SlideShare una empresa de Scribd logo
1 de 64
Descargar para leer sin conexión
27/11/14 
YSDA seminar 
1 
Searching for New Physics at LHCb & the challenge of big data 
Guy Wilkinson 
University of Oxford and CERN 
27/11/14 
Introduction 
- the Standard Model 
- flavour physics 
- open questions 
- LHCb 
Data processing 
- the data challenge 
- trigger 
- offline 
- the end-user: selected physics results
27/11/14 
YSDA seminar 
2 
Introduction 
- the Standard Model - flavour physics - open questions - LHCb
ATLAS 
CMS 
ALICE 
LHCb
LHCb – a flavour physics experiment at the LHC 
A collaboration of ~1100 members from 68 institutes in 17 countries 
An experiment to search for physics beyond the Standard Model, through 
flavour studies of particles containing beauty (b) quarks & CP-violation.
LHCb – a flavour physics experiment at the LHC 
A collaboration of ~1100 members from 68 institutes in 17 countries 
An experiment to search for physics beyond the Standard Model, through 
flavour studies of particles containing beauty (b) quarks & CP-violation. 
Russian institutes have always had a big role in LHCb: 
YANDEX & YSDA have also been making very important 
contributions in the past few years – many thanks, and 
let us hope this collaboration can grow even stronger !
The Standard Model of particle physics is a quantum- 
field theory that describes the fundamental particles, 
plus the electromagnetic, weak & strong interactions 
All tests made of the Standard Model in particle colliders have been successful ! 
The most spectacular recent example was the discovery of the Higgs boson. 
One very important part of the theory is the ‘flavour sector’ & its associated physics. 
The Standard Model 
27/11/14 
6 
CERN, July 2012
What is flavour physics? 
27/11/14 
YSDA seminar 
7 
The concept of ‘flavour’ in particle physics relates to the existence of 
different families of quarks*, and how they couple to each other 
i.e. 6 known flavours of quark, grouped into 3 generations 
Open questions: 
These mysteries make the ‘flavour sector’ of the Standard Model of great interest. 
• why 3 generations ? 
• why do the quarks exhibit this striking hierarchy in mass ? 
No answer yet ! 
These values (i.e. ‘3’ & 
the masses) are free 
parameters of the SM 
Not to linear scale ! 
mass in MeV/c2 
* the concept of flavour extends 
to the lepton sector too
27/11/14 
YSDA seminar 
8 
Flavour and the CKM matrix 
In the Standard Model quarks can only change flavour through emission of a 
W boson (i.e. weak force). For example a t quark can decay into a b, s or d quark: 
But these decays are not equally likely. At the amplitude level they are weighted 
by factors that are elements of the Cabibbo-Kobyashi-Maskawa (CKM) matrix, and 
these factors vary dramatically – here is another hierarchy we don’t understand ! 
These elements of the CKM matrix are also fundamental parameters of the 
Standard Model. Why they have these values is another great mystery. 
The CKM matrix is also linked to another big puzzle of flavour physics… 
=
9 
50 years ago – events of 1964 
Nelson Mandela sentenced 
to life imprisonment 
Cassius Clay becomes heavyweight champion of the world 
Martin Luther King Jnr. 
wins Nobel Peace Prize 
Change of face 
in the Kremlin 
27/11/14 
YSDA seminar
10 
50 years ago – events of 1964 
Nelson Mandela sentenced to life imprisonment 
Cassius Clay becomes heavyweight champion of the world 
Martin Luther King Jnr. 
wins Nobel Peace Prize 
Change of face 
in the Kremlin 
Discovery of CP violation (in kaon decays) 
Nobel Prize for physics in 1980 
27/11/14 
YSDA seminar
CP violation (CPV) → difference in behaviour between matter and anti-matter. First discovered in the kaon system in 1964, opportunities of study were limited until colliders arrived that could make lots & lots of b-quark hadrons, e.g. the LHC A recent example from LHCb - look at B meson decaying into a pion & two kaons… …the decay probabilities are manifestly different for B- & B+ ! In the Standard Model CPV is accommodated, but not explained, by an imaginary phase in the CKM matrix 
CP violation 
B- 
B+ 
signal 
decays 
background 
[LHCb, arXiv:1408.5373]
Cosmological connections ? 
27/11/14 
YSDA seminar 
12 
As first pointed out by Andrei Sakharov, CP-violation is one 
requirement for explaining baryogenesis – the process that took 
us from the equal amounts of matter and anti-matter produced 
in the Big Bang, to the matter dominated universe of today 
The problem is that the CP-violation that 
appears in the Standard Model, is woefully 
inadequate to explain the matter-antimatter 
asymmetry we have today. 
This is a big problem with the Standard Model ! 
More & better measurements 
may point a way forward.
The Standard Model cannot be a final theory 
We have already encountered the following shortcomings: 
And there are plenty of others, for example: 
More ambitious theories (e.g. supersymmetry or SUSY) can solve at least some of these problems. They generally predict new particles or effects outside the Standard Model. The goal of the LHC is to search for evidence of these effects ! 
Problems with the Standard Model 
27/11/14 
YSDA seminar 
13 
• No explanation for baryogenesis 
• No explanation for the quark or CKM hierarchy 
• No real explanation for CP violation, and why it is only found in the weak interaction. 
• No explanation for dark matter or dark energy 
• No explanation for neutrino masses 
• Gravity not included 
• No explanation for why the Higgs boson has the mass it does (left to itself the theory would make it much, much heavier)
Attacking the fortress of the Standard Model 
14 
The LHC is searching for ‘New Physics’ - to find this we need to get behind the walls of the Standard Model fortress. There are two strategies used in this search Both methods are powerful. LHCb specialises (mostly) in the ‘indirect’ approach 
Direct 
Make precise measurements of 
processes in which New Physics 
particles enter through ‘virtual loops’ 
Use the high energy of the LHC 
to produce the New Physics 
particles, which we then detect 
Indirect
Indirect measurements – an established tradition in science 
27/11/14 
YSDA seminar 
15 
Eratosthenes was able to determine 
the circumference of the earth 
using indirect means… 
…around 2.2 thousand years 
prior to the direct observation.
For some processes, especially suppressed decays, more complicated Feynman diagrams are important. These contain ‘loops’ in which virtual particles participate Decays, & other processes, involving b-quarks are a good place to study role of these loops. In the loops the contribution of heavy particles, e.g. top, is important, even though mt >> mb. Hence these decays tells us about the particles in the loops. As drawn above, the loop contains Standard Model particles, but New Physics particles could also contribute, affecting decay rates, CP violation etc ! Indirect search Precise measurements of low energy phenomena principle tells us about unknown physics at higher energies 
Loop diagrams & ‘indirect searches’
The power of indirect measurements – the top quark mass 
27/11/14 
YSDA seminar 
17 
direct 
indirect 
Top mass [GeV] 
LEP, the accelerator operation at CERN 
in the 1990s, did not have sufficient energy 
to produce ‘real’ top quarks. 
The top quark was instead discovered 
at the Tevatron, near Chicago in 1995 
Nonetheless, the precise measurements 
of Z boson properties made at LEP carry 
information on the top through loop diagrams. 
LEP was able to measure the top mass indirectly, even before Tevatron discovery !
LHCb – a forward spectrometer for flavour physics 
27/11/14 
YSDA seminar 
18
LHCb – a forward spectrometer for flavour physics 
27/11/14 
19 
The VELO is a silicon 
detector around the 
interaction point. 
It approaches within 8 mm of the beamline and reconstructs the b-hadron decay vertex precisely. 
One-half of the VELO under construction 
A reconstructed b-hadron decay vertex 
~1.5 cm
LHCb – a forward spectrometer for flavour physics 
20 
Array of RICH photodetectors 
Assembling RICH 2; note the mirrors 
Momentum [GeV/c] 
Cherenkov angle [rad] 
Two ‘RICH’ detectors detect Cherenkov radiation. 
the angle at which this is emitted tells us the particle 
species – it provides ‘hadron identification’.
LHCb – a forward spectrometer for flavour physics 
YSDA seminar 
21 
A 4 Tm dipole, and the tracking detectors reconstruct the trajectory of charged particles, and allows their momentum to be determined. 
Dipole magnet 
Reconstructed tracks 
Part of outer tracker
LHCb – a forward spectrometer for flavour physics 
27/11/14 
22 
The calorimeter system (ECAL & HCAL) reconstructs the energy of photons, electrons and hadrons. The muon system (M1-M5) identifies muons. 
Part of calorimeter system (preshower) 
These detectors are particularly important 
for the role they play in the LHCb trigger
LHC run 1 went from 2010 to 2012, during which LHCb collected 3 fb-1 of data 
(this corresponds to ~3 x 1011 b anti-b pairs being produced within LHCb). 
We are coming to end of two year shutdown, necessary to upgrade LHC energy. 
Run 2 will go on to 2018 – we hope to increase our beauty sample by x3 or more. 
LHCb – the story so far 
27/11/14 
YSDA seminar 
23 
delivered by LHC 
collected by LHCb
27/11/14 
YSDA seminar 
24 
Data processing 
- the data challenge - trigger - offline - the end-user: selected physics results
The data challenge 
LHC operates at 40 MHz and 
does so for ~15% of year 
LHCb raw event 
size ~100 kBytes 
~ 15000 PetaBytes /yr (raw data alone) 
~ 15000 PetaBytes/year is less 
than dealt with by search engines, 
but still considerably more than 
e.g. Facebook (~ 180 PB/year). 
’ 
Data LHCb ~15000 PB.yr 
rate Facebook ~180 PB / yr 
LHCb 
Facebook
The data challenge 
LHC operates at 40 MHz and 
does so for ~15% of year 
LHCb raw event 
size ~100 kBytes 
~ 15000 
PetaBytes /yr 
(raw data alone) 
~ 15000 PetaBytes/year is less 
than dealt with by search engines, 
but still considerably more than 
e.g. Facebook (~ 180 PB/year). 
Public science has less money to 
spend on computing than Facebook. 
Storage costs money. Better to 
process as much as possible in ‘real time’. 
Data LHCb ~15000 PB.yr rate Facebook ~180 PB / yr 
Computing LHCb ~10M$ / yr 
budget Facebook ~600 M$ /yr 
LHCb 
Facebook
Not all collisions are equally interesting 
27/11/14 
YSDA seminar 
27 
Core business of LHCb is beauty physics, and here we can be selective (Situation is complicated by the fact we also want to study charm physics. Charm is much more abundant, and the decays of interest are more common). So we only save to disk the potentially interesting collisions – task of the trigger. 
Collision rate 40 MHz 
(currently a little less, 
but this sets the ballpark) 
b-hadrons produced 
about once every 
~150 pp collisions 
And most b-hadrons 
decays don’t interest us. 
The ones that do, occur 
every 10-3 -10-10 of time. 
Bs→μμ 
occurs every 
4 x 10-9 
Bs decays
Triggering on beauty 
27/11/14 
YSDA seminar 
28 
There exist characteristics of increasing complexity than can be searched for to 
determine if the collision is of interest and should be preserved for offline analysis. 
μ+ 
μ- 
K+ 
p 
p 
~ 1 cm 
Interaction point 
or ‘primary vertex’ 
(many other particles 
produced, not shown) 
high pT 
B+ 
1.Look for high transverse energy (ET) or momentum (pT) in calorimeters or muon system from decay products. .
Triggering on beauty 
27/11/14 
YSDA seminar 
29 
There exist characteristics of increasing complexity than can be searched for to determine if the collision is of interest and should be preserved for offline analysis. 
μ+ 
μ- 
K+ 
p 
p 
~ 1 cm 
Interaction point 
or ‘primary vertex’ 
(many other particles 
produced, not shown) 
finite 
impact 
parameter 
B+ 
1.Look for high transverse energy (ET) or momentum (pT) in calorimeters or muon system from decay products. 2. Look for tracks with significant ‘impact parameter’ with respect to primary vertex.
Triggering on beauty 
27/11/14 
YSDA seminar 
30 
There exist characteristics of increasing complexity than can be searched for to 
determine if the collision is of interest and should be preserved for offline analysis. 
μ+ 
μ- 
K+ 
p 
p 
B+ 
~ 1 cm 
Interaction point or ‘primary vertex’ (many other particles produced, not shown) 
b-hadron decay, or ‘secondary vertex’ 
1.Look for high transverse energy (ET) or momentum (pT) in calorimeters or muon system from decay products. 2. Look for tracks with significant ‘impact parameter’ with respect to primary vertex. 3. Reconstruct secondary vertex and full b-hadron decay products. 
Each successive step provides improved discrimination, 
but requires more information and time to execute.
Trigger: L0 
27/11/14 
YSDA seminar 
31 
Earliest trigger stage, ‘L0’, makes decisions in hardware based on simple high ET, high pT signatures. Decision made with partial detector information. No time to build full event. Trigger decision made within 4 μs synchronous with bunch crossing rate While decision is being made local detector information is retained in a pipeline within front-end electronics. Reduces data rate down to 1 MHz ( = rate at which full event is read out) 
[LHCb trigger – see LHCb, arXiv:1211.3055]
Trigger: HLT 
27/11/14 
YSDA seminar 
32 
The High Level Trigger (HLT) is a software trigger (C++) that runs on the Event Filter Farm (EFF) The EFF is a farm of multiprocessor PCs (~1500 nodes), located at LHCb ~30,000 copies of HLT run on the EFF L0-accepted event assembled on the EFF. Placed in buffer that is accessed by HLT programs. Two steps: - HLT1: impact parameter info etc used to reduce rate to ~40 kHz (~35 ms/event) - HLT2: full event information used to reduce rate to ~12 kHz (~350 ms/event) Then written offline.
Trigger: alignment and calibration 
Note this step (new to 2015), between the initial and final HLT selections Here the events are written to local disks (~4 PB available) while calibration and alignment is performed. Only when this is satisfactory is second stage of HLT executed. 
This step important, as better alignment provides better signal discrimination. Also 
means we can trust information we would not use otherwise in HLT (i.e. from RICH). 
Goal is to improve background rejection, & to do 
online much of what was traditionally done offline. 
MeV/c2 
Initial alignment 
Final 
alignment 
Υ→μμ 
system
Trigger: multivariate selections 
The strategy to allow selections to be deployed in second-stage of HLT that would normally be reserved for offline has allowed for ever better performance. Multivariate selections, discussed later, play an increasingly important role in trigger 
data 
beauty decays 
charm decays 
Example: ‘boosted Bonzai decision 
Tree’ [Gligorov, Williams, arXiv:1210.861] 
used to select generic B decays. 
This strategy should become ever 
more powerful with the new calibration 
& alignment information now available, 
& opportunity to use e.g. RICH information. 
→ first step towards real time physics analysis ! 
high purity 
selection 
possible
Trigger output 
These data will be sent for offline reconstruction on the GRID, after which physics analysis can be begin. This is the classical approach. These data won’t be reconstructed for some years, probably not until after run 2. This is merely dictated by computing costs. These data will be analysed directly without further offline reconstruction. The idea is that the online reconstruction will be sufficient for physics analysis If this works well then this scheme will be expanded. It could be the future ! 
Full stream Parked stream Turbo stream
Offline processing - event reconstruction 
27/11/14 
YSDA seminar 
36 
Event reconstruction: 
Processing takes ~2 s / event. Occurs in ~5k concurrent jobs run on GRID. 
Output is DST (data storage tape) – 2012 DST data require 2 PB of disk storage. 
Improved detector understanding → need to reprocess data (only do this 1-2 times). 
• reconstruct particles trajectories, providing momentum information and precise knowledge of behaviour close to interaction point 
RICH 2 
LHCb data (preliminary) 
kaon ring 
• perform particle identification – e.g. finding Cherenkov rings in RICH detectors and providing probability of particle assignment for each track
37 
Offline processing – data reduction or ‘stripping’ 
Any given physics analysis selects 0.1-1.0% of events 
•Inefficient to allow individual physicists to run selection job over FULL DST 
Assemble loose (but not too loose!) pre-selections for each set of analysis. 
Group all these pre-selections in a single pass, executed centrally 
•Runs over FULL DST 
•Executes ~800 independent stripping “lines” 
- ~ 0.5 sec/event in total 
- Writes out only events selected by one or more of these lines 
•Output events are grouped into ~15 streams 
•Each stream selects 1-10% of events 
Overall data volume reduction: x50 – x500 depending on stream 
•Few TB (<50) per stream, replicated at several places 
•Accessible to physicists for data analysis
Offline processing - simulated data 
Almost all physics analyses require large quantities of simulated data for training selection algorithms, measuring performance, and understanding backgrounds Elements of simulation, or ‘Monte Carlo’ software: Simulation is a very major driver of CPU and storage requirements 
•Simulation of physics events; 
•Detailed detector and material description (GEANT); 
•Pattern recognition, trigger simulation and offline event selection; 
•Implements detector inefficiencies, noise hits, effects of multiple collisions. 
GEANT description 
of VELO 
Simulated LHCb event
LHCb computing model 
RRCKI 
+ 
recent addition 
Monte Carlo 
production 
(and some 
user analysis) 
HLT farm 
Tier-2’s 
YANDEX 
+
Snapshot of recent CPU provision 
27/11/14 
YSDA seminar 
40 
~50% CERN plus Tier 1 centres ~ 12% HLT farm (we use it for offline tasks when LHC is not running) ~ 5% YANDEX ~33% Tier 2 centres
Profile of recent CPU usage 
27/11/14 
YSDA seminar 
41 
Thousands of jobs 
Simulation jobs 
User analysis jobs 
(Recall that currently no real data being processed, nor are any being reprocessed)
27/11/14 
YSDA seminar 
42 
Tools for data access 
Book-keeping tools needed to identify files 
corresponding to datasets for e.g. analysis jobs. 
Book-keeping has no information about individual events. But often desirable to select events according to given characteristics and download source files. . This possible thanks to Event Index tool developed by YSDA.
Data storage 
27/11/14 
YSDA seminar 
43 
Data storage capabilities is a major consideration in LHCb computing planning. 
Efficient use of existing 
resources is essential 
for optimising physics 
performance. 
Study of data popularity now 
underway, led by YSDA: 
• will help to improve replication and cleanup strategies 
• multivariate tools very useful to predict evolution of demand 
old, unused data – 
remove or move to tape
The end-user: selected physics results 
27/11/14 
YSDA seminar 
44
The end-user: selected physics results 
27/11/14 
YSDA seminar 
45 
Over 225 journal publications. Here will focus on two very important analyses with particular demands on data handling: 
• Testing the Standard Model description of CP violation – measuring the angle γ 
• Hunting for the ‘needle in the haystack’: the search for Bs→μμ
CP violation, the difference in behaviour between matter and 
antimatter, is accommodated in the Standard Model 
by a single complex phase in the CKM matrix. 
One of the angles of this triangle, γ, is related very directly to the CKM phase. 
Our knowledge of the other elements of the matrix allow us to predict the 
angle with high precision. Now LHCb must measure CP-violating processes 
to obtain a direct measurement of γ to compare with this prediction. 
Measuring the angle γ - testing 
CP violation in the Standard Model 
Any discrepancy would point to New Physics effects in flavour physics 
observables (e.g. SUSY particles, 4th generation of quarks etc ) 
o (66.4 ) 1.2 
3.3 
 
