
m
F
aamF −=
−
==→⋅=
Σ
Σ
La velocidad s/m84320tavv 0 =⋅−=⋅+=
La posición final m564)3(4200tatvrr 2
2
12
2
1
00 =⋅−+⋅+=⋅+⋅+=
Y el desplazamiento m56m0m56rrr 0 =−=−=∆
A B C
v
t
FΣ
0v
+− R.S
IES Al-Ándalus. Dpto Física y Química. Física y Química 4º ESO. Tema 4: Dinámica. Ejercicios resueltos.
Ejercicios resueltos por José Antonio Navarro (janavarro.fisicayquimica@gmail.com)
(Página 3. Ley de Hooke):
Ejercicio 1.3: Tenemos un muelle que mide normalmente 10 cm. Al tirar de él con una fuerza de 5 N,
observamos que su longitud pasa a ser de 12 cm. a) calcular la constante elástica del muelle.
b) ¿Cuál será su longitud si ejercemos una fuerza de 2 N?
c) ¿Con qué fuerza debemos tirar para que pase a medir 15 cm?
La ley de Hooke relaciona la fuerza elástica que ejerce un muelle sobre sus extremos con el estiramiento o compresión a
que se le someta. )xx(KFxKF 0elel −⋅=→⋅= ∆ , donde
K es la constante elástica del muelle
x0 = 10 cm = 0,1 m, la longitud de equilibrio del muelle
x la longitud final del muelle, una vez estirado.
a) Al tirar del muelle con una fuerza de 5 N, la longitud del muelle pasa a ser x = 12 cm = 0,12 m
m/N250Km02,0KN5)m1,0m12,0(KN5)xx(KF 0el =→⋅=→−⋅=→−⋅=
b) Al tirar con F = 2 N
m108,0008,01,0x250/21,0x)1,0x(2502)xx(KF 0el =+=→=−→−⋅=→−⋅=
(vemos que se estira 0,008 m = 8 mm)
c) Si el muelle se estira hasta medir x = 15 cm = 0,15 m
N5,12F)1,015,0(250F)xx(KF elel0el =→−⋅=→−⋅=
Debemos tirar con una fuerza de 12,5 N.
(Página 5)
Ejercicio 2.9: Juan empuja el carrito de la compra.
Identifica y dibuja todas las fuerzas que actúan
sobre Juan y sobre el carrito.
(Página 9)
Ejercicio 5.4 : La sonda "Mars Pathfinder", con una masa de 100 kg, fue lanzada hacia Marte, planeta al
que llegó en julio de 1997. Calcula:
a) Peso de la sonda en la superficie de Marte.
b) Fuerza gravitatoria entre Marte y la sonda cuando esta se encontraba a 1000 km de la superficie del
planeta.
(Datos: Masa de Marte: MM = 6,5 · 1023
kg , Radio de Marte: RM = 3400 km, gravedad en la superficie
de Marte: gM = 3,7 N/kg )
El planeta Marte y la sonda se atraen con fuerzas gravitatorias iguales y de sentido contrario, que podemos calcular con
la ley de gravitación universal. 2g
r
mM
GF
⋅
⋅= , o lo que es lo mismo gmFg ⋅= , donde g es el valor de la
gravedad ( 2
r
M
Gg ⋅= )
a) Ya que tenemos el valor de la gravedad en la superficie de Marte, podemos calcular el peso de la sonda con la
fórmula N370kg/N7,3kg100gmFg =⋅=⋅=
b) El peso de la sonda (Fuerza gravitatoria entre Marte y la sonda) a 1000 km de altura lo calculamos con la ley de
gravitación universal, teniendo en cuenta que MM = 6,5 · 1023
kg, m = 100 kg, r = RM+h = 4400 km = 4400000 m
N94,223
)m4400000(
kg100kg105,61067,6
r
mM
GF 2
23
kg
mN11
2g
2
2
=
⋅⋅⋅⋅
=
⋅
⋅=
⋅−
gCFgJF
SCFSJF
RozJF
JCFCJF
RozCF
IES Al-Ándalus. Dpto Física y Química. Física y Química 4º ESO. Tema 4: Dinámica. Ejercicios resueltos.
Ejercicios resueltos por José Antonio Navarro (janavarro.fisicayquimica@gmail.com)
… y algunos más.
Una moto de 250 kg, que se mueve a 72 km/h, frena, deteniéndose en 5 s. Calcula el valor de la fuerza
de rozamiento que hace que la moto frene.
La moto frena, con aceleración de sentido contrario al de la velocidad, debido a la acción de la fuerza de rozamiento. El
movimiento será uniformemente acelerado. La velocidad tiene la expresión: tavv 0 ⋅+=
La aceleración podemos calcularla a partir de los datos del problema:
v0 = 72 km/h = 20 m/s
Para t = 5 s, la velocidad se hace cero.
2
0 s/m4a5a200tavv −=→⋅+=→⋅+=
La fuerza de rozamiento la calculamos estudiando las fuerzas que
actúan sobre la moto y aplicando la segunda ley de Newton
amF ⋅=Σ
En el eje y) N – Fg = 0 N = Fg = 2500 N
En el eje x) - FROZ = m · a FROZ = - m · a = - 250 kg · (- 4 m/s2
) = 1000 N
Actúa una fuerza de rozamiento de 1000 N en sentido contrario al movimiento.
Una grúa levanta una viga de 500 kg, a una velocidad constante de 0,5 m/s.
a) Dibuja y calcula las fuerzas que actúan sobre la viga.
b) El operario de la grúa decide acelerar la subida, pasando a una velocidad de 1 m/s en 10 segundos.
Calcula ahora la tensión que ejerce el cable de la grúa.
a) La viga sube con velocidad constante (MRU). Por tanto, según la primera ley de Newton, la resultante de las fuerzas
que actúan sobre la viga es igual a cero.
Las dos únicas fuerzas que actúan son la gravitatoria (peso) y la tensión del cable.
Fg = m · g = 5000 N
Como la resultante es nula, ΣF = 0 T – Fg = 0 T = Fg = 5000 N
b) Para acelerar, la grúa no aplica ninguna nueva fuerza. Simplemente hace que
la tensión aplicada sea mayor, de manera que supere el peso de la viga y exista
una fuerza resultante hacia arriba.
La aceleración la calculamos a partir de la ecuación de velocidad del movimiento
uniformemente acelerado de la viga.
2
0 s/m05,0a10a5,01tavv =→⋅+=→⋅+=
Aplicando la segunda ley de Newton a la viga amF ⋅=Σ
T – Fg = m · a T - 5000 = 500 · 0,05 = 25 T = 5025 N.
0v
a
N2500gmFg =⋅=
N
ROZF
x+
y+
−
−
y+
−
T
Fg

