Se ha denunciado esta presentación.
Se está descargando tu SlideShare. ×

3 octubre 2013_meneses

Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Cargando en…3
×

Eche un vistazo a continuación

1 de 12 Anuncio
Anuncio

Más Contenido Relacionado

Presentaciones para usted (20)

A los espectadores también les gustó (20)

Anuncio

Similares a 3 octubre 2013_meneses (20)

Más de Washington Meneses (20)

Anuncio

3 octubre 2013_meneses

  1. 1. FLACSO Digital - Uruguay Aulas 2.0 C4 – 2013 Proyecto final (1ª entrega) 1 DESARROLLO DE UNA ACTIVIDAD EXPERIMENTAL DE FÍSICA CON RESPALDO DE LAS TIC, EN UN CENTRO DE FORMACIÓN DOCENTE Washington Meneses Resumen A través de este proyecto, se pretende construir un espacio académico para promover el uso habitual y responsable de las TIC en las actividades experimentales, entre los estudiantes de profesorado de Física de segundo año del Ce.R.P. del Norte. 1. Introducción En este espacio, se comparte la perspectiva de que el conocimiento científico es una construcción colectiva y flexible, donde la experimentación cumple un rol destacado. La educación científica y tecnológica, ocupa un lugar fundamental en el sistema productivo y en lo cotidiano; es un conocimiento clave para comprender e interpretar la cultura contemporánea (Martínez, 2011). En esa perspectiva sociopolítica, la formación docente en general, y en particular en el caso de la Física, necesita incluir estrategias de enseñanza que favorezcan los mejores aprendizajes de los futuros docentes de enseñanza media, para promover el desarrollo de un educador comprometido, entre otras cosas, con la actualización permanente, la investigación de prácticas exitosas y de didácticas que respondan adecuadamente las necesidades de un contexto complejo, donde conviven múltiples inteligencias. Entre las diversas estrategias de enseñanza científica, las actividades experimentales constituyen un elemento fundamental en la formación de los docentes de Física. El laboratorio, se entiende como un espacio privilegiado para la construcción del conocimiento científico en un sentido amplio (Reverdito, 2007), porque allí se puede extender la experiencia que colabora en la comprensión de
  2. 2. FLACSO Digital - Uruguay Aulas 2.0 C4 – 2013 Proyecto final (1ª entrega) 2 conceptos, el desarrollo de destrezas (técnicas, intelectuales y sociales) y la promoción de actitudes positivas hacia la ciencia (Vázquez, 1997). Considerando que lo realmente fundamental es el aprendizaje (tanto si se trata de aprehender ciencia, por la divulgación científica, o al hacer ciencia, en la instancia de investigación académica), no se debe descartar cualquiera de las teorías del aprendizaje. Básicamente porque este aprendizaje implica cambios de conducta, uso de la razón, establecer objetivos concretos y evaluar. Además, en muchas oportunidades se nutre de los procesos académicos dinámicos y flexibles, de las relaciones sociales y de todo el potencial de las diversas estructuras cognitivas. Pero, se hace cada vez más necesario construir programas de aprendizaje que favorezcan la triangulación del saber, el estudiante y el contexto; investigando constantemente sobre todos esos factores (Ertmer, 1993). Ante las nuevas exigencias de la sociedad, es muy conveniente empezar un efectivo acercamiento a la educación científica apoyada en las perspectivas cognitivistas/constructivas del aprendizaje, para recuperar el carácter holista de la ciencia (Barberá, 1996). Coincidimos con Gil Pérez y Valdés (1996) que las actividades experimentales - tanto en formación docente, como en enseñanza media - proporcionan experiencia directa sobre los fenómenos físicos, permiten contrastar los modelos con la realidad (aflorando los obstáculos epistemológicos), aproximan a los estudiantes con los elementos tecnológicos y ayudan a desarrollar el razonamiento práctico. Existen diversas herramientas para realizar y analizar experimentos de física. Sin embargo, hay que destacar la relevancia, cada vez mayor, de las Tecnologías de la Información y la Comunicación (TIC) en la enseñanza de la física, especialmente en las actividades experimentales. Las TIC son poderosas herramientas de análisis y simulación, además de plataformas de organización e intercambio cooperativo de información en tiempo real. La integración de las TIC en el análisis compartido de datos y de resultados experimentales, es una estrategia exitosa para la enseñanza, y un recurso
