SlideShare una empresa de Scribd logo

Plan de Unidad Temática . Matemática.Tercero de bachillerato

C
C
Cris Panchi Profesor de Matemática

Plan de Unidad Didáctica Matemática

Plan de Unidad Temática . Matemática.Tercero de bachillerato

1 de 18
Descargar para leer sin conexión
Objetivo del área por subnivel
O.M.5.1. Proponer soluciones creativas a situaciones concretas
Objetivo integrador del área por subnivel
OI.5.1. Analizar los diversos proyectos políticos,
Logo
Institucional
Nombre de la institución Año lectivo
PLAN DE UNIDAD TEMÁTICA
1. DATOS INFORMATIVOS:
Docente:
Nombre del
docente que
ingresa la
información
Área/asignatura: MATEMÁTICA Grado/Curso: 3° BACHILLERATO Paralelo
N° de unidad
de
planificación
1
Título de la
unidad de
planificación
FUNCIONES
Objetivos específicos de la unidad
de planificación
Producir, comunicar y generalizar información de
manera escrita, verbal, simbólica, gráfica y/o
tecnológica mediante la aplicación de
conocimientos matemáticos y el manejo
organizado, responsable y honesto de las fuentes
de datos para comprender otras disciplinas,
entender las necesidades y potencialidades de
nuestro país y tomar decisiones con
responsabilidad social.
Desarrollar estrategias individuales y grupales que
permitan un cálculo mental, escrito, exacto o
estimado y la capacidad de interpretación y
solución de situaciones problemáticas del medio.
Valorar el empleo de las TIC para realizar cálculos
y resolver, de manera razonada y crítica,
problemas de la realidad nacional, argumentando
pertinencia de los métodos utilizados y juzgados la
validez de los restados.
PERÍODOS 24 SEMANA DE INICIO:
2. PLANIFICACIÓN
DESTREZAS CON CRITERIO DE DESEMPEÑO ASER DESARROLLADAS CRITERIOS DE EVALUACIÓN
• Graficar y analizar el dominio, el recorrido, la monotonía, ceros, extremos y paridad de las diferentes
funciones reales (Funciona afin a trozos, función potencia entera negativa con n=-1, -2, función raíz
CE.M.5.3. Opera y emplea funciones reales, lineales,
cuadráticas,polinomiales,exponenciales,logarítmicas y
trigonométricasparaplantear situaciones hipotéticas y
cuadrada, función valor absoluto de la función afín) utilizando TIC.
• Realizar la composición de funciones reales analizando las características de la función resultante
(dominio, recorrido, monotonía, máximos, mínimos, paridad)
• Resolver (con o sin el uso de la tecnología) problemas o situaciones reales o hipotéticas con el
empleo de la modelización con funciones reales (función afín a trozos, función potencia entera
negativa con n=-1, -2 función raíz cuadrada, función valor absoluto de la función afín), identificando las
variables significativas presentes y las relaciones entre ellas: juzgar la pertinencia y validez de los
resultados obtenidos.
• Reconocer funciones inyectivas, sobreyectivas y biyectivas para calcular la función inversa (de
funciones biyectivas) comprobando con la composición de funciones.
• Resolver y plantear aplicaciones de la composición de funciones reales en problemas reales o
hipotéticos.
• Realizar las operaciones de adición y producto entre funciones reales en problemas reales o
hipotéticos.
• Resolver ecuaciones que se pueden reducir a ecuaciones de segundo grado con una incógnita.
• Resolver (con o sin el uso de la tecnología) problemas o situaciones reales o hipotéticas que pueden
ser modelizados con funciones cuadráticas identificando las variables significativas presentes y las
relaciones entre ellas: juzgar la pertinencia y validez de los resultados obtenidos.
•Identificar sucesiones numéricas reales, sucesiones monótonas y sucesiones definidas por
recurrencia a partir de las fórmulas que las definen.
• Aplicar los conocimientos sobre progresiones aritméticas, progresiones geométricas y sumas
parciales finitas de sucesiones numéricas para resolver aplicaciones en general y de manera especial
en el ámbito financiero de las sucesiones numéricas.
• Resolver ejercicios numéricos y problemas con la aplicación de las progresiones aritméticas,
geométricas y sumas parciales finitas de sucesiones numéricas.
• Reconocer las aplicaciones de las sucesiones numéricas reales en el ámbito financiero y resolver
problemas, juzgar la validez de las soluciones obtenidas dentro del contexto del problema.
• Emplear progresiones aritméticas, geométricas y sumas parciales fintas de sucesiones numéricas en
el planteamiento y resolución de problemas de diferentes ámbitos.
• Realizar las operaciones de suma y multiplicación entre sucesiones numéricas reales y la
multiplicación de escalares por sucesiones numéricas reales aplicando las propiedades de los
números reales.
• Identificar sucesiones convergentes y calcular el límite de la sucesión.
cotidianas que puedan resolverse mediante modelos
matemáticos; comenta la validez y limitaciones de los
procedimientos empleados y verifica sus resultados
mediante el uso de las TIC.
ACTIVIDADES DE APRENDIZAJE RECURSOS INDICADORES DE LOGRO TÉCNICAS E INSTRUMENTOSDE EVALUACIÓN
Aseguramiento del nivel de partida
mediante una lluvia de ideas sobre
- Texto
- Pizarra
M.5.3.1. Grafica funciones reales y analiza su dominio,
recorrido, monotonía, ceros, extremos, paridad; identifica
Comprobar el desarrollo de las habilidades
necesarias para reconocer, interpretar,
funciones, tipos y gráficas.
Manipulación de material con fotos
y representación de distintos tipos
de funciones y sus gráficos.
Resolución de problemas de
aplicación de funciones en el
ámbito financiero y comercial.
Uso de diagramas que resuman
los principales conceptos,
propiedades, procedimientos,
gráficos y análisis de diferentes
funciones.
Uso de software que facilitan la
representación gráfica y posterior
interpretación de información.
¿Qué podemos decir sobre las
funciones y sus aportes en la
economía?
Identificación de funciones y su
aplicación en las finanzas y
economía.
Reflexión y análisis sobre dichas
aplicaciones.
¿Por qué es importante conocer,
graficas analizar e interpretar
graficas de funciones?
Planteamiento y resolución de
problemas que apliquen funciones
en el ámbito financiero y
comercial.
- Enlaces Web
- Calculadora
las funciones afines, potencia, raíz cuadrada, valor
absoluto, reconoce si unafunciónesinyectiva,sobreyectiva
o biyectiva,realizaoperacionesconfuncionesaplicando las
propiedades de los números reales en problemas reales o
hipotéticos. (I.4)
M.5.3.2. Representa gráficamente funciones cuadráticas;
hilalasinterseccionesde losejes,el dominio,rango,vértice
y monotonía;empleasistemas de ecuaciones para calcular
la intersección entre una recta y una parábola o dos
parábolas; emplea modelos cuadráticos para resolver
problemas, de manera intuitiva halla un límite y la
derivada; optimiza procesos empleando las TIC. (13, 14)
M.5.3.3. Reconoce funciones polinomiales de grado n,
operacon funcionespolinomiales de grado =4 y racionales
de grado =3; plantea modelos matemáticos para resolver
problemas aplicados a la informática; emplea el teorema
de Hörner y el teorema del residuo para factorizar
polinomios; con la ayuda de las TIC, escribe la ecuación de
lasasíntotas, y discute lavalidezde susresultados. (I.3.I.4.)
M.5.3.4. Halla gráfico y analíticamente el dominio,
recorrido, monotonía, periodicidad, desplazamientos,
máximos y mínimos de funciones trigonométricas para
moldear movimientos circulares, y comportamientos de
fenómenos naturales, y discute su pertinencia; emplea la
tecnología para corroborar sus resultados. (J.3.I.2)
M.5.3.5. Obtiene la gráfica de una ecuación exponencial a
partir de a^x, mediante traslaciones, homotecias y
reflexiones;concibe lafunción logarítmicacomo inversa de
la función exponencial; aplica propiedades de los
logaritmos y halla su dominio, recorrido, asíntotas,
interseccionesconlosejes; las aplica en situaciones reales
e hipotéticas, con y sin apoyo de la tecnología. (I.3)
graficar, analizar las características y operar
con funciones de variable real (lineal,
cuadrática, exponencial, logarítmica,
trigonométrica, polinomiales y racionales). Que
el estudiante analice el dominio, el recorrido, la
monotonía, los ceros, máximos y mínimos,
paridad, y composición de las diferentes
funciones, también se incluyen las
propiedades de inyectividad, sobreyectividad y
biyectividad, apoyándose con las TIC, debe
poder graficar, interpretar y encontrar las
intersecciones con los ejes, y la intersección
de las gráficas de funciones; además de hallar
la solución de ecuaciones de manera gráfica;
interpretar geométricamente la derivada de
una función cuadrática y sus aplicaciones; y
comprender la noción de limite y su aplicación,
así como la modelización de situaciones reales
a través de las funciones.
ELEMENTOS DEL PERFIL DE SALIDA
J.3. Procedemos con respeto y responsabilidad con nosotros y con las demás personas, con la naturaleza y con el mundo de las ideas. Cumplimos nuestras
Obligaciones y exigimos la observación de nuestros derechos.
I.2.Nos movemos por la curiosidad intelectual, indagamos la realidad nacional y mundial, reflexionamos aplicamos nuestros conocimientos interdisciplinarios para
resolver problemas que informa colaborativa e interdependiente aprovechando todos los recursos e información posibles.
I.3.Sabemos comunicarnos de manera clara en nuestra lengua y en otras, utilizamos varios lenguajes como el numérico, el digital, el artístico y el corporal; asumimos
con responsabilidad nuestros discursos.
I.4.Actuamos de manera organizada, con autonomía e independencia; aplicamos el razonamiento lógico, crítico y complejo; y practicamos la humildad intelectual en
un aprendizaje a lo largo de la vida.
Objetivo del área por subnivel
O.M.5.1. Proponer soluciones creativas a situaciones concretas
Objetivo integrador del área por subnivel
OI.5.1. Analizar los diversos proyectos políticos,
Logo
Institucional
Nombre de la institución Año lectivo
PLAN DE UNIDAD TEMÁTICA
3. DATOS INFORMATIVOS:
Docente:
Nombre del
docente que
ingresa la
información
Área/asignatura: MATEMÁTICA Grado/Curso: 2° BACHILLERATO Paralelo
N° de unidad
de
planificación
2
Título de la
unidad de
planificación
FUNCIONES
TRIGONOMÈTRICAS
Objetivos específicos de la unidad
de planificación
Proponer soluciones creativas a situaciones
concretas de la realidad nacional y mundial
mediante la aplicación de las operaciones
básicas de los diferentes conjuntos numéricos,
el uso de modelos funcionales, algoritmos
apropiados, estrategias y métodos formales y
no formales de razonamiento matemático que
lleven a juzgar con responsabilidad la validez
de procedimientos y los resultados en un
contexto.
Desarrollar la curiosidad y la creatividad en el
uso de herramientas matemáticas al momento
de enfrentar y solucionar problemas de la
realidad nacional demostrando actitudes de
orden, perseverancia y capacidades de
investigación.
PERÍODOS 24
SEMANA DE
INICIO:
4. PLANIFICACIÓN
DESTREZAS CON CRITERIO DE DESEMPEÑO ASER DESARROLLADAS CRITERIOS DE EVALUACIÓN
• Definir las funciones seno, coseno y tangente a partir de las relaciones trigonométricas en el círculo CE.M.5.3. Opera y emplea funciones reales,
trigonométrico (unidad) e identificar sus respectivas graficas a partir del análisis de sus características
particulares.
•Reconocer y graficar funciones periódicas determinando el periodo y amplitud de las mismas, su dominio
recorrido, monotonía, paridad.
• Reconocer las funciones trigonométricas (seno, coseno, tangente, secante, cosecante y cotangente), sus
propiedades y las relaciones existentes entre las funciones y representarlas de manera gráfica con apoyo
de las TIC (calculadora gráfica, software, applets).
• Reconocer y resolver (con apoyo de las TIC) aplicaciones, problemas o situaciones reales o hipotéticas
que pueden ser modelizadas con funciones trigonométricas identificando las variables significativas
presentes y las relaciones entre ellas y juzgar la validez y pertinencia de los resultados obtenidos.
lineales,cuadráticas,polinomiales,exponenciales,
logarítmicas y trigonométricas para plantear
situaciones hipotéticas y cotidianas que puedan
resolverse mediante modelos matemáticos;
comenta la validez y limitaciones de los
procedimientos empleados y verifica sus
resultados mediante el uso de las TIC.
ACTIVIDADES DE APRENDIZAJE RECURSOS INDICADORES DE LOGRO
TÉCNICAS E INSTRUMENTOS DE
EVALUACIÓN
Debatir la necesidad que existe en
las ciencias de las
telecomunicaciones de modelar
matemáticamente las ondas
electromagnéticas (las ondas de
radio, de televisión, el WIFI, son
ondas electromagnéticas).
Comparar las similitudes entre la
gráfica de una función seno, con
un gráfico de una onda
electromagnética.
Usar un sistema de referencia
adecuado e interpretar las
características de la función seno
y coseno.
Reflexionar acerca de la
importancia de estos
conocimientos en la tecnología
actual.
Identificar las características y
transformaciones de los gráficos
de las funciones trigonométricas
básicas.
Usar los modelos matemáticos
 Texto
 Cuaderno
 Videos
(sitios web)
 Pizarra
 Calculadora
IM.5.3.1. Graficafuncionesrealesyanalizasudominio,
recorrido,monotonía,ceros,extremos,paridad;identificalas
funcionesafines,potencia,raízcuadrada,valorabsoluto;
reconoce si una funciónesinyectiva,sobreyectivaobiyectiva;
realizaoperacionesconfuncionesaplicandolaspropiedadesde
losnúmerosrealesenproblemasrealesohipotéticos.(I.4)
M.5.3.2. Representagráficamente funcionescuadráticas;halla
lasinterseccionesconlosejes,el dominio,rango,vérticey
monotonía;empleasistemasde ecuaciones paracalcularla
intersecciónentre unarectayuna parábolao dos parábolas;
empleamodeloscuadráticospararesolverproblemas,de
maneraintuitivahallaunlímite yladerivada;optimizaprocesos
empleandolasTIC,(13,14)
M.5.3.3. Reconoce funciones polinomialesde gradon,opera
con funcionespolinomialesde grado=4 y racionalesde grado
=3; planteamodelosmatemáticospararesolverproblemas
aplicadosa lainformática;empleael teoremade Hörneryel
teoremadel residuoparafactorizarpolinomios; conlaayudade
losTIC, escribe lasecuacionesde lasasíntotas,ydiscute la
validezde susresultados.(I.3.,I.4)
M.5.3.4. Hallagráfica y analíticamente el dominio,recorrido,
monotonía,periodicidad,desplazamientos,máximosymínimos
de funcionestrigonométricasparamodelarmovimientos
circularesycomportamientosde fenómenosnaturales,y
discute supertenencia;emplealatecnologíaparacorroborar
Comprobar el desarrollo de las habilidades
necesarias para reconocer, interpretar,
graficar, analizar las características y
operar con funciones de variable real
(lineal, cuadrática, exponencial,
logarítmica, trigonométrica, polinomiales y
racionales). Que el estudiante analice el
dominio, el recorrido, la monotonía, los
ceros, máximos y mínimos, paridad, y
composición de las diferentes funciones,
también se incluyen las propiedades de
inyectividad, sobreyectividad y
biyectividad, apoyándose con las TIC,
debe poder graficar, interpretar y
encontrar las intersecciones con los ejes,
y la intersección de las gráficas de
funciones; además de hallar la solución de
ecuaciones de manera gráfica; interpretar
geométricamente la derivada de una
función cuadrática y sus aplicaciones; y
comprender la noción de limite y su
aplicación, así como la modelización de
situaciones reales a través de las
funciones.
comprendidos en las
características físicas de las
ondas.
Reconocer e interpretar las
características de las funciones
trigonométricas.
Producir predicciones usando los
modelos matemáticos estudiados.
sus resultados.(J.3.,I.2.)
M.5..3.5. Obtiene lagráficade unafunciónexponencial apartir
de a^x, mediante traslaciones,homoteciasyreflexiones;
concibe lafunciónlogarítmicacomoinversade la función
exponencial;aplicapropiedadesde loslogarítmicosyhallasu
dominio,recorrido,asíntotas,interseccionesconlosejes;las
aplicaensituaciones realese hipotéticas,conysinapoyode la
tecnología.(I.3.)
ELEMENTOS DEL PERFIL DE SALIDA
J.3. Procedemos con respeto y responsabilidad con nosotros y con las demás personas, con la naturaleza y con el mundo de las ideas. Cumplimos nuestras
Obligaciones y exigimos la observación de nuestros derechos.
I.2.Nos movemos por la curiosidad intelectual, indagamos la realidad nacional y mundial, reflexionamos aplicamos nuestros conocimientos interdisciplinarios para
resolver problemas que informa colaborativa e interdependiente aprovechando todos los recursos e información posibles.
I.3.Sabemos comunicarnos de manera clara en nuestra lengua y en otras, utilizamos varios lenguajes como el numérico, el digital, el artístico y el corporal; asumimos
con responsabilidad nuestros discursos.
I.4. Actuamos de manera organizada, con autonomía e independencia; aplicamos el razonamiento lógico, crítico y complejo; y practicamos la humildad intelectual en
un aprendizaje a lo largo de la vida.
Publicidad