Más contenido relacionado

La actualidad más candente

Ejercicio 4.37-t
Ejercicio 4.37-tEjercicio 4.37-t
Ejercicio 4.37-tMiguel Pla
 
Campo eléctrico I.pdf
Campo eléctrico I.pdfCampo eléctrico I.pdf
Campo eléctrico I.pdfjolopezpla
 
Trabajo y Energía
Trabajo y EnergíaTrabajo y Energía
Trabajo y Energíaicano7
 
Tippens fisica 7e_diapositivas_10
Tippens fisica 7e_diapositivas_10Tippens fisica 7e_diapositivas_10
Tippens fisica 7e_diapositivas_10Robert
 
Fuentes del campo magnético.docx
Fuentes del campo magnético.docxFuentes del campo magnético.docx
Fuentes del campo magnético.docxjolopezpla
 
Dinámica de la rotación
Dinámica de la rotaciónDinámica de la rotación
Dinámica de la rotaciónRene Lituma
 
Tippens fisica 7e_diapositivas_11b
Tippens fisica 7e_diapositivas_11bTippens fisica 7e_diapositivas_11b
Tippens fisica 7e_diapositivas_11bRobert
 
Semana 7
Semana 7Semana 7
Semana 7CUN
 
Tippens fisica 7e_diapositivas_14
Tippens fisica 7e_diapositivas_14Tippens fisica 7e_diapositivas_14
Tippens fisica 7e_diapositivas_14Robert
 
Inducción magnética.pdf
Inducción magnética.pdfInducción magnética.pdf
Inducción magnética.pdfjolopezpla
 
Práctica 4. Cinemática y Dinámica
Práctica 4. Cinemática y DinámicaPráctica 4. Cinemática y Dinámica
Práctica 4. Cinemática y DinámicaBertha Vega
 
Ejemplos de ejercicios resueltos de trabajo,Potencia y Energía
Ejemplos de ejercicios resueltos de trabajo,Potencia y EnergíaEjemplos de ejercicios resueltos de trabajo,Potencia y Energía
Ejemplos de ejercicios resueltos de trabajo,Potencia y EnergíaJosé Rodríguez Guerra
 

La actualidad más candente (20)

Ejercicio 4.37-t
Ejercicio 4.37-tEjercicio 4.37-t
Ejercicio 4.37-t
 
Campo eléctrico I.pdf
Campo eléctrico I.pdfCampo eléctrico I.pdf
Campo eléctrico I.pdf
 
Trabajo y Energía
Trabajo y EnergíaTrabajo y Energía
Trabajo y Energía
 
Deber de fisica
Deber de fisicaDeber de fisica
Deber de fisica
 
Tippens fisica 7e_diapositivas_10
Tippens fisica 7e_diapositivas_10Tippens fisica 7e_diapositivas_10
Tippens fisica 7e_diapositivas_10
 
Rotacion
RotacionRotacion
Rotacion
 
1 mas
1  mas1  mas
1 mas
 
Informe 2 Final Energia Potencial Gravitatoria y Elastica
Informe 2 Final Energia Potencial Gravitatoria y ElasticaInforme 2 Final Energia Potencial Gravitatoria y Elastica
Informe 2 Final Energia Potencial Gravitatoria y Elastica
 
Fuentes del campo magnético.docx
Fuentes del campo magnético.docxFuentes del campo magnético.docx
Fuentes del campo magnético.docx
 
Movimiento circular uniforme
Movimiento circular uniformeMovimiento circular uniforme
Movimiento circular uniforme
 
Dinámica de la rotación
Dinámica de la rotaciónDinámica de la rotación
Dinámica de la rotación
 
Leyes de newton ejercicios resueltos
Leyes de newton ejercicios resueltosLeyes de newton ejercicios resueltos
Leyes de newton ejercicios resueltos
 
Tippens fisica 7e_diapositivas_11b
Tippens fisica 7e_diapositivas_11bTippens fisica 7e_diapositivas_11b
Tippens fisica 7e_diapositivas_11b
 
Aplicaciones de las leyes de newton
Aplicaciones de las leyes de newtonAplicaciones de las leyes de newton
Aplicaciones de las leyes de newton
 
Momento lineal y choques.
 Momento lineal y choques. Momento lineal y choques.
Momento lineal y choques.
 