  3. 3. FLACSO Digital - Uruguay Aulas 2.0 C4 – 2013 Proyecto final (1ª entrega) 3 fundamental para el aprendizaje, catalizador para la transformación educativa positiva, especialmente a nivel de educación media. Si el objetivo es desarrollar la docencia de una manera más activa y con mayores recursos didácticos, las TIC lo facilitan, especialmente en un planteamiento constructivista (Pintó y Gutierrez, 2001). 1.1. Diagnóstico El proyecto se desarrollará en el grupo de segundo año de profesorado de física (plan 2008), generación 2012, en la Asignatura Física experimental II (anual, 3 horas semanales). Se trata de un grupo heterogéneo de 6 estudiantes, con edades entre 19 y 50 años y distintas experiencias académicas, desde bachilleres hasta un técnico en electrónica. Los datos se han recabado a través de una entrevista con los integrantes del grupo. Se indagó sobre el uso y la destreza con TICs. Se ha detectado que los estudiantes de este grupo, utilizan de forma cotidiana las redes sociales (especialmente Facebook), conocen los recursos de procesador de texto (Word) y presentaciones (Powerpoint); dos de ellos han trabajado con planilla de cálculo Excel (sin exceder su potencialidad básica). Ninguno de los estudiantes ha trabajado con páginas web blogs y no tienen conocimientos de programación (en el plan 2008 de formación docente, la asignatura informática educativa se en cuentra en el curso de tercer año). Cinco estudiantes cuentan con su propia computadora portátil y, como en el Laboratorio hay una computadora para uso en al aula, todos los estudiantes pueden trabajar, individual y simultáneamente, con este tipo de herramienta informática. La Institución cuenta con una buena conexión a Internet, a través de Wi-Fi. En un ambiente cada vez más conectado, con recursos gratuitos, o de muy bajo costo, disponibles en red y altamente compatibles con las actividades experimentales, es un verdadero problema que los estudiantes de profesorado de Física, no tengan los conocimientos necesarios como para utilizar de manera
  4. 4. FLACSO Digital - Uruguay Aulas 2.0 C4 – 2013 Proyecto final (1ª entrega) 4 regular las TIC en el análisis de experimentos (obtención y procesamiento de datos, simulación, modelización, etc.). Para mitigar este problema, el Departamento de Física inició, en el año 2012, una experiencia donde se irán incorporan las TIC en las actividades experimentales. En el curso de primer año se inició con el ejercicio de búsqueda selectiva de páginas web y se incluyeron, en la mayoría de los prácticos, los sensores Multilab, el programa Graph y el uso de discos virtuales con Dropbox. En segundo año, se incluyen a las actividades de laboratorio la planilla de cálculo Excel, los documentos compartidos en Google Drive (y también dar continuidad al uso de Dropbox), la creación de blogs y/o páginas web y el uso de la plataforma educativa Edmodo. También se pretende utilizar el ambiente educativo Etoys, para una aproximación a la programación y la simulación para que, futuramente, permita experimentar con mecanismos de robótica, otro tema que empieza a reservar su espacio en la agenda educativa. Este proyecto, se construye para dar secuencia a la experiencia satisfactoria de primer año de profesorado, donde ya han accedido al uso de las TIC, verificando su potencial como herramientas que favorecen los aprendizajes. Sin embargo, se tratará de incidir en el grupo de segundo año, considerando que ya se encuentran motivados, para que puedan explorar sobre las posibilidades de otros recursos tecnológicos, para facilitar el aprendizaje de la Física en la modalidad presencial y en una primera aproximación de la b-learning. 1.2. Fundamentación Ya se ha indicado la importancia de las actividades experimentales en la enseñanza y el aprendizaje de la Física. También se ha citado que las TIC son herramientas relevantes para la educación en un contexto contemporáneo. Justamente, el éxito de la inclusión de las TIC en las actividades experimentales se apoya en la compleja intersección del dominio de los contenidos asociados a cada experimento, de la aplicación de pedagogías pertinentes y de la comprensión plena de las tecnologías más adecuadas para cada situación.