  
Relations exist between the elements 
of the matrix which can be displayed 
geometrically – as triangles. 
predicted 
value
27/11/14 
YSDA seminar 
47 
How to measure γ ? 
• It is a hidden phase, which exist between different b-quark decays 
• The only way to access this phase is to look for a decay mode that is common to both D0 and anti-D0. Then we don’t know by which path the decay has taken, and we get quantum inferference, as in the famous double-slit experiment 
• The phase is CP-violating, which means it should generate different effects for B+ & B-. 
B- →D0 K- B- →anti-D0 K- 
phase γ 
between 
amplitudes 
Measuring γ – quantum interferometry
B- →D0 K- 
B- →anti-D0 K- 
First look at the case where the (anti-)D0 is reconstructed in the ‘favoured’ mode K-π+ for the B- decay (or K+π- for B+ ). This is (almost) completely dominated by a single decay path, and so no quantum interference is expected… 
Favoured 
B- 
B+ 
signal 
Measuring γ – quantum interferometry 
..and none is seen, since the decay rates are essentially the same. 
[LHCb, arXiv:1203.3662]
B- →D0 K- 
B- →anti-D0 K- 
Now look at the case where the (anti-)D0 is reconstructed in the ‘suppressed’ mode K+π- for the B- decay (or K-π+ for B+ ). Here we expect significant interference, and indeed a large CP-violating difference in rates is seen between B- and B+ ! 
Favoured 
B- 
B+ 
signal 
Suppressed 
B+ 
B- 
Measuring γ – quantum interferometry 
Note the suppressed mode is very rare, and so a multivariate selection is essential. 
[LHCb, arXiv:1203.3662]
27/11/14 
YSDA seminar 
50 
Measuring γ – adding other decays 
B- →D0 K- 
B- →anti-D0 K- 
Another possibility is to look for (anti-)D0 decaying into three particles, such as K0Sπ+π- These three particles can share the energy of the decay in different ways, and so here the CP-violation effects are expected to vary, depending on the sharing. 
[LHCb, arXiv:1408.2748] 
B+ 
B- 
more energy goes to K0Sπ+ in B- case 
more energy 
goes to K0Sπ- 
in B- case 
The multivariate selection must ensure efficiency is ~uniform over this 2D space ! 
Axis meaning
Using these decays and others, LHCb has now measured γ to precision of 10o Measurement agrees with the indirect prediction, but is not yet as accurate. Significant improvements are expected over the coming run and with the LHCb Upgrade (see later) which will allow for a very precise comparison. High performance data selection tools will be essential in reaching this goal ! 
27/11/14 
YSDA seminar 
51 
Measuring γ – the current status 
current LHCb measurement 
(diagram approximate) [LHCb-CONF-2014-004]
52 
Bs →μμ – a twenty-five year old quest 
We have been searching for Bs →μμ for a long time...
This decay mode can only proceed through suppressed loop diagrams. In the Standard Model it happens extremely rarely (~10-9), but the exact rate is very well predicted Many models of New Physics (e.g. SUSY) can enhance rate significantly ! A ‘needle-in-the haystack’ search ! 
27/11/14 
YSDA seminar 
53 
Bs →μμ – the physics interest 
Prior to the LHC, the experiments at Fermilab 
were pushing the search limits down towards 10-8 
Standard Model 
SUSY
There are lots of B-decays that look rather similar to Bs→μμ. And ‘rather similar’ is very dangerous when you are searching for such a rare decay. Traditional, ‘cut-based’ analyses are not adequate – must use a machine-learning multi-variate technique. We use a sequence of two boosted decision trees (BDTs). BDTs must not just search for a B-decay, as in trigger, but must look for one which is Bs→μμ Many signatures to use, and many improvements with time, but possible to do even better (e.g. muon identification itself is still handled in cut-based way) 
Finding the needle 
27/11/14 
YSDA seminar 
54 
e.g. compare momentum vector of decay with vertex separation vector 
momentum vector of candidate 
vector between interaction 
point & secondary vertices 
μ+ 
μ- 
Bs 
interaction point 
[LHCb, arXiv:1307.5042]
27/11/14 
YSDA seminar 
55 
[LHCb, arXiv:1112.1600] 
Plot of invariant mass distribution in region 
of high BDT sensitivity – if there is a signal 
we should see a peak here (but 
the BDT uses much more information 
than the invariant mass alone !) 
2010 
2010 Nothing 
Bs→μμ - progress through run 1
[LHCb, arXiv:1112.1600] 
27/11/14 
YSDA seminar 
56 
[LHCb, arXiv:1203.4493] 
Plot of invariant mass distribution in region 
of high BDT sensitivity – if there is a signal 
we should see a peak here (but 
the BDT uses much more information 
than the invariant mass alone !) 
2010 
+2011 
+ 2011 
Maybe a hint of a bump, but nothing can be claimed 
Bs→μμ - progress through run 1
[LHCb, arXiv:1112.1600] 
27/11/14 
YSDA seminar 
57 
[LHCb, arXiv:1211.2674] 
[LHCb, arXiv:1203.4493] 
Plot of invariant mass distribution in region 
of high BDT sensitivity – if there is a signal 
we should see a peak here (but 
the BDT uses much more information 
than the invariant mass alone !) 
2010 
+2011 
+ early 2012 
+ early 2012 
Evidence that 
there is something there ! 
Bs→μμ - progress through run 1
[LHCb, arXiv:1112.1600] 
27/11/14 
YSDA seminar 
58 
[LHCb, arXiv:1211.2674] 
[LHCb, arXiv:1203.4493] 
Bs→μμ - progress through run 1 
Plot of invariant mass distribution in region of high BDT sensitivity – if there is a signal we should see a peak here (but the BDT uses much more information than the invariant mass alone !) 
2010 
+2011 
+ early 2012 
+ all 2012 
[LHCb, arXiv:1307.5042] 
+ all 2012 
The evidence grows…
Signal becomes even more compelling, if we look at results of a joint analysis 
performed on LHCb data and data from the CMS experiment…. 
…the branching ratio turns out to be consistent with Standard Model prediction. 
This result is extremely important, as it rules out many New Physics models. 
Improved analyses, with better multivariate selections, are needed to make 
more precise measurement, & watch development of intriguing Bd→μμ signal. 
27/11/14 
YSDA seminar 
59 
Bs→μμ – the wait is over 
Bd→μμ: an even rarer mode 
Bs→μμ 
[LHCb, arXiv:1411.4413]
The LHCb Upgrade 
27/11/14 
YSDA seminar 
60 
The Upgrade is an ambitions, approved 
project, due to be installed in the second 
long LHC shutdown of 2018-19
The LHCb Upgrade 
27/11/14 
YSDA seminar 
61 
The Upgrade is an ambitions, approved project, due to be installed in the second long LHC shutdown of 2018-19 Its main feature is to remove hardware trigger, increase read-out rate to 40 MHz, and execute software HLT at this rate ! We will also run at higher luminosity… …and output to storage at 20-100 kHz 
Very exciting physics potential, provided that the vastly increased data processing challenges can be overcome ! 
40 MHz 
20-100 
kHz 
2020
Conclusions 
27/11/14 
YSDA seminar 
62 
• The study of flavour, in particular beauty decays, is a powerful & necessary approach in the search for New Physics beyond the Standard Model. 
• LHCb is leading this search. The experiment has produced many important results from LHC run 1, with great prospects for run 2 & the Upgrade. 
• Success of experiment depends critically on efficient handling of very large data volume. So far we have done OK, but we are very open to new ideas !
27/11/14 
YSDA seminar 
63 
Backup
Precise measurement of Bs oscillations 
27/11/14 
YSDA seminar 
64 
Loop diagrams allow Bs mesons to transform into 
their own antiparticles, and back again. They do 
this very, very rapidly, flipping back and forth many 
times during the short time (~1 ps) the particle exists 
The capabilities of LHCb have 
allowed us to measure this 
behaviour with great precision. 
This capability is essential for 
teasing out the effects from the 
New Physics particles which 
could contribute (e.g. in 
CP-violation effects) 
in the loop diagram.

