SlideShare una empresa de Scribd logo
1 de 9
Descargar para leer sin conexión
Calor

El calor es una cantidad de energía y es una expresión del
movimiento de las moléculas que componen un cuerpo.

Cuando el calor entra en un cuerpo se produce
calentamiento y cuando sale, enfriamiento. Incluso los
objetos más fríos poseen algo de calor porque sus átomos
se están moviendo. (Ver: Termodinámica, Tercera Ley)

Temperatura

La temperatura es la medida del calor de un cuerpo (y no
la cantidad de calorque este contiene o puede rendir).

Diferencias entre calor y temperatura

Todos sabemos que cuando calentamos un objeto su
temperatura aumenta. A menudo pensamos que calor y
temperatura son lo mismo. Sin embargo, esto no es así. El
calor y la temperatura están relacionadas entre sí, pero son
conceptos diferentes.
                                                                   Al aplicar calor, sube la temperatura.
Como ya dijimos, el calor es la energía total del movimiento
molecular en un cuerpo, mientras que la temperatura es la medida de dicha energía. El calor depende de la
velocidad de las partículas, de su número, de su tamaño y de su tipo. La temperatura no depende del tamaño,
ni del número ni del tipo.

Por ejemplo, si hacemos hervir agua en dos recipientes de diferente tamaño, la temperatura alcanzada es la
misma para los dos, 100° C, pero el que tiene más agua posee mayor cantidad de calor.

                                                                                  El calor es lo que hace que la
                                                                                  temperatura aumente o
                                                                                  disminuya. Si añadimos calor,
                                                                                  la temperatura aumenta. Si
                                                                                  quitamos calor, la
                                                                                  temperatura disminuye.

                                                                                  La temperatura no es energía
                                                                                  sino una medida de ella; sin
                                                                                  embargo, el calor sí es
                                                                                  energía.

                                                                                  Cambios de estado
              Misma temperatura, distinta cantidad de calor.
                                                                                   En la naturaleza existen tres
estados usuales de la materia: sólido, líquido y gaseoso. Al aplicarle calor a una sustancia, esta puede
cambiar de un estado a otro. A estos procesos se les conoce como Cambios de estado. Los posibles
cambios de estado son:

Calorimetría es todo lo relativo a la medición del calor que se desprende o absorbe en los procesos
biológicos, físicos o químicos.
El calor representa la cantidad de energía que un cuerpo transfiere a otro como
                           consecuencia de una diferencia de temperatura entre ambos. El tipo de energía
                           que se pone en juego en los fenómenos caloríficos se denomina energía
                           térmica. (Ver: Cantidad de calor)

                           El carácter energético del calor lleva consigo la posibilidad de transformarlo en
                           trabajo mecánico. Sin embargo, la naturaleza impone ciertas limitaciones a este tipo
                           de conversión, lo cual hace que sólo una fracción del calor disponible sea
                           aprovechable en forma de trabajo útil. (Ver Transferencia de calor)

                           Las ideas acerca de la naturaleza del calor han variado apreciablemente en los dos
                           últimos siglos.

                           Las experiencias de Joule (1818 - 1889) y Mayer (1814 - 1878) sobre la
                           conservación de la energía, apuntaban hacia el calor como una forma más de
energía. El calor no sólo era capaz de aumentar la temperatura o modificar el estado físico de los cuerpos,
sino que además podía moverlos y realizar un trabajo.

Las máquinas de vapor que tan espectacular desarrollo tuvieron a finales del siglo XVIII y comienzos del XIX
eran buena muestra de ello. Desde entonces las nociones de calor y energía quedaron unidas y el progreso
de la física permitió, a mediados del siglo diecinueve, encontrar una explicación detallada para la naturaleza
de esa nueva forma de energía, que se pone de manifiesto en los fenómenos caloríficos.

Las nociones de temperatura

Las nociones científicas de calor y temperatura se apoyan en la idea intuitiva que nos transmite nuestro
propio cuerpo. Así, esa sensación fisiológica revelada por el tacto, que permite clasificar los cuerpos en fríos y
calientes, da lugar a la idea de temperatura y por extensión a la de calor. Sin embargo, la física va más allá de
estas nociones intuitivas y busca representaciones que puedan ser expresadas en forma numérica, esto es,
como magnitudes o atributos medibles.

La experiencia demuestra que cuando dos cuerpos, uno frío y otro caliente, se ponen en contacto durante un
tiempo prolongado, terminan por alcanzar un estado de equilibrio entre ambos que se denomina equilibrio
térmico. En ese estado no es posible distinguir cuál de ambos está más frío y cuál más caliente. La propiedad
que tienen en común los cuerpos que se encuentran en equilibrio térmico es precisamente la temperatura.

Junto con esta definición descriptiva de lo que se entiende en física por temperatura, con frecuencia se utiliza
otra definición de tipo operacional, que indica mediante qué procedimiento u operación queda determinada
dicha magnitud. Según este criterio la temperatura sería lo que miden los termómetros.

Ambas definiciones de temperatura hacen referencia a fenómenos observables y facilitan un estudio científico
de los mismos, pero no explican en qué consiste realmente esa magnitud que, aparentemente, no mantiene
relación alguna con las otras magnitudes de la física como la longitud, la masa, el tiempo o la fuerza, por
ejemplo.

El desarrollo de una teoría cinética para la materia fue realizado sobre la base de viejas ideas a las que se
refería Thompson.

La teoría cinético-molecular de la materia recibe ese nombre porque admite que las diferentes partículas,
átomos y moléculas, que constituyen las sustancias están en continuo movimiento (en griego kinesis significa
movimiento). En los cuerpos sólidos este movimiento es de vibración en torno a puntos fijos o de equilibrio. En
los gases el movimiento es desordenado y zigzagueante, a consecuencia de los choques de las moléculas del
gas entre sí y con el recipiente que las contiene. En los líquidos, como estado intermedio, pueden darse
ambos tipos de movimientos moleculares.