Recomendados

Plan de Unidad Temática Matemática. Segundo de bachillerato
Plan de Unidad Temática Matemática. Segundo de bachilleratoPlan de Unidad Temática Matemática. Segundo de bachillerato
Plan de Unidad Temática Matemática. Segundo de bachilleratoCris Panchi
 
PUD 2 Matemática bachillerato 1 (2).docx
PUD 2 Matemática bachillerato 1 (2).docxPUD 2 Matemática bachillerato 1 (2).docx
PUD 2 Matemática bachillerato 1 (2).docxEduardoLascano5
 
PLANIFICACION DECIMO MATEMATICA SEGUNDO PARCIAL 2022 - 2023.docx
PLANIFICACION DECIMO MATEMATICA SEGUNDO PARCIAL 2022 - 2023.docxPLANIFICACION DECIMO MATEMATICA SEGUNDO PARCIAL 2022 - 2023.docx
PLANIFICACION DECIMO MATEMATICA SEGUNDO PARCIAL 2022 - 2023.docxFernandoRodriguez408708
 
Plan curricular anual y bloque matemática superior
Plan curricular anual y bloque matemática superior Plan curricular anual y bloque matemática superior
Plan curricular anual y bloque matemática superior Darwin Minaya
 

Más contenido relacionado

La actualidad más candente

Plan de Unidad Temática. Matemática. Primero de bachillerato
Plan de Unidad Temática. Matemática. Primero de bachilleratoPlan de Unidad Temática. Matemática. Primero de bachillerato
Plan de Unidad Temática. Matemática. Primero de bachilleratoCris Panchi
 
Pca 1 bgu matematica
Pca 1 bgu matematicaPca 1 bgu matematica
Pca 1 bgu matematicaIvan Heredia
 
1er grado de secundaria Planificación de matemática (1).docx
1er grado de secundaria Planificación de matemática (1).docx1er grado de secundaria Planificación de matemática (1).docx
1er grado de secundaria Planificación de matemática (1).docxFranciscaGarcia33
 
Evaluación diagnóstica matemática 3 bgu
Evaluación diagnóstica matemática 3 bguEvaluación diagnóstica matemática 3 bgu
Evaluación diagnóstica matemática 3 bguEduardo Lascano
 
Plan de clase 1. sistemas de inecuaciones
Plan de clase 1. sistemas de inecuacionesPlan de clase 1. sistemas de inecuaciones
Plan de clase 1. sistemas de inecuacionesCris Panchi
 
Plan de clase ecuación de la recta.
Plan de clase ecuación de la recta.Plan de clase ecuación de la recta.
Plan de clase ecuación de la recta.geojacv
 
Planificación curricular anual 9° egb matemáticas 2017 2018
Planificación curricular anual 9° egb matemáticas 2017 2018Planificación curricular anual 9° egb matemáticas 2017 2018
Planificación curricular anual 9° egb matemáticas 2017 2018amarcill
 
PLANIFICACION CURRICULAR ANUAL (DECIMO PRIMER BLOQUE)
PLANIFICACION CURRICULAR ANUAL (DECIMO PRIMER BLOQUE)PLANIFICACION CURRICULAR ANUAL (DECIMO PRIMER BLOQUE)
PLANIFICACION CURRICULAR ANUAL (DECIMO PRIMER BLOQUE)Will Aguilar
 
Planificación curricular anual 8° de egb matemáticas 2017 2018
Planificación curricular anual 8° de egb matemáticas 2017 2018Planificación curricular anual 8° de egb matemáticas 2017 2018
Planificación curricular anual 8° de egb matemáticas 2017 2018amarcill
 
Sesion funcion cuadrtaica
Sesion funcion cuadrtaicaSesion funcion cuadrtaica
Sesion funcion cuadrtaicaVictor Alegre
 
Planificacion. bloque.-curricular.-9 no-matematica
Planificacion. bloque.-curricular.-9 no-matematicaPlanificacion. bloque.-curricular.-9 no-matematica
Planificacion. bloque.-curricular.-9 no-matematicaDario Javier Tubon Tite
 
Plan de clase funcion lineal 1.
Plan de clase funcion lineal 1.Plan de clase funcion lineal 1.
Plan de clase funcion lineal 1.geojacv
 
Matematica 3 BGU PCA-PUD seis unidades.docx
Matematica 3 BGU PCA-PUD seis unidades.docxMatematica 3 BGU PCA-PUD seis unidades.docx
Matematica 3 BGU PCA-PUD seis unidades.docxasagac
 
Guia didáctica de matematicas
Guia didáctica de matematicasGuia didáctica de matematicas
Guia didáctica de matematicasjeqt007
 
Planificación anual 8°, 9° y 10° matemáticas según nuevo formato 2015 ing. ar...
Planificación anual 8°, 9° y 10° matemáticas según nuevo formato 2015 ing. ar...Planificación anual 8°, 9° y 10° matemáticas según nuevo formato 2015 ing. ar...
Planificación anual 8°, 9° y 10° matemáticas según nuevo formato 2015 ing. ar...Ariel Marcillo
 

La actualidad más candente (20)

Plan de Unidad Temática. Matemática. Primero de bachillerato
Plan de Unidad Temática. Matemática. Primero de bachilleratoPlan de Unidad Temática. Matemática. Primero de bachillerato
Plan de Unidad Temática. Matemática. Primero de bachillerato
 
PLAN DE CLASE
PLAN DE CLASEPLAN DE CLASE
PLAN DE CLASE
 
Pca 1 bgu matematica
Pca 1 bgu matematicaPca 1 bgu matematica
Pca 1 bgu matematica
 
1er grado de secundaria Planificación de matemática (1).docx
1er grado de secundaria Planificación de matemática (1).docx1er grado de secundaria Planificación de matemática (1).docx
1er grado de secundaria Planificación de matemática (1).docx
 
Evaluación diagnóstica matemática 3 bgu
Evaluación diagnóstica matemática 3 bguEvaluación diagnóstica matemática 3 bgu
Evaluación diagnóstica matemática 3 bgu
 
Plan de clase 1. sistemas de inecuaciones
Plan de clase 1. sistemas de inecuacionesPlan de clase 1. sistemas de inecuaciones
Plan de clase 1. sistemas de inecuaciones
 
Plan de clase ecuación de la recta.
Plan de clase ecuación de la recta.Plan de clase ecuación de la recta.
Plan de clase ecuación de la recta.
 
