Se ha denunciado esta presentación.
Se está descargando tu SlideShare. ×

DataAquitaine February 2022

Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Cargando en…3
×

Eche un vistazo a continuación

1 de 26 Anuncio

DataAquitaine February 2022

Descargar para leer sin conexión

This talk is about data-driven transformation and its contribution to Digital transformation. The first part shows the necessity to adopt the "software revolution" to adapt constantly to the customer’s environment. I then speak about " Exponential Information Systems" that the the foundation for the data-driven ambitions : Enterprise-wide flows, Customer-time data freshness, Future-proof unified semantics, etc.
The last part talks about Exponential Technologies, such as Artificial intelligence and machine learning, to drive more value from data

This talk is about data-driven transformation and its contribution to Digital transformation. The first part shows the necessity to adopt the "software revolution" to adapt constantly to the customer’s environment. I then speak about " Exponential Information Systems" that the the foundation for the data-driven ambitions : Enterprise-wide flows, Customer-time data freshness, Future-proof unified semantics, etc.
The last part talks about Exponential Technologies, such as Artificial intelligence and machine learning, to drive more value from data

Anuncio
Anuncio

Más Contenido Relacionado

Similares a DataAquitaine February 2022 (20)

Más de Yves Caseau (20)

Anuncio

Más reciente (20)