  5. 5. FLACSO Digital - Uruguay Aulas 2.0 C4 – 2013 Proyecto final (1ª entrega) 5 Se ha seleccionado la temática asociada con la electrostática (una de las temáticas recomendadas en el programa de la asignatura Física Experimental II y común a la asignatura Física II), utilizando la elaboración del informe de la actividad experimental para evaluar el dominio de los conocimientos específicos. Se pretende utilizar una metodología participativa y colaborativa, que contemple las destrezas de cada estudiante, pero orientada y regulada por del docente, especialmente debido a la reducida carga horaria de la asignatura. Finalmente, se utilizarán algunas herramientas informáticas que estén disponibles en las computadoras de los estudiantes, así como diversos recursos de Internet, evaluando el uso responsable y, eventualmente, la innovación. 2. Objetivos Objetivo general Que los estudiantes de segundo año de profesorado de Física del Ce.R.P. del Norte, sean capaces de elaborar el informe sobre una actividad prácticas de laboratorio de electrostática, trabajando de modo colaborativo y utilizando las tecnologías para el análisis y divulgación de los resultados experimentales. Objetivos específicos (metas de logros) Todos los estudiantes participarán de forma cooperativa en la manipulación de los instrumentos y en la obtención de los datos experimentales. Deberán elaborar el informe del experimento de manera colaborativa con distribución de tareas. Cada estudiante deberá utilizar con solvencia, por lo menos dos herramientas informáticas o recursos TIC.
  6. 6. FLACSO Digital - Uruguay Aulas 2.0 C4 – 2013 Proyecto final (1ª entrega) 6 3. Contenidos El experimento seleccionado para iniciar este proyecto (carga y energía eléctrica en un sistema de capacitores en paralelo), se ha elegido en función de los materiales disponibles en el Laboratorio de la Institución. Cualquier otra propuesta experimental puede ser presentada de manera libre, desde que discutida por el grupo y sustentada por los recursos correspondientes para su ejecución apropiada. Esta primera aproximación a la actividad experimental enriquecida con las TIC será continuada en otros los otros temas del programa de la asignatura, incluyendo, de modo progresivo, algunos sensores digitales: Mapeo de campo eléctrico en el plano, caso de láminas paralelas. Campo magnético de un conductor rectilíneo y ley de Ampère. Uso de brújula y sensor de efecto Hall. Inducción magnética y ley de Faraday. 4. Estrategias Como la asignatura desde la que se desarrolla este proyecto se orienta a la realización de experimentos, esto constituye un objetivo y también una estrategia. Se comprende que la práctica está fundamentada en la teoría, entonces la búsqueda bibliográfica (en texto papel y/o Internet) permite construir y seleccionar los materiales para fundamentar los prácticos. Ante el número reducido de estudiantes, se puede distribuir las tareas para acelerar los procesos de obtención de datos, pero el análisis de los resultados se enriquece de las distintas miradas, por lo tanto se necesita promover la discusión en grupo o colectivo.