PCA DECIMO 2019-2020.docx
PCA DECIMO 2019-2020.docxPCA DECIMO 2019-2020.docx
PCA DECIMO 2019-2020.docx
 
Planificación inecuaciones
Planificación  inecuacionesPlanificación  inecuaciones
Planificación inecuaciones
 
Planificación curricular anual 9° egb matemáticas 2017 2018
Planificación curricular anual 9° egb matemáticas 2017 2018Planificación curricular anual 9° egb matemáticas 2017 2018
Planificación curricular anual 9° egb matemáticas 2017 2018
 
PLANIFICACION CURRICULAR ANUAL (DECIMO PRIMER BLOQUE)
PLANIFICACION CURRICULAR ANUAL (DECIMO PRIMER BLOQUE)PLANIFICACION CURRICULAR ANUAL (DECIMO PRIMER BLOQUE)
PLANIFICACION CURRICULAR ANUAL (DECIMO PRIMER BLOQUE)
 
Planificación curricular anual 8° de egb matemáticas 2017 2018
Planificación curricular anual 8° de egb matemáticas 2017 2018Planificación curricular anual 8° de egb matemáticas 2017 2018
Planificación curricular anual 8° de egb matemáticas 2017 2018
 
Sesion funcion cuadrtaica
Sesion funcion cuadrtaicaSesion funcion cuadrtaica
Sesion funcion cuadrtaica
 
Planificacion. bloque.-curricular.-9 no-matematica
Planificacion. bloque.-curricular.-9 no-matematicaPlanificacion. bloque.-curricular.-9 no-matematica
Planificacion. bloque.-curricular.-9 no-matematica
 
PCA NOVENO 2019-2020.docx
PCA NOVENO 2019-2020.docxPCA NOVENO 2019-2020.docx
PCA NOVENO 2019-2020.docx
 
Plan de clase funcion lineal 1.
Plan de clase funcion lineal 1.Plan de clase funcion lineal 1.
Plan de clase funcion lineal 1.
 
Matematica 3 BGU PCA-PUD seis unidades.docx
Matematica 3 BGU PCA-PUD seis unidades.docxMatematica 3 BGU PCA-PUD seis unidades.docx
Matematica 3 BGU PCA-PUD seis unidades.docx
 
P.c.a. décimo
P.c.a. décimoP.c.a. décimo
P.c.a. décimo
 
Guia didáctica de matematicas
Guia didáctica de matematicasGuia didáctica de matematicas
Guia didáctica de matematicas
 
Planificación anual 8°, 9° y 10° matemáticas según nuevo formato 2015 ing. ar...
Planificación anual 8°, 9° y 10° matemáticas según nuevo formato 2015 ing. ar...Planificación anual 8°, 9° y 10° matemáticas según nuevo formato 2015 ing. ar...
Planificación anual 8°, 9° y 10° matemáticas según nuevo formato 2015 ing. ar...
 

Similar a Plan de Unidad Temática . Matemática.Tercero de bachillerato

2DO PCA MATEMATICA BGU 2017.docx
2DO PCA MATEMATICA  BGU 2017.docx2DO PCA MATEMATICA  BGU 2017.docx
2DO PCA MATEMATICA BGU 2017.docxssusera012e3
 
417547984 pca-matematica-decimo-2019-2010
417547984 pca-matematica-decimo-2019-2010417547984 pca-matematica-decimo-2019-2010
417547984 pca-matematica-decimo-2019-2010juanremacher
 
Informacionecuador.com pca 2016 fisica 1 bgu
Informacionecuador.com pca 2016 fisica 1 bguInformacionecuador.com pca 2016 fisica 1 bgu
Informacionecuador.com pca 2016 fisica 1 bguMariela León Moreno
 
1 plan anual primero de bachillerato 2013 2014
1 plan anual primero de bachillerato 2013 20141 plan anual primero de bachillerato 2013 2014
1 plan anual primero de bachillerato 2013 2014sandri1967
 
1 plan anual primero de bachillerato 2013 2014
1 plan anual primero de bachillerato 2013 20141 plan anual primero de bachillerato 2013 2014
1 plan anual primero de bachillerato 2013 2014sandri1967
 
PCA MATEMÁTICA 18-19 2º BGU.doc
PCA MATEMÁTICA 18-19 2º BGU.docPCA MATEMÁTICA 18-19 2º BGU.doc
PCA MATEMÁTICA 18-19 2º BGU.docÄlëkz Espinosa
 
Informacionecuador_com_PCA_MATEMATICA_1B.doc
Informacionecuador_com_PCA_MATEMATICA_1B.docInformacionecuador_com_PCA_MATEMATICA_1B.doc
Informacionecuador_com_PCA_MATEMATICA_1B.docRonaldZambrano23
 
1.1 plan curricular anual matematicas tercero
1.1  plan curricular anual matematicas tercero1.1  plan curricular anual matematicas tercero
1.1 plan curricular anual matematicas terceroSan bernabe de larraul
 
Pca matematicas 2019 2020
Pca  matematicas 2019   2020Pca  matematicas 2019   2020
Pca matematicas 2019 2020jessenialucas
 
Planificación Matematica 2Año San Jorge 2013
Planificación Matematica 2Año San Jorge 2013Planificación Matematica 2Año San Jorge 2013
Planificación Matematica 2Año San Jorge 2013martincascales
 
PLANIFICACIÓN MICROCURRICULAR OCTAVO SUPLETORIO.docx
PLANIFICACIÓN MICROCURRICULAR OCTAVO SUPLETORIO.docxPLANIFICACIÓN MICROCURRICULAR OCTAVO SUPLETORIO.docx
PLANIFICACIÓN MICROCURRICULAR OCTAVO SUPLETORIO.docxssuserc2a73e
 
Plan curricular 9 nos
Plan curricular 9 nosPlan curricular 9 nos
Plan curricular 9 nosCsuarez15
 

Similar a Plan de Unidad Temática . Matemática.Tercero de bachillerato (20)

2DO PCA MATEMATICA BGU 2017.docx
2DO PCA MATEMATICA  BGU 2017.docx2DO PCA MATEMATICA  BGU 2017.docx
2DO PCA MATEMATICA BGU 2017.docx
 
417547984 pca-matematica-decimo-2019-2010
417547984 pca-matematica-decimo-2019-2010417547984 pca-matematica-decimo-2019-2010
417547984 pca-matematica-decimo-2019-2010
 
Informacionecuador.com pca 2016 fisica 1 bgu
Informacionecuador.com pca 2016 fisica 1 bguInformacionecuador.com pca 2016 fisica 1 bgu
Informacionecuador.com pca 2016 fisica 1 bgu
 
1 plan anual primero de bachillerato 2013 2014
1 plan anual primero de bachillerato 2013 20141 plan anual primero de bachillerato 2013 2014
1 plan anual primero de bachillerato 2013 2014
 
1 plan anual primero de bachillerato 2013 2014
1 plan anual primero de bachillerato 2013 20141 plan anual primero de bachillerato 2013 2014
1 plan anual primero de bachillerato 2013 2014
 
PCA-8-M.docx
PCA-8-M.docxPCA-8-M.docx
PCA-8-M.docx
 
PCA MATEMÁTICA 18-19 2º BGU.doc
PCA MATEMÁTICA 18-19 2º BGU.docPCA MATEMÁTICA 18-19 2º BGU.doc
PCA MATEMÁTICA 18-19 2º BGU.doc
 
Mate pca 3ero bgu
Mate pca  3ero bguMate pca  3ero bgu
Mate pca 3ero bgu
 
Informacionecuador_com_PCA_MATEMATICA_1B.doc
Informacionecuador_com_PCA_MATEMATICA_1B.docInformacionecuador_com_PCA_MATEMATICA_1B.doc
Informacionecuador_com_PCA_MATEMATICA_1B.doc
 
P.c.a. octavo
P.c.a. octavo P.c.a. octavo
P.c.a. octavo
 
PCA 2do Matematica.docx
PCA 2do Matematica.docxPCA 2do Matematica.docx
PCA 2do Matematica.docx
 
PCA 2do Matematica.docx
PCA 2do Matematica.docxPCA 2do Matematica.docx
PCA 2do Matematica.docx
 
1.1 plan curricular anual matematicas tercero
1.1  plan curricular anual matematicas tercero1.1  plan curricular anual matematicas tercero
1.1 plan curricular anual matematicas tercero
 
Tarea1
Tarea1Tarea1
Tarea1
 
Plan anual
Plan anualPlan anual
Plan anual
 
Pca matematicas 2019 2020
Pca  matematicas 2019   2020Pca  matematicas 2019   2020
Pca matematicas 2019 2020
 
Planificación Matematica 2Año San Jorge 2013
Planificación Matematica 2Año San Jorge 2013Planificación Matematica 2Año San Jorge 2013
Planificación Matematica 2Año San Jorge 2013
 
PLANIFICACIÓN MICROCURRICULAR OCTAVO SUPLETORIO.docx
PLANIFICACIÓN MICROCURRICULAR OCTAVO SUPLETORIO.docxPLANIFICACIÓN MICROCURRICULAR OCTAVO SUPLETORIO.docx
PLANIFICACIÓN MICROCURRICULAR OCTAVO SUPLETORIO.docx
 
Plan curricular 9 nos
Plan curricular 9 nosPlan curricular 9 nos
Plan curricular 9 nos
 
Plan curricular 9 nos
Plan curricular 9 nosPlan curricular 9 nos
Plan curricular 9 nos
 

Más de Cris Panchi

2. fórmula del término general
2. fórmula del término general2. fórmula del término general
2. fórmula del término generalCris Panchi
 