Más contenido relacionado

La actualidad más candente

Large hadron collider
Large hadron colliderLarge hadron collider
Large hadron collideranoop kp
 
Quantum Theory
Quantum TheoryQuantum Theory
Quantum Theoryjpsellanes
 
Sochi presentationucl(tampa)
Sochi presentationucl(tampa)Sochi presentationucl(tampa)
Sochi presentationucl(tampa)Taha Sochi
 
Quantum mechanics
Quantum mechanicsQuantum mechanics
Quantum mechanicshplap
 
September 2014 NITheP Associate meeting Dr Chiang presentation
September 2014 NITheP Associate meeting Dr Chiang presentation September 2014 NITheP Associate meeting Dr Chiang presentation
September 2014 NITheP Associate meeting Dr Chiang presentation Rene Kotze
 
Group 3: Logarithms (carbon dating)
Group 3: Logarithms  (carbon dating)Group 3: Logarithms  (carbon dating)
Group 3: Logarithms (carbon dating)tohcy
 
110411 iesss-fullere-grafe
110411 iesss-fullere-grafe110411 iesss-fullere-grafe
110411 iesss-fullere-grafeMiquel Duran
 
Henry moseley atomic number
Henry moseley atomic numberHenry moseley atomic number
Henry moseley atomic numberKRENCHBOY
 
23 3 Quantum Mechanics
23 3 Quantum Mechanics23 3 Quantum Mechanics
23 3 Quantum Mechanicsfysteach
 
บทที่ 1 กำเนิดฟิสิกส์แผนใหม่
บทที่ 1 กำเนิดฟิสิกส์แผนใหม่บทที่ 1 กำเนิดฟิสิกส์แผนใหม่
บทที่ 1 กำเนิดฟิสิกส์แผนใหม่Thepsatri Rajabhat University
 
F.Sc. Part 1 Chemistry.Ch.05.Test (Malik Xufyan)
F.Sc. Part 1 Chemistry.Ch.05.Test (Malik Xufyan)F.Sc. Part 1 Chemistry.Ch.05.Test (Malik Xufyan)
F.Sc. Part 1 Chemistry.Ch.05.Test (Malik Xufyan)Malik Xufyan
 
Discovery of Electrons and Protons
Discovery of Electrons and ProtonsDiscovery of Electrons and Protons
Discovery of Electrons and ProtonsEdnorObello
 
Chapter basic of quantum mechanics
Chapter basic of quantum mechanicsChapter basic of quantum mechanics
Chapter basic of quantum mechanicsShahzada Khan
 
Kuliah geokimia 6a
Kuliah geokimia 6aKuliah geokimia 6a
Kuliah geokimia 6aArham Bahar
 
Quantum Physics
Quantum PhysicsQuantum Physics
Quantum PhysicsStudent
 
Bonding in the Nucleus of an Atom
Bonding in the Nucleus of an AtomBonding in the Nucleus of an Atom
Bonding in the Nucleus of an Atomiosrjce
 

La actualidad más candente (20)

Large hadron collider
Large hadron colliderLarge hadron collider
Large hadron collider
 
Quantum Theory
Quantum TheoryQuantum Theory
Quantum Theory
 
Sochi presentationucl(tampa)
Sochi presentationucl(tampa)Sochi presentationucl(tampa)
Sochi presentationucl(tampa)
 
Quantum mechanics
Quantum mechanicsQuantum mechanics
Quantum mechanics
 
September 2014 NITheP Associate meeting Dr Chiang presentation
September 2014 NITheP Associate meeting Dr Chiang presentation September 2014 NITheP Associate meeting Dr Chiang presentation
September 2014 NITheP Associate meeting Dr Chiang presentation
 
Group 3: Logarithms (carbon dating)
Group 3: Logarithms  (carbon dating)Group 3: Logarithms  (carbon dating)
Group 3: Logarithms (carbon dating)
 
110411 iesss-fullere-grafe
110411 iesss-fullere-grafe110411 iesss-fullere-grafe
110411 iesss-fullere-grafe
 
Henry moseley atomic number
Henry moseley atomic numberHenry moseley atomic number
Henry moseley atomic number
 
23 3 Quantum Mechanics
23 3 Quantum Mechanics23 3 Quantum Mechanics
23 3 Quantum Mechanics
 
บทที่ 1 กำเนิดฟิสิกส์แผนใหม่
บทที่ 1 กำเนิดฟิสิกส์แผนใหม่บทที่ 1 กำเนิดฟิสิกส์แผนใหม่
บทที่ 1 กำเนิดฟิสิกส์แผนใหม่
 
Carbon 14 Dating
Carbon 14 DatingCarbon 14 Dating
Carbon 14 Dating
 
Timeline
TimelineTimeline
Timeline
 
Quantum mechanics
Quantum mechanicsQuantum mechanics
Quantum mechanics
 
F.Sc. Part 1 Chemistry.Ch.05.Test (Malik Xufyan)
F.Sc. Part 1 Chemistry.Ch.05.Test (Malik Xufyan)F.Sc. Part 1 Chemistry.Ch.05.Test (Malik Xufyan)
F.Sc. Part 1 Chemistry.Ch.05.Test (Malik Xufyan)
 
jj.thomson
jj.thomsonjj.thomson
jj.thomson
 
Discovery of Electrons and Protons
Discovery of Electrons and ProtonsDiscovery of Electrons and Protons
Discovery of Electrons and Protons
 
Chapter basic of quantum mechanics
Chapter basic of quantum mechanicsChapter basic of quantum mechanics
Chapter basic of quantum mechanics
 