Semana 7
Semana 7Semana 7
Semana 7
 
Tippens fisica 7e_diapositivas_14
Tippens fisica 7e_diapositivas_14Tippens fisica 7e_diapositivas_14
Tippens fisica 7e_diapositivas_14
 
Inducción magnética.pdf
Inducción magnética.pdfInducción magnética.pdf
Inducción magnética.pdf
 
Práctica 4. Cinemática y Dinámica
Práctica 4. Cinemática y DinámicaPráctica 4. Cinemática y Dinámica
Práctica 4. Cinemática y Dinámica
 
Ejemplos de ejercicios resueltos de trabajo,Potencia y Energía
Ejemplos de ejercicios resueltos de trabajo,Potencia y EnergíaEjemplos de ejercicios resueltos de trabajo,Potencia y Energía
Ejemplos de ejercicios resueltos de trabajo,Potencia y Energía
 

Similar a Ejercicios de dinámica resueltos (4o ESO Física

Fuerza ejercicios soluciones
Fuerza ejercicios solucionesFuerza ejercicios soluciones
Fuerza ejercicios solucionesRodolfo Oyarce
 
DIAPOSITIVAS FISICA 3º BGU BLOQUE DINAMICA.pptx
DIAPOSITIVAS FISICA 3º BGU BLOQUE DINAMICA.pptxDIAPOSITIVAS FISICA 3º BGU BLOQUE DINAMICA.pptx
DIAPOSITIVAS FISICA 3º BGU BLOQUE DINAMICA.pptxVictor Hugo Caiza
 
Fuerza ejercicios soluciones
Fuerza ejercicios solucionesFuerza ejercicios soluciones
Fuerza ejercicios solucionesroberto902
 
Problemas de aplicacin de la segunda ley de newton
Problemas de aplicacin de la segunda ley de newtonProblemas de aplicacin de la segunda ley de newton
Problemas de aplicacin de la segunda ley de newtonSanty Diaz
 
Examen dináimica y cinemática 09 10 corr
Examen dináimica y cinemática  09 10 corrExamen dináimica y cinemática  09 10 corr
Examen dináimica y cinemática 09 10 corrMHR
 
TRABAJO Y POTENCIA - EJERCICIOS
TRABAJO Y POTENCIA - EJERCICIOSTRABAJO Y POTENCIA - EJERCICIOS
TRABAJO Y POTENCIA - EJERCICIOSIrlanda Gt
 
11 LINEAL Y CIRCULAR.pdf
11 LINEAL Y CIRCULAR.pdf11 LINEAL Y CIRCULAR.pdf
11 LINEAL Y CIRCULAR.pdfHanssEspino
 
Problemas de aplicación de la segunda ley de newton
Problemas de aplicación de la segunda ley de newtonProblemas de aplicación de la segunda ley de newton
Problemas de aplicación de la segunda ley de newtonVanessa Aldrete
 
13 fuerza e interacci%f3n
13 fuerza e interacci%f3n13 fuerza e interacci%f3n
13 fuerza e interacci%f3njvictor2051
 
Verano UNI T01 Cap04 Trabajo Energia.pptx
Verano UNI T01 Cap04 Trabajo Energia.pptxVerano UNI T01 Cap04 Trabajo Energia.pptx
Verano UNI T01 Cap04 Trabajo Energia.pptxLUISEDUARDOLUJANAREV
 
Dinámica 1ºBACH
Dinámica 1ºBACHDinámica 1ºBACH
Dinámica 1ºBACHDavid Saura
 
Ejercicios leyes de newton
Ejercicios leyes de newtonEjercicios leyes de newton
Ejercicios leyes de newtonDulmar Torrado
 

Similar a Ejercicios de dinámica resueltos (4o ESO Física (20)

Fuerza ejercicios soluciones
Fuerza ejercicios solucionesFuerza ejercicios soluciones
Fuerza ejercicios soluciones
 
DIAPOSITIVAS FISICA 3º BGU BLOQUE DINAMICA.pptx
DIAPOSITIVAS FISICA 3º BGU BLOQUE DINAMICA.pptxDIAPOSITIVAS FISICA 3º BGU BLOQUE DINAMICA.pptx
DIAPOSITIVAS FISICA 3º BGU BLOQUE DINAMICA.pptx
 
Act dinamica 1
Act dinamica 1Act dinamica 1
Act dinamica 1
 
Fuerza ejercicios soluciones
Fuerza ejercicios solucionesFuerza ejercicios soluciones
Fuerza ejercicios soluciones
 
Problemas de aplicacin de la segunda ley de newton
Problemas de aplicacin de la segunda ley de newtonProblemas de aplicacin de la segunda ley de newton
Problemas de aplicacin de la segunda ley de newton
 
Examen dináimica y cinemática 09 10 corr
Examen dináimica y cinemática  09 10 corrExamen dináimica y cinemática  09 10 corr
Examen dináimica y cinemática 09 10 corr
 
Prob007
Prob007Prob007
Prob007
 
TRABAJO Y POTENCIA - EJERCICIOS
TRABAJO Y POTENCIA - EJERCICIOSTRABAJO Y POTENCIA - EJERCICIOS
TRABAJO Y POTENCIA - EJERCICIOS
 
11 LINEAL Y CIRCULAR.pdf
11 LINEAL Y CIRCULAR.pdf11 LINEAL Y CIRCULAR.pdf
11 LINEAL Y CIRCULAR.pdf
 
Problemas de aplicación de la segunda ley de newton
Problemas de aplicación de la segunda ley de newtonProblemas de aplicación de la segunda ley de newton
Problemas de aplicación de la segunda ley de newton
 
13 fuerza e interacci%f3n
13 fuerza e interacci%f3n13 fuerza e interacci%f3n
13 fuerza e interacci%f3n
 
Verano UNI T01 Cap04 Trabajo Energia.pptx
Verano UNI T01 Cap04 Trabajo Energia.pptxVerano UNI T01 Cap04 Trabajo Energia.pptx
Verano UNI T01 Cap04 Trabajo Energia.pptx
 