Do terra aceites esenciales
Do terra  aceites esencialesDo terra  aceites esenciales
Do terra aceites esencialesCris Panchi
 
11 matrices y determinantes
11 matrices y determinantes11 matrices y determinantes
11 matrices y determinantesCris Panchi
 
11 matrices y determinantes
11 matrices y determinantes11 matrices y determinantes
11 matrices y determinantesCris Panchi
 
9 números complejos
9 números complejos9 números complejos
9 números complejosCris Panchi
 
6 potencias y raíces
6 potencias y raíces6 potencias y raíces
6 potencias y raícesCris Panchi
 
5 polinomios y teoría de ecuaciones
5 polinomios y teoría de ecuaciones5 polinomios y teoría de ecuaciones
5 polinomios y teoría de ecuacionesCris Panchi
 
2 ecuaciones e inecuaciones de primer grado.
2 ecuaciones e inecuaciones de primer grado.2 ecuaciones e inecuaciones de primer grado.
2 ecuaciones e inecuaciones de primer grado.Cris Panchi
 
Ecuaciones de las cónicas y de sus elementos
Ecuaciones de las cónicas y de sus elementosEcuaciones de las cónicas y de sus elementos
Ecuaciones de las cónicas y de sus elementosCris Panchi
 
Programación lineal
Programación linealProgramación lineal
Programación linealCris Panchi
 
Inecuaciones lineales con una incógnita
Inecuaciones lineales con una incógnitaInecuaciones lineales con una incógnita
Inecuaciones lineales con una incógnitaCris Panchi
 
Preguntas conceptuales geancoli
Preguntas conceptuales geancoliPreguntas conceptuales geancoli
Preguntas conceptuales geancoliCris Panchi
 
Estadística descriptiva Resumida
Estadística descriptiva ResumidaEstadística descriptiva Resumida
Estadística descriptiva ResumidaCris Panchi
 

Más de Cris Panchi (20)

2. fórmula del término general
2. fórmula del término general2. fórmula del término general
2. fórmula del término general
 
Do terra aceites esenciales
Do terra  aceites esencialesDo terra  aceites esenciales
Do terra aceites esenciales
 
16 funciones
16 funciones16 funciones
16 funciones
 
15 funciones
15 funciones15 funciones
15 funciones
 
14 la recta
14 la recta14 la recta
14 la recta
 
11 matrices y determinantes
11 matrices y determinantes11 matrices y determinantes
11 matrices y determinantes
 
11 matrices y determinantes
11 matrices y determinantes11 matrices y determinantes
11 matrices y determinantes
 
10 vectores
10 vectores10 vectores
10 vectores
 
9 números complejos
9 números complejos9 números complejos
9 números complejos
 
8 trigonometría
8 trigonometría8 trigonometría
8 trigonometría
 
7 logaritmos
7 logaritmos7 logaritmos
7 logaritmos
 
6 potencias y raíces
6 potencias y raíces6 potencias y raíces
6 potencias y raíces
 
5 polinomios y teoría de ecuaciones
5 polinomios y teoría de ecuaciones5 polinomios y teoría de ecuaciones
5 polinomios y teoría de ecuaciones
 
2 ecuaciones e inecuaciones de primer grado.
2 ecuaciones e inecuaciones de primer grado.2 ecuaciones e inecuaciones de primer grado.
2 ecuaciones e inecuaciones de primer grado.
 
Ecuaciones de las cónicas y de sus elementos
Ecuaciones de las cónicas y de sus elementosEcuaciones de las cónicas y de sus elementos
Ecuaciones de las cónicas y de sus elementos
 
Programación lineal
Programación linealProgramación lineal
Programación lineal
 
Inecuaciones lineales con una incógnita
Inecuaciones lineales con una incógnitaInecuaciones lineales con una incógnita
Inecuaciones lineales con una incógnita
 
Desigualdad
DesigualdadDesigualdad
Desigualdad
 
Preguntas conceptuales geancoli
Preguntas conceptuales geancoliPreguntas conceptuales geancoli
Preguntas conceptuales geancoli
 
Estadística descriptiva Resumida
Estadística descriptiva ResumidaEstadística descriptiva Resumida
Estadística descriptiva Resumida
 

Último

Alexander Lasso_Marco Garzón_Tarea #4.pdf
Alexander Lasso_Marco Garzón_Tarea #4.pdfAlexander Lasso_Marco Garzón_Tarea #4.pdf
Alexander Lasso_Marco Garzón_Tarea #4.pdfalexlasso65
 
Alexander_Lasso_Marco_Garzón_Tarea 3.pdf
Alexander_Lasso_Marco_Garzón_Tarea 3.pdfAlexander_Lasso_Marco_Garzón_Tarea 3.pdf
Alexander_Lasso_Marco_Garzón_Tarea 3.pdfalexlasso65
 
Infografía Instituto Diocesano Jesus Ramírez.pptx
Infografía Instituto Diocesano Jesus Ramírez.pptxInfografía Instituto Diocesano Jesus Ramírez.pptx
Infografía Instituto Diocesano Jesus Ramírez.pptxjesusdrr26
 
Rojas_Carolina__Alumno1_Ruiz_Joseph_Alumno2.pdf
Rojas_Carolina__Alumno1_Ruiz_Joseph_Alumno2.pdfRojas_Carolina__Alumno1_Ruiz_Joseph_Alumno2.pdf
Rojas_Carolina__Alumno1_Ruiz_Joseph_Alumno2.pdfcarolinarojas476396
 
Panorama del antiguo testamento. Examen.docx
Panorama del antiguo testamento. Examen.docxPanorama del antiguo testamento. Examen.docx
Panorama del antiguo testamento. Examen.docxJoseAmaya49
 
INFOGRAFIA WILL, GOING TO WILMARYS HERNANDEZ
INFOGRAFIA WILL, GOING TO WILMARYS HERNANDEZINFOGRAFIA WILL, GOING TO WILMARYS HERNANDEZ
INFOGRAFIA WILL, GOING TO WILMARYS HERNANDEZpachewilma
 
Lasso_Anthony_Practica_1.pdf.INFOPEDAGOGIAPRACTICA
Lasso_Anthony_Practica_1.pdf.INFOPEDAGOGIAPRACTICALasso_Anthony_Practica_1.pdf.INFOPEDAGOGIAPRACTICA
Lasso_Anthony_Practica_1.pdf.INFOPEDAGOGIAPRACTICAalexlasso65
 
Infopedagogia Uzhca_Marcelo_ tarea_No_1.pdf
Infopedagogia Uzhca_Marcelo_ tarea_No_1.pdfInfopedagogia Uzhca_Marcelo_ tarea_No_1.pdf
Infopedagogia Uzhca_Marcelo_ tarea_No_1.pdfMarceloUzhca
 
Laminia_Melany_Tarea_1_La Sociedad de la Ignorancia.pdf
Laminia_Melany_Tarea_1_La Sociedad de la Ignorancia.pdfLaminia_Melany_Tarea_1_La Sociedad de la Ignorancia.pdf
Laminia_Melany_Tarea_1_La Sociedad de la Ignorancia.pdfMelanyLaminia
 
Recomendaciones cajero automáticooo.pptx
Recomendaciones cajero automáticooo.pptxRecomendaciones cajero automáticooo.pptx
Recomendaciones cajero automáticooo.pptxlauramedinalonso
 
clase 1 EBDV AÑO 2024. SOMOS LA LUZ DEL MUNDO.
clase 1 EBDV AÑO 2024. SOMOS LA LUZ DEL MUNDO.clase 1 EBDV AÑO 2024. SOMOS LA LUZ DEL MUNDO.
clase 1 EBDV AÑO 2024. SOMOS LA LUZ DEL MUNDO.RoxanaHuaman11
 
10-Operadores+comparación.pdf
10-Operadores+comparación.pdf10-Operadores+comparación.pdf
10-Operadores+comparación.pdfVictor Zapata
 
Guardianes medioambientales CEIP Atalaya Cartegena
Guardianes medioambientales CEIP Atalaya CartegenaGuardianes medioambientales CEIP Atalaya Cartegena
Guardianes medioambientales CEIP Atalaya CartegenaCEINFPRIATALAYACEINF
 
Alexander Lasso_Marco Garzón_Tarea #4 (1).pdf
Alexander Lasso_Marco Garzón_Tarea #4 (1).pdfAlexander Lasso_Marco Garzón_Tarea #4 (1).pdf
Alexander Lasso_Marco Garzón_Tarea #4 (1).pdfgarzonespinozamarco2
 
Presentación programa educativo Radio Edu
Presentación programa educativo Radio EduPresentación programa educativo Radio Edu
Presentación programa educativo Radio Edumariajosecasadobueno
 
Lasso_Alexander_Practica_2.pdf.INFOPEDAGOGIA
Lasso_Alexander_Practica_2.pdf.INFOPEDAGOGIALasso_Alexander_Practica_2.pdf.INFOPEDAGOGIA
Lasso_Alexander_Practica_2.pdf.INFOPEDAGOGIAalexlasso65
 

Último (20)

Alexander Lasso_Marco Garzón_Tarea #4.pdf
Alexander Lasso_Marco Garzón_Tarea #4.pdfAlexander Lasso_Marco Garzón_Tarea #4.pdf
Alexander Lasso_Marco Garzón_Tarea #4.pdf
 
Alexander_Lasso_Marco_Garzón_Tarea 3.pdf
Alexander_Lasso_Marco_Garzón_Tarea 3.pdfAlexander_Lasso_Marco_Garzón_Tarea 3.pdf
Alexander_Lasso_Marco_Garzón_Tarea 3.pdf
 
Infografía Instituto Diocesano Jesus Ramírez.pptx
Infografía Instituto Diocesano Jesus Ramírez.pptxInfografía Instituto Diocesano Jesus Ramírez.pptx
Infografía Instituto Diocesano Jesus Ramírez.pptx
 
Rojas_Carolina__Alumno1_Ruiz_Joseph_Alumno2.pdf
Rojas_Carolina__Alumno1_Ruiz_Joseph_Alumno2.pdfRojas_Carolina__Alumno1_Ruiz_Joseph_Alumno2.pdf
Rojas_Carolina__Alumno1_Ruiz_Joseph_Alumno2.pdf
 
Panorama del antiguo testamento. Examen.docx
Panorama del antiguo testamento. Examen.docxPanorama del antiguo testamento. Examen.docx
Panorama del antiguo testamento. Examen.docx
 
frecuencia cardiaca.pptx
frecuencia cardiaca.pptxfrecuencia cardiaca.pptx
frecuencia cardiaca.pptx
 
INFOGRAFIA WILL, GOING TO WILMARYS HERNANDEZ
INFOGRAFIA WILL, GOING TO WILMARYS HERNANDEZINFOGRAFIA WILL, GOING TO WILMARYS HERNANDEZ
INFOGRAFIA WILL, GOING TO WILMARYS HERNANDEZ
 
Lasso_Anthony_Practica_1.pdf.INFOPEDAGOGIAPRACTICA
Lasso_Anthony_Practica_1.pdf.INFOPEDAGOGIAPRACTICALasso_Anthony_Practica_1.pdf.INFOPEDAGOGIAPRACTICA
Lasso_Anthony_Practica_1.pdf.INFOPEDAGOGIAPRACTICA
 