Kuliah geokimia 6a
Kuliah geokimia 6aKuliah geokimia 6a
Kuliah geokimia 6a
 
Quantum Physics
Quantum PhysicsQuantum Physics
Quantum Physics
 
Bonding in the Nucleus of an Atom
Bonding in the Nucleus of an AtomBonding in the Nucleus of an Atom
Bonding in the Nucleus of an Atom
 

Destacado

Коллективная разработка документации: от индивидуального авторства к командн...
 Коллективная разработка документации: от индивидуального авторства к командн... Коллективная разработка документации: от индивидуального авторства к командн...
Коллективная разработка документации: от индивидуального авторства к командн...Yandex
 
вера сивакова
вера сиваковавера сивакова
вера сиваковаYandex
 
Где прячутся мобильные вирусы — Григорий Земсков
Где прячутся мобильные вирусы — Григорий ЗемсковГде прячутся мобильные вирусы — Григорий Земсков
Где прячутся мобильные вирусы — Григорий ЗемсковYandex
 
Антон Качалов - Популярно об IPMI и UEFI
Антон Качалов - Популярно об IPMI и UEFI Антон Качалов - Популярно об IPMI и UEFI
Антон Качалов - Популярно об IPMI и UEFI Yandex
 
Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...
Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...
Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...Yandex
 
Мобильная Яндекс.Почта — Дмитрий Александров
Мобильная Яндекс.Почта — Дмитрий АлександровМобильная Яндекс.Почта — Дмитрий Александров
Мобильная Яндекс.Почта — Дмитрий АлександровYandex
 
Руководство по стилю документации: зачем и как, Татьяна Грачёва
Руководство по стилю документации: зачем и как, Татьяна ГрачёваРуководство по стилю документации: зачем и как, Татьяна Грачёва
Руководство по стилю документации: зачем и как, Татьяна ГрачёваYandex
 
Жидков Игорь - Elliptics
Жидков Игорь - Elliptics   Жидков Игорь - Elliptics
Жидков Игорь - Elliptics Yandex
 
алексей тихонов
алексей тихоновалексей тихонов
алексей тихоновYandex
 
Симаков Алексей - Системы управления кластерами
 Симаков Алексей - Системы управления кластерами   Симаков Алексей - Системы управления кластерами
Симаков Алексей - Системы управления кластерами Yandex
 
Использование C++ для низкоуровневой платформозависимой разработки — Кирилл ...
 Использование C++ для низкоуровневой платформозависимой разработки — Кирилл ... Использование C++ для низкоуровневой платформозависимой разработки — Кирилл ...
Использование C++ для низкоуровневой платформозависимой разработки — Кирилл ...Yandex
 
Михаил Трошев — Инструменты веб-разработки
Михаил Трошев — Инструменты веб-разработкиМихаил Трошев — Инструменты веб-разработки
Михаил Трошев — Инструменты веб-разработкиYandex
 
Тропинка через минное поле — Леонычев Юрий
Тропинка через минное поле — Леонычев ЮрийТропинка через минное поле — Леонычев Юрий
Тропинка через минное поле — Леонычев ЮрийYandex
 
Как делается Яндекс.Браузер — Михаил Лопаткин
Как делается Яндекс.Браузер — Михаил ЛопаткинКак делается Яндекс.Браузер — Михаил Лопаткин
Как делается Яндекс.Браузер — Михаил ЛопаткинYandex
 
Андрей Соболевский - Вокруг Базельской задачи: Бернулли, Эйлер, Риман
Андрей Соболевский - Вокруг Базельской задачи: Бернулли, Эйлер, РиманАндрей Соболевский - Вокруг Базельской задачи: Бернулли, Эйлер, Риман
Андрей Соболевский - Вокруг Базельской задачи: Бернулли, Эйлер, РиманYandex
 
Дмитрий Васильев - Задачи ассиметричной криптографии
Дмитрий Васильев - Задачи ассиметричной криптографииДмитрий Васильев - Задачи ассиметричной криптографии
Дмитрий Васильев - Задачи ассиметричной криптографииYandex
 
Константин Горский - Дизайн
Константин Горский - ДизайнКонстантин Горский - Дизайн
Константин Горский - ДизайнYandex
 
Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...
Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...
Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...Yandex
 
Иван Титов — Inducing Semantic Representations from Text with Little or No Su...
Иван Титов — Inducing Semantic Representations from Text with Little or No Su...Иван Титов — Inducing Semantic Representations from Text with Little or No Su...
Иван Титов — Inducing Semantic Representations from Text with Little or No Su...Yandex
 
Алексей Заблоцкий - Нейросети на основе мемристоров для реализации искусствен...
Алексей Заблоцкий - Нейросети на основе мемристоров для реализации искусствен...Алексей Заблоцкий - Нейросети на основе мемристоров для реализации искусствен...
Алексей Заблоцкий - Нейросети на основе мемристоров для реализации искусствен...Yandex
 

Destacado (20)

Коллективная разработка документации: от индивидуального авторства к командн...
 Коллективная разработка документации: от индивидуального авторства к командн... Коллективная разработка документации: от индивидуального авторства к командн...
Коллективная разработка документации: от индивидуального авторства к командн...
 
вера сивакова
вера сиваковавера сивакова
вера сивакова
 
Где прячутся мобильные вирусы — Григорий Земсков
Где прячутся мобильные вирусы — Григорий ЗемсковГде прячутся мобильные вирусы — Григорий Земсков
Где прячутся мобильные вирусы — Григорий Земсков
 
Антон Качалов - Популярно об IPMI и UEFI
Антон Качалов - Популярно об IPMI и UEFI Антон Качалов - Популярно об IPMI и UEFI
Антон Качалов - Популярно об IPMI и UEFI
 
Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...
Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...
Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...
 
Мобильная Яндекс.Почта — Дмитрий Александров
Мобильная Яндекс.Почта — Дмитрий АлександровМобильная Яндекс.Почта — Дмитрий Александров
Мобильная Яндекс.Почта — Дмитрий Александров
 
Руководство по стилю документации: зачем и как, Татьяна Грачёва
Руководство по стилю документации: зачем и как, Татьяна ГрачёваРуководство по стилю документации: зачем и как, Татьяна Грачёва
Руководство по стилю документации: зачем и как, Татьяна Грачёва
 
Жидков Игорь - Elliptics
Жидков Игорь - Elliptics   Жидков Игорь - Elliptics
Жидков Игорь - Elliptics
 
алексей тихонов
алексей тихоновалексей тихонов
алексей тихонов
 
Симаков Алексей - Системы управления кластерами
 Симаков Алексей - Системы управления кластерами   Симаков Алексей - Системы управления кластерами
Симаков Алексей - Системы управления кластерами
 
Использование C++ для низкоуровневой платформозависимой разработки — Кирилл ...
 Использование C++ для низкоуровневой платформозависимой разработки — Кирилл ... Использование C++ для низкоуровневой платформозависимой разработки — Кирилл ...
Использование C++ для низкоуровневой платформозависимой разработки — Кирилл ...
 
Михаил Трошев — Инструменты веб-разработки
Михаил Трошев — Инструменты веб-разработкиМихаил Трошев — Инструменты веб-разработки
Михаил Трошев — Инструменты веб-разработки
 
Тропинка через минное поле — Леонычев Юрий
Тропинка через минное поле — Леонычев ЮрийТропинка через минное поле — Леонычев Юрий
Тропинка через минное поле — Леонычев Юрий
 
Как делается Яндекс.Браузер — Михаил Лопаткин
Как делается Яндекс.Браузер — Михаил ЛопаткинКак делается Яндекс.Браузер — Михаил Лопаткин
Как делается Яндекс.Браузер — Михаил Лопаткин
 
Андрей Соболевский - Вокруг Базельской задачи: Бернулли, Эйлер, Риман
Андрей Соболевский - Вокруг Базельской задачи: Бернулли, Эйлер, РиманАндрей Соболевский - Вокруг Базельской задачи: Бернулли, Эйлер, Риман
Андрей Соболевский - Вокруг Базельской задачи: Бернулли, Эйлер, Риман
 
Дмитрий Васильев - Задачи ассиметричной криптографии
Дмитрий Васильев - Задачи ассиметричной криптографииДмитрий Васильев - Задачи ассиметричной криптографии
Дмитрий Васильев - Задачи ассиметричной криптографии
 
Константин Горский - Дизайн
Константин Горский - ДизайнКонстантин Горский - Дизайн
Константин Горский - Дизайн
 
Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...
Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...
Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...
 
Иван Титов — Inducing Semantic Representations from Text with Little or No Su...
Иван Титов — Inducing Semantic Representations from Text with Little or No Su...Иван Титов — Inducing Semantic Representations from Text with Little or No Su...
Иван Титов — Inducing Semantic Representations from Text with Little or No Su...
 
Алексей Заблоцкий - Нейросети на основе мемристоров для реализации искусствен...
Алексей Заблоцкий - Нейросети на основе мемристоров для реализации искусствен...Алексей Заблоцкий - Нейросети на основе мемристоров для реализации искусствен...
Алексей Заблоцкий - Нейросети на основе мемристоров для реализации искусствен...
 

Similar a Большие данные в физике элементарных частиц на примере LHCb - Guy Wilkinson, CERN, Oxford University

The Standard Model and the LHC in the Higgs Boson Era
The Standard Model and the LHC in the Higgs Boson EraThe Standard Model and the LHC in the Higgs Boson Era
The Standard Model and the LHC in the Higgs Boson Erajuanrojochacon
 
Oxford graduate lectures on "Quantum Chromodynamics and LHC phenomenology" Pa...
Oxford graduate lectures on "Quantum Chromodynamics and LHC phenomenology" Pa...Oxford graduate lectures on "Quantum Chromodynamics and LHC phenomenology" Pa...
Oxford graduate lectures on "Quantum Chromodynamics and LHC phenomenology" Pa...juanrojochacon
 
Large Hadron Collider (LHC)
 Large Hadron Collider (LHC) Large Hadron Collider (LHC)
Large Hadron Collider (LHC)swamynaidu addala
 
LARGE HADRON COLLIDERS
LARGE HADRON COLLIDERSLARGE HADRON COLLIDERS
LARGE HADRON COLLIDERSY Salman Baig
 
Prof Steve F King 'The standard models in particle physics'
Prof Steve F King 'The standard models in particle physics'Prof Steve F King 'The standard models in particle physics'
Prof Steve F King 'The standard models in particle physics'onthewight
 
淺嚐 LHCb 數據分析的滋味 Play around the LHCb Data on Kaggle with SK-Learn and MatPlotLib
淺嚐 LHCb 數據分析的滋味 Play around the LHCb Data on Kaggle with SK-Learn and MatPlotLib淺嚐 LHCb 數據分析的滋味 Play around the LHCb Data on Kaggle with SK-Learn and MatPlotLib
淺嚐 LHCb 數據分析的滋味 Play around the LHCb Data on Kaggle with SK-Learn and MatPlotLibYuan CHAO
 
Large hadron collider
Large hadron colliderLarge hadron collider
Large hadron colliderKumar
 