DataAquitaine February 2022

  1. 1. Yves Caseau - Exponential Information Systems towards Data-Driven Digital Transformation – 2022 1/26 Exponential Information Systems to support a Data-Driven Digital Transformation Yves Caseau Group CDIO, Michelin NATF (National Academy of Technologies of France) http://informationsystemsbiology.blogspot.com/ https://twitter.com/ycaseau DATAQUITAINE February 10th, 2022 – v0.2
  2. 2. Yves Caseau - Exponential Information Systems towards Data-Driven Digital Transformation – 2022 2/26  Part 1: Digital Transformation Driving the software revolution to adapt constantly to the customer’s environment  Part 2: Exponential Information Systems Software excellence matters – Build your foundations  Part 3: Data-Driven Ambition Enterprise-wide flows, Customer-time freshness, Future-proof unified semantics  Part 4: Exponential Technologies Ambition Artificial intelligence and machine learning to drive more value from data Outline
  3. 3. Yves Caseau - Exponential Information Systems towards Data-Driven Digital Transformation – 2022 3/26 Information Systems as Core Digital Capabilities  Digital transformation is a business transformation, across the value chain  IS as a backbone (Part 2)  Shared “digital core” … but each digital world has its own ecosystems: (IT ≠ Digital)  Digital continuity creates value Alibaba & Amazon example:  Digital Supply Chain Meets Demand Management  AI to grow new knowledge from end-to-end processes Digital Employee Support Systems: Infrastructure, Data, Identity & security, orchestration, API, …. Product Development Supply Chain Manu- facturing Services & Solutions Sales & CRM Digital continuity
  4. 4. Yves Caseau - Exponential Information Systems towards Data-Driven Digital Transformation – 2022 4/26 4 Product Development and Knowledge Engineering AI as a tool to capture, share and scale process and product knowledge Hybrid AI, from DeepMind (cf. Part 4) – to ML-augmented finite element simulation AI and generative ML techniques to re-invent product expertise
  5. 5. Yves Caseau - Exponential Information Systems towards Data-Driven Digital Transformation – 2022 5/26 Industry 4.0 : Digital Manufacturing, Digital Twin & Digital Workspaces  AI in Manufacturing to absorb complexity  cope with variability  cope with manufacturing process complexity  Augmented humans and augmented environments  machine vision & sensors for enhanced perception  End to End process optimization Merck Example Middleware / HA/ Containers Shared Datalake Shared Expert Services Infrastructucture / Security Middleware / HA/ Containers Middleware / HA/ Containers Middleware / HA/ Containers Digital Core (App Server / CICD) Digital Twin Digital Twin Digital Twin Information Systems PLM ERP MPM
  6. 6. Yves Caseau - Exponential Information Systems towards Data-Driven Digital Transformation – 2022 6/26 Digital Customer Journeys  Events, Insights and Context  Co-operation Agents/ Digital is built on a virtuous loop  Insights are fed by events, events fed by conversations, conversations fed by content Daily Yearly Life Time Customer Journey (Sales / Service ) Agent CDP 3rd Party Data Process Data Engagement DMP Advice / Recommendation Service / Assistance Content Insights Mining Reactive care Conversations feedback events requests Web/ Mobile/ Social 02.04.2021 Retain for: 90d v. Croc / t. fraudet / a. LemblÉ / t. signarbieux Steering committee api transformation < N° > d3 Group Martech Stack at Michelin Apostrophe MediaMath BlueConic inRiver Wedia ???? Salesforce Didomi ????? ????? WordPress Salesforce Marketing Cloud Rul.ai Sprinklr Pixel MediaMath?? Excel Sheet Qualtrics Pixlee?? CloudImage?? Flutter Apostrophe Apostrophe
  7. 7. Yves Caseau - Exponential Information Systems towards Data-Driven Digital Transformation – 2022 7/26 7 Support Hybrid Way of Working : remote collaboration DIGITAL WORKPLACE Augmented collaboration : “Kolmogorov compression” The smarter the AI, the more succinct the context synchronization Cognitive Agents: From ontologies to “GPT-3 + semantics” knowledge management and augmentation
  8. 8. Yves Caseau - Exponential Information Systems towards Data-Driven Digital Transformation – 2022 8/26 Part II Exponential Information Systems 8
  9. 9. Yves Caseau - Lean Software Factories and Digital Transformation – 2021 9/17 Entreprise 3.0 “Holomorphism” Open Platforms Antifragile Customer Homeostasis Recognition & Response Network of Teams Massively Transformational Purpose (MTP) Orientation Client Scalability On-demand Algorithms & Automation Continuous Learning Experimentation Interfaces Autonomy Agility Short steps Communities & Crowds E3.0 Customer Orientation
  10. 10. Yves Caseau - Lean Software Factories and Digital Transformation – 2021 10/17 Exponential Information Systems Principles  Digital Homeostasis  Outside-in  Reactive  Open frontiers  Accelerate Takt Time  Automation  Short release cycles  Living System  In/out breathing  Continuous architecture (emergence) Outside-In Customer focus EDA Data-Driven Multimodal CICD Elastic Resources Algorithms Continuous Refresh / Refactor Sustainable Growth SRE AI4Ops API