La teoría cinético-molecular establece que la energía asociada a esos movimientos moleculares internos es la
responsable de los fenómenos caloríficos.
Junto a la definición de la temperatura, basada en nuestro sentido del tacto y apoyada en la observación de
los fenómenos correspondientes, que la presenta como una propiedad que caracteriza el grado de calor de los
cuerpos y rige su transmisión de unos a otros, la teoría cinética propone otra, compatible con la anterior, pero
que ofrece la ventaja de explicar cuál es su naturaleza.

La temperatura es una medida del nivel de esa agitación térmica o interna de las partículas que constituyen un
cuerpo, nivel expresado por el valor de su energía cinética media. Cuanto mayor es la energía media de
agitación molecular, tanto mayor es la temperatura que detecta la sensibilidad del hombre y que miden los
termómetros.

Energía térmica y calor

La energía térmica es la forma de energía que interviene en los fenómenos caloríficos. Cuando dos cuerpos a
diferentes temperaturas se ponen en contacto, el caliente comunica energía al frío; el tipo de energía que se
cede de un cuerpo a otro como consecuencia de una diferencia de temperaturas es precisamente la energía
térmica.

La idea que sobre la temperatura introduce la teoría cinética al definirla como una medida de la energía
cinética media de las moléculas, permite, pues, explicar por qué las transferencias de calor se producen
siempre en el sentido de mayor a menor temperatura.

LA MEDIDA DE LA TEMPERATURA

                               A partir de la sensación fisiológica es posible hacerse una idea aproximada de
                               la temperatura a la que se encuentra un objeto. Pero esa apreciación directa
                               está limitada por diferentes factores; así el intervalo de temperaturas a lo largo
                               del cual esto es posible es pequeño; además, para una misma temperatura la
                               sensación correspondiente puede variar según se haya estado previamente en
                               contacto con otros cuerpos más calientes o más fríos y, por si fuera poco, no
                               es posible expresar con precisión en forma de cantidad los resultados de este
                               tipo de apreciaciones subjetivas. Por ello para medir temperaturas se recurre a
                               los termómetros.

                               Escalas termométricas

                                En todo cuerpo material la variación de la temperatura va acompañada de la
       Termómetro
                                correspondiente variación de otras propiedades medibles, de modo que a cada
valor de aquélla le corresponde un solo valor de ésta. Tal es el caso de la longitud de una varilla metálica, de
la resistencia eléctrica de un metal, de la presión de un gas, del volumen de un líquido, etc. Estas magnitudes
cuya variación está ligada a la de la temperatura se denominan propiedades termométricas,porque pueden
ser empleadas en la construcción de termómetros.

Para definir una escala de temperaturas es necesario elegir una propiedad termométrica que reúna las
siguientes condiciones:

a) La expresión matemática de la relación entre la propiedad y la temperatura debe ser conocida.

b) La propiedad termométrica debe ser lo bastante sensible a las variaciones de temperatura como para poder
detectar, con una precisión aceptable, pequeños cambios térmicos.

c) El rango de temperatura accesible debe ser suficientemente grande.

Una vez que la propiedad termométrica ha sido elegida, la elaboración de una escala termométrica o de
temperaturas lleva consigo, al menos, dos operaciones; por una parte, la determinación de los puntos fijos o
temperaturas de referencia que permanecen constantes en la naturaleza y, por otra, la división del intervalo de
temperaturas correspondiente a tales puntos fijos en unidades o grados.
El científico sueco Anders Celsius (1701 - 1744) construyó por primera vez la escala termométrica que lleva
su nombre. Eligió como puntos fijos el de fusión del hielo y el de ebullición del agua, tras advertir que las
temperaturas a las que se verificaban tales cambios de estado eran constantes a la presión atmosférica.
Asignó al primero el valor 0 y al segundo el valor 100, con lo cual fijó el valor del grado centígrado o grado
Celsius (º C) como la centésima parte del intervalo de temperatura comprendido entre esos dos puntos fijos.

En los países anglosajones se pueden encontrar aún termómetros graduados en grado Fahrenheit (º F).
La escala Fahrenheitdifiere de la Celsius tanto en los valores asignados a los puntos fijos, como en el
tamaño de los grados. Así, al primer punto fijo se le atribuye el valor 32 y al segundo el valor 212.

La escala de temperaturas adoptada por el Sistema Internacional (SI) es la llamada escala absoluta o
Kelvin. En ella el tamaño de los grados es el mismo que en la Celsius, pero el cero de la escala se fija en el –
273,16 º C. Este punto llamado cero absoluto de temperaturas es tal que a dicha temperatura desaparece la
agitación molecular, por lo que, según el significado que la teoría cinética atribuye a la magnitud temperatura,
no tiene sentido hablar de valores inferiores a él. El cero absoluto constituye un límite inferior natural de
temperaturas, lo que hace que en la escala Kelvin no existan temperaturas bajo cero (negativas).

Es propiedad: www.profesorenlinea.cl


                                    Transferencia de calor

Cuando se produce una transferencia de Calor, se intercambia energía en forma de calor entre distintos
cuerpos, o entre diferentes partes de un mismo cuerpo que están a distinta temperatura.

No confundir calor con temperatura: calor es la energía que poseen los cuerpos y temperatura es la
medición de dicha energía. (Ver Calor y energía térmica)

                                         El calor se puede transferir
                                         mediante convección, radiación o conducción.

                                         Aunque estos tres procesos pueden ocurrir al mismo tiempo, puede
                                         suceder que uno de los mecanismos predomine sobre los otros dos.

                                         Por ejemplo, el calor se trasmite a través de la pared de una casa
                                         fundamentalmente por conducción, el agua de una cacerola situada
                                         sobre un quemador de gas se calienta en gran medida por
                                         convección, y la Tierra recibe calor del Sol casi exclusivamente por
                                         radiación.
 Calor del sol llega por radiación.
                                         Conducción térmica

La conducción es una transferencia de calor entre los cuerpos sólidos.
Si una persona sostiene uno de los extremos de una barra metálica,
y pone en contacto el otro extremo con la llama de una vela, de
forma que aumente su temperatura, el calor se trasmitirá hasta el
extremo más frío por conducción.