Large Hadron Collider(LHC) PPT
Large Hadron Collider(LHC) PPTLarge Hadron Collider(LHC) PPT
Large Hadron Collider(LHC) PPTHeman Chopra
 
High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...
High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...
High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...Chad Orzel
 
Particle landscape
Particle landscapeParticle landscape
Particle landscapeRoman Tirler
 
TRM-4.ppt
TRM-4.pptTRM-4.ppt
TRM-4.ppthansa64
 
use this anytime anywhere, just cite properly TRM-4.ppt
use this anytime anywhere, just cite properly TRM-4.pptuse this anytime anywhere, just cite properly TRM-4.ppt
use this anytime anywhere, just cite properly TRM-4.pptmariadelrioalbar1
 
CHAPTER 4: Structure of the Atom - Portland State University
CHAPTER 4: Structure of the Atom - Portland State UniversityCHAPTER 4: Structure of the Atom - Portland State University
CHAPTER 4: Structure of the Atom - Portland State UniversityHichamChourak2
 
This is it Right one to form M-4.ppt
This is it Right one to form       M-4.pptThis is it Right one to form       M-4.ppt
This is it Right one to form M-4.pptmariadelrioalbar1
 
Unknown 2019 - expand “explorations at and beyond the neutron dripline ”
Unknown   2019 - expand “explorations at and beyond the neutron dripline ”Unknown   2019 - expand “explorations at and beyond the neutron dripline ”
Unknown 2019 - expand “explorations at and beyond the neutron dripline ”LinhBui343479
 

Similar a Большие данные в физике элементарных частиц на примере LHCb - Guy Wilkinson, CERN, Oxford University (20)

The Standard Model and the LHC in the Higgs Boson Era
The Standard Model and the LHC in the Higgs Boson EraThe Standard Model and the LHC in the Higgs Boson Era
The Standard Model and the LHC in the Higgs Boson Era
 
Oxford graduate lectures on "Quantum Chromodynamics and LHC phenomenology" Pa...
Oxford graduate lectures on "Quantum Chromodynamics and LHC phenomenology" Pa...Oxford graduate lectures on "Quantum Chromodynamics and LHC phenomenology" Pa...
Oxford graduate lectures on "Quantum Chromodynamics and LHC phenomenology" Pa...
 
Large Hadron Collider (LHC)
 Large Hadron Collider (LHC) Large Hadron Collider (LHC)
Large Hadron Collider (LHC)
 
LARGE HADRON COLLIDERS
LARGE HADRON COLLIDERSLARGE HADRON COLLIDERS
LARGE HADRON COLLIDERS
 
Large hadron collider
Large hadron colliderLarge hadron collider
Large hadron collider
 
Prof Steve F King 'The standard models in particle physics'
Prof Steve F King 'The standard models in particle physics'Prof Steve F King 'The standard models in particle physics'
Prof Steve F King 'The standard models in particle physics'
 
淺嚐 LHCb 數據分析的滋味 Play around the LHCb Data on Kaggle with SK-Learn and MatPlotLib
淺嚐 LHCb 數據分析的滋味 Play around the LHCb Data on Kaggle with SK-Learn and MatPlotLib淺嚐 LHCb 數據分析的滋味 Play around the LHCb Data on Kaggle with SK-Learn and MatPlotLib
淺嚐 LHCb 數據分析的滋味 Play around the LHCb Data on Kaggle with SK-Learn and MatPlotLib
 
Large hadron collider
Large hadron colliderLarge hadron collider
Large hadron collider
 
Large Hadron Collider(LHC) PPT
Large Hadron Collider(LHC) PPTLarge Hadron Collider(LHC) PPT
Large Hadron Collider(LHC) PPT
 
TRM-4.ppt
TRM-4.pptTRM-4.ppt
TRM-4.ppt
 
Cern
CernCern
Cern
 
Higgs boson
Higgs bosonHiggs boson
Higgs boson
 
High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...
High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...
High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...
 
Particle landscape
Particle landscapeParticle landscape
Particle landscape
 
TRM-4.ppt
TRM-4.pptTRM-4.ppt
TRM-4.ppt
 
use this anytime anywhere, just cite properly TRM-4.ppt
use this anytime anywhere, just cite properly TRM-4.pptuse this anytime anywhere, just cite properly TRM-4.ppt
use this anytime anywhere, just cite properly TRM-4.ppt
 
CHAPTER 4: Structure of the Atom - Portland State University
CHAPTER 4: Structure of the Atom - Portland State UniversityCHAPTER 4: Structure of the Atom - Portland State University
CHAPTER 4: Structure of the Atom - Portland State University
 
This is it Right one to form M-4.ppt
This is it Right one to form       M-4.pptThis is it Right one to form       M-4.ppt
This is it Right one to form M-4.ppt
 
Big Bang
Big BangBig Bang
Big Bang
 
Unknown 2019 - expand “explorations at and beyond the neutron dripline ”
Unknown   2019 - expand “explorations at and beyond the neutron dripline ”Unknown   2019 - expand “explorations at and beyond the neutron dripline ”
Unknown 2019 - expand “explorations at and beyond the neutron dripline ”
 

Más de Yandex

Предсказание оттока игроков из World of Tanks
Предсказание оттока игроков из World of TanksПредсказание оттока игроков из World of Tanks
Предсказание оттока игроков из World of TanksYandex
 
Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...
Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...
Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...Yandex
 
Структурированные данные, Юлия Тихоход, лекция в Школе вебмастеров Яндекса
Структурированные данные, Юлия Тихоход, лекция в Школе вебмастеров ЯндексаСтруктурированные данные, Юлия Тихоход, лекция в Школе вебмастеров Яндекса
Структурированные данные, Юлия Тихоход, лекция в Школе вебмастеров ЯндексаYandex
 
Представление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров Яндекса
Представление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров ЯндексаПредставление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров Яндекса
Представление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров ЯндексаYandex
 
Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...
Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...
Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...Yandex
 
Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...
Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...
Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...Yandex
 
Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...
Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...
Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...Yandex
 
Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...
Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...
Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...Yandex
 
Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...
Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...
Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...Yandex
 
Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...
Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...
Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...Yandex
 
Как защитить свой сайт, Пётр Волков, лекция в Школе вебмастеров
Как защитить свой сайт, Пётр Волков, лекция в Школе вебмастеровКак защитить свой сайт, Пётр Волков, лекция в Школе вебмастеров
Как защитить свой сайт, Пётр Волков, лекция в Школе вебмастеровYandex
 
Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...
Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...
Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...Yandex
 
Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...
Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...
Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...Yandex
 
Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...
Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...
Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...Yandex
 
Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...
Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...
Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...Yandex
 
Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...
Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...
Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...Yandex
 
Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...
Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...
Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...Yandex
 
Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...
Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...
Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...Yandex
 
Эталонное описание фильма на основе десятков дубликатов
Эталонное описание фильма на основе десятков дубликатовЭталонное описание фильма на основе десятков дубликатов
Эталонное описание фильма на основе десятков дубликатовYandex
 
Поиск списков в неструктурированных данных
Поиск списков в неструктурированных данныхПоиск списков в неструктурированных данных
Поиск списков в неструктурированных данныхYandex
 

Más de Yandex (20)

Предсказание оттока игроков из World of Tanks
Предсказание оттока игроков из World of TanksПредсказание оттока игроков из World of Tanks
Предсказание оттока игроков из World of Tanks
 
Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...
Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...
Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...
 
Структурированные данные, Юлия Тихоход, лекция в Школе вебмастеров Яндекса
Структурированные данные, Юлия Тихоход, лекция в Школе вебмастеров ЯндексаСтруктурированные данные, Юлия Тихоход, лекция в Школе вебмастеров Яндекса
Структурированные данные, Юлия Тихоход, лекция в Школе вебмастеров Яндекса
 
Представление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров Яндекса
Представление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров ЯндексаПредставление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров Яндекса
Представление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров Яндекса
 
Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...
Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...
Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...
 
Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...
Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...
Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...
 
Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...
Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...
Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...
 
Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...
Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...
Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...
 
Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...
Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...
Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...
 
Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...
Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...
Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...
 
Как защитить свой сайт, Пётр Волков, лекция в Школе вебмастеров
Как защитить свой сайт, Пётр Волков, лекция в Школе вебмастеровКак защитить свой сайт, Пётр Волков, лекция в Школе вебмастеров
Как защитить свой сайт, Пётр Волков, лекция в Школе вебмастеров
 
Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...
Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...
Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...
 
Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...
Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...
Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...
 
Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...
Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...
Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...
 
Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...
Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...
Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...
 
Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...
Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...
Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...
 
Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...
Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...
Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...
 
Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...
Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...
Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...
 
Эталонное описание фильма на основе десятков дубликатов
Эталонное описание фильма на основе десятков дубликатовЭталонное описание фильма на основе десятков дубликатов
Эталонное описание фильма на основе десятков дубликатов
 
Поиск списков в неструктурированных данных
Поиск списков в неструктурированных данныхПоиск списков в неструктурированных данных
Поиск списков в неструктурированных данных
 

Último

Film cover research (1).pptxsdasdasdasdasdasa
Film cover research (1).pptxsdasdasdasdasdasaFilm cover research (1).pptxsdasdasdasdasdasa
Film cover research (1).pptxsdasdasdasdasdasa494f574xmv
 
『澳洲文凭』买詹姆士库克大学毕业证书成绩单办理澳洲JCU文凭学位证书
『澳洲文凭』买詹姆士库克大学毕业证书成绩单办理澳洲JCU文凭学位证书『澳洲文凭』买詹姆士库克大学毕业证书成绩单办理澳洲JCU文凭学位证书
『澳洲文凭』买詹姆士库克大学毕业证书成绩单办理澳洲JCU文凭学位证书rnrncn29
 
PHP-based rendering of TYPO3 Documentation
PHP-based rendering of TYPO3 DocumentationPHP-based rendering of TYPO3 Documentation
PHP-based rendering of TYPO3 DocumentationLinaWolf1
 
Top 10 Interactive Website Design Trends in 2024.pptx
Top 10 Interactive Website Design Trends in 2024.pptxTop 10 Interactive Website Design Trends in 2024.pptx
Top 10 Interactive Website Design Trends in 2024.pptxDyna Gilbert
 
NSX-T and Service Interfaces presentation
NSX-T and Service Interfaces presentationNSX-T and Service Interfaces presentation
NSX-T and Service Interfaces presentationMarko4394
 
办理(UofR毕业证书)罗切斯特大学毕业证成绩单原版一比一
办理(UofR毕业证书)罗切斯特大学毕业证成绩单原版一比一办理(UofR毕业证书)罗切斯特大学毕业证成绩单原版一比一
办理(UofR毕业证书)罗切斯特大学毕业证成绩单原版一比一z xss
 
Q4-1-Illustrating-Hypothesis-Testing.pptx
Q4-1-Illustrating-Hypothesis-Testing.pptxQ4-1-Illustrating-Hypothesis-Testing.pptx
Q4-1-Illustrating-Hypothesis-Testing.pptxeditsforyah
 