  11. 11. Yves Caseau - Lean Software Factories and Digital Transformation – 2021 11/17 Architect for Change : Multimodal Architecture  Four zones illustration: different rates of change, different software ecosystems  Extension of bi-modal IT pattern (but everything must change)  Edge is the software domain that is not controlled by IT but where it must project its services  The supporting integration capabilities is a key enabler for digital transformation Enterprise Integration Capabilities Business capabilities • Records • Transactions • Business Intelligence CORE Renewal every 10 years Engagement capabilities • Mash-up • Contextual • Conversations • Personalization MATRIX Renewal every 5 years Edge capabilities • Smartphones • Social Platforms • Connected Objects • Etc. EDGE Fast & imposed Renewal Imported Capabilities • AI/ ML • NLP/Semantics • IOT Exponential Cloud Renewal every 3 years API API API
  12. 12. Yves Caseau - Lean Software Factories and Digital Transformation – 2021 12/17 Lean Software Factories  Lean & Agile: short-term delivery of small value increments, long- term iterative learning  Lean thinking : continuous management of technical debt to develop « situation potential » (tomorrow’s agility)  Lean practices : right on the first time, continuous learning through kaizen  Product mode : short-term delivery of small value increments, long-term iterative learning Agile Manifesto • Sprints • Focus on user • Cross-functional teams • Coevolution of code/design SCRUM • Rites • Retrospectives Lean • Kanban • Kaizen • 5S and waste removal CICD Continuous Integration Extreme Prog. Continuous Delivery DEVOPS Continuous Testing Infrastructure as Code Dev & Ops cross-functional teams Product Lifecycle • Test-driven • Code is valuable
  13. 13. Yves Caseau - Exponential Information Systems towards Data-Driven Digital Transformation – 2022 13/26 Software Craftmanship – Embedded Agility  “Show & Share” : Develop and value software excellence through peer reviews  Make Code Reviews more pleasurable and more efficient: Coding standards and Pair-programming “Love your code” : code elegance as a support for business agility (code that one likes to modify) 13
  14. 14. Yves Caseau - Exponential Information Systems towards Data-Driven Digital Transformation – 2022 14/26 Part III Data-Driven Company 14
  15. 15. What we need to build this ambition: • Digital continuity & Unified data models, to break siloes and create enterprise-wide flows • Data lakes & APIs, to foster open innovation and data democratization • AI-ready software stacks, to leverage the outside innovation flow, and access to large and elastic computing resources. Data -Driven Innovation Define & Produce Data Store & Forward Data Analytics Data Services Data Products Creating Value from Data Data strategy Internal data External data Datalakes Data Fabric See Understand Predict Service exposure Virtual Goods Data API Exchange Platform Empower our customers Data Intelligence Adapt Automation Data Collection Architecture Infrastructure Create value for Michelin processes Create value for our customers Turn data into assets that enable us to make better decisions, to deliver better operations and to offer better solutions to customers and partners Mindset: distributed and emergent innovation Data collection/ training sets AI-friendly software environments Lab Culture (Data Science) Perseverance Constant flow of software It takes time to build skills Data-Driven Innovation
  16. 16. Yves Caseau - Event-Driven Architecture for Smart Systems – 2020 16/19 Data Infrastructure Collection Flow Infrastructure Storage Infrastructure Referentials Datalake(s) « Hot » Analytics Platforms « Cold » Analytics Platforms Events External Sources IOT / Video Integration Service Platforms AI & ML Services Classification Forecast NLP / Semantics Planning Optimization Distributed Data Ledgers Sharing Distribution Synchronisation
  17. 17. Yves Caseau - Exponential Information Systems towards Data-Driven Digital Transformation – 2022 17/26 Data Infrastructure Principles  CAP Theorem : it is a new world   Eventual consistency synchronized with Business Processes  Right-time architecture (events) High Availabilty & Scale  Data Quality emerges from QoS & Synchronized Process Design  Quality of User Experience matters  Excellence requires focus and perseverance  Break data siloes with federated models and pivot objects  Shared semantics (AI ready)  Rosetta stone for standards and platform strategy Pivot Business Objects Data Quality & Processes
  18. 18. Yves Caseau - Event-Driven Architecture for Smart Systems – 2020 18/19 Event-Driven Enterprise Architecture  Hot & Cold Interplay  Cf. LSTM architecture  Bio-mimicry : combine cortex with reflexes  Smart routing of events as distributed system control  Where we plug the AI toolbox  Reactive (reflexes) and Reflective (learning from event patterns)  Hierarchical event model  Events and Business Process duality  Outside-In thinking to design companies as platforms Event Model Complex Event Processing Beyond Lambda