Los átomos o moléculas del extremo calentado por la llama,
adquieren una mayor energía de agitación, la cual se trasmite de un
átomo a otro, sin que estas partículas sufran ningún cambio de
posición, aumentando entonces, la temperatura de esta región. Este
proceso continúa a lo largo de la barra y después de cierto tiempo, la
persona que sostiene el otro extremo percibirá una elevación de
temperatura en ese lugar.

Existen conductores térmicos, como los metales, que son buenos
conductores del calor, mientras que existen sustancias, como                 Radiador conduce el calor.
plumavit, corcho, aire, madera, hielo, lana, papel, etc., que son
malos conductores térmicos (aislantes).

Convección térmica

                                                  Si existe una diferencia de temperatura en el interior de un
                                                  líquido o un gas, es casi seguro que se producirá
                                                  unmovimiento del fluido. Este movimiento transfiere calor
                                                  de una parte del fluido a otra por un proceso llamado
                                                  convección.

                                                  Cuando un recipiente con agua se calienta, la capa de agua
                                                  que está en el fondo recibe mayor calor (por el calor que se
                                                  ha trasmitido por conducción a través de la cacerola); esto
                                                  provoca que el volumen aumente y, por lo tanto, disminuya
                                                  su densidad, provocando que esta capa de agua caliente se
                                                  desplace hacia la parte superior del recipiente y parte del
                                                  agua más
         Horno de convección para pan             fría baje
                                                  hacia el
fondo.

El proceso prosigue, con una circulación continua de masas de
agua más caliente hacia arriba, y de masas de agua más fría
hacia abajo, movimientos que se denominan corrientes de
convección. Así, el calor que se trasmite por conducción a las
capas inferiores, se va distribuyendo por convección a toda la
masa del líquido.

La transferencia de calor en los gases y líquidos puede
efectuarse por conducción. El proceso de convección es el
responsable de la mayor parte del calor que se trasmite a
través de los fluidos.
                                                                           Aire circula por convección
El calentamiento de una habitación mediante una estufa no
                                                  depende tanto de la radiación como de las corrientes
                                                  naturales de convección, que hacen que el aire caliente
                                                  suba hacia el techo y el aire frío del resto de la habitación
                                                  se dirija hacia la estufa.

                                                  Debido a que el aire caliente tiende a subir y el aire frío a
                                                  bajar, las estufas deben colocarse cerca del suelo (y los
                                                  aparatos de aire acondicionado cerca del techo) para que la
                                                  eficiencia sea máxima.

                                                  De la misma forma, la convección natural es responsable
     Nubes que se desplazan por convección
                                                  de la ascensión del agua caliente y el vapor en las calderas
               (ampliar imagen)
                                                  de convección natural, y del tiro de las chimeneas.

La convección también determina el movimiento de las grandes masas de aire sobre la superficie terrestre, la
acción de los vientos, la formación de nubes, las corrientes oceánicas y la transferencia de calor desde el
interior del Sol hasta su superficie.

Radiación térmica

La radiación presenta una diferencia fundamental respecto a la conducción y la convección: las sustancias
que intercambian calor no tienen que estar en contacto, sino que pueden
estar separadas por un vacío.

Los procesos de convección y de conducción sólo pueden ocurrir cuando
hay un medio material a través del cual se pueda transferir el calor,
mientras que la radiación puede ocurrir en el vacío.

Si se tiene un cuerpo caliente en el interior de una campana de vidrio sin
aire, y se coloca un termómetro en el exterior de la campana, se observará
una elevación de la temperatura, lo cual indica que existe una trasmisión de
calor a través del vacío que hay entre el cuerpo caliente y el exterior.

Ver: Equilibrio térmico
                                                                                    Hornos de convección
Es propiedad: www.profesorenlinea.cl




                             Cambios físicos de la materia
Todos los días ocurren cambios en la materia que nos rodea. Algunos hacen cambiar el aspecto, la forma, el
estado. A estos cambios los llamaremos cambios físicos de la materia.

Entre los cambios físicos más importantes tenemos los cambios de estado, que son aquellos que se producen
por acción del calor.

Podemos distinguir dos tipos de cambios de estado según sea la influencia del calor: cambios progresivos y
cambios regresivos.

Cambios progresivos son los que se producen al aplicar calor.

Estos son: sublimación progresiva, fusión y evaporación.
Sublimación progresiva.

Es la transformación directa, sin pasar por otro estado intermedio, de
una materia en estado sólido a estado gaseoso al aplicarle calor.

Ejemplo:

Hielo (agua en estado sólido) + temperatura = vapor (agua en estado
gaseoso)




                           Fusión.
                           Es la transformación de un sólido en líquido al aplicarle calor.
                           Es importante hacer la diferencia con el punto de fusión, que es la
                           temperatura a la cual ocurre la fusión. Esta temperatura es específica
                           para cada sustancia que se funde.

                           Ejemplos:

                           Cobre sólido + temperatura = cobre líquido.

                           Cubo de hielo (sólido) + temperatura = agua (líquida).

                           El calor acelera el movimiento de las partículas del hielo, se derrite y se
                           convierte en agua líquida.



Evaporación.
Es la transformación de las partículas de superficie de un líquido, en
gas, por la acción del calor.
Este cambio ocurre en forma normal, a temperatura ambiente, en
algunas sustancias líquidas como agua, alcohol y otras.

Ejemplo. Cuando te lavas las manos y las pones bajo la máquina que
tira aire caliente, éstas se secan.

Sin embargo si le aplicamos mayor temperatura la evaporación se
transforma enebullición.



                           Ebullición.

                           Es la transformación de todas las partículas del líquido en gas por la
                           acción del calor aplicado.