Infopedagogia Uzhca_Marcelo_ tarea_No_1.pdf
Infopedagogia Uzhca_Marcelo_ tarea_No_1.pdfInfopedagogia Uzhca_Marcelo_ tarea_No_1.pdf
Infopedagogia Uzhca_Marcelo_ tarea_No_1.pdf
 
Laminia_Melany_Tarea_1_La Sociedad de la Ignorancia.pdf
Laminia_Melany_Tarea_1_La Sociedad de la Ignorancia.pdfLaminia_Melany_Tarea_1_La Sociedad de la Ignorancia.pdf
Laminia_Melany_Tarea_1_La Sociedad de la Ignorancia.pdf
 
GARZON_MARCO_TAREA_1 (1).pdf
GARZON_MARCO_TAREA_1 (1).pdfGARZON_MARCO_TAREA_1 (1).pdf
GARZON_MARCO_TAREA_1 (1).pdf
 
Recomendaciones cajero automáticooo.pptx
Recomendaciones cajero automáticooo.pptxRecomendaciones cajero automáticooo.pptx
Recomendaciones cajero automáticooo.pptx
 
clase 1 EBDV AÑO 2024. SOMOS LA LUZ DEL MUNDO.
clase 1 EBDV AÑO 2024. SOMOS LA LUZ DEL MUNDO.clase 1 EBDV AÑO 2024. SOMOS LA LUZ DEL MUNDO.
clase 1 EBDV AÑO 2024. SOMOS LA LUZ DEL MUNDO.
 
consultas.pptx
consultas.pptxconsultas.pptx
consultas.pptx
 
10-Operadores+comparación.pdf
10-Operadores+comparación.pdf10-Operadores+comparación.pdf
10-Operadores+comparación.pdf
 
TEMA 1 LA NATURALEZA DEL PRECIO (material adicional) SI.pdf
TEMA 1 LA NATURALEZA DEL PRECIO (material adicional) SI.pdfTEMA 1 LA NATURALEZA DEL PRECIO (material adicional) SI.pdf
TEMA 1 LA NATURALEZA DEL PRECIO (material adicional) SI.pdf
 
Guardianes medioambientales CEIP Atalaya Cartegena
Guardianes medioambientales CEIP Atalaya CartegenaGuardianes medioambientales CEIP Atalaya Cartegena
Guardianes medioambientales CEIP Atalaya Cartegena
 
Alexander Lasso_Marco Garzón_Tarea #4 (1).pdf
Alexander Lasso_Marco Garzón_Tarea #4 (1).pdfAlexander Lasso_Marco Garzón_Tarea #4 (1).pdf
Alexander Lasso_Marco Garzón_Tarea #4 (1).pdf
 
Presentación programa educativo Radio Edu
Presentación programa educativo Radio EduPresentación programa educativo Radio Edu
Presentación programa educativo Radio Edu
 
Lasso_Alexander_Practica_2.pdf.INFOPEDAGOGIA
Lasso_Alexander_Practica_2.pdf.INFOPEDAGOGIALasso_Alexander_Practica_2.pdf.INFOPEDAGOGIA
Lasso_Alexander_Practica_2.pdf.INFOPEDAGOGIA
 