Dinámica 1ºBACH
Dinámica 1ºBACHDinámica 1ºBACH
Dinámica 1ºBACH
 
Ejercicios leyes de newton
Ejercicios leyes de newtonEjercicios leyes de newton
Ejercicios leyes de newton
 
Fuerza y energia
Fuerza y energiaFuerza y energia
Fuerza y energia
 
Fuerza y energia
Fuerza y energiaFuerza y energia
Fuerza y energia
 
Fuerza y energia
Fuerza y energiaFuerza y energia
Fuerza y energia
 
Ejercicios de leyes de newton
Ejercicios de leyes de newtonEjercicios de leyes de newton
Ejercicios de leyes de newton
 
trabajo y_energia
 trabajo y_energia trabajo y_energia
trabajo y_energia
 
Dinamica
DinamicaDinamica
Dinamica
 

Más de victor chacon

Operaciones con decimales
Operaciones con decimalesOperaciones con decimales
Operaciones con decimalesvictor chacon
 
Funciones u1 chile 120pg
Funciones u1 chile 120pgFunciones u1 chile 120pg
Funciones u1 chile 120pgvictor chacon
 
Ejercicios resueltos-hibbeler-grupo-04 cinematica circular vectorial
Ejercicios resueltos-hibbeler-grupo-04 cinematica circular vectorialEjercicios resueltos-hibbeler-grupo-04 cinematica circular vectorial
Ejercicios resueltos-hibbeler-grupo-04 cinematica circular vectorialvictor chacon
 
Estadistica descriptiva-manuel-cordova-zamora-pdf libro 518 pg
Estadistica descriptiva-manuel-cordova-zamora-pdf libro 518 pgEstadistica descriptiva-manuel-cordova-zamora-pdf libro 518 pg
Estadistica descriptiva-manuel-cordova-zamora-pdf libro 518 pgvictor chacon
 
Cap2 e variable aleatoria discreta
Cap2 e variable aleatoria discretaCap2 e variable aleatoria discreta
Cap2 e variable aleatoria discretavictor chacon
 
Ejercicios probabilidad
Ejercicios probabilidadEjercicios probabilidad
Ejercicios probabilidadvictor chacon
 

Más de victor chacon (6)

Operaciones con decimales
Operaciones con decimalesOperaciones con decimales
Operaciones con decimales
 
Funciones u1 chile 120pg
Funciones u1 chile 120pgFunciones u1 chile 120pg
Funciones u1 chile 120pg
 
Ejercicios resueltos-hibbeler-grupo-04 cinematica circular vectorial
Ejercicios resueltos-hibbeler-grupo-04 cinematica circular vectorialEjercicios resueltos-hibbeler-grupo-04 cinematica circular vectorial
Ejercicios resueltos-hibbeler-grupo-04 cinematica circular vectorial
 
Estadistica descriptiva-manuel-cordova-zamora-pdf libro 518 pg
Estadistica descriptiva-manuel-cordova-zamora-pdf libro 518 pgEstadistica descriptiva-manuel-cordova-zamora-pdf libro 518 pg
Estadistica descriptiva-manuel-cordova-zamora-pdf libro 518 pg
 
Cap2 e variable aleatoria discreta
Cap2 e variable aleatoria discretaCap2 e variable aleatoria discreta
Cap2 e variable aleatoria discreta
 
Ejercicios probabilidad
Ejercicios probabilidadEjercicios probabilidad
Ejercicios probabilidad
 

Último

SESION 1_SSOMA. plan de accion y desarrollo
SESION 1_SSOMA. plan de accion y desarrolloSESION 1_SSOMA. plan de accion y desarrollo
SESION 1_SSOMA. plan de accion y desarrollocchavezl3
 
S03 - Perfil del ingeniero industrial UTP - DIAPOS.pdf
S03 - Perfil del ingeniero industrial UTP - DIAPOS.pdfS03 - Perfil del ingeniero industrial UTP - DIAPOS.pdf
S03 - Perfil del ingeniero industrial UTP - DIAPOS.pdfroycordovabocanegra7
 
Wal-Mart batalla con RFID...............
Wal-Mart batalla con RFID...............Wal-Mart batalla con RFID...............
Wal-Mart batalla con RFID...............osoriosantiago887
 
La Evolución Industrial en el Ecuador.pdf
La Evolución Industrial en el Ecuador.pdfLa Evolución Industrial en el Ecuador.pdf
La Evolución Industrial en el Ecuador.pdfAnthony Gualpa
 
FUNDAMENTOS DE LA INTELIGENCIA ARTIFICIAL
FUNDAMENTOS DE LA INTELIGENCIA ARTIFICIALFUNDAMENTOS DE LA INTELIGENCIA ARTIFICIAL
FUNDAMENTOS DE LA INTELIGENCIA ARTIFICIALPamelaGranda5
 
EXPOSICION UNIDAD 3 MANTENIMIENTOO .pptx
EXPOSICION UNIDAD 3 MANTENIMIENTOO .pptxEXPOSICION UNIDAD 3 MANTENIMIENTOO .pptx
EXPOSICION UNIDAD 3 MANTENIMIENTOO .pptxKeylaArlethTorresOrt
 
METASISTEMA-EXPOSICIONfgertertertretr.ppt
METASISTEMA-EXPOSICIONfgertertertretr.pptMETASISTEMA-EXPOSICIONfgertertertretr.ppt
METASISTEMA-EXPOSICIONfgertertertretr.pptSANTOS400018
 