  7. 7. FLACSO Digital - Uruguay Aulas 2.0 C4 – 2013 Proyecto final (1ª entrega) 7 En el entendido de que se ha iniciado la elaboración de documentos en el curso anterior, y conociendo la realidad del grupo, se dará continuidad a la estrategia de producción de informes científicos con TICs. 5. Materiales Para la ejecución de las actividades experimentales (obtención de datos) de este proyecto se utilizarán los materiales disponibles en el laboratorio, con las adaptaciones que los estudiantes propongan, pero respetando las normas de seguridad para el trabajo con circuitos eléctricos. Esos datos serán recabados a través de procedimiento analógicos y, cuando existan los recursos, también por medios digitales. La búsqueda bibliográfica se realizará en los textos recomendados en la bibliografía (disponibles en la biblioteca del Centro) y en páginas Internet de carácter universitario, a través de la conexión Wi-Fi de la Institución. El docente proporcionará una lista de páginas recomendadas y, paralelamente solicitará que los estudiantes realicen búsquedas de páginas web similares. Los resultados serán compartidos en la red Edmodo, donde todos los estudiantes estarán afiliados. Para el análisis de los datos se utilizará planilla de cálculo (Excel, Hoja de Openoffice) o los programas Graph y Graphmatica, que se descargan gratuitamente de la web. Los informes se confeccionarán en alguno de los procesadores de texto disponibles en las computadoras o en Google drive. Este material se subirá a un blog o página web, creado para ese fin. Se recomienda el uso de cámara digital para registrar (fotos y pequeños videos) lo más importante de los experimentos. Estos registros serán incluidos en el blog/página web y también podrán compartirse a través de las redes sociales (Edmodo, Facebook, Youtube, Tweeter, etc.).
  8. 8. FLACSO Digital - Uruguay Aulas 2.0 C4 – 2013 Proyecto final (1ª entrega) 8 Otras aplicaciones sugeridas: Circuitlab (representación y análisis de circuitos en red), Graph y Graphmatica (construcción de gráficas y análisis estadístico de datos), Exelearning (para elaboración de tareas y pruebas; complemento asincrónico de Edmodo), Phet (simulador de experimentos de ciencias en línea) y el entorno Etoys (para programar situaciones relacionados con la teoría del electromagnetismo). 6. Actividades Tiempo Contenidos Actividades Clase 1 (3hs) Capacitores, carga y energía eléctrica. Asociación de capacitores en paralelo. Carga y energía en un capacitor.Conservación de la carga en sistemas aislados. Trabajo eléctrico y variación de energía potencial. Elaboración de presentaciones. Al iniciar la clase, se distribuirán tareas entre los integrantes del grupo, de tal forma que cada uno de los estudiantes trabaje con por lo menos dos recursos TIC. Búsqueda bibliográfica de información sobre capacitores y sus propiedades. Se trabajará en parejas, consultando cualquiera de los textos del curso de Física II y una página web indicada por el docente. Cada equipo estudiará una característica de los capacitores (1h). Cada pareja deberá preparar una presentación y exponerla ante el grupo (1h). La presentación será compartida en Edmodo, en un espacio previamente construido por el docente. Se distribuirá un protocolo de trabajo con un procedimiento de toma de datos del experimento. Los estudiantes realizarán el experimento y dejarán registro de los datos en una tabla elaborada en Excel u otra planilla de cálculo (30min). Los estudiantes deberán realizar fotografías y videos del práctico. Tiempo Contenidos Actividades Clase 2 (3hs) Funcionamiento de planilla de cálculo y su potencialidad para análisis de datos. Nociones matemáticas sobre estudio de datos. Pasos para elaborar de un informe científico. Construcción de blogs. Análisis, en planilla de cálculo, de los datos obtenidos en la clase anterior. Trazado de la línea de tendencia y cálculo del coeficiente de regresión con los recursos de la planilla. Prueba con el programa Graph (1h). Consulta en Internet (p.ej. Wikipedia) sobre análisis de datos y método de mínimos cuadrados (30min). Uso de Circuitlab o Crocodrile para la construcción de circuitos eléctricos (30 min). Iniciar la elaboración de un informe de práctico. Construcción de un blog o de una página web para las actividades de la asignatura ( 30 min).