Plan de Unidad Temática . Matemática.Tercero de bachillerato

  • 1. Objetivo del área por subnivel O.M.5.1. Proponer soluciones creativas a situaciones concretas Objetivo integrador del área por subnivel OI.5.1. Analizar los diversos proyectos políticos, Logo Institucional Nombre de la institución Año lectivo PLAN DE UNIDAD TEMÁTICA 1. DATOS INFORMATIVOS: Docente: Nombre del docente que ingresa la información Área/asignatura: MATEMÁTICA Grado/Curso: 3° BACHILLERATO Paralelo N° de unidad de planificación 1 Título de la unidad de planificación FUNCIONES Objetivos específicos de la unidad de planificación Producir, comunicar y generalizar información de manera escrita, verbal, simbólica, gráfica y/o tecnológica mediante la aplicación de conocimientos matemáticos y el manejo organizado, responsable y honesto de las fuentes de datos para comprender otras disciplinas, entender las necesidades y potencialidades de nuestro país y tomar decisiones con responsabilidad social. Desarrollar estrategias individuales y grupales que permitan un cálculo mental, escrito, exacto o estimado y la capacidad de interpretación y solución de situaciones problemáticas del medio. Valorar el empleo de las TIC para realizar cálculos y resolver, de manera razonada y crítica, problemas de la realidad nacional, argumentando pertinencia de los métodos utilizados y juzgados la validez de los restados. PERÍODOS 24 SEMANA DE INICIO: 2. PLANIFICACIÓN DESTREZAS CON CRITERIO DE DESEMPEÑO ASER DESARROLLADAS CRITERIOS DE EVALUACIÓN • Graficar y analizar el dominio, el recorrido, la monotonía, ceros, extremos y paridad de las diferentes funciones reales (Funciona afin a trozos, función potencia entera negativa con n=-1, -2, función raíz CE.M.5.3. Opera y emplea funciones reales, lineales, cuadráticas,polinomiales,exponenciales,logarítmicas y trigonométricasparaplantear situaciones hipotéticas y
  • 2. cuadrada, función valor absoluto de la función afín) utilizando TIC. • Realizar la composición de funciones reales analizando las características de la función resultante (dominio, recorrido, monotonía, máximos, mínimos, paridad) • Resolver (con o sin el uso de la tecnología) problemas o situaciones reales o hipotéticas con el empleo de la modelización con funciones reales (función afín a trozos, función potencia entera negativa con n=-1, -2 función raíz cuadrada, función valor absoluto de la función afín), identificando las variables significativas presentes y las relaciones entre ellas: juzgar la pertinencia y validez de los resultados obtenidos. • Reconocer funciones inyectivas, sobreyectivas y biyectivas para calcular la función inversa (de funciones biyectivas) comprobando con la composición de funciones. • Resolver y plantear aplicaciones de la composición de funciones reales en problemas reales o hipotéticos. • Realizar las operaciones de adición y producto entre funciones reales en problemas reales o hipotéticos. • Resolver ecuaciones que se pueden reducir a ecuaciones de segundo grado con una incógnita. • Resolver (con o sin el uso de la tecnología) problemas o situaciones reales o hipotéticas que pueden ser modelizados con funciones cuadráticas identificando las variables significativas presentes y las relaciones entre ellas: juzgar la pertinencia y validez de los resultados obtenidos. •Identificar sucesiones numéricas reales, sucesiones monótonas y sucesiones definidas por recurrencia a partir de las fórmulas que las definen. • Aplicar los conocimientos sobre progresiones aritméticas, progresiones geométricas y sumas parciales finitas de sucesiones numéricas para resolver aplicaciones en general y de manera especial en el ámbito financiero de las sucesiones numéricas. • Resolver ejercicios numéricos y problemas con la aplicación de las progresiones aritméticas, geométricas y sumas parciales finitas de sucesiones numéricas. • Reconocer las aplicaciones de las sucesiones numéricas reales en el ámbito financiero y resolver problemas, juzgar la validez de las soluciones obtenidas dentro del contexto del problema. • Emplear progresiones aritméticas, geométricas y sumas parciales fintas de sucesiones numéricas en el planteamiento y resolución de problemas de diferentes ámbitos. • Realizar las operaciones de suma y multiplicación entre sucesiones numéricas reales y la multiplicación de escalares por sucesiones numéricas reales aplicando las propiedades de los números reales. • Identificar sucesiones convergentes y calcular el límite de la sucesión. cotidianas que puedan resolverse mediante modelos matemáticos; comenta la validez y limitaciones de los procedimientos empleados y verifica sus resultados mediante el uso de las TIC. ACTIVIDADES DE APRENDIZAJE RECURSOS INDICADORES DE LOGRO TÉCNICAS E INSTRUMENTOSDE EVALUACIÓN Aseguramiento del nivel de partida mediante una lluvia de ideas sobre - Texto - Pizarra M.5.3.1. Grafica funciones reales y analiza su dominio, recorrido, monotonía, ceros, extremos, paridad; identifica Comprobar el desarrollo de las habilidades necesarias para reconocer, interpretar,
  • 3. funciones, tipos y gráficas. Manipulación de material con fotos y representación de distintos tipos de funciones y sus gráficos. Resolución de problemas de aplicación de funciones en el ámbito financiero y comercial. Uso de diagramas que resuman los principales conceptos, propiedades, procedimientos, gráficos y análisis de diferentes funciones. Uso de software que facilitan la representación gráfica y posterior interpretación de información. ¿Qué podemos decir sobre las funciones y sus aportes en la economía? Identificación de funciones y su aplicación en las finanzas y economía. Reflexión y análisis sobre dichas aplicaciones. ¿Por qué es importante conocer, graficas analizar e interpretar graficas de funciones? Planteamiento y resolución de problemas que apliquen funciones en el ámbito financiero y comercial. - Enlaces Web - Calculadora las funciones afines, potencia, raíz cuadrada, valor absoluto, reconoce si unafunciónesinyectiva,sobreyectiva o biyectiva,realizaoperacionesconfuncionesaplicando las propiedades de los números reales en problemas reales o hipotéticos. (I.4) M.5.3.2. Representa gráficamente funciones cuadráticas; hilalasinterseccionesde losejes,el dominio,rango,vértice y monotonía;empleasistemas de ecuaciones para calcular la intersección entre una recta y una parábola o dos parábolas; emplea modelos cuadráticos para resolver problemas, de manera intuitiva halla un límite y la derivada; optimiza procesos empleando las TIC. (13, 14) M.5.3.3. Reconoce funciones polinomiales de grado n, operacon funcionespolinomiales de grado =4 y racionales de grado =3; plantea modelos matemáticos para resolver problemas aplicados a la informática; emplea el teorema de Hörner y el teorema del residuo para factorizar polinomios; con la ayuda de las TIC, escribe la ecuación de lasasíntotas, y discute lavalidezde susresultados. (I.3.I.4.) M.5.3.4. Halla gráfico y analíticamente el dominio, recorrido, monotonía, periodicidad, desplazamientos, máximos y mínimos de funciones trigonométricas para moldear movimientos circulares, y comportamientos de fenómenos naturales, y discute su pertinencia; emplea la tecnología para corroborar sus resultados. (J.3.I.2) M.5.3.5. Obtiene la gráfica de una ecuación exponencial a partir de a^x, mediante traslaciones, homotecias y reflexiones;concibe lafunción logarítmicacomo inversa de la función exponencial; aplica propiedades de los logaritmos y halla su dominio, recorrido, asíntotas, interseccionesconlosejes; las aplica en situaciones reales e hipotéticas, con y sin apoyo de la tecnología. (I.3) graficar, analizar las características y operar con funciones de variable real (lineal, cuadrática, exponencial, logarítmica, trigonométrica, polinomiales y racionales). Que el estudiante analice el dominio, el recorrido, la monotonía, los ceros, máximos y mínimos, paridad, y composición de las diferentes funciones, también se incluyen las propiedades de inyectividad, sobreyectividad y biyectividad, apoyándose con las TIC, debe poder graficar, interpretar y encontrar las intersecciones con los ejes, y la intersección de las gráficas de funciones; además de hallar la solución de ecuaciones de manera gráfica; interpretar geométricamente la derivada de una función cuadrática y sus aplicaciones; y comprender la noción de limite y su aplicación, así como la modelización de situaciones reales a través de las funciones. ELEMENTOS DEL PERFIL DE SALIDA J.3. Procedemos con respeto y responsabilidad con nosotros y con las demás personas, con la naturaleza y con el mundo de las ideas. Cumplimos nuestras Obligaciones y exigimos la observación de nuestros derechos. I.2.Nos movemos por la curiosidad intelectual, indagamos la realidad nacional y mundial, reflexionamos aplicamos nuestros conocimientos interdisciplinarios para resolver problemas que informa colaborativa e interdependiente aprovechando todos los recursos e información posibles. I.3.Sabemos comunicarnos de manera clara en nuestra lengua y en otras, utilizamos varios lenguajes como el numérico, el digital, el artístico y el corporal; asumimos con responsabilidad nuestros discursos. I.4.Actuamos de manera organizada, con autonomía e independencia; aplicamos el razonamiento lógico, crítico y complejo; y practicamos la humildad intelectual en un aprendizaje a lo largo de la vida.
  • 4. Objetivo del área por subnivel O.M.5.1. Proponer soluciones creativas a situaciones concretas Objetivo integrador del área por subnivel OI.5.1. Analizar los diversos proyectos políticos, Logo Institucional Nombre de la institución Año lectivo PLAN DE UNIDAD TEMÁTICA 3. DATOS INFORMATIVOS: Docente: Nombre del docente que ingresa la información Área/asignatura: MATEMÁTICA Grado/Curso: 2° BACHILLERATO Paralelo N° de unidad de planificación 2 Título de la unidad de planificación FUNCIONES TRIGONOMÈTRICAS Objetivos específicos de la unidad de planificación Proponer soluciones creativas a situaciones concretas de la realidad nacional y mundial mediante la aplicación de las operaciones básicas de los diferentes conjuntos numéricos, el uso de modelos funcionales, algoritmos apropiados, estrategias y métodos formales y no formales de razonamiento matemático que lleven a juzgar con responsabilidad la validez de procedimientos y los resultados en un contexto. Desarrollar la curiosidad y la creatividad en el uso de herramientas matemáticas al momento de enfrentar y solucionar problemas de la realidad nacional demostrando actitudes de orden, perseverancia y capacidades de investigación. PERÍODOS 24 SEMANA DE INICIO: 4. PLANIFICACIÓN DESTREZAS CON CRITERIO DE DESEMPEÑO ASER DESARROLLADAS CRITERIOS DE EVALUACIÓN • Definir las funciones seno, coseno y tangente a partir de las relaciones trigonométricas en el círculo CE.M.5.3. Opera y emplea funciones reales,
  • 5. trigonométrico (unidad) e identificar sus respectivas graficas a partir del análisis de sus características particulares. •Reconocer y graficar funciones periódicas determinando el periodo y amplitud de las mismas, su dominio recorrido, monotonía, paridad. • Reconocer las funciones trigonométricas (seno, coseno, tangente, secante, cosecante y cotangente), sus propiedades y las relaciones existentes entre las funciones y representarlas de manera gráfica con apoyo de las TIC (calculadora gráfica, software, applets). • Reconocer y resolver (con apoyo de las TIC) aplicaciones, problemas o situaciones reales o hipotéticas que pueden ser modelizadas con funciones trigonométricas identificando las variables significativas presentes y las relaciones entre ellas y juzgar la validez y pertinencia de los resultados obtenidos. lineales,cuadráticas,polinomiales,exponenciales, logarítmicas y trigonométricas para plantear situaciones hipotéticas y cotidianas que puedan resolverse mediante modelos matemáticos; comenta la validez y limitaciones de los procedimientos empleados y verifica sus resultados mediante el uso de las TIC. ACTIVIDADES DE APRENDIZAJE RECURSOS INDICADORES DE LOGRO TÉCNICAS E INSTRUMENTOS DE EVALUACIÓN Debatir la necesidad que existe en las ciencias de las telecomunicaciones de modelar matemáticamente las ondas electromagnéticas (las ondas de radio, de televisión, el WIFI, son ondas electromagnéticas). Comparar las similitudes entre la gráfica de una función seno, con un gráfico de una onda electromagnética. Usar un sistema de referencia adecuado e interpretar las características de la función seno y coseno. Reflexionar acerca de la importancia de estos conocimientos en la tecnología actual. Identificar las características y transformaciones de los gráficos de las funciones trigonométricas básicas. Usar los modelos matemáticos  Texto  Cuaderno  Videos (sitios web)  Pizarra  Calculadora IM.5.3.1. Graficafuncionesrealesyanalizasudominio, recorrido,monotonía,ceros,extremos,paridad;identificalas funcionesafines,potencia,raízcuadrada,valorabsoluto; reconoce si una funciónesinyectiva,sobreyectivaobiyectiva; realizaoperacionesconfuncionesaplicandolaspropiedadesde losnúmerosrealesenproblemasrealesohipotéticos.(I.4) M.5.3.2. Representagráficamente funcionescuadráticas;halla lasinterseccionesconlosejes,el dominio,rango,vérticey monotonía;empleasistemasde ecuaciones paracalcularla intersecciónentre unarectayuna parábolao dos parábolas; empleamodeloscuadráticospararesolverproblemas,de maneraintuitivahallaunlímite yladerivada;optimizaprocesos empleandolasTIC,(13,14) M.5.3.3. Reconoce funciones polinomialesde gradon,opera con funcionespolinomialesde grado=4 y racionalesde grado =3; planteamodelosmatemáticospararesolverproblemas aplicadosa lainformática;empleael teoremade Hörneryel teoremadel residuoparafactorizarpolinomios; conlaayudade losTIC, escribe lasecuacionesde lasasíntotas,ydiscute la validezde susresultados.(I.3.,I.4) M.5.3.4. Hallagráfica y analíticamente el dominio,recorrido, monotonía,periodicidad,desplazamientos,máximosymínimos de funcionestrigonométricasparamodelarmovimientos circularesycomportamientosde fenómenosnaturales,y discute supertenencia;emplealatecnologíaparacorroborar Comprobar el desarrollo de las habilidades necesarias para reconocer, interpretar, graficar, analizar las características y operar con funciones de variable real (lineal, cuadrática, exponencial, logarítmica, trigonométrica, polinomiales y racionales). Que el estudiante analice el dominio, el recorrido, la monotonía, los ceros, máximos y mínimos, paridad, y composición de las diferentes funciones, también se incluyen las propiedades de inyectividad, sobreyectividad y biyectividad, apoyándose con las TIC, debe poder graficar, interpretar y encontrar las intersecciones con los ejes, y la intersección de las gráficas de funciones; además de hallar la solución de ecuaciones de manera gráfica; interpretar geométricamente la derivada de una función cuadrática y sus aplicaciones; y comprender la noción de limite y su aplicación, así como la modelización de situaciones reales a través de las funciones.