PLANTILLA DE PP PREVENCIONISTA DE RIESGOS LABORALES (1).pptx.pdf
PLANTILLA DE PP PREVENCIONISTA DE RIESGOS LABORALES (1).pptx.pdfPLANTILLA DE PP PREVENCIONISTA DE RIESGOS LABORALES (1).pptx.pdf
PLANTILLA DE PP PREVENCIONISTA DE RIESGOS LABORALES (1).pptx.pdfmcamposa87
 
S02 - Campo de acción. Cualidades del Ingeniero Industrial.pdf
S02 - Campo de acción. Cualidades del Ingeniero Industrial.pdfS02 - Campo de acción. Cualidades del Ingeniero Industrial.pdf
S02 - Campo de acción. Cualidades del Ingeniero Industrial.pdfroycordovabocanegra7
 
PRESENTACIÓN ANALISIS ESTRUCTURAL II.pptx
PRESENTACIÓN ANALISIS ESTRUCTURAL II.pptxPRESENTACIÓN ANALISIS ESTRUCTURAL II.pptx
PRESENTACIÓN ANALISIS ESTRUCTURAL II.pptxStibeCr
 
PROCESAMIENTO DE CERAMICAS. PROCESOS DE MANUFACTURA
PROCESAMIENTO DE CERAMICAS. PROCESOS DE MANUFACTURAPROCESAMIENTO DE CERAMICAS. PROCESOS DE MANUFACTURA
PROCESAMIENTO DE CERAMICAS. PROCESOS DE MANUFACTURAHeribertoTiscareo
 
UNIDAD 3a SIST AGUA_DREN_TRATAM-URP_2024-0.pptx
UNIDAD 3a SIST AGUA_DREN_TRATAM-URP_2024-0.pptxUNIDAD 3a SIST AGUA_DREN_TRATAM-URP_2024-0.pptx
UNIDAD 3a SIST AGUA_DREN_TRATAM-URP_2024-0.pptxRosselin4
 
Portafolio Stanley PT fichas Tecnicas.pptx
Portafolio Stanley PT fichas Tecnicas.pptxPortafolio Stanley PT fichas Tecnicas.pptx
Portafolio Stanley PT fichas Tecnicas.pptxdhernandeza2310
 
TALLER DE IPERC - CAPACITACION REALIZADA EN SAN LORENZO
TALLER DE IPERC - CAPACITACION REALIZADA EN SAN LORENZOTALLER DE IPERC - CAPACITACION REALIZADA EN SAN LORENZO
TALLER DE IPERC - CAPACITACION REALIZADA EN SAN LORENZOElvisMamani31
 
Presentación GP Nº03.ppt reapso general maqinas electricas
Presentación GP Nº03.ppt  reapso general maqinas electricasPresentación GP Nº03.ppt  reapso general maqinas electricas
Presentación GP Nº03.ppt reapso general maqinas electricasANDREJEANPIERREMACHU
 
Transporte y Manipulación de Explosivos - SUCAMEC
Transporte y Manipulación de Explosivos - SUCAMECTransporte y Manipulación de Explosivos - SUCAMEC
Transporte y Manipulación de Explosivos - SUCAMECamador030809
 
thinner-acrilico-ac-205- ficha tecnica msds
thinner-acrilico-ac-205- ficha tecnica msdsthinner-acrilico-ac-205- ficha tecnica msds
thinner-acrilico-ac-205- ficha tecnica msdsfioticona20395
 
TEMA 02 VISCOSIDAD DE MECÁNICA DE FLUIDOS .pdf
TEMA 02 VISCOSIDAD DE MECÁNICA DE FLUIDOS .pdfTEMA 02 VISCOSIDAD DE MECÁNICA DE FLUIDOS .pdf
TEMA 02 VISCOSIDAD DE MECÁNICA DE FLUIDOS .pdfJhonCongoraQuispe
 
exposicion cereales, todo sobre la avena
exposicion cereales, todo sobre la avenaexposicion cereales, todo sobre la avena
exposicion cereales, todo sobre la avenaYuliethRamrezCruz
 
Análisis de Varianza- Anova y pruebas de estadística
Análisis de Varianza- Anova y pruebas de estadísticaAnálisis de Varianza- Anova y pruebas de estadística
Análisis de Varianza- Anova y pruebas de estadísticaJoellyAlejandraRodrg
 

Último (20)

SESION 1_SSOMA. plan de accion y desarrollo
SESION 1_SSOMA. plan de accion y desarrolloSESION 1_SSOMA. plan de accion y desarrollo
SESION 1_SSOMA. plan de accion y desarrollo
 
S03 - Perfil del ingeniero industrial UTP - DIAPOS.pdf
S03 - Perfil del ingeniero industrial UTP - DIAPOS.pdfS03 - Perfil del ingeniero industrial UTP - DIAPOS.pdf
S03 - Perfil del ingeniero industrial UTP - DIAPOS.pdf
 
Wal-Mart batalla con RFID...............
Wal-Mart batalla con RFID...............Wal-Mart batalla con RFID...............
Wal-Mart batalla con RFID...............
 