办理多伦多大学毕业证成绩单|购买加拿大UTSG文凭证书
办理多伦多大学毕业证成绩单|购买加拿大UTSG文凭证书办理多伦多大学毕业证成绩单|购买加拿大UTSG文凭证书
办理多伦多大学毕业证成绩单|购买加拿大UTSG文凭证书zdzoqco
 
SCM Symposium PPT Format Customer loyalty is predi
SCM Symposium PPT Format Customer loyalty is prediSCM Symposium PPT Format Customer loyalty is predi
SCM Symposium PPT Format Customer loyalty is predieusebiomeyer
 
Potsdam FH学位证,波茨坦应用技术大学毕业证书1:1制作
Potsdam FH学位证,波茨坦应用技术大学毕业证书1:1制作Potsdam FH学位证,波茨坦应用技术大学毕业证书1:1制作
Potsdam FH学位证,波茨坦应用技术大学毕业证书1:1制作ys8omjxb
 
Contact Rya Baby for Call Girls New Delhi
Contact Rya Baby for Call Girls New DelhiContact Rya Baby for Call Girls New Delhi
Contact Rya Baby for Call Girls New Delhimiss dipika
 
Call Girls Near The Suryaa Hotel New Delhi 9873777170
Call Girls Near The Suryaa Hotel New Delhi 9873777170Call Girls Near The Suryaa Hotel New Delhi 9873777170
Call Girls Near The Suryaa Hotel New Delhi 9873777170Sonam Pathan
 
Call Girls In The Ocean Pearl Retreat Hotel New Delhi 9873777170
Call Girls In The Ocean Pearl Retreat Hotel New Delhi 9873777170Call Girls In The Ocean Pearl Retreat Hotel New Delhi 9873777170
Call Girls In The Ocean Pearl Retreat Hotel New Delhi 9873777170Sonam Pathan
 
Font Performance - NYC WebPerf Meetup April '24
Font Performance - NYC WebPerf Meetup April '24Font Performance - NYC WebPerf Meetup April '24
Font Performance - NYC WebPerf Meetup April '24Paul Calvano
 
『澳洲文凭』买拉筹伯大学毕业证书成绩单办理澳洲LTU文凭学位证书
『澳洲文凭』买拉筹伯大学毕业证书成绩单办理澳洲LTU文凭学位证书『澳洲文凭』买拉筹伯大学毕业证书成绩单办理澳洲LTU文凭学位证书
『澳洲文凭』买拉筹伯大学毕业证书成绩单办理澳洲LTU文凭学位证书rnrncn29
 

Último (17)

Film cover research (1).pptxsdasdasdasdasdasa
Film cover research (1).pptxsdasdasdasdasdasaFilm cover research (1).pptxsdasdasdasdasdasa
Film cover research (1).pptxsdasdasdasdasdasa
 
『澳洲文凭』买詹姆士库克大学毕业证书成绩单办理澳洲JCU文凭学位证书
『澳洲文凭』买詹姆士库克大学毕业证书成绩单办理澳洲JCU文凭学位证书『澳洲文凭』买詹姆士库克大学毕业证书成绩单办理澳洲JCU文凭学位证书
『澳洲文凭』买詹姆士库克大学毕业证书成绩单办理澳洲JCU文凭学位证书
 
young call girls in Uttam Nagar🔝 9953056974 🔝 Delhi escort Service
young call girls in Uttam Nagar🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Uttam Nagar🔝 9953056974 🔝 Delhi escort Service
young call girls in Uttam Nagar🔝 9953056974 🔝 Delhi escort Service
 
PHP-based rendering of TYPO3 Documentation
PHP-based rendering of TYPO3 DocumentationPHP-based rendering of TYPO3 Documentation
PHP-based rendering of TYPO3 Documentation
 
Top 10 Interactive Website Design Trends in 2024.pptx
Top 10 Interactive Website Design Trends in 2024.pptxTop 10 Interactive Website Design Trends in 2024.pptx
Top 10 Interactive Website Design Trends in 2024.pptx
 
NSX-T and Service Interfaces presentation
NSX-T and Service Interfaces presentationNSX-T and Service Interfaces presentation
NSX-T and Service Interfaces presentation
 
Hot Sexy call girls in Rk Puram 🔝 9953056974 🔝 Delhi escort Service
Hot Sexy call girls in  Rk Puram 🔝 9953056974 🔝 Delhi escort ServiceHot Sexy call girls in  Rk Puram 🔝 9953056974 🔝 Delhi escort Service
Hot Sexy call girls in Rk Puram 🔝 9953056974 🔝 Delhi escort Service
 
办理(UofR毕业证书)罗切斯特大学毕业证成绩单原版一比一
办理(UofR毕业证书)罗切斯特大学毕业证成绩单原版一比一办理(UofR毕业证书)罗切斯特大学毕业证成绩单原版一比一
办理(UofR毕业证书)罗切斯特大学毕业证成绩单原版一比一
 
Q4-1-Illustrating-Hypothesis-Testing.pptx
Q4-1-Illustrating-Hypothesis-Testing.pptxQ4-1-Illustrating-Hypothesis-Testing.pptx
Q4-1-Illustrating-Hypothesis-Testing.pptx
 
办理多伦多大学毕业证成绩单|购买加拿大UTSG文凭证书
办理多伦多大学毕业证成绩单|购买加拿大UTSG文凭证书办理多伦多大学毕业证成绩单|购买加拿大UTSG文凭证书
办理多伦多大学毕业证成绩单|购买加拿大UTSG文凭证书
 
SCM Symposium PPT Format Customer loyalty is predi
SCM Symposium PPT Format Customer loyalty is prediSCM Symposium PPT Format Customer loyalty is predi
SCM Symposium PPT Format Customer loyalty is predi
 
Potsdam FH学位证,波茨坦应用技术大学毕业证书1:1制作
Potsdam FH学位证,波茨坦应用技术大学毕业证书1:1制作Potsdam FH学位证,波茨坦应用技术大学毕业证书1:1制作
Potsdam FH学位证,波茨坦应用技术大学毕业证书1:1制作
 
Contact Rya Baby for Call Girls New Delhi
Contact Rya Baby for Call Girls New DelhiContact Rya Baby for Call Girls New Delhi
Contact Rya Baby for Call Girls New Delhi
 
Call Girls Near The Suryaa Hotel New Delhi 9873777170
Call Girls Near The Suryaa Hotel New Delhi 9873777170Call Girls Near The Suryaa Hotel New Delhi 9873777170
Call Girls Near The Suryaa Hotel New Delhi 9873777170
 
Call Girls In The Ocean Pearl Retreat Hotel New Delhi 9873777170
Call Girls In The Ocean Pearl Retreat Hotel New Delhi 9873777170Call Girls In The Ocean Pearl Retreat Hotel New Delhi 9873777170
Call Girls In The Ocean Pearl Retreat Hotel New Delhi 9873777170
 
Font Performance - NYC WebPerf Meetup April '24
Font Performance - NYC WebPerf Meetup April '24Font Performance - NYC WebPerf Meetup April '24
Font Performance - NYC WebPerf Meetup April '24
 
『澳洲文凭』买拉筹伯大学毕业证书成绩单办理澳洲LTU文凭学位证书
『澳洲文凭』买拉筹伯大学毕业证书成绩单办理澳洲LTU文凭学位证书『澳洲文凭』买拉筹伯大学毕业证书成绩单办理澳洲LTU文凭学位证书
『澳洲文凭』买拉筹伯大学毕业证书成绩单办理澳洲LTU文凭学位证书
 

Большие данные в физике элементарных частиц на примере LHCb - Guy Wilkinson, CERN, Oxford University