  • 6. comprendidos en las características físicas de las ondas. Reconocer e interpretar las características de las funciones trigonométricas. Producir predicciones usando los modelos matemáticos estudiados. sus resultados.(J.3.,I.2.) M.5..3.5. Obtiene lagráficade unafunciónexponencial apartir de a^x, mediante traslaciones,homoteciasyreflexiones; concibe lafunciónlogarítmicacomoinversade la función exponencial;aplicapropiedadesde loslogarítmicosyhallasu dominio,recorrido,asíntotas,interseccionesconlosejes;las aplicaensituaciones realese hipotéticas,conysinapoyode la tecnología.(I.3.) ELEMENTOS DEL PERFIL DE SALIDA J.3. Procedemos con respeto y responsabilidad con nosotros y con las demás personas, con la naturaleza y con el mundo de las ideas. Cumplimos nuestras Obligaciones y exigimos la observación de nuestros derechos. I.2.Nos movemos por la curiosidad intelectual, indagamos la realidad nacional y mundial, reflexionamos aplicamos nuestros conocimientos interdisciplinarios para resolver problemas que informa colaborativa e interdependiente aprovechando todos los recursos e información posibles. I.3.Sabemos comunicarnos de manera clara en nuestra lengua y en otras, utilizamos varios lenguajes como el numérico, el digital, el artístico y el corporal; asumimos con responsabilidad nuestros discursos. I.4. Actuamos de manera organizada, con autonomía e independencia; aplicamos el razonamiento lógico, crítico y complejo; y practicamos la humildad intelectual en un aprendizaje a lo largo de la vida.
  • 7. Objetivo del área por subnivel O.M.5.1. Proponer soluciones creativas a situaciones concretas Objetivo integrador del área por subnivel OI.5.1. Analizar los diversos proyectos políticos, Logo Institucional Nombre de la institución Año lectivo PLAN DE UNIDAD TEMÁTICA 5. DATOS INFORMATIVOS: Docente: Nombre del docente que ingresa la información Área/asignatura: MATEMÁTICA Grado/Curso: 2° BACHILLERATO Paralelo N° de unidad de planificación 3 Título de la unidad de planificación DERIVADAS DE FUNCIONES REALES. Objetivos específicos de la unidad de planificación Proponer soluciones creativas a situaciones concretas de la realidad nacional y mundial mediante la aplicación de las operaciones básicas de los diferentes conjuntos numéricos, el uso de modelos funcionales, algoritmos apropiados, estrategias y métodos formales y no formales de razonamiento matemático que lleven a juzgar con responsabilidad la validez de procedimientos y los resultados en un contexto. Producir, comunicar y generalizar información de manera escrita, verbal, simbólica, gráfica y/o tecnológica mediante la aplicación de conocimientos matemáticos y el manejo organizado, responsable y honesto de las fuentes de datos para comprender otras disciplinas, entender las necesidades y potencialidades de nuestro país y tomar decisiones con responsabilidad social. Desarrollar la curiosidad y la creatividad en el uso de herramientas matemáticas al momento de enfrentar y solucionar problemas de la realidad nacional demostrando actitudes de orden, perseverancia y capacidades de investigación.
  • 8. PERÍODOS 24 SEMANA DE INICIO: 6. PLANIFICACIÓN DESTREZAS CON CRITERIO DE DESEMPEÑO ASER DESARROLLADAS CRITERIOS DE EVALUACIÓN  Calcular de manera intuitiva el Límite cuando h = 0 de una función cuadrática con el uso de calculadora como una distancia entre dos números reales.  Calcular de manera intuitiva la derivada de funciones cuadráticas a partir de cociente incremental.  Interpretar de manera geométrica (pendiente de la secante) y física de cociente incremental (velocidad media) de funciones cuadráticas con apoyo de las TIC.  Interpretar de manera geométrica y física la primera derivada (pendiente de la tangente y velocidad instantánea) de funciones cuadráticas con apoyo de las TIC  Interpretar de manera física la segunda derivada (aceleración media, aceleración instantánea) de una función cuadrática con apoyo de las TIC (calculadora gráfica, software, applets).  Resolver y plantear problemas reales o hipotéticos que pueden ser modelizados con derivadas de funciones cuadráticas identificando las variables significativas presentes y las relaciones entre ellas, juzgando la pertenencia y validez de los resultados obtenidos.  Interpretar de manera geométrica y física la primera derivada (pendiente de la tangente y velocidad instantánea) de funciones polinomiales de grado igual a 4 con apoyo de las TIC.  Interpretar de manera física la segunda derivada (aceleración media, aceleración instantánea) una función polinomial de grado igual a 4 para analizar la monotonía, determinar los máximos y mínimos de estas funciones y graficarlas con el apoyo de las TIC (calculadora gráfica software, applets).  Calcular de manera intuitiva la derivada de funciones relacionales cuyos numeradores y denominadores sean polinomios de grado igual a 2 para analizar la monotonía, determinar los máximos y mínimos de estas funciones y graficarlas con apoyo de las TIC (calculadora, software, applets)  Resolver aplicaciones reales o hipotéticas con ayuda de las derivadas de funciones polinomiales de grado =4 y de funciones racionales cuyos numeradores y denominadores sean polinomios degrado=2 y juzgar la validez y pertinencia de los resultados obtenidos. CE.M.5.3. Opera y emplea funciones reales lineales, cuadráticas, polinomiales, exponenciales logarítmicas y trigonométricas para plantear situaciones hipotéticas y cotidianas que puedan hacerse mediante modelos matemáticos; comenta la validez y limitaciones de los procedimientos empleados y verifica sus resultados mediante el uso de las TIC. ACTIVIDADES DE APRENDIZAJE RECURSOS INDICADORES DE LOGRO TÉCNICAS E INSTRUMENTOSDE EVALUACIÓN  Aplicar el principio de incrementos, cómo introducción al tema de derivada de una función.  Debatir en clase los fenómenos de velocidad y aceleración estudiados en física para poner - Texto - Pizarra - Enlaces Web - Calculadora IM.5.3.1. Grafique funciones reales y analiza su dominio, recorrido, monotonía, ceros, extremos, paridad; Identifica las funciones afines, potencia, raíz cuadrada, valor absoluto; reconoce si una función es inyectiva, sobreyectiva o biyectiva; realizan las operaciones con funciones aplicando las propiedades Comprobar el desarrollo de las habilidades necesarias para reconocer, interpretar, graficar ,analizar las características de operar con funciones de variable real, lineal, cuadrática exponencial, logarítmica, trigonométrica , polinomiales y racionales que el estudiante analiza
  • 9. en contacto el tema de derivadas de una función.  Analizar una imagen de la noción geométrica de secante y tangente a una curva, evidenciando las características principales de sus conceptos.  Diferencia de los conceptos entre incrementos grandes e infinitesimales en una función, por medio de concepto de límite de una función, numéricamente.  Comparar las relaciones entre derivada de una función.  Interpretar el significado de cociente incremental.  Reflexionar acerca de la importancia de lo de estos modelos matemáticos en las Ciencias como física, química economía, etc.  Identificar los métodos básicos de derivación de funciones elementales.  A través de un gráfico evidenciar con un ejemplo la utilidad de los temas tratados en esta unidad, en problemas físicos, químicos, etc.  Reconocer los elementos (variables) involucradas en los gráficos y respectivas ecuaciones.  Producir predicciones usando los modelos matemáticos estudiados. de los números reales en problemas reales e hipotéticos (I.4.) M.5.3.2. Represente gráficamente funciones cuadráticas; Halla las intersecciones con los ejes, el dominio, rango, vértice y monotonía y emplea sistemas de ecuaciones para calcular la intersección entre una recta y una parábola o dos parábolas; emplea modelos cuadráticos para resolver problemas de manera intuitiva; halla un límite y la derivada optimizar procesos empleando las TIC (13, 14.) M.5.3.3. Reconoce funciones polinomiales de grado n opera con funciones polinomiales de grado =4, irracionales de grado =3; plantea modelos matemáticos para resolver problemas aplicados a la informática; emplea el teorema de Hörner y el teorema del residuo para factorizar polinomios con la ayuda de las TIC;. escribe las ecuaciones de las asíntotas y discute la validez de su resultado(I.3.,I.4) M.5.3.4. Halla gráfica y analítica el dominio, recorrido monotonía, periodicidad, desplazamientos, máximos y mínimos de funciones trigonométricas para modelar movimientos circulares y comportamientos de fenómenos naturales y discute su pertinencia y emplea la tecnología para corroborar sus resultados(J.3.,I.2) el dominio , el recorrido, la monotonía, los ceros máximos y mínimos, paridad, composición de las diferentes funciones ,también se incluyen la propiedades de inyectividad ,sobreyectividad y biyectividad apoyándose con las TIC para poder graficar interpretar y encontrar las intersecciones con los ejes y la intersección de las gráficas de funciones además de hallar la solución de ecuaciones de manera gráfica, interpretar geométricamente la derivada de una función cuadrática, sus aplicaciones y comprender la noción de límite y su aplicación así como la modelización de situaciones reales a través de las funciones ELEMENTOS DEL PERFIL DE SALIDA J.3. Procedemos con respeto y responsabilidad con nosotros y con las demás personas, con la naturaleza y con el mundo de las ideas. Cumplimos nuestras Obligaciones y exigimos la observación de nuestros derechos. I.2.Nos movemos por la curiosidad intelectual, indagamos la realidad nacional y mundial, reflexionamos aplicamos nuestros conocimientos interdisciplinarios para resolver problemas que informa colaborativa e interdependiente aprovechando todos los recursos e información posibles. I.3.Sabemos comunicarnos de manera clara en nuestra lengua y en otras, utilizamos varios lenguajes como el numérico, el digital, el artístico y el corporal; asumimos con responsabilidad nuestros discursos.
  • 10. Objetivo del área por subnivel O.M.5.1. Proponer soluciones creativas a situaciones concretas Objetivo integrador del área por subnivel OI.5.1. Analizar los diversos proyectos políticos, Logo Institucional Nombre de la institución Año lectivo PLAN DE UNIDAD TEMÁTICA 7. DATOS INFORMATIVOS: Docente: Nombre del docente que ingresa la información Área/asignatura: MATEMÁTICA Grado/Curso: 2° BACHILLERATO Paralelo N° de unidad de planificación 4 Título de la unidad de planificación FUNCIONES Objetivos específicos de la unidad de planificación Producir, comunicar y generalizar información de manera escrita, verbal, simbólica, gráfica y/o tecnológica mediante la aplicación de conocimientos matemáticos y el manejo organizado, responsable y honesto de las fuentes de datos para comprender otras disciplinas, entender las necesidades y potencialidades de nuestro país y tomar decisiones con responsabilidad social. Desarrollar la curiosidad y la creatividad en el uso de herramientas matemáticas al momento de enfrentar y solucionar problemas de la realidad nacional demostrando actitudes de orden, perseverancia y capacidades de investigación PERÍODOS 24 SEMANA DE INICIO: 8. PLANIFICACIÓN DESTREZAS CON CRITERIO DE DESEMPEÑO ASER DESARROLLADAS CRITERIOS DE EVALUACIÓN • Graficar y analizar el dominio, el recorrido, la monotonía, ceros, extremos y paridad de las siguientes CE.M.5.3. Opera y emplea funciones reales lineales, cuadráticas, polinomiales, exponenciales