La Evolución Industrial en el Ecuador.pdf
La Evolución Industrial en el Ecuador.pdfLa Evolución Industrial en el Ecuador.pdf
La Evolución Industrial en el Ecuador.pdf
 
FUNDAMENTOS DE LA INTELIGENCIA ARTIFICIAL
FUNDAMENTOS DE LA INTELIGENCIA ARTIFICIALFUNDAMENTOS DE LA INTELIGENCIA ARTIFICIAL
FUNDAMENTOS DE LA INTELIGENCIA ARTIFICIAL
 
EXPOSICION UNIDAD 3 MANTENIMIENTOO .pptx
EXPOSICION UNIDAD 3 MANTENIMIENTOO .pptxEXPOSICION UNIDAD 3 MANTENIMIENTOO .pptx
EXPOSICION UNIDAD 3 MANTENIMIENTOO .pptx
 
METASISTEMA-EXPOSICIONfgertertertretr.ppt
METASISTEMA-EXPOSICIONfgertertertretr.pptMETASISTEMA-EXPOSICIONfgertertertretr.ppt
METASISTEMA-EXPOSICIONfgertertertretr.ppt
 
PLANTILLA DE PP PREVENCIONISTA DE RIESGOS LABORALES (1).pptx.pdf
PLANTILLA DE PP PREVENCIONISTA DE RIESGOS LABORALES (1).pptx.pdfPLANTILLA DE PP PREVENCIONISTA DE RIESGOS LABORALES (1).pptx.pdf
PLANTILLA DE PP PREVENCIONISTA DE RIESGOS LABORALES (1).pptx.pdf
 
S02 - Campo de acción. Cualidades del Ingeniero Industrial.pdf
S02 - Campo de acción. Cualidades del Ingeniero Industrial.pdfS02 - Campo de acción. Cualidades del Ingeniero Industrial.pdf
S02 - Campo de acción. Cualidades del Ingeniero Industrial.pdf
 
PRESENTACIÓN ANALISIS ESTRUCTURAL II.pptx
PRESENTACIÓN ANALISIS ESTRUCTURAL II.pptxPRESENTACIÓN ANALISIS ESTRUCTURAL II.pptx
PRESENTACIÓN ANALISIS ESTRUCTURAL II.pptx
 
PROCESAMIENTO DE CERAMICAS. PROCESOS DE MANUFACTURA
PROCESAMIENTO DE CERAMICAS. PROCESOS DE MANUFACTURAPROCESAMIENTO DE CERAMICAS. PROCESOS DE MANUFACTURA
PROCESAMIENTO DE CERAMICAS. PROCESOS DE MANUFACTURA
 
UNIDAD 3a SIST AGUA_DREN_TRATAM-URP_2024-0.pptx
UNIDAD 3a SIST AGUA_DREN_TRATAM-URP_2024-0.pptxUNIDAD 3a SIST AGUA_DREN_TRATAM-URP_2024-0.pptx
UNIDAD 3a SIST AGUA_DREN_TRATAM-URP_2024-0.pptx
 
Portafolio Stanley PT fichas Tecnicas.pptx
Portafolio Stanley PT fichas Tecnicas.pptxPortafolio Stanley PT fichas Tecnicas.pptx
Portafolio Stanley PT fichas Tecnicas.pptx
 
TALLER DE IPERC - CAPACITACION REALIZADA EN SAN LORENZO
TALLER DE IPERC - CAPACITACION REALIZADA EN SAN LORENZOTALLER DE IPERC - CAPACITACION REALIZADA EN SAN LORENZO
TALLER DE IPERC - CAPACITACION REALIZADA EN SAN LORENZO
 
Presentación GP Nº03.ppt reapso general maqinas electricas
Presentación GP Nº03.ppt  reapso general maqinas electricasPresentación GP Nº03.ppt  reapso general maqinas electricas
Presentación GP Nº03.ppt reapso general maqinas electricas
 
Transporte y Manipulación de Explosivos - SUCAMEC
Transporte y Manipulación de Explosivos - SUCAMECTransporte y Manipulación de Explosivos - SUCAMEC
Transporte y Manipulación de Explosivos - SUCAMEC
 
thinner-acrilico-ac-205- ficha tecnica msds
thinner-acrilico-ac-205- ficha tecnica msdsthinner-acrilico-ac-205- ficha tecnica msds
thinner-acrilico-ac-205- ficha tecnica msds
 
TEMA 02 VISCOSIDAD DE MECÁNICA DE FLUIDOS .pdf
TEMA 02 VISCOSIDAD DE MECÁNICA DE FLUIDOS .pdfTEMA 02 VISCOSIDAD DE MECÁNICA DE FLUIDOS .pdf
TEMA 02 VISCOSIDAD DE MECÁNICA DE FLUIDOS .pdf
 
exposicion cereales, todo sobre la avena
exposicion cereales, todo sobre la avenaexposicion cereales, todo sobre la avena
exposicion cereales, todo sobre la avena
 
Análisis de Varianza- Anova y pruebas de estadística
Análisis de Varianza- Anova y pruebas de estadísticaAnálisis de Varianza- Anova y pruebas de estadística
Análisis de Varianza- Anova y pruebas de estadística
 