  9. 9. FLACSO Digital - Uruguay Aulas 2.0 C4 – 2013 Proyecto final (1ª entrega) 9 Tiempo Contenidos Actividades Clase 3 (3hs) Construcción de una web/blog. Subir un video a Youtube. Los estudiantes, en plenario, discutirán las conclusiones del práctico (1h). Luego, podrán distribuirse en dos equipos (1h y 30min). Deberán utilizar esta clase para completar el informe y publicarlo en el blog. También se seleccionarán dos videos para subir a Youtube. 7. Evaluación Destacado Adecuado Insuficiente Calidad de la participación en la actividad Plantea ideas innovadoras y las propone abiertamente al grupo, con fundamentos conceptuales rigurosos . Actúa con iniciativa y decisión. Intercambia información con el grupo de forma regular. Cumple con las orientaciones y colabora en todas las clases. Sólo participa cuando se le solicita. No comparte sus ideas con el colectivo. Nivel de comprensión de los conceptos académicos Estudia profundamente los temas, buscando bibliografía diversa y de calidad. Piensa aplicaciones de la teoría a la práctica e intenta proyectar experimentos fuera de la estructura curricular. Estudia regularmente, confecciona resúmenes y selecciona bibliografía adecuada al nivel terciario. Consulta al docente y a los colegas en caso de dudas. Demuestra muchas dudas sobre conceptos clave. No se preocupa de superar las dificultades. Destreza en el uso de las TIC Demuestra buen dominio de las TIC. Piensa y propone aplicaciones de las TIC en la enseñanza y el aprendizaje de la Física. Se interesa por experimentar nuevas opciones tecnológicas y las comparte en el grupo para facilitar los aprendizajes. Utiliza correctamente los recursos tecnológicos. Es diestro en, por lo menos, dos de ellos al trabajar en actividades experimentales. Se preocupa en ampliar el conocimiento sobre uso de las TIC en educación. Se niega o resiste a utilizar las TIC. Interacción en el grupo Excelente relación con todos los integrantes del grupo. Respeta y exige que se respete la diversidad de posiciones e ideas. Siempre fundamenta sus ideas con sólidos fundamentos teóricos. Tiene buenas relaciones con la mayoría de los compañeros y cumple con las funciones que le asigna el grupo. En los momentos de discusión logra fundamentar su posición. No logra cumplir con las tareas al trabajar de forma grupal. Discrepa constantemente con los compañeros sin fundamentar su posición.
  10. 10. FLACSO Digital - Uruguay Aulas 2.0 C4 – 2013 Proyecto final (1ª entrega) 10 8. Producto Como producto final del proyecto se espera que los estudiantes, trabajando en parejas (pero intercambiando información de forma colaborativa, a través de Edmodo, Google drive, Dropbox, u otra opción que consideren adecuada), presenten informes digitales de los experimentos sobre electromagnetismo. Estos informes serán incluidos en una página web, blog o webquest del grupo. La siguiente matriz de valoración permitirá evaluar los resultados de la página web/blog y del proceso de elaboración de los informes de los experimentos realizados. Excelente Bueno Reelaborar Navegabilidad Página muy atractiva y rápida de navegar en múltiples ventanas. La información se encuentra con facilidad y se puede compartir de forma sencilla. Página simple, organizada cronológicamente y con información actualizada. Conjunto de documentos sin conexión entre sí. Calidad de la información Información actualizada y de nivel terciario. Información correcta y de nivel de enseñanza media. Información sin fundamento científico Variedad de recursos Incluye diversos recursos (texto, imágenes, videos, hipervínculos, lectura de documentos). Utiliza texto, imágenes e hipervínculos de forma correcta Solo incluye texto e imágenes, omite otros posibles recursos TIC. Bibliografía ADELL, J. 2005. Internet en educación. Consultada el 28/4/2013. Disponible en: http://www.ceibal.edu.uy/contenidos/areas_conocimiento/aportes/adell.pdf. ANDRES, M., PESA, M. A. y MENESES, J. 2006. La actividad experimental en física: visión de estudiantes universitarios. Paradigma, vol.27, nº.1 p.349-363. Consultada el 28/4/2013. Disponible en http://www.scielo.org.ve/scielo.php?script=sci_arttext&pid=S1011- 22512006000100003&lng=es&nrm=iso.