  • 1. 27/11/14 YSDA seminar 1 Searching for New Physics at LHCb & the challenge of big data Guy Wilkinson University of Oxford and CERN 27/11/14 Introduction - the Standard Model - flavour physics - open questions - LHCb Data processing - the data challenge - trigger - offline - the end-user: selected physics results
  • 2. 27/11/14 YSDA seminar 2 Introduction - the Standard Model - flavour physics - open questions - LHCb
  • 4. LHCb – a flavour physics experiment at the LHC A collaboration of ~1100 members from 68 institutes in 17 countries An experiment to search for physics beyond the Standard Model, through flavour studies of particles containing beauty (b) quarks & CP-violation.
  • 5. LHCb – a flavour physics experiment at the LHC A collaboration of ~1100 members from 68 institutes in 17 countries An experiment to search for physics beyond the Standard Model, through flavour studies of particles containing beauty (b) quarks & CP-violation. Russian institutes have always had a big role in LHCb: YANDEX & YSDA have also been making very important contributions in the past few years – many thanks, and let us hope this collaboration can grow even stronger !
  • 6. The Standard Model of particle physics is a quantum- field theory that describes the fundamental particles, plus the electromagnetic, weak & strong interactions All tests made of the Standard Model in particle colliders have been successful ! The most spectacular recent example was the discovery of the Higgs boson. One very important part of the theory is the ‘flavour sector’ & its associated physics. The Standard Model 27/11/14 6 CERN, July 2012
  • 7. What is flavour physics? 27/11/14 YSDA seminar 7 The concept of ‘flavour’ in particle physics relates to the existence of different families of quarks*, and how they couple to each other i.e. 6 known flavours of quark, grouped into 3 generations Open questions: These mysteries make the ‘flavour sector’ of the Standard Model of great interest. • why 3 generations ? • why do the quarks exhibit this striking hierarchy in mass ? No answer yet ! These values (i.e. ‘3’ & the masses) are free parameters of the SM Not to linear scale ! mass in MeV/c2 * the concept of flavour extends to the lepton sector too
  • 8. 27/11/14 YSDA seminar 8 Flavour and the CKM matrix In the Standard Model quarks can only change flavour through emission of a W boson (i.e. weak force). For example a t quark can decay into a b, s or d quark: But these decays are not equally likely. At the amplitude level they are weighted by factors that are elements of the Cabibbo-Kobyashi-Maskawa (CKM) matrix, and these factors vary dramatically – here is another hierarchy we don’t understand ! These elements of the CKM matrix are also fundamental parameters of the Standard Model. Why they have these values is another great mystery. The CKM matrix is also linked to another big puzzle of flavour physics… =
  • 9. 9 50 years ago – events of 1964 Nelson Mandela sentenced to life imprisonment Cassius Clay becomes heavyweight champion of the world Martin Luther King Jnr. wins Nobel Peace Prize Change of face in the Kremlin 27/11/14 YSDA seminar
  • 10. 10 50 years ago – events of 1964 Nelson Mandela sentenced to life imprisonment Cassius Clay becomes heavyweight champion of the world Martin Luther King Jnr. wins Nobel Peace Prize Change of face in the Kremlin Discovery of CP violation (in kaon decays) Nobel Prize for physics in 1980 27/11/14 YSDA seminar
  • 11. CP violation (CPV) → difference in behaviour between matter and anti-matter. First discovered in the kaon system in 1964, opportunities of study were limited until colliders arrived that could make lots & lots of b-quark hadrons, e.g. the LHC A recent example from LHCb - look at B meson decaying into a pion & two kaons… …the decay probabilities are manifestly different for B- & B+ ! In the Standard Model CPV is accommodated, but not explained, by an imaginary phase in the CKM matrix CP violation B- B+ signal decays background [LHCb, arXiv:1408.5373]
  • 12. Cosmological connections ? 27/11/14 YSDA seminar 12 As first pointed out by Andrei Sakharov, CP-violation is one requirement for explaining baryogenesis – the process that took us from the equal amounts of matter and anti-matter produced in the Big Bang, to the matter dominated universe of today The problem is that the CP-violation that appears in the Standard Model, is woefully inadequate to explain the matter-antimatter asymmetry we have today. This is a big problem with the Standard Model ! More & better measurements may point a way forward.
  • 13. The Standard Model cannot be a final theory We have already encountered the following shortcomings: And there are plenty of others, for example: More ambitious theories (e.g. supersymmetry or SUSY) can solve at least some of these problems. They generally predict new particles or effects outside the Standard Model. The goal of the LHC is to search for evidence of these effects ! Problems with the Standard Model 27/11/14 YSDA seminar 13 • No explanation for baryogenesis • No explanation for the quark or CKM hierarchy • No real explanation for CP violation, and why it is only found in the weak interaction. • No explanation for dark matter or dark energy • No explanation for neutrino masses • Gravity not included • No explanation for why the Higgs boson has the mass it does (left to itself the theory would make it much, much heavier)
  • 14. Attacking the fortress of the Standard Model 14 The LHC is searching for ‘New Physics’ - to find this we need to get behind the walls of the Standard Model fortress. There are two strategies used in this search Both methods are powerful. LHCb specialises (mostly) in the ‘indirect’ approach Direct Make precise measurements of processes in which New Physics particles enter through ‘virtual loops’ Use the high energy of the LHC to produce the New Physics particles, which we then detect Indirect
  • 15. Indirect measurements – an established tradition in science 27/11/14 YSDA seminar 15 Eratosthenes was able to determine the circumference of the earth using indirect means… …around 2.2 thousand years prior to the direct observation.
  • 16. For some processes, especially suppressed decays, more complicated Feynman diagrams are important. These contain ‘loops’ in which virtual particles participate Decays, & other processes, involving b-quarks are a good place to study role of these loops. In the loops the contribution of heavy particles, e.g. top, is important, even though mt >> mb. Hence these decays tells us about the particles in the loops. As drawn above, the loop contains Standard Model particles, but New Physics particles could also contribute, affecting decay rates, CP violation etc ! Indirect search Precise measurements of low energy phenomena principle tells us about unknown physics at higher energies Loop diagrams & ‘indirect searches’
  • 17. The power of indirect measurements – the top quark mass 27/11/14 YSDA seminar 17 direct indirect Top mass [GeV] LEP, the accelerator operation at CERN in the 1990s, did not have sufficient energy to produce ‘real’ top quarks. The top quark was instead discovered at the Tevatron, near Chicago in 1995 Nonetheless, the precise measurements of Z boson properties made at LEP carry information on the top through loop diagrams. LEP was able to measure the top mass indirectly, even before Tevatron discovery !
  • 18. LHCb – a forward spectrometer for flavour physics 27/11/14 YSDA seminar 18
  • 19. LHCb – a forward spectrometer for flavour physics 27/11/14 19 The VELO is a silicon detector around the interaction point. It approaches within 8 mm of the beamline and reconstructs the b-hadron decay vertex precisely. One-half of the VELO under construction A reconstructed b-hadron decay vertex ~1.5 cm
  • 20. LHCb – a forward spectrometer for flavour physics 20 Array of RICH photodetectors Assembling RICH 2; note the mirrors Momentum [GeV/c] Cherenkov angle [rad] Two ‘RICH’ detectors detect Cherenkov radiation. the angle at which this is emitted tells us the particle species – it provides ‘hadron identification’.
  • 21. LHCb – a forward spectrometer for flavour physics YSDA seminar 21 A 4 Tm dipole, and the tracking detectors reconstruct the trajectory of charged particles, and allows their momentum to be determined. Dipole magnet Reconstructed tracks Part of outer tracker
  • 22. LHCb – a forward spectrometer for flavour physics 27/11/14 22 The calorimeter system (ECAL & HCAL) reconstructs the energy of photons, electrons and hadrons. The muon system (M1-M5) identifies muons. Part of calorimeter system (preshower) These detectors are particularly important for the role they play in the LHCb trigger
  • 23. LHC run 1 went from 2010 to 2012, during which LHCb collected 3 fb-1 of data (this corresponds to ~3 x 1011 b anti-b pairs being produced within LHCb). We are coming to end of two year shutdown, necessary to upgrade LHC energy. Run 2 will go on to 2018 – we hope to increase our beauty sample by x3 or more. LHCb – the story so far 27/11/14 YSDA seminar 23 delivered by LHC collected by LHCb
  • 24. 27/11/14 YSDA seminar 24 Data processing - the data challenge - trigger - offline - the end-user: selected physics results
  • 25. The data challenge LHC operates at 40 MHz and does so for ~15% of year LHCb raw event size ~100 kBytes ~ 15000 PetaBytes /yr (raw data alone) ~ 15000 PetaBytes/year is less than dealt with by search engines, but still considerably more than e.g. Facebook (~ 180 PB/year). ’ Data LHCb ~15000 PB.yr rate Facebook ~180 PB / yr LHCb Facebook
  • 26. The data challenge LHC operates at 40 MHz and does so for ~15% of year LHCb raw event size ~100 kBytes ~ 15000 PetaBytes /yr (raw data alone) ~ 15000 PetaBytes/year is less than dealt with by search engines, but still considerably more than e.g. Facebook (~ 180 PB/year). Public science has less money to spend on computing than Facebook. Storage costs money. Better to process as much as possible in ‘real time’. Data LHCb ~15000 PB.yr rate Facebook ~180 PB / yr Computing LHCb ~10M$ / yr budget Facebook ~600 M$ /yr LHCb Facebook
  • 27. Not all collisions are equally interesting 27/11/14 YSDA seminar 27 Core business of LHCb is beauty physics, and here we can be selective (Situation is complicated by the fact we also want to study charm physics. Charm is much more abundant, and the decays of interest are more common). So we only save to disk the potentially interesting collisions – task of the trigger. Collision rate 40 MHz (currently a little less, but this sets the ballpark) b-hadrons produced about once every ~150 pp collisions And most b-hadrons decays don’t interest us. The ones that do, occur every 10-3 -10-10 of time. Bs→μμ occurs every 4 x 10-9 Bs decays
  • 28. Triggering on beauty 27/11/14 YSDA seminar 28 There exist characteristics of increasing complexity than can be searched for to determine if the collision is of interest and should be preserved for offline analysis. μ+ μ- K+ p p ~ 1 cm Interaction point or ‘primary vertex’ (many other particles produced, not shown) high pT B+ 1.Look for high transverse energy (ET) or momentum (pT) in calorimeters or muon system from decay products. .
  • 29. Triggering on beauty 27/11/14 YSDA seminar 29 There exist characteristics of increasing complexity than can be searched for to determine if the collision is of interest and should be preserved for offline analysis. μ+ μ- K+ p p ~ 1 cm Interaction point or ‘primary vertex’ (many other particles produced, not shown) finite impact parameter B+ 1.Look for high transverse energy (ET) or momentum (pT) in calorimeters or muon system from decay products. 2. Look for tracks with significant ‘impact parameter’ with respect to primary vertex.
  • 30. Triggering on beauty 27/11/14 YSDA seminar 30 There exist characteristics of increasing complexity than can be searched for to determine if the collision is of interest and should be preserved for offline analysis. μ+ μ- K+ p p B+ ~ 1 cm Interaction point or ‘primary vertex’ (many other particles produced, not shown) b-hadron decay, or ‘secondary vertex’ 1.Look for high transverse energy (ET) or momentum (pT) in calorimeters or muon system from decay products. 2. Look for tracks with significant ‘impact parameter’ with respect to primary vertex. 3. Reconstruct secondary vertex and full b-hadron decay products. Each successive step provides improved discrimination, but requires more information and time to execute.
  • 31. Trigger: L0 27/11/14 YSDA seminar 31 Earliest trigger stage, ‘L0’, makes decisions in hardware based on simple high ET, high pT signatures. Decision made with partial detector information. No time to build full event. Trigger decision made within 4 μs synchronous with bunch crossing rate While decision is being made local detector information is retained in a pipeline within front-end electronics. Reduces data rate down to 1 MHz ( = rate at which full event is read out) [LHCb trigger – see LHCb, arXiv:1211.3055]
  • 32. Trigger: HLT 27/11/14 YSDA seminar 32 The High Level Trigger (HLT) is a software trigger (C++) that runs on the Event Filter Farm (EFF) The EFF is a farm of multiprocessor PCs (~1500 nodes), located at LHCb ~30,000 copies of HLT run on the EFF L0-accepted event assembled on the EFF. Placed in buffer that is accessed by HLT programs. Two steps: - HLT1: impact parameter info etc used to reduce rate to ~40 kHz (~35 ms/event) - HLT2: full event information used to reduce rate to ~12 kHz (~350 ms/event) Then written offline.