                           En este caso también hay una temperatura especial para cada
                           sustancia a la cual se produce la ebullición y la conocemos como punto
                           de ebullición.

                           Ejemplos: El agua tiene su punto de ebullición a los 100º C, alcohol a
                           los 78º C. (el término hervir es una forma común de referirse a la
                           ebullición).
Cambios regresivos

Estos cambios se producen por el enfriamiento de los cuerpos y también distinguimos tres tipos que son:
sublimación regresiva, solidificación, condensación.




     Sublimación regresiva.

     Es el cambio de una sustancia de estado gaseoso a estado sólido, sin
     pasar por el estado líquido.




                               Solidificación.

                               Es el paso de una sustancia en estado líquido a sólido.

                               Este cambio lo podemos verificar al poner en el congelador un vaso con
                               agua, o los típicos cubitos de hielo.




     Condensación.

     Es el cambio de estado de una sustancia en estado gaseoso a estado
     líquido.

     Ejemplo: El vapor de agua al chocar con una superficie fría, se
     transforma en líquido. En invierno los vidrios de las micros se empañan
     y luego le corren "gotitas"; es el vapor de agua que se ha condensado.
     En el baño de la casa cuando nos duchamos con agua muy caliente y
     se empaña el espejo, luego le corren las "gotitas " de agua.



Ejemplos

"El roce de los esquíes produce fusión de la nieve, formando una capa de agua que favorece el deslizamiento"
"Si el agua no se evaporara, no tendríamos lluvias".
"Los distintos subproductos que se obtienen del petróleo, se logran gracias a la separación de ellos mediante
el punto de ebullición."

¿Por qué será que en las calles hay una franja más oscura en el pavimento, cada cierto trecho? ¿Por qué los
rieles de la línea
de tren tienen una pequeña separación?
Los cambios de volumen se refieren a los cambios que sufre la materia en relación al espacio que ocupan.
Por ejemplo, un cuerpo aumenta su volumen si aumenta el espacio que ocupa y, por el contrario, si reduce su
volumen significa que disminuye el espacio que ocupa.

Los cambios de volumen son dos: contracción y dilatación.

Contracción.

Es la disminución de volumen que sufre un cuerpo al enfriarse.

Por ejemplo, los zapatos te quedan más "sueltos " en invierno; al poner un globo inflado en un tiesto con agua
fría disminuye su tamaño.

La contracción se entiende porque al enfriarse los cuerpos, las partículas están más cercanas unas de otras,
disminuye su movimiento y como consecuencia disminuye su volumen.

¿Qué ocurre cuando pones un termómetro en agua con hielo?

Dilatación.

Es el aumento de volumen que experimentan los cuerpos al contacto con la temperatura.
Por ejemplo, el Mercurio del termómetro se dilata con facilidad y por eso es capaz subir por un capilar
pequeño e indicar el alza de temperatura.

Este fenómeno no afecta sólo a los líquidos o sólidos también a los gases. Al recibir un aumento de calor, las
partículas se separan entre sí, permitiendo que el gas se torne más liviano y se eleve. Ejemplo de esto es lo
que hace posible que los "globos aerostáticos" se puedan elevar y desplazar.

Pero toda regla tiene su excepción y es el agua en este caso quién confirma la regla, porque al calentarse
entre los 0º C y los 4º C, se contrae y al enfriarse se dilata. Se conoce este fenómeno como la dilatación
anómala del agua.

Ver: Materia

Más contenido relacionado

La actualidad más candente

La temperatura
La temperaturaLa temperatura
La temperaturaperuudima
 
Calor y energia termica
Calor y energia termicaCalor y energia termica
Calor y energia termicaLab Fisica
 
Curso docente fca mod 3
Curso docente fca mod 3Curso docente fca mod 3
Curso docente fca mod 3Noemi Desmedt
 
Temperatura y calor
Temperatura y calorTemperatura y calor
Temperatura y calorDenis G
 
Energía y calor
Energía y calor Energía y calor
Energía y calor jlredon98
 
Calor Y Temperatura
Calor Y TemperaturaCalor Y Temperatura
Calor Y Temperaturaguest53e8ee
 
Calor y primera ley de la termodinamica segundo viaje
Calor y primera ley de la termodinamica segundo viajeCalor y primera ley de la termodinamica segundo viaje
Calor y primera ley de la termodinamica segundo viajeoskar205064523
 
Temperatura, calor y equilibrio termico
Temperatura, calor y equilibrio termicoTemperatura, calor y equilibrio termico
Temperatura, calor y equilibrio termicoFrancescaa Ignaciaa
 
Materia y energía
Materia y energíaMateria y energía
Materia y energíarena_mb
 

La actualidad más candente (16)

Calor y temperatura
Calor y temperaturaCalor y temperatura
Calor y temperatura
 
Calor y temperatura
Calor y temperaturaCalor y temperatura
Calor y temperatura
 
La temperatura
La temperaturaLa temperatura
La temperatura
 
Calor y energia termica
Calor y energia termicaCalor y energia termica
Calor y energia termica
 
Calor
CalorCalor
Calor
 
Curso docente fca mod 3
Curso docente fca mod 3Curso docente fca mod 3
Curso docente fca mod 3
 
L 12 lu 3 -5 m -1
L 12 lu 3 -5 m -1L 12 lu 3 -5 m -1
L 12 lu 3 -5 m -1
 
Temperatura y calor
Temperatura y calorTemperatura y calor
Temperatura y calor
 
Energía y calor
Energía y calor Energía y calor
Energía y calor
 
Calor Y Temperatura
Calor Y TemperaturaCalor Y Temperatura
Calor Y Temperatura
 
Temperatura y calor
Temperatura y calorTemperatura y calor
Temperatura y calor
 
Cantidad de calor (1)
Cantidad de calor (1)Cantidad de calor (1)
Cantidad de calor (1)
 