  19. 19. Yves Caseau - Event-Driven Architecture for Smart Systems – 2020 19/19 Data Meshes  Distributed Agility  Scalable Event-Driven  Think of data as evolving flows  “Lambda architecture” is built-in  (data lakes as nodes – temporal decoupling)  Modularity / Federation  “Architectural Quanta” based on “distributed domain driven architecture”  More an art (experience) than a science – CAP vs transactions.  “Data as product”  Align people (governance) and systems (flows)  Change management as #1 priority  Discoverable, self-describing, inter-operable, trustworthy
  20. 20. Yves Caseau - Exponential Information Systems towards Data-Driven Digital Transformation – 2022 20/26 Part IV Artificial Intelligence and Machine Learning 20
  21. 21. Yves Caseau - Exponential Information Systems towards Data-Driven Digital Transformation – 2022 21/26 Exponential Tech: Software Engineering Matters  Data Engineering (flows) and platforms  Lessons from Google, Criteo, Amadeus, etc.  Ecosystems / rate of change / integration  Software engineering because of integration and speed of change  Future data is better than past  Continuous learning / enrichment cycle /  Speed of cycle is critical Iterative Developement of AI Practice Speed of learning depends on computing power Smart Algorithms Smart Engineering Smart Services Service Usage Growing Large Datasets Distributed Software Engineering Practices Management Vision & Grit Ease to collect Trust & Acceptability 21
  22. 22. Yves Caseau - Exponential Information Systems towards Data-Driven Digital Transformation – 2022 22/26 Leveraging the Diversity of the AI Toolbox  Todai Robot Example  Systems of systems brings  Resilience (biomimicry)  Multi-scale  Explainability  From AlphaGo to AlphaFolds  Large-scale Intelligent Agents communities  Game theory to reason about competition and cooperation  Reinforcement learning  Transfer learning, GAN, recurrent networks  Generative Approaches, Randomization (MCTS) Meta-Heuristics Hybrid Machine Learning Systems of Systems
  23. 23. Yves Caseau - Event-Driven Architecture for Smart Systems – 2020 23/19 Designing Systems of (Smart) Systems  Individual and collective learning  Hybrid AI required  Time horizons (reflexes to LTP)  Explainable / certifiable / black-box  “Prediction is the essence of intelligence”. Yann Le Cun  Requires a “model of the world”  Deep Learning for perception  Anticipation requires system engineering and adaptive learning Event-Driven Architecture Vision Perception Communication Neighbors Robots Information System Autonomous Robot React Reflexes Plan Execute Think Decisions Sensors Goals Individual Memory Forecast Learn adapt Collective Memory Behaviors Rules Valuation Patterns Analysis Machine Learning Behaviors Rules Valuation Patterns Human worker Cloud hosting
  24. 24. Yves Caseau - Exponential Information Systems towards Data-Driven Digital Transformation – 2022 24/26 TRAINING SETS  “Data is the new code ?” (P. Haren & H. Verdier @ NATF) … with training protocols   Importance of benchmarking ( Netflix, Allstate, UPS, …) Learning curve / communities / nested guild structure at Michelin Training sets as a KPI for advanced data capabilities
  25. 25. Yves Caseau - Exponential Information Systems for Digital Transformation – 2019 25/23 AI @ Michelin : Some Examples  Quantitative Identification of aggressiveness of mine roads using computer vision technology  Stone density and size identification  Plotting over the mine area map with heat signatures MVP Productionized  Predict the volumes of the replacement market for the next 5-year horizon Productionized Product to scan tyres using tyre image, extract dimensions and other details (SI, LI, etc.) in order to recommend the right Michelin tyre for online consumers to increase sales MVP Product to use AI to recommend tyres to e-retail customers  Blackcircles POC: Model performance is promising, and areas of improvement identified.  Consumer segments generated from the model along with the recommendations were new and useful insights POC results validated Generative Adversarial Network  ''Application of GAN for Reducing Data Imbalance under Limited Dataset'' accepted for VISAPP 2022 conference authored by Gaurav Adke Technology Enablers Predict raw material prices for next 1 year horizon Deployed the product for 7 raw materials (6PPD, TMQ, CBS, TBBS, ZNO, Insoluble Sulphur, COCL2 ) Productionized
  26. 26. Yves Caseau - Exponential Information Systems towards Data-Driven Digital Transformation – 2022 26/26  Digital transformation is homeostasis : Perpetual change to leverage best the possibilities of “exponential tech” in order to match the expectations of a fast-changing world  Data Science & Systems Engineering have never been so exciting … Exponential revolution is happening now   The main risk is not to create too little value with data, It is to leave the field of disruption to some (possibly unknown) competitors Conclusion