  • 33. Trigger: alignment and calibration Note this step (new to 2015), between the initial and final HLT selections Here the events are written to local disks (~4 PB available) while calibration and alignment is performed. Only when this is satisfactory is second stage of HLT executed. This step important, as better alignment provides better signal discrimination. Also means we can trust information we would not use otherwise in HLT (i.e. from RICH). Goal is to improve background rejection, & to do online much of what was traditionally done offline. MeV/c2 Initial alignment Final alignment Υ→μμ system
  • 34. Trigger: multivariate selections The strategy to allow selections to be deployed in second-stage of HLT that would normally be reserved for offline has allowed for ever better performance. Multivariate selections, discussed later, play an increasingly important role in trigger data beauty decays charm decays Example: ‘boosted Bonzai decision Tree’ [Gligorov, Williams, arXiv:1210.861] used to select generic B decays. This strategy should become ever more powerful with the new calibration & alignment information now available, & opportunity to use e.g. RICH information. → first step towards real time physics analysis ! high purity selection possible
  • 35. Trigger output These data will be sent for offline reconstruction on the GRID, after which physics analysis can be begin. This is the classical approach. These data won’t be reconstructed for some years, probably not until after run 2. This is merely dictated by computing costs. These data will be analysed directly without further offline reconstruction. The idea is that the online reconstruction will be sufficient for physics analysis If this works well then this scheme will be expanded. It could be the future ! Full stream Parked stream Turbo stream
  • 36. Offline processing - event reconstruction 27/11/14 YSDA seminar 36 Event reconstruction: Processing takes ~2 s / event. Occurs in ~5k concurrent jobs run on GRID. Output is DST (data storage tape) – 2012 DST data require 2 PB of disk storage. Improved detector understanding → need to reprocess data (only do this 1-2 times). • reconstruct particles trajectories, providing momentum information and precise knowledge of behaviour close to interaction point RICH 2 LHCb data (preliminary) kaon ring • perform particle identification – e.g. finding Cherenkov rings in RICH detectors and providing probability of particle assignment for each track
  • 37. 37 Offline processing – data reduction or ‘stripping’ Any given physics analysis selects 0.1-1.0% of events •Inefficient to allow individual physicists to run selection job over FULL DST Assemble loose (but not too loose!) pre-selections for each set of analysis. Group all these pre-selections in a single pass, executed centrally •Runs over FULL DST •Executes ~800 independent stripping “lines” - ~ 0.5 sec/event in total - Writes out only events selected by one or more of these lines •Output events are grouped into ~15 streams •Each stream selects 1-10% of events Overall data volume reduction: x50 – x500 depending on stream •Few TB (<50) per stream, replicated at several places •Accessible to physicists for data analysis
  • 38. Offline processing - simulated data Almost all physics analyses require large quantities of simulated data for training selection algorithms, measuring performance, and understanding backgrounds Elements of simulation, or ‘Monte Carlo’ software: Simulation is a very major driver of CPU and storage requirements •Simulation of physics events; •Detailed detector and material description (GEANT); •Pattern recognition, trigger simulation and offline event selection; •Implements detector inefficiencies, noise hits, effects of multiple collisions. GEANT description of VELO Simulated LHCb event
  • 39. LHCb computing model RRCKI + recent addition Monte Carlo production (and some user analysis) HLT farm Tier-2’s YANDEX +
  • 40. Snapshot of recent CPU provision 27/11/14 YSDA seminar 40 ~50% CERN plus Tier 1 centres ~ 12% HLT farm (we use it for offline tasks when LHC is not running) ~ 5% YANDEX ~33% Tier 2 centres
  • 41. Profile of recent CPU usage 27/11/14 YSDA seminar 41 Thousands of jobs Simulation jobs User analysis jobs (Recall that currently no real data being processed, nor are any being reprocessed)
  • 42. 27/11/14 YSDA seminar 42 Tools for data access Book-keeping tools needed to identify files corresponding to datasets for e.g. analysis jobs. Book-keeping has no information about individual events. But often desirable to select events according to given characteristics and download source files. . This possible thanks to Event Index tool developed by YSDA.
  • 43. Data storage 27/11/14 YSDA seminar 43 Data storage capabilities is a major consideration in LHCb computing planning. Efficient use of existing resources is essential for optimising physics performance. Study of data popularity now underway, led by YSDA: • will help to improve replication and cleanup strategies • multivariate tools very useful to predict evolution of demand old, unused data – remove or move to tape
  • 44. The end-user: selected physics results 27/11/14 YSDA seminar 44
  • 45. The end-user: selected physics results 27/11/14 YSDA seminar 45 Over 225 journal publications. Here will focus on two very important analyses with particular demands on data handling: • Testing the Standard Model description of CP violation – measuring the angle γ • Hunting for the ‘needle in the haystack’: the search for Bs→μμ
  • 46. CP violation, the difference in behaviour between matter and antimatter, is accommodated in the Standard Model by a single complex phase in the CKM matrix. One of the angles of this triangle, γ, is related very directly to the CKM phase. Our knowledge of the other elements of the matrix allow us to predict the angle with high precision. Now LHCb must measure CP-violating processes to obtain a direct measurement of γ to compare with this prediction. Measuring the angle γ - testing CP violation in the Standard Model Any discrepancy would point to New Physics effects in flavour physics observables (e.g. SUSY particles, 4th generation of quarks etc ) o (66.4 ) 1.2 3.3    Relations exist between the elements of the matrix which can be displayed geometrically – as triangles. predicted value
  • 47. 27/11/14 YSDA seminar 47 How to measure γ ? • It is a hidden phase, which exist between different b-quark decays • The only way to access this phase is to look for a decay mode that is common to both D0 and anti-D0. Then we don’t know by which path the decay has taken, and we get quantum inferference, as in the famous double-slit experiment • The phase is CP-violating, which means it should generate different effects for B+ & B-. B- →D0 K- B- →anti-D0 K- phase γ between amplitudes Measuring γ – quantum interferometry
  • 48. B- →D0 K- B- →anti-D0 K- First look at the case where the (anti-)D0 is reconstructed in the ‘favoured’ mode K-π+ for the B- decay (or K+π- for B+ ). This is (almost) completely dominated by a single decay path, and so no quantum interference is expected… Favoured B- B+ signal Measuring γ – quantum interferometry ..and none is seen, since the decay rates are essentially the same. [LHCb, arXiv:1203.3662]
  • 49. B- →D0 K- B- →anti-D0 K- Now look at the case where the (anti-)D0 is reconstructed in the ‘suppressed’ mode K+π- for the B- decay (or K-π+ for B+ ). Here we expect significant interference, and indeed a large CP-violating difference in rates is seen between B- and B+ ! Favoured B- B+ signal Suppressed B+ B- Measuring γ – quantum interferometry Note the suppressed mode is very rare, and so a multivariate selection is essential. [LHCb, arXiv:1203.3662]
  • 50. 27/11/14 YSDA seminar 50 Measuring γ – adding other decays B- →D0 K- B- →anti-D0 K- Another possibility is to look for (anti-)D0 decaying into three particles, such as K0Sπ+π- These three particles can share the energy of the decay in different ways, and so here the CP-violation effects are expected to vary, depending on the sharing. [LHCb, arXiv:1408.2748] B+ B- more energy goes to K0Sπ+ in B- case more energy goes to K0Sπ- in B- case The multivariate selection must ensure efficiency is ~uniform over this 2D space ! Axis meaning
  • 51. Using these decays and others, LHCb has now measured γ to precision of 10o Measurement agrees with the indirect prediction, but is not yet as accurate. Significant improvements are expected over the coming run and with the LHCb Upgrade (see later) which will allow for a very precise comparison. High performance data selection tools will be essential in reaching this goal ! 27/11/14 YSDA seminar 51 Measuring γ – the current status current LHCb measurement (diagram approximate) [LHCb-CONF-2014-004]
  • 52. 52 Bs →μμ – a twenty-five year old quest We have been searching for Bs →μμ for a long time...
  • 53. This decay mode can only proceed through suppressed loop diagrams. In the Standard Model it happens extremely rarely (~10-9), but the exact rate is very well predicted Many models of New Physics (e.g. SUSY) can enhance rate significantly ! A ‘needle-in-the haystack’ search ! 27/11/14 YSDA seminar 53 Bs →μμ – the physics interest Prior to the LHC, the experiments at Fermilab were pushing the search limits down towards 10-8 Standard Model SUSY
  • 54. There are lots of B-decays that look rather similar to Bs→μμ. And ‘rather similar’ is very dangerous when you are searching for such a rare decay. Traditional, ‘cut-based’ analyses are not adequate – must use a machine-learning multi-variate technique. We use a sequence of two boosted decision trees (BDTs). BDTs must not just search for a B-decay, as in trigger, but must look for one which is Bs→μμ Many signatures to use, and many improvements with time, but possible to do even better (e.g. muon identification itself is still handled in cut-based way) Finding the needle 27/11/14 YSDA seminar 54 e.g. compare momentum vector of decay with vertex separation vector momentum vector of candidate vector between interaction point & secondary vertices μ+ μ- Bs interaction point [LHCb, arXiv:1307.5042]
  • 55. 27/11/14 YSDA seminar 55 [LHCb, arXiv:1112.1600] Plot of invariant mass distribution in region of high BDT sensitivity – if there is a signal we should see a peak here (but the BDT uses much more information than the invariant mass alone !) 2010 2010 Nothing Bs→μμ - progress through run 1
  • 56. [LHCb, arXiv:1112.1600] 27/11/14 YSDA seminar 56 [LHCb, arXiv:1203.4493] Plot of invariant mass distribution in region of high BDT sensitivity – if there is a signal we should see a peak here (but the BDT uses much more information than the invariant mass alone !) 2010 +2011 + 2011 Maybe a hint of a bump, but nothing can be claimed Bs→μμ - progress through run 1
  • 57. [LHCb, arXiv:1112.1600] 27/11/14 YSDA seminar 57 [LHCb, arXiv:1211.2674] [LHCb, arXiv:1203.4493] Plot of invariant mass distribution in region of high BDT sensitivity – if there is a signal we should see a peak here (but the BDT uses much more information than the invariant mass alone !) 2010 +2011 + early 2012 + early 2012 Evidence that there is something there ! Bs→μμ - progress through run 1
  • 58. [LHCb, arXiv:1112.1600] 27/11/14 YSDA seminar 58 [LHCb, arXiv:1211.2674] [LHCb, arXiv:1203.4493] Bs→μμ - progress through run 1 Plot of invariant mass distribution in region of high BDT sensitivity – if there is a signal we should see a peak here (but the BDT uses much more information than the invariant mass alone !) 2010 +2011 + early 2012 + all 2012 [LHCb, arXiv:1307.5042] + all 2012 The evidence grows…
  • 59. Signal becomes even more compelling, if we look at results of a joint analysis performed on LHCb data and data from the CMS experiment…. …the branching ratio turns out to be consistent with Standard Model prediction. This result is extremely important, as it rules out many New Physics models. Improved analyses, with better multivariate selections, are needed to make more precise measurement, & watch development of intriguing Bd→μμ signal. 27/11/14 YSDA seminar 59 Bs→μμ – the wait is over Bd→μμ: an even rarer mode Bs→μμ [LHCb, arXiv:1411.4413]
  • 60. The LHCb Upgrade 27/11/14 YSDA seminar 60 The Upgrade is an ambitions, approved project, due to be installed in the second long LHC shutdown of 2018-19
  • 61. The LHCb Upgrade 27/11/14 YSDA seminar 61 The Upgrade is an ambitions, approved project, due to be installed in the second long LHC shutdown of 2018-19 Its main feature is to remove hardware trigger, increase read-out rate to 40 MHz, and execute software HLT at this rate ! We will also run at higher luminosity… …and output to storage at 20-100 kHz Very exciting physics potential, provided that the vastly increased data processing challenges can be overcome ! 40 MHz 20-100 kHz 2020
  • 62. Conclusions 27/11/14 YSDA seminar 62 • The study of flavour, in particular beauty decays, is a powerful & necessary approach in the search for New Physics beyond the Standard Model. • LHCb is leading this search. The experiment has produced many important results from LHC run 1, with great prospects for run 2 & the Upgrade. • Success of experiment depends critically on efficient handling of very large data volume. So far we have done OK, but we are very open to new ideas !
  • 64. Precise measurement of Bs oscillations 27/11/14 YSDA seminar 64 Loop diagrams allow Bs mesons to transform into their own antiparticles, and back again. They do this very, very rapidly, flipping back and forth many times during the short time (~1 ps) the particle exists The capabilities of LHCb have allowed us to measure this behaviour with great precision. This capability is essential for teasing out the effects from the New Physics particles which could contribute (e.g. in CP-violation effects) in the loop diagram.