Ejercicios de dinámica resueltos (4o ESO Física

  • 1. IES Al-Ándalus. Dpto Física y Química. Física y Química 4º ESO. Tema 4: Dinámica. Ejercicios resueltos. Ejercicios resueltos por José Antonio Navarro (janavarro.fisicayquimica@gmail.com) ALGUNOS PROBLEMAS RESUELTOS DEL TEMA 4: DINÁMICA. P.4. Un perro de 30 kg arrastra un trineo de 50 kg con una fuerza de 90 N. El trineo, que al principio estaba quieto, alcanza la velocidad de 3 m/s en 10 s. a) Dibuja todas las fuerzas que actúan sobre el trineo y sobre el perro, con su nombre y su valor (las que se puedan calcular). b) ¿Cuánto vale la fuerza de rozamiento que existe entre el trineo y el suelo? c) ¿Qué fuerza aplicará a partir de ese momento el perro para continuar con movimiento uniforme? ¿Por qué? a) El diagrama de fuerzas FgT = m·g = 500 N FgP = m·g = 300 N FST = FgT = 500 N, por la primera ley de Newton (ΣF=0 en dirección vertical) FSP = FgP = 300 N, por la primera ley de Newton (ΣF=0 en dirección vertical) La tensión de la cuerda es la misma en los dos extremos (3ª ley de Newton), e igual a 90 N (fuerza que aplica el perro sobre el trineo). T = 90 N. b) El trineo sufre un movimiento uniformemente acelerado, partiendo de v0 = 0 m/s y alcanzando una velocidad final de 3 m/s en 10 s. Podemos calcular la aceleración a partir de estos datos. 2 s/m3,0 s10 0s/m3 t v a = − == ∆ ∆ Sabiendo la aceleración, aplicamos la 2ª ley de Newton al trineo: amF ⋅=Σ Eje y: FST – FgT = 0 Eje x: T – FrozT = m·a 90 N – FrozT = 50 kg · 0,3 N/kg 90 N – FrozT = 15 N Por tanto: FrozT = 90 N – 15 N = 75 N c) Para que el trineo continúe con velocidad constante (MRU), aplicando la primera ley de Newton, la resultante de las fuerzas que actúan sobre el trineo debe ser cero. Es decir, que la fuerza que ejerza el perro (la tensión de la cuerda) debe compensar la fuerza de rozamiento, que es de 75 N. El perro debe tirar con 75 N. P.5. Sobre un cuerpo de 20 kg que está en reposo actúa durante 5 s una fuerza resultante de 40 N. Luego, y durante otros 5 s, deja de actuar esa fuerza. Por fin, durante 2 s actúa una fuerza de 100 N en la misma dirección pero en sentido contrario que la primera. Haz una gráfica v-t y calcula la posición final del móvil. Tenemos un movimiento dividido en 3 tramos: A: Sobre el cuerpo actúa una fuerza resultante, por lo que no está en equilibrio. Aplicando la 2ª ley de Newton calculamos la aceleración que sufre 2 s/m2 kg20 N40 m F a === Σ . Se trata de un MRUA. La velocidad a los 5 s. s/m10520tavv 0 =⋅+=⋅+= Y su posición: m2552t00tatvrr 2 2 12 2 1 00 =⋅+⋅+=⋅+⋅+= A B C MRUA0F →>Σ MRU0F →=Σ MRUA0F →<Σ +− SR gPFgTF SPFSTF RozPF RozTF T T gTF STF RozTF T +− R.S +− R.S
  • 2. IES Al-Ándalus. Dpto Física y Química. Física y Química 4º ESO. Tema 4: Dinámica. Ejercicios resueltos. Ejercicios resueltos por José Antonio Navarro (janavarro.fisicayquimica@gmail.com) B: Sobre el cuerpo no actúa ninguna fuerza resultante. Se encuentra en equilibrio dinámico, por lo que, según la primera ley de Newton, el cuerpo mantendrá su movimiento (continuará con MRU, a velocidad constante de 10 m/s, la que había adquirido en el tramo anterior). a = 0 m/s2 , v = cte = 10 m/s, r0 = 25 m. La posición m7551025tvrr 0 =⋅+=⋅+= C: Ahora sobre el cuerpo actúa una fuerza resultante contraria al movimiento, por lo que no está en equilibrio. Aplicando la 2ª ley de Newton calculamos la aceleración que sufre 2 s/m5 kg20 N100 m F a −= − == Σ . Se trata de un MRUA en el que la aceleración es contraria al movimiento, por lo que frena. La velocidad a los 2 s. s/m02)5(10tavv 0 =⋅−+=⋅+= Se detiene. Y su posición: m852)5(21075tatvrr 2 2 12 2 1 00 =⋅−+⋅+=⋅+⋅+= La gráfica v/t será P.6. Sobre un automóvil de 1000 kg que se mueve una velocidad de 20 m/s actúa una fuerza resultante constante de 3000 N en el sentido del movimiento. a) Calcula la aceleración del móvil. b) ¿Cuál es la velocidad del móvil 4 s después? c) ¿Qué distancia recorre el móvil en ese tiempo? d) Repite el problema anterior para el caso de que la fuerza se aplique en el sentido opuesto. a) Aplicando la segunda ley de Newton al movimiento del coche, calculamos la aceleración que sufre. 2 s/m3 kg1000 N3000 m F aamF ===→⋅= Σ Σ b) El coche lleva un movimiento rectilíneo uniformemente aclarado, ya que posee aceleración constante. Datos: v0 = 20 m/s, a = 3 m/s2 , t0 = 0s. s/m324320tavv 0 =⋅+=⋅+= c) A partir de la ecuación de movimiento m104434200tatvrr 2 2 12 2 1 00 =⋅+⋅+=⋅+⋅+= La distancia recorrida (desplazamiento) m104m0m104rrr 0 =−=−=∆ d) La única diferencia respecto a los apartados anteriores estriba en que ahora la fuerza resultante se opone al movimiento, con lo que el coche frena. Ahora la resultante es N3000F −=Σ La aceleración 2 s/m3 kg1000 N3000 m F aamF −= − ==→⋅= Σ Σ La velocidad s/m84320tavv 0 =⋅−=⋅+= La posición final m564)3(4200tatvrr 2 2 12 2 1 00 =⋅−+⋅+=⋅+⋅+= Y el desplazamiento m56m0m56rrr 0 =−=−=∆ A B C v t FΣ 0v +− R.S