Calor y primera ley de la termodinamica segundo viaje
Calor y primera ley de la termodinamica segundo viajeCalor y primera ley de la termodinamica segundo viaje
Calor y primera ley de la termodinamica segundo viaje
 
Temperatura, calor y equilibrio termico
Temperatura, calor y equilibrio termicoTemperatura, calor y equilibrio termico
Temperatura, calor y equilibrio termico
 
Materia y energía
Materia y energíaMateria y energía
Materia y energía
 
Calor y energia
Calor y energiaCalor y energia
Calor y energia
 

Destacado

I pendahuluan
I pendahuluanI pendahuluan
I pendahuluanUNHAS
 
Expo1
Expo1Expo1
Expo1Pyrlo
 
Words : Native and Borrowed
Words : Native and BorrowedWords : Native and Borrowed
Words : Native and BorrowedAnna Molly
 
Programa Fiestas San Roque 2009
Programa Fiestas San Roque 2009 Programa Fiestas San Roque 2009
Programa Fiestas San Roque 2009 Asociación Viejo
 
Be verb patterns
Be verb patternsBe verb patterns
Be verb patternsDrStovall
 
Control ambiental
Control ambientalControl ambiental
Control ambientalJMRamos110
 
KOPERASI INDONESIA
KOPERASI INDONESIAKOPERASI INDONESIA
KOPERASI INDONESIAhadisaiful
 

Destacado (8)

I pendahuluan
I pendahuluanI pendahuluan
I pendahuluan
 
Bahasa Melayu
Bahasa MelayuBahasa Melayu
Bahasa Melayu
 
Expo1
Expo1Expo1
Expo1
 
Words : Native and Borrowed
Words : Native and BorrowedWords : Native and Borrowed
Words : Native and Borrowed
 
Programa Fiestas San Roque 2009
Programa Fiestas San Roque 2009 Programa Fiestas San Roque 2009
Programa Fiestas San Roque 2009
 
Be verb patterns
Be verb patternsBe verb patterns
Be verb patterns
 
Control ambiental
Control ambientalControl ambiental
Control ambiental
 
KOPERASI INDONESIA
KOPERASI INDONESIAKOPERASI INDONESIA
KOPERASI INDONESIA
 

Similar a Calor (20)

Calor.y temperatura docx juliana lopez serna 11-2
Calor.y temperatura docx juliana lopez serna  11-2Calor.y temperatura docx juliana lopez serna  11-2
Calor.y temperatura docx juliana lopez serna 11-2
 
Cantidad de calor
Cantidad de calorCantidad de calor
Cantidad de calor
 
Calor y temperatura
Calor y temperaturaCalor y temperatura
Calor y temperatura
 
Calor y energía
Calor y energíaCalor y energía
Calor y energía
 
Temas selectos de fisica
Temas selectos de fisicaTemas selectos de fisica
Temas selectos de fisica
 
Termodinamica
TermodinamicaTermodinamica
Termodinamica
 
El Calor Y La Temperatura
El Calor Y La TemperaturaEl Calor Y La Temperatura
El Calor Y La Temperatura
 
Practica # 5
Practica # 5Practica # 5
Practica # 5
 
110 calor-y-temperatura
110 calor-y-temperatura110 calor-y-temperatura
110 calor-y-temperatura
 
TODO SOBRE EL CALOR
TODO SOBRE EL CALORTODO SOBRE EL CALOR
TODO SOBRE EL CALOR
 
Calor fisica
Calor fisicaCalor fisica
Calor fisica
 
Termonidamica (1)martin
Termonidamica (1)martinTermonidamica (1)martin
Termonidamica (1)martin
 
Materiales y calor
Materiales y calorMateriales y calor
Materiales y calor
 
Calor y temperatura física
Calor y temperatura físicaCalor y temperatura física
Calor y temperatura física
 