Notas del editor

  • CRITICAL : print the version with Notes !
  • The target
    The means to reach the target
    How to build the mean
  • Part II : we will now consider the impact on IS
    Intro:
    SW is eating the world does not mean that IT is running the company 
    It means that each part of the value chain will undergo a digital transformation that requires support from IT capabilities

    Digital Fabric : core of IT services that are required = cf Digotal core of first Digital Manuf illustration
    Digital Twin and Digital Environment => world of IoT & connected objects => need support for IOT management, data and security
    Recall the ecosystem argument : one size does not fit all !
    Each digital transformation story has its own opportunities and constraints
    IT is a key enabler, but digital transfo is lead by the business
  • Introduction : Reinventing the cookie repicipe with Tensor Flow
    Many similar story in manufacturing – they are not public
    Digital transformation implies a complete reinvention of processes and services Look at Human+Machine Nike example with rurring shoes

    ML works much better with meta-data human expertise : training a ML is a form of knowledge capture once capture this may be shared and distributed
    ML training as a knowledge collaborative platform : what has happended for machine vision (with the ImageNet data set)
    (3) Digital supply chains take the order management data in real time => from forecasting to reactive scheduling
    Demand management uses the digital supply chain to provide a better experience (real time update) – the B2C standard (not for tires yet)
  • Title : Three component of DT in manufacturing
    Digital to automate & optimize the manuf process (continuity)
    Digital Twin: more advanced optimization based on simulation (anticipation / forecast / …) the Age of IOT
    Digital workspace : human augmentation => the complete environt is helping (cobots, smart visualization) The age of smart objects (your world is the user interface to comuter assistance)

    DT is about complexity management
    DT is augmented humans & augmented machines
    Digital Twin : end to end optimization and reingineering – true transformation versus 30 years of siloed planning.
  • Innovation in the digital world is more difficult => Lean Startup is born from analyzing failures and successes
    Need the customer cooperation to understand the pain point and to build a value proposition
    MVP : most famous term from LS Up, tool to collect feedback and accumulate knowledge (only way not to dispair)
    Kevin Kelly : complex smart systems are grown not designed These three loops are the summay of my 3 years as AXA head of digital = listen, do, learn
  • The target
    The means to reach the target
    How to build the mean
  • Part II : we will now consider the impact on IS
    Intro:
    SW is eating the world does not mean that IT is running the company 
    It means that each part of the value chain will undergo a digital transformation that requires support from IT capabilities

    Digital Fabric : core of IT services that are required = cf Digotal core of first Digital Manuf illustration
    Digital Twin and Digital Environment => world of IoT & connected objects => need support for IOT management, data and security
    Recall the ecosystem argument : one size does not fit all !
    Each digital transformation story has its own opportunities and constraints
    IT is a key enabler, but digital transfo is lead by the business
  • (1) La première zone « Core » regroupe les capacités « métiers » du système d’information classique en tant que support des processus métiers. Cette zone est bien sûr elle-même multimodale, de façon fractale, ce qui permet d’implémenter une transformation continue, par exemple avec l’introduction de micro-services et d’APIs internes. On retrouve ici le concept du « Operational Backbone » dont l’exposition de services recomposables au moyen d’API est considérée comme une des pièces angulaires de la transformation digitale.
    Une architecture de SI, qui décompose un système en sous-systèmes et modalités de composition, est fractale dans le sens ou cette décomposition s’applique de façon récursive aux sous-systèmes.
    (2) La zone qualifiée de « matrice » est la zone d’engagement et de composition de services. Cette zone, de type « fast IT », est construite pour un taux de changement plus élevé
    (3) La zone « exponentielle » représente l’ensemble des services fournis par des fournisseurs externes pour des fonctionnalités « avancées ». Cette séparation permet de mettre l’accent sur le rythme encore plus élevé de changement et sur le fait que l’entreprise utilise ces services tels qu’ils sont et ne maîtrise pas leur évolution. Penser comme une zone séparée permet de mieux visualiser le besoin d’expérimentation, de test et de protocole d’intégration (il faut expérimenter pour comprendre, et comprendre avant d’intégrer).
    (4) La dernière zone, dénommée « edge », représente l’environnement logiciel et numérique du client, qui est choisi par le client et construit par des acteurs multiples. L’entreprise n’est qu’un acteur parmi d’autres, voire de temps en temps un « parasite » (un petit acteur qui profite de l’effort massif d’acteurs plus gros).
  • DevOps
    CICD
    Infrastructure as Code
    Mixing Dev & Ops roles and Skills
    Cycle : Repeated Loop