  • 3. IES Al-Ándalus. Dpto Física y Química. Física y Química 4º ESO. Tema 4: Dinámica. Ejercicios resueltos. Ejercicios resueltos por José Antonio Navarro (janavarro.fisicayquimica@gmail.com) (Página 3. Ley de Hooke): Ejercicio 1.3: Tenemos un muelle que mide normalmente 10 cm. Al tirar de él con una fuerza de 5 N, observamos que su longitud pasa a ser de 12 cm. a) calcular la constante elástica del muelle. b) ¿Cuál será su longitud si ejercemos una fuerza de 2 N? c) ¿Con qué fuerza debemos tirar para que pase a medir 15 cm? La ley de Hooke relaciona la fuerza elástica que ejerce un muelle sobre sus extremos con el estiramiento o compresión a que se le someta. )xx(KFxKF 0elel −⋅=→⋅= ∆ , donde K es la constante elástica del muelle x0 = 10 cm = 0,1 m, la longitud de equilibrio del muelle x la longitud final del muelle, una vez estirado. a) Al tirar del muelle con una fuerza de 5 N, la longitud del muelle pasa a ser x = 12 cm = 0,12 m m/N250Km02,0KN5)m1,0m12,0(KN5)xx(KF 0el =→⋅=→−⋅=→−⋅= b) Al tirar con F = 2 N m108,0008,01,0x250/21,0x)1,0x(2502)xx(KF 0el =+=→=−→−⋅=→−⋅= (vemos que se estira 0,008 m = 8 mm) c) Si el muelle se estira hasta medir x = 15 cm = 0,15 m N5,12F)1,015,0(250F)xx(KF elel0el =→−⋅=→−⋅= Debemos tirar con una fuerza de 12,5 N. (Página 5) Ejercicio 2.9: Juan empuja el carrito de la compra. Identifica y dibuja todas las fuerzas que actúan sobre Juan y sobre el carrito. (Página 9) Ejercicio 5.4 : La sonda "Mars Pathfinder", con una masa de 100 kg, fue lanzada hacia Marte, planeta al que llegó en julio de 1997. Calcula: a) Peso de la sonda en la superficie de Marte. b) Fuerza gravitatoria entre Marte y la sonda cuando esta se encontraba a 1000 km de la superficie del planeta. (Datos: Masa de Marte: MM = 6,5 · 1023 kg , Radio de Marte: RM = 3400 km, gravedad en la superficie de Marte: gM = 3,7 N/kg ) El planeta Marte y la sonda se atraen con fuerzas gravitatorias iguales y de sentido contrario, que podemos calcular con la ley de gravitación universal. 2g r mM GF ⋅ ⋅= , o lo que es lo mismo gmFg ⋅= , donde g es el valor de la gravedad ( 2 r M Gg ⋅= ) a) Ya que tenemos el valor de la gravedad en la superficie de Marte, podemos calcular el peso de la sonda con la fórmula N370kg/N7,3kg100gmFg =⋅=⋅= b) El peso de la sonda (Fuerza gravitatoria entre Marte y la sonda) a 1000 km de altura lo calculamos con la ley de gravitación universal, teniendo en cuenta que MM = 6,5 · 1023 kg, m = 100 kg, r = RM+h = 4400 km = 4400000 m N94,223 )m4400000( kg100kg105,61067,6 r mM GF 2 23 kg mN11 2g 2 2 = ⋅⋅⋅⋅ = ⋅ ⋅= ⋅− gCFgJF SCFSJF RozJF JCFCJF RozCF
  • 4. IES Al-Ándalus. Dpto Física y Química. Física y Química 4º ESO. Tema 4: Dinámica. Ejercicios resueltos. Ejercicios resueltos por José Antonio Navarro (janavarro.fisicayquimica@gmail.com) … y algunos más. Una moto de 250 kg, que se mueve a 72 km/h, frena, deteniéndose en 5 s. Calcula el valor de la fuerza de rozamiento que hace que la moto frene. La moto frena, con aceleración de sentido contrario al de la velocidad, debido a la acción de la fuerza de rozamiento. El movimiento será uniformemente acelerado. La velocidad tiene la expresión: tavv 0 ⋅+= La aceleración podemos calcularla a partir de los datos del problema: v0 = 72 km/h = 20 m/s Para t = 5 s, la velocidad se hace cero. 2 0 s/m4a5a200tavv −=→⋅+=→⋅+= La fuerza de rozamiento la calculamos estudiando las fuerzas que actúan sobre la moto y aplicando la segunda ley de Newton amF ⋅=Σ En el eje y) N – Fg = 0 N = Fg = 2500 N En el eje x) - FROZ = m · a FROZ = - m · a = - 250 kg · (- 4 m/s2 ) = 1000 N Actúa una fuerza de rozamiento de 1000 N en sentido contrario al movimiento. Una grúa levanta una viga de 500 kg, a una velocidad constante de 0,5 m/s. a) Dibuja y calcula las fuerzas que actúan sobre la viga. b) El operario de la grúa decide acelerar la subida, pasando a una velocidad de 1 m/s en 10 segundos. Calcula ahora la tensión que ejerce el cable de la grúa. a) La viga sube con velocidad constante (MRU). Por tanto, según la primera ley de Newton, la resultante de las fuerzas que actúan sobre la viga es igual a cero. Las dos únicas fuerzas que actúan son la gravitatoria (peso) y la tensión del cable. Fg = m · g = 5000 N Como la resultante es nula, ΣF = 0 T – Fg = 0 T = Fg = 5000 N b) Para acelerar, la grúa no aplica ninguna nueva fuerza. Simplemente hace que la tensión aplicada sea mayor, de manera que supere el peso de la viga y exista una fuerza resultante hacia arriba. La aceleración la calculamos a partir de la ecuación de velocidad del movimiento uniformemente acelerado de la viga. 2 0 s/m05,0a10a5,01tavv =→⋅+=→⋅+= Aplicando la segunda ley de Newton a la viga amF ⋅=Σ T – Fg = m · a T - 5000 = 500 · 0,05 = 25 T = 5025 N. 0v a N2500gmFg =⋅= N ROZF x+ y+ − − y+ − T Fg