Calor
CalorCalor
Calor
 
Calor y temperatura
Calor y temperaturaCalor y temperatura
Calor y temperatura
 
Termodinamica1
Termodinamica1Termodinamica1
Termodinamica1
 
Termodinamica1
Termodinamica1Termodinamica1
Termodinamica1
 
Equilibrio Termico
Equilibrio TermicoEquilibrio Termico
Equilibrio Termico
 
Calor
CalorCalor
Calor
 

Calor

  • 1. Calor El calor es una cantidad de energía y es una expresión del movimiento de las moléculas que componen un cuerpo. Cuando el calor entra en un cuerpo se produce calentamiento y cuando sale, enfriamiento. Incluso los objetos más fríos poseen algo de calor porque sus átomos se están moviendo. (Ver: Termodinámica, Tercera Ley) Temperatura La temperatura es la medida del calor de un cuerpo (y no la cantidad de calorque este contiene o puede rendir). Diferencias entre calor y temperatura Todos sabemos que cuando calentamos un objeto su temperatura aumenta. A menudo pensamos que calor y temperatura son lo mismo. Sin embargo, esto no es así. El calor y la temperatura están relacionadas entre sí, pero son conceptos diferentes. Al aplicar calor, sube la temperatura. Como ya dijimos, el calor es la energía total del movimiento molecular en un cuerpo, mientras que la temperatura es la medida de dicha energía. El calor depende de la velocidad de las partículas, de su número, de su tamaño y de su tipo. La temperatura no depende del tamaño, ni del número ni del tipo. Por ejemplo, si hacemos hervir agua en dos recipientes de diferente tamaño, la temperatura alcanzada es la misma para los dos, 100° C, pero el que tiene más agua posee mayor cantidad de calor. El calor es lo que hace que la temperatura aumente o disminuya. Si añadimos calor, la temperatura aumenta. Si quitamos calor, la temperatura disminuye. La temperatura no es energía sino una medida de ella; sin embargo, el calor sí es energía. Cambios de estado Misma temperatura, distinta cantidad de calor. En la naturaleza existen tres estados usuales de la materia: sólido, líquido y gaseoso. Al aplicarle calor a una sustancia, esta puede cambiar de un estado a otro. A estos procesos se les conoce como Cambios de estado. Los posibles cambios de estado son: Calorimetría es todo lo relativo a la medición del calor que se desprende o absorbe en los procesos biológicos, físicos o químicos.
  • 2. El calor representa la cantidad de energía que un cuerpo transfiere a otro como consecuencia de una diferencia de temperatura entre ambos. El tipo de energía que se pone en juego en los fenómenos caloríficos se denomina energía térmica. (Ver: Cantidad de calor) El carácter energético del calor lleva consigo la posibilidad de transformarlo en trabajo mecánico. Sin embargo, la naturaleza impone ciertas limitaciones a este tipo de conversión, lo cual hace que sólo una fracción del calor disponible sea aprovechable en forma de trabajo útil. (Ver Transferencia de calor) Las ideas acerca de la naturaleza del calor han variado apreciablemente en los dos últimos siglos. Las experiencias de Joule (1818 - 1889) y Mayer (1814 - 1878) sobre la conservación de la energía, apuntaban hacia el calor como una forma más de energía. El calor no sólo era capaz de aumentar la temperatura o modificar el estado físico de los cuerpos, sino que además podía moverlos y realizar un trabajo. Las máquinas de vapor que tan espectacular desarrollo tuvieron a finales del siglo XVIII y comienzos del XIX eran buena muestra de ello. Desde entonces las nociones de calor y energía quedaron unidas y el progreso de la física permitió, a mediados del siglo diecinueve, encontrar una explicación detallada para la naturaleza de esa nueva forma de energía, que se pone de manifiesto en los fenómenos caloríficos. Las nociones de temperatura Las nociones científicas de calor y temperatura se apoyan en la idea intuitiva que nos transmite nuestro propio cuerpo. Así, esa sensación fisiológica revelada por el tacto, que permite clasificar los cuerpos en fríos y calientes, da lugar a la idea de temperatura y por extensión a la de calor. Sin embargo, la física va más allá de estas nociones intuitivas y busca representaciones que puedan ser expresadas en forma numérica, esto es, como magnitudes o atributos medibles. La experiencia demuestra que cuando dos cuerpos, uno frío y otro caliente, se ponen en contacto durante un tiempo prolongado, terminan por alcanzar un estado de equilibrio entre ambos que se denomina equilibrio térmico. En ese estado no es posible distinguir cuál de ambos está más frío y cuál más caliente. La propiedad que tienen en común los cuerpos que se encuentran en equilibrio térmico es precisamente la temperatura. Junto con esta definición descriptiva de lo que se entiende en física por temperatura, con frecuencia se utiliza otra definición de tipo operacional, que indica mediante qué procedimiento u operación queda determinada dicha magnitud. Según este criterio la temperatura sería lo que miden los termómetros. Ambas definiciones de temperatura hacen referencia a fenómenos observables y facilitan un estudio científico de los mismos, pero no explican en qué consiste realmente esa magnitud que, aparentemente, no mantiene relación alguna con las otras magnitudes de la física como la longitud, la masa, el tiempo o la fuerza, por ejemplo. El desarrollo de una teoría cinética para la materia fue realizado sobre la base de viejas ideas a las que se refería Thompson. La teoría cinético-molecular de la materia recibe ese nombre porque admite que las diferentes partículas, átomos y moléculas, que constituyen las sustancias están en continuo movimiento (en griego kinesis significa movimiento). En los cuerpos sólidos este movimiento es de vibración en torno a puntos fijos o de equilibrio. En los gases el movimiento es desordenado y zigzagueante, a consecuencia de los choques de las moléculas del gas entre sí y con el recipiente que las contiene. En los líquidos, como estado intermedio, pueden darse ambos tipos de movimientos moleculares. La teoría cinético-molecular establece que la energía asociada a esos movimientos moleculares internos es la responsable de los fenómenos caloríficos.