  • 11. funciones reales (Funciona fin a trozos, función potencia entera negativa con n= -1, -2, función raíz cuadrada, función valor absoluto de la función afín) utilizando TIC. • Realizar la composición de funciones reales analizando las características de la función resultante (dominio, recorrido, monotonía, máximos, mínimos, paridad) • Resolver (con o sin el uso de la tecnología) problemas o situaciones reales o hipotéticas con el empleo de la modelización con funciones reales (función afín a trozos, función potencia entera negativa con n=-1, -2funcion raíz cuadrada, función valor absoluto de la función afín), identificando las variables significativas presentes y las relaciones entre ellas: juzgar la pertinencia y validez de los resultados obtenidos. • Reconocer funciones inyectivas, sobreyectivas y biyectivas para calcular la función inversa (de funciones biyectivas) comprobando con la composición de funciones. • Resolver y plantear aplicaciones de la composición de funciones reales en problemas reales o hipotéticos. • Realizar las operaciones de adición y producto entre funciones reales en problemas reales o hipotéticos. • Resolver ecuaciones que se pueden reducir a ecuaciones de segundo grado con una incógnita. • Resolver (con o sin el uso de la tecnología) problemas o situaciones reales o hipotéticas que pueden ser modelizados con funciones cuadráticas identificando las variables significativas presentes y las relaciones entre ellas: juzgar la pertinencia y validez de los resultados obtenidos. •Identificar sucesiones numéricas reales, sucesiones monótonas y sucesiones definidas por recurrencia a partir de las fórmulas que las definen. • Aplicar los conocimientos sobre progresiones aritméticas, progresiones geométricas y sumas parciales finitas de sucesiones numéricas para resolver aplicaciones en general y de manera especial en el ámbito financiero de las sucesiones numéricas. • Reconocer las aplicaciones de las sucesiones numéricas reales en el ámbito financiero y resolver problemas, juzgar la validez de las soluciones obtenidas dentro del contexto del problema. • Emplear progresiones aritméticas, geométricas y sumas parciales fintas de sucesiones numéricas en el planteamiento y resolución de problemas de diferentes ámbitos. • Realizar las operaciones de suma y multiplicación entre sucesiones numéricas reales y la multiplicación de escalares por sucesiones numéricas reales aplicando las propiedades de los números reales. • Identificar sucesiones convergentes y calcular el límite de la sucesión. logarítmicas y trigonométricas para plantear situaciones hipotéticas y cotidianas que puedan hacerse mediante modelos matemáticos; comenta la validez y limitaciones de los procedimientos empleados y verifica sus resultados mediante el uso de las TIC. ACTIVIDADES DE APRENDIZAJE RECURSOS INDICADORES DE LOGRO TÉCNICAS E INSTRUMENTOSDE EVALUACIÓN Debatir la necesidad que tienen los seres humanos en ubicarse en la - Texto - Pizarra I.M.5.6.1. Grafica vectores en el plano; halla su módulo y realiza operaciones de suma, resta y Comprobar el desarrollo de las destrezas necesarias para el manejo de vectores en el plano
  • 12. ciudad usando mapas que tienen cuadrículas de referencia. También usamos para orientarnos dispositivos con sistemas de GPS (sistema de posicionamiento global), este sistema funciona triangulando posiciones entre satélites. Diferencia los conceptos de magnitud escalar y magnitud vectorial. Comparar las operaciones en el espacio bidimensional con el producto escalar. Usar un sistema de referencia bidimensional para ubicar una partícula en el plano. Describir trayectorias rectilíneas usando ecuaciones lineales paramétricas. Reflexionar acerca de la importancia de estos conocimientos en las apps actuales como TIC que usan para su funcionamiento el sistema GPS. Usar el producto escalar y las diferentes formas de expresar las ecuaciones lineales en la resolución de problemas físicos, planteados en el texto - Enlaces Web - Calculadora producto por un escalar; resuelve problemas aplicados a la Geometría y a la Física. (I.2.) I.M.5.6.2. realiza operaciones en el espacio vectorial R, calcula la distancia entre dos puntos, el módulo y la dirección de un vector; reconoce cuando dos vectores son ortogonales; y aplica este conocimiento en problemas de física en las TIC. (I.3.) I.M.5.6.3. Determina la ecuación de la recta de forma vectorial e identifica su pendiente, la distancia a un punto y la posición de las rectas, la ecuación de una recta bisectriz, sus aplicaciones reales, la de sus resultados y el aporte de las TIC. (I.3.) y sus características coma graficaciòn, Norma con operaciones con vectores algebraicas en forma gráfica y forma analítica así como para la resolución de problemas de aplicación. El estudiante debe ser capaz de calcular el producto de un número por un vector, el producto escalar entre vectores, la ortogonalidad, la distancia entre dos puntos, el ángulo entre dos vectores; determinar la posición relativa de dos rectas; escribir la circunferencia parábola elipse e hipérbola (tanto en su forma cartesiana cómo es su forma paramétrica), y, en general, resolver las aplicaciones geométricas de vectores en R. ELEMENTOS DEL PERFIL DE SALIDA I.2.Nos movemos por la curiosidad intelectual, indagamos la realidad nacional y mundial, reflexionamos aplicamos nuestros conocimientos interdisciplinarios para resolver problemas que informa colaborativa e interdependiente aprovechando todos los recursos e información posibles. I.3.Sabemos comunicarnos de manera clara en nuestra lengua y en otras, utilizamos varios lenguajes como el numérico, el digital, el artístico y el corporal; asumimos con responsabilidad nuestros discursos.
  • 13. Objetivo del área por subnivel O.M.5.1. Proponer soluciones creativas a situaciones concretas Objetivo integrador del área por subnivel OI.5.1. Analizar los diversos proyectos políticos, Logo Institucional Nombre de la institución Año lectivo PLAN DE UNIDAD TEMÁTICA 9. DATOS INFORMATIVOS: Docente: Nombre del docente que ingresa la información Área/asignatura: MATEMÁTICA Grado/Curso: 2° BACHILLERATO Paralelo N° de unidad de planificación 5 Título de la unidad de planificación CÒNICAS Objetivos específicos de la unidad de planificación Producir , comunicar y generalizar información de manera escrita, verbal simbólica, gráfica y/o tecnológica mediante la aplicación de conocimientos matemáticos y el manejo organizado, responsable y honesto de las fuentes de datos para comprender otras disciplinas, entender las necesidades y potencialidades de nuestro país y tomar decisiones con responsabilidad social Desarrollar la curiosidad y la creatividad en el uso de herramientas matemáticas al momento de enfrentar y solucionar problemas de la realidad demostrando actitudes de orden, perseverancia y capacidades de investigación. PERÍODOS 24 SEMANA DE INICIO: 10. PLANIFICACIÓN
  • 14. DESTREZAS CON CRITERIO DE DESEMPEÑO ASER DESARROLLADAS CRITERIOS DE EVALUACIÓN  Describir la circunferencia la parábola, la elipse y la hipérbola como lugares geométricos en el plano.  Escribir a reconocer las ecuaciones cartesianas de la circunferencia, la parábola, la elipse y la hipérbola con centro en el origen y con centro fuera del origen para resolver y plantear problemas (por ejemplo en física, órbitas planetarias, tiro parabólico, etcétera) identificando la validez y pertenencia de los resultados obtenidos. CE.M.5.6. Emplea vectores geométricos en el plano operaciones en R ,con aplicaciones en física y en la ecuación de la recta; utiliza métodos gráficos , analíticos y tecnológicos ACTIVIDADES DE APRENDIZAJE RECURSOS INDICADORES DE LOGRO TÉCNICAS E INSTRUMENTOSDE EVALUACIÓN Se presentan estudios estadísticos que sirven como tema de partida sobre la importancia de la estadística. Manipulación de material con fotos y representación de distintos tipos de análisis estadísticos. Resolución de problemas de aplicación de funciones en el ámbito deportivo y social. Definición de variables estadísticas medidas de dispersión, tablas de frecuencia procedimientos gráficos y análisis de resultados. Uso de hojas de cálculo que facilitan la representación gráfica y posterior interpretación de información. ¿Qué podemos decir sobre la estadística y su aporte a la economía? Identificación de medidas de tendencia central, explicación en las finanzas y economía. Reflexión y análisis sobre dichas aplicaciones. - Texto - Enlaces web - Calculadora - Pizarra Calculadora I.M.5.6.1.Graficar vectores en el plano; halla su módulo y realiza operaciones de suma resta y producto por un escalar resuelve; problemas aplicados a la Geometría y a la Física. (I.2.) I.M.5.6.2.Realiza operaciones en el espacio vectorial R; calcula la distancia entre dos puntos, el módulo y la dirección de un vector. Reconoce cuando dos vectores son ortogonales; y aplica este conocimiento en problemas físicos apoyado en las TIC (I.3.) I.M.5.6.3.Determina la ecuación de la recta de forma vectorial y paramétrica identifica su pendiente, la distancia a un punto y la posición relativa entre dos rectas, la ecuación de una recta bisectriz, sus aplicaciones reales, la validez de sus resultados y el aporte de las TIC (I.3.) Comprobar el desarrollo de las destrezas necesarias para el manejo de vectores en el plano y sus características coma graficaciòn, Norma con operaciones con vectores algebraicas en forma gráfica y forma analítica así como para la resolución de problemas de aplicación. El estudiante debe ser capaz de calcular el producto de un número por un vector, el producto escalar entre vectores, la ortogonalidad, la distancia entre dos puntos, el ángulo entre dos vectores; determinar la posición relativa de dos rectas; escribir la circunferencia parábola elipse e hipérbola (tanto en su forma cartesiana cómo es su forma paramétrica), y, en general, resolver las aplicaciones geométricas de vectores en R.
  • 15. ¿Por qué es importante calcular analizar e interpretar las medidas de tendencia central y de dispersión de una variable estadística? Planteamiento y resolución de problemas que impliquen medidas de dispersión y de tendencia central. ELEMENTOS DEL PERFIL DE SALIDA I.2.Nos movemos por la curiosidad intelectual, indagamos la realidad nacional y mundial, reflexionamos aplicamos nuestros conocimientos interdisciplinarios para resolver problemas que informa colaborativa e interdependiente aprovechando todos los recursos e información posibles. I.3.Sabemos comunicarnos de manera clara en nuestra lengua y en otras, utilizamos varios lenguajes como el numérico, el digital, el artístico y el corporal; asumimos con responsabilidad de nuestros discursos.
  • 16. Objetivo del área por subnivel O.M.5.1. Proponer soluciones creativas a situaciones concretas Objetivo integrador del área por subnivel OI.5.1. Analizar los diversos proyectos políticos, Logo Institucional Nombre de la institución Año lectivo PLAN DE UNIDAD TEMÁTICA 11. DATOS INFORMATIVOS: Docente: Nombre del docente que ingresa la información Área/asignatura: MATEMÁTICA Grado/Curso: 2° BACHILLERATO Paralelo N° de unidad de planificación 6 Título de la unidad de planificación ESTADÌSTICA Y PROBABILIDAD Objetivos específicos de la unidad de planificación Producir, comunicar y generalizar información de manera escrita, verbal, simbólica, gráfica y/o tecnológica mediante la aplicación de conocimientos matemáticos y el manejo organizado, responsable y honesto de las fuentes de datos para comprender otras disciplinas, entender las necesidades y potencialidades de nuestro país y tomar decisiones con responsabilidad social. Valorar sobre la base de un pensamiento crítico, creativo, reflexivo y lógico la vinculación de los conocimientos matemáticos con los de otras disciplinas científicas y los saberes encéntrales para plantear soluciones a problemas de la realidad y contribuir al desarrollo del entorno, natural y cultural. PERÍODOS 24 SEMANA DE INICIO: 12. PLANIFICACIÓN DESTREZAS CON CRITERIO DE DESEMPEÑO ASER DESARROLLADAS CRITERIOS DE EVALUACIÓN
  • 17.  Resolver y plantear problemas de aplicación de las medidas y tendencia central y de dispersión para datos agrupados con el apoyo de las TIC.  Juzgar la validez de las soluciones obtenidas en los problemas de aplicación de las medidas de tendencia central y de dispersión para datos agrupados dentro del contexto del problema, con apoyo de las TIC.  Calcular e interpretar el coeficiente de variación de un conjunto de datos (agrupados y no agrupados.)  Reconocer los experimentos y eventos en un problema de texto y aplicar el concepto de probabilidad y los axiomas de probabilidad en la resolución de problemas.  Determina la probabilidad empírica de un elemento repitiendo el experimento aleatorio tantas veces como sea posible (50, 100….n veces) con apoyo de las TIC.  Realizar operaciones con sucesos: Unión, intersección, diferencia y complemento, leyes de Morgan en la resolución de problemas.  Aplicar los métodos de conteo: permutaciones, combinaciones para determinar la probabilidad de eventos simples a partir de ellos la probabilidad de eventos compuestos en la resolución de problemas.  Reconocer experimentos en los que requiere utilizar la probabilidad condicionada mediante el análisis de la que dependencia de los eventos de involucrarse calcular la probabilidad de un evento sujeto a varias condiciones aplicando el teorema de Bayes en la resolución de problemas.  Reconocer variables aleatorias discretas cuyo recorrido es un conjunto discreto un ejemplo numérico y experimentos y la distribución de probabilidad para una variable aleatoria discreta como una función real a partir del cálculo de probabilidades acumuladas definidas bajo ciertas condiciones dadas.  Calcular e interpretar la media, la varianza, la desviación estándar de una variable aleatoria discreta.  Juzgar la validez de las oraciones obtenidas en los problemas que involucren el trabajo con probabilidades y variables aleatorias discretas dentro del contexto del problema. CE.M.5.9. Emplea la estadística descriptiva para resumir, organizar, graficar e interpretar datos agrupados y no agrupados. ACTIVIDADES DE APRENDIZAJE RECURSOS INDICADORES DE LOGRO TÉCNICAS E INSTRUMENTOS DE EVALUACIÓN - Texto - Cuaderno - Pizarra - Videos(sitios web) IM.5.9.1. Calcula con y sin apoyo de las TIC, las medidas de centralización y dispersión para datos agrupados y no agrupados; representa la información en gráficos estadísticos apropiados y los interpreta juzgando su validez (J.2., I.3.) Comprobar el desarrollo de las destrezas necesarias para la aplicación de la estadística descriptiva, medidas de tendencia central y de dispersión, para el análisis de datos agrupados y no agrupados. Además de calcular e interpretar el coeficiente de variación, determinan los cuantiles,
  • 18. deciles y realizar sus representaciones gráficas. ELEMENTOS DEL PERFIL DE SALIDA J.2. Actuamos con ética, generosidad, integridad, coherencia y honestidad en todos nuestros actos. I.3.Sabemos comunicarnos de manera clara en nuestra lengua y en otras, utilizamos varios lenguajes como el numérico, el digital, el artístico y el corporal; asumimos con responsabilidad nuestros discursos.