  • Peer review at every possible scale
    Make the reviews more pleasurable and more efficient
    (3) Key insight : Agility is not only a matter of mindset and post-its, it is a property of the code
    Arnaud Lemaire
    (4) Elegance : Minimal; Intent readability and virality
  • Data-Driven at Michelin :
    The three contributions of IS
    Break siloes
    Democratization
    Le bon environnement logiciel et matériel => cf rapport de l’ADT
  • Key idea: not very subtle ; data is like water in the see everywhere  Data infrastructire


    collection
    Data Fabric
    Data consumption platforms – everywhere / where AI can be applied
  • What is expected from IS as far as data is concerned

    Ability to share data every where => implies a shared semantics => Digital starts with data, but data starts with shared data model

    (2) Data is no longer static => need to cope with massive distribution and rates of change
    data quality => data freshness + Qualigy of operations

    (3) We live in the world of massive amounts of data that are distributed (place of use and place of creation) Right-time : pseudo-temps réel adapté aux besoins métiers
  • So, what does it mean to apply EDA at the EA scale ?

    Les systèmes réactifs sont définis dans le Reactive Manifesto comme étant responsive (réaction rapide), résilient, élastique et message-driven (assemblés par envoi de messages).
    Une des caractéristiques des systèmes digitaux modernes est précisément leur scalabilité, qui s’appuie sur une approche par événement, une distribution massive des traitements et des outils de traitement des flux d’événement.
    (2) Ouverture = pub/sub + standardized API
    (3) Hot : flow (use cold)
  • Part II : we will now consider the impact on IS
    Intro:
    SW is eating the world does not mean that IT is running the company 
    It means that each part of the value chain will undergo a digital transformation that requires support from IT capabilities

    Digital Fabric : core of IT services that are required = cf Digotal core of first Digital Manuf illustration
    Digital Twin and Digital Environment => world of IoT & connected objects => need support for IOT management, data and security
    Recall the ecosystem argument : one size does not fit all !
    Each digital transformation story has its own opportunities and constraints
    IT is a key enabler, but digital transfo is lead by the business
  • Lessons from 3 years at ADT (Big Data & AI) + NAE Conférence
    System engineering to handle lots of data + data flows => leverage tech constant moving edge
    Past data is not the new oil – contrary to what macron says – data should be a flow
    The technology power (CPU & skills) dictate the speed of the reinforcement learning cycle
  • Intro : la grande révolution de Michelin est de passer du batch au fil de l’eau dans le traitement des intéraction clients.

    Les systèmes réactifs sont définis dans le Reactive Manifesto comme étant responsive (réaction rapide), résilient, élastique et message-driven (assemblés par envoi de messages).
    Une des caractéristiques des systèmes digitaux modernes est précisément leur scalabilité, qui s’appuie sur une approche par événement, une distribution massive des traitements et des outils de traitement des flux d’événement. Grand projet stratégique : passer du EDA local au EDA global
    (2) Ouverture = pub/sub + standardized API
    EDA inter entreprise + API = perte de contrôle  (de EDI to API)
    (3) Reactive = Fast & Smart
  • Exemple de robot autonome dans une usine – formant une communauté
    Comme la maison inteligente, c’est un systeme de systèmes

    (1) Double apprentissage de l’individu et de la communauté – cf. Tweet récent de Elon Musk « Everyday your ⁦@Tesla gets smarter from all the data feeding into the AI system. (2) Illustration du besoin d’IA hybride
    (3) Idée clé de Yann LeCun : un système autonome intelligent dispose d’un modèle de son environnment et il fait des prévisions pour anticiper (pas seulement réactif). Message clé pour EDA :)
    (4) Utilisation des meta heuristique (reinforcement learning par ex) et de system engineering (loops) pour construire cette intelliegnce adaptative
  • Key idea: not very subtle ; data is like water in the see everywhere  Data infrastructire


    collection
    Data Fabric
    Data consumption platforms – everywhere / where AI can be applied
  • Introduction : smart home story
    Biomimicry : simpler systems for low level functions
    Need memory / multi-time -scale thinking
    Need planning / goals to action – smart systems develop intents dynamically
    Need foracasting / requires « real world modelling » … more than time series or pattern forecasting
    T

×