  • 3. Junto a la definición de la temperatura, basada en nuestro sentido del tacto y apoyada en la observación de los fenómenos correspondientes, que la presenta como una propiedad que caracteriza el grado de calor de los cuerpos y rige su transmisión de unos a otros, la teoría cinética propone otra, compatible con la anterior, pero que ofrece la ventaja de explicar cuál es su naturaleza. La temperatura es una medida del nivel de esa agitación térmica o interna de las partículas que constituyen un cuerpo, nivel expresado por el valor de su energía cinética media. Cuanto mayor es la energía media de agitación molecular, tanto mayor es la temperatura que detecta la sensibilidad del hombre y que miden los termómetros. Energía térmica y calor La energía térmica es la forma de energía que interviene en los fenómenos caloríficos. Cuando dos cuerpos a diferentes temperaturas se ponen en contacto, el caliente comunica energía al frío; el tipo de energía que se cede de un cuerpo a otro como consecuencia de una diferencia de temperaturas es precisamente la energía térmica. La idea que sobre la temperatura introduce la teoría cinética al definirla como una medida de la energía cinética media de las moléculas, permite, pues, explicar por qué las transferencias de calor se producen siempre en el sentido de mayor a menor temperatura. LA MEDIDA DE LA TEMPERATURA A partir de la sensación fisiológica es posible hacerse una idea aproximada de la temperatura a la que se encuentra un objeto. Pero esa apreciación directa está limitada por diferentes factores; así el intervalo de temperaturas a lo largo del cual esto es posible es pequeño; además, para una misma temperatura la sensación correspondiente puede variar según se haya estado previamente en contacto con otros cuerpos más calientes o más fríos y, por si fuera poco, no es posible expresar con precisión en forma de cantidad los resultados de este tipo de apreciaciones subjetivas. Por ello para medir temperaturas se recurre a los termómetros. Escalas termométricas En todo cuerpo material la variación de la temperatura va acompañada de la Termómetro correspondiente variación de otras propiedades medibles, de modo que a cada valor de aquélla le corresponde un solo valor de ésta. Tal es el caso de la longitud de una varilla metálica, de la resistencia eléctrica de un metal, de la presión de un gas, del volumen de un líquido, etc. Estas magnitudes cuya variación está ligada a la de la temperatura se denominan propiedades termométricas,porque pueden ser empleadas en la construcción de termómetros. Para definir una escala de temperaturas es necesario elegir una propiedad termométrica que reúna las siguientes condiciones: a) La expresión matemática de la relación entre la propiedad y la temperatura debe ser conocida. b) La propiedad termométrica debe ser lo bastante sensible a las variaciones de temperatura como para poder detectar, con una precisión aceptable, pequeños cambios térmicos. c) El rango de temperatura accesible debe ser suficientemente grande. Una vez que la propiedad termométrica ha sido elegida, la elaboración de una escala termométrica o de temperaturas lleva consigo, al menos, dos operaciones; por una parte, la determinación de los puntos fijos o temperaturas de referencia que permanecen constantes en la naturaleza y, por otra, la división del intervalo de temperaturas correspondiente a tales puntos fijos en unidades o grados.
  • 4. El científico sueco Anders Celsius (1701 - 1744) construyó por primera vez la escala termométrica que lleva su nombre. Eligió como puntos fijos el de fusión del hielo y el de ebullición del agua, tras advertir que las temperaturas a las que se verificaban tales cambios de estado eran constantes a la presión atmosférica. Asignó al primero el valor 0 y al segundo el valor 100, con lo cual fijó el valor del grado centígrado o grado Celsius (º C) como la centésima parte del intervalo de temperatura comprendido entre esos dos puntos fijos. En los países anglosajones se pueden encontrar aún termómetros graduados en grado Fahrenheit (º F). La escala Fahrenheitdifiere de la Celsius tanto en los valores asignados a los puntos fijos, como en el tamaño de los grados. Así, al primer punto fijo se le atribuye el valor 32 y al segundo el valor 212. La escala de temperaturas adoptada por el Sistema Internacional (SI) es la llamada escala absoluta o Kelvin. En ella el tamaño de los grados es el mismo que en la Celsius, pero el cero de la escala se fija en el – 273,16 º C. Este punto llamado cero absoluto de temperaturas es tal que a dicha temperatura desaparece la agitación molecular, por lo que, según el significado que la teoría cinética atribuye a la magnitud temperatura, no tiene sentido hablar de valores inferiores a él. El cero absoluto constituye un límite inferior natural de temperaturas, lo que hace que en la escala Kelvin no existan temperaturas bajo cero (negativas). Es propiedad: www.profesorenlinea.cl Transferencia de calor Cuando se produce una transferencia de Calor, se intercambia energía en forma de calor entre distintos cuerpos, o entre diferentes partes de un mismo cuerpo que están a distinta temperatura. No confundir calor con temperatura: calor es la energía que poseen los cuerpos y temperatura es la medición de dicha energía. (Ver Calor y energía térmica) El calor se puede transferir mediante convección, radiación o conducción. Aunque estos tres procesos pueden ocurrir al mismo tiempo, puede suceder que uno de los mecanismos predomine sobre los otros dos. Por ejemplo, el calor se trasmite a través de la pared de una casa fundamentalmente por conducción, el agua de una cacerola situada sobre un quemador de gas se calienta en gran medida por convección, y la Tierra recibe calor del Sol casi exclusivamente por radiación. Calor del sol llega por radiación. Conducción térmica La conducción es una transferencia de calor entre los cuerpos sólidos.
  • 5. Si una persona sostiene uno de los extremos de una barra metálica, y pone en contacto el otro extremo con la llama de una vela, de forma que aumente su temperatura, el calor se trasmitirá hasta el extremo más frío por conducción. Los átomos o moléculas del extremo calentado por la llama, adquieren una mayor energía de agitación, la cual se trasmite de un átomo a otro, sin que estas partículas sufran ningún cambio de posición, aumentando entonces, la temperatura de esta región. Este proceso continúa a lo largo de la barra y después de cierto tiempo, la persona que sostiene el otro extremo percibirá una elevación de temperatura en ese lugar. Existen conductores térmicos, como los metales, que son buenos conductores del calor, mientras que existen sustancias, como Radiador conduce el calor. plumavit, corcho, aire, madera, hielo, lana, papel, etc., que son malos conductores térmicos (aislantes). Convección térmica Si existe una diferencia de temperatura en el interior de un líquido o un gas, es casi seguro que se producirá unmovimiento del fluido. Este movimiento transfiere calor de una parte del fluido a otra por un proceso llamado convección. Cuando un recipiente con agua se calienta, la capa de agua que está en el fondo recibe mayor calor (por el calor que se ha trasmitido por conducción a través de la cacerola); esto provoca que el volumen aumente y, por lo tanto, disminuya su densidad, provocando que esta capa de agua caliente se desplace hacia la parte superior del recipiente y parte del agua más Horno de convección para pan fría baje hacia el fondo. El proceso prosigue, con una circulación continua de masas de agua más caliente hacia arriba, y de masas de agua más fría hacia abajo, movimientos que se denominan corrientes de convección. Así, el calor que se trasmite por conducción a las capas inferiores, se va distribuyendo por convección a toda la masa del líquido. La transferencia de calor en los gases y líquidos puede efectuarse por conducción. El proceso de convección es el responsable de la mayor parte del calor que se trasmite a través de los fluidos. Aire circula por convección