  11. 11. FLACSO Digital - Uruguay Aulas 2.0 C4 – 2013 Proyecto final (1ª entrega) 11 BARBERÀ, E. y BADIA, A. 2004. Educar con las aulas virtuales. Orientaciones para la innovación en el proceso de enseñanza y aprendizaje. Madrid: Machado Libros. BARBERÁ, O. Y VALDÉS, P. (1996). El trabajo práctico en la enseñanza de las ciencias: una revisión. Enseñanza de las Ciencias, 14 (3), 365-379. CABERO ALMENARA, Julio. Las necesidades de las TIC en el ámbito educativo: oportunidades, riesgos y necesidades. Revista Tecnología y comunicación educativa nº 45 (2007), disponible en http://investigacion.ilce.edu.mx/tyce/45/articulo1.pdf, consultado el 3 de setiembre de 2013. CABERO, J. 2007. Tecnología Educativa. Madrid: McGraw Hill. DE HARO, J.J.(2008). Las redes sociales en educación. Disponible en http://jjdeharo.blogspot.com/2008/11/la-redes-sociales-en-educacin.html. Consultado el 28 de mayo de 2013. COLL, Cesar. Aprender y enseñar con las TIC: expectativas, realidad y potencialidades, disponible en http://www.escritoriomdyh.educ.ar/recursos/articulos/aprender_y_ensenar_con_tic .pdf, 2008, consultado el 2de setiembre de 2013. ENRIQUEZ, C. 2010. La inclusión de la informática en la formación docente. Diálogos en Educación, agosto de 2010. Consultada el 30/4/2013. Disponible en http://www.dialogos-en-educacion.org/puntos-vista/la-inclusion-de-la-informatica- en-la-formacion-docente . ERTMER, P. Y NEWBY, T. (1993). Conductismo, cognitivismo y constructivismo: una comparación de los aspectos críticos desde la perspectiva del diseño de instrucción. Performance Improvement Quarterly, 1993, 6(4), 50-72. GIL PÉREZ, D. Y VALDÉS CASTRO (1996) La orientación de las prácticas de laboratorio como investigación: un ejemplo ilustrativo. Enseñanza de las Ciencias, 14 (2), 155-163. GRAS-MARTÍ, A Y CANO, M. (2005). Debates y tutorías como herramientas de aprendizaje para alumnos de ciencias: análisis de la integración curricular de recursos del campus virtual. Revista enseñanza de las ciencias 23(2) HALLIDAY, D., RESNICK, R. y KRANE, K. (1996). Física, vol.2. México, Cecsa. LITWIN, E. 2001. Las nuevas tecnologías y las prácticas de la enseñanza en la universidad. Consultado el 28/4/2013. Disponible en: http://www.litwin.com.ar/site/Articulos2.asp MARCO-STIEFEL, B. (2006). Integración de Internet en la enseñanza de las ciencias. Como aprovechar su caudal informativo. Alambique 50, 19-30.
  12. 12. FLACSO Digital - Uruguay Aulas 2.0 C4 – 2013 Proyecto final (1ª entrega) 12 MARTÍNEZ, F. Y TUREGANO, J. (2011). Ciencias para el Mundo Contemporáneo, disponible en http://www.oei.es/decada/libro/promocion03.pdf, consultado el 27 de setiembre de 2013. MCKELVEY, H., GROTCH, H.(1980). Física para Ciencias e Ingeniería. México, Harla. OYARZO ESPINOSA, J. Teorías del aprendizaje (breve recorrido), febrero de 2008, disponible en ftp://www.cc.uah.es/pub/Alumnos/Dip.Maestro/Master/Unidad%202/Teor%C3%AD as%20de%20aprendizaje.pdf, consultado el 2 de setiembre de 2013. PINTÓ, R. (2001). Tendencias detectadas ante la implantación de innovaciones en los cursos de ciencias. Algunos resultados del proyecto europeo de investigación STTIS, Enseñanza de las Ciencias, núm. extra, VI Congreso, p. 103. POZO, J. I. y GÓMEZ CRESPO, M. A.(2000). Aprender y enseñar ciencia. Madrid, Morata. REVERDITO, A. Y LORENZO, M. G. (2007) Actividades experimentales simples. Un punto de partida posible para la enseñanza de la química, Educación en la Química. SOTO, F.
J.
y
FERNÁNDEZ,
J.
J.
(2003).
 Realidades
 y
 retos
 de
inclusión
 digital.
 Comunicación y Pedagogía.
Nº
192,
págs.
34‐40. TIPER, P. (1985). Física, tomo 2. Barcelona, Reverté. URBINA RAMÍREZ, S. Informática y teorías del aprendizaje , Universitat de les Illes Ballears, 1997, disponible en http://tecnologiaedu.us.es/nweb/htm/pdf/gte41.pdf, consultado el 5 de setiembre de 2013. VÁZQUEZ, A. Y MANASSERO, M. A. (1997) Una evaluación de las actitudes

×