  • 6. El calentamiento de una habitación mediante una estufa no depende tanto de la radiación como de las corrientes naturales de convección, que hacen que el aire caliente suba hacia el techo y el aire frío del resto de la habitación se dirija hacia la estufa. Debido a que el aire caliente tiende a subir y el aire frío a bajar, las estufas deben colocarse cerca del suelo (y los aparatos de aire acondicionado cerca del techo) para que la eficiencia sea máxima. De la misma forma, la convección natural es responsable Nubes que se desplazan por convección de la ascensión del agua caliente y el vapor en las calderas (ampliar imagen) de convección natural, y del tiro de las chimeneas. La convección también determina el movimiento de las grandes masas de aire sobre la superficie terrestre, la acción de los vientos, la formación de nubes, las corrientes oceánicas y la transferencia de calor desde el interior del Sol hasta su superficie. Radiación térmica La radiación presenta una diferencia fundamental respecto a la conducción y la convección: las sustancias que intercambian calor no tienen que estar en contacto, sino que pueden estar separadas por un vacío. Los procesos de convección y de conducción sólo pueden ocurrir cuando hay un medio material a través del cual se pueda transferir el calor, mientras que la radiación puede ocurrir en el vacío. Si se tiene un cuerpo caliente en el interior de una campana de vidrio sin aire, y se coloca un termómetro en el exterior de la campana, se observará una elevación de la temperatura, lo cual indica que existe una trasmisión de calor a través del vacío que hay entre el cuerpo caliente y el exterior. Ver: Equilibrio térmico Hornos de convección Es propiedad: www.profesorenlinea.cl Cambios físicos de la materia Todos los días ocurren cambios en la materia que nos rodea. Algunos hacen cambiar el aspecto, la forma, el estado. A estos cambios los llamaremos cambios físicos de la materia. Entre los cambios físicos más importantes tenemos los cambios de estado, que son aquellos que se producen por acción del calor. Podemos distinguir dos tipos de cambios de estado según sea la influencia del calor: cambios progresivos y cambios regresivos. Cambios progresivos son los que se producen al aplicar calor. Estos son: sublimación progresiva, fusión y evaporación.
  • 7. Sublimación progresiva. Es la transformación directa, sin pasar por otro estado intermedio, de una materia en estado sólido a estado gaseoso al aplicarle calor. Ejemplo: Hielo (agua en estado sólido) + temperatura = vapor (agua en estado gaseoso) Fusión. Es la transformación de un sólido en líquido al aplicarle calor. Es importante hacer la diferencia con el punto de fusión, que es la temperatura a la cual ocurre la fusión. Esta temperatura es específica para cada sustancia que se funde. Ejemplos: Cobre sólido + temperatura = cobre líquido. Cubo de hielo (sólido) + temperatura = agua (líquida). El calor acelera el movimiento de las partículas del hielo, se derrite y se convierte en agua líquida. Evaporación. Es la transformación de las partículas de superficie de un líquido, en gas, por la acción del calor. Este cambio ocurre en forma normal, a temperatura ambiente, en algunas sustancias líquidas como agua, alcohol y otras. Ejemplo. Cuando te lavas las manos y las pones bajo la máquina que tira aire caliente, éstas se secan. Sin embargo si le aplicamos mayor temperatura la evaporación se transforma enebullición. Ebullición. Es la transformación de todas las partículas del líquido en gas por la acción del calor aplicado. En este caso también hay una temperatura especial para cada sustancia a la cual se produce la ebullición y la conocemos como punto de ebullición. Ejemplos: El agua tiene su punto de ebullición a los 100º C, alcohol a los 78º C. (el término hervir es una forma común de referirse a la ebullición).
  • 8. Cambios regresivos Estos cambios se producen por el enfriamiento de los cuerpos y también distinguimos tres tipos que son: sublimación regresiva, solidificación, condensación. Sublimación regresiva. Es el cambio de una sustancia de estado gaseoso a estado sólido, sin pasar por el estado líquido. Solidificación. Es el paso de una sustancia en estado líquido a sólido. Este cambio lo podemos verificar al poner en el congelador un vaso con agua, o los típicos cubitos de hielo. Condensación. Es el cambio de estado de una sustancia en estado gaseoso a estado líquido. Ejemplo: El vapor de agua al chocar con una superficie fría, se transforma en líquido. En invierno los vidrios de las micros se empañan y luego le corren "gotitas"; es el vapor de agua que se ha condensado. En el baño de la casa cuando nos duchamos con agua muy caliente y se empaña el espejo, luego le corren las "gotitas " de agua. Ejemplos "El roce de los esquíes produce fusión de la nieve, formando una capa de agua que favorece el deslizamiento" "Si el agua no se evaporara, no tendríamos lluvias". "Los distintos subproductos que se obtienen del petróleo, se logran gracias a la separación de ellos mediante el punto de ebullición." ¿Por qué será que en las calles hay una franja más oscura en el pavimento, cada cierto trecho? ¿Por qué los rieles de la línea de tren tienen una pequeña separación?
  • 9. Los cambios de volumen se refieren a los cambios que sufre la materia en relación al espacio que ocupan. Por ejemplo, un cuerpo aumenta su volumen si aumenta el espacio que ocupa y, por el contrario, si reduce su volumen significa que disminuye el espacio que ocupa. Los cambios de volumen son dos: contracción y dilatación. Contracción. Es la disminución de volumen que sufre un cuerpo al enfriarse. Por ejemplo, los zapatos te quedan más "sueltos " en invierno; al poner un globo inflado en un tiesto con agua fría disminuye su tamaño. La contracción se entiende porque al enfriarse los cuerpos, las partículas están más cercanas unas de otras, disminuye su movimiento y como consecuencia disminuye su volumen. ¿Qué ocurre cuando pones un termómetro en agua con hielo? Dilatación. Es el aumento de volumen que experimentan los cuerpos al contacto con la temperatura. Por ejemplo, el Mercurio del termómetro se dilata con facilidad y por eso es capaz subir por un capilar pequeño e indicar el alza de temperatura. Este fenómeno no afecta sólo a los líquidos o sólidos también a los gases. Al recibir un aumento de calor, las partículas se separan entre sí, permitiendo que el gas se torne más liviano y se eleve. Ejemplo de esto es lo que hace posible que los "globos aerostáticos" se puedan elevar y desplazar. Pero toda regla tiene su excepción y es el agua en este caso quién confirma la regla, porque al calentarse entre los 0º C y los 4º C, se contrae y al enfriarse se dilata. Se conoce este fenómeno como la dilatación anómala del agua. Ver: Materia