Se ha denunciado esta presentación.
Utilizamos tu perfil de LinkedIn y tus datos de actividad para personalizar los anuncios y mostrarte publicidad más relevante. Puedes cambiar tus preferencias de publicidad en cualquier momento.
Elasticidad y resortes:
La fuerza electromagnética básica a nivel molecular se pone de
manifiesto en el momento de estable...
del estado que no tiene deformación. Se conoce también como el
alargamiento de su posición de equilibrio.
es la fuerza res...
material.
La relación entre cada uno de los tres tipos de esfuerzo (tensor-normal-
tangencial) y sus correspondientes defo...
formación plástica.
Una deformación plástica es irreversible. Si la deformación plástica entre
el límite de elasticidad y ...
Sistemas de resorte en serie:
Cuando se dispone los resortes uno a continuación del otro.
Para determinar la constante elá...
Algunos Tipos De Resortes:
Elasticidad y resortes
Próxima SlideShare
Cargando en…5
×

Elasticidad y resortes

fisica

  • Sé el primero en comentar

Elasticidad y resortes

  1. 1. Elasticidad y resortes: La fuerza electromagnética básica a nivel molecular se pone de manifiesto en el momento de establecerse contacto entre dos cuerpos. La vida diaria está llena de fuerzas de contacto como por ejemplo cuerdas, resortes, objetos apoyados en superficies, estructuras, etc. En todos los cuerpos sólidos existen fuerzas contrarias de atracción y repulsión, pero entre las propiedades más importantes de los materiales están sus características elásticas. Fue Robert Hooke (1635-1703), físico-matemático, químico y astrónomo inglés, quien primero demostró el comportamiento sencillo relativo a la elasticidad de un cuerpo. Hooke estudió los efectos producidos por las fuerzas de tensión, observó que había un aumento de la longitud del cuerpo que era proporcional a la fuerza aplicada. Hooke estableció la ley fundamental que relaciona la fuerza aplicada y la deformación producida. Para una deformación unidimensional, la Ley de Hooke se puede expresar matemáticamente así: = -k K es la constante de proporcionalidad o de elasticidad. es la deformación, esto es, lo que se ha comprimido o estirado a partir
  2. 2. del estado que no tiene deformación. Se conoce también como el alargamiento de su posición de equilibrio. es la fuerza resistente del sólido. El signo ( - ) en la ecuación se debe a la fuerza restauradora que tiene sentido contrario al desplazamiento. La fuerza se opone o se resiste a la deformación. Las unidades son: Newton/metro (New/m) – Libras/pies (Lb/p). La fuerza más pequeña que produce deformación se llama límite de elasticidad. El límite de elasticidad es la máxima longitud que puede alargarse un cuerpo elástico sin que pierda sus características originales. Más allá del límite elástico las fuerzas no se pueden especificar mediante una función de energía potencial, porque las fuerzas dependen de muchos factores entre ellos el tipo de material. Para fuerzas deformadoras que sobrepasan el límite de elasticidad no es aplicable la Ley de Hooke. Por consiguiente, mientras la amplitud de la vibración sea suficientemente pequeña, esto es, mientras la deformación no exceda el límite elástico, las vibraciones mecánicas son idénticas a las de los osciladores armónicos. Modulo de Elasticidad: La relación entre cada uno de los tres tipos de esfuerzo (tensor-normal- tangencial) y sus correspondientes deformaciones desempeña una función importante en la rama de la física denominada teoría de elasticidad o su equivalente de ingeniería, resistencias de materiales. Si se dibuja una gráfica del esfuerzo en función de la correspondiente deformación, se encuentra que el diagrama resultante esfuerzo- deformación presenta formas diferentes dependiendo del tipo de
  3. 3. material. La relación entre cada uno de los tres tipos de esfuerzo (tensor-normal- tangencial) y sus correspondientes deformaciones desempeña una función importante en la rama de la física denominada teoría de elasticidad o su equivalente de ingeniería, resistencias de materiales. Si se dibuja una gráfica del esfuerzo en función de la correspondiente deformación, se encuentra que el diagrama resultante esfuerzo- deformación presenta formas diferentes dependiendo del tipo de material. En la primera parte de la curva el esfuerzo y la deformación son proporcionales hasta alcanzar el punto H , que es el límite de proporcionalidad . El hecho de que haya una región en la que el esfuerzo y la deformación son proporcionales, se denomina Ley de Hooke . De H a E , el esfuerzo y la deformación son proporcionales; no obstante, si se suprime el esfuerzo en cualquier punto situado entre O y E, la curva recorrerá el itinerario inverso y el material recuperará su longitud inicial. En la región OE , se dice que el material es elástico o que presenta comportamiento elástico, y el punto E se denomina límite de elasticidad o punto cedente. Hasta alcanzar este punto, las fuerzas ejercidas por el material son conservativas; cuando el material vuelve a su forma original, se recupera el trabajo realizado en la producción de la deformación. Se dice que la deformación es reversible. Si se sigue cargando el material, la deformación aumenta rápidamente, pero si se suprime la carga en cualquier punto más allá de E , por ejemplo C , el material no recupera su longitud inicial. El objeto pierde sus características de cohesión molecular. La longitud que corresponde a esfuerzo nulo es ahora mayor que la longitud inicial, y se dice que el material presenta unadeformación permanente . Al aumentar la carga más allá de C , se produce gran aumento de la deformación (incluso si disminuye el esfuerzo) hasta alcanzar el punto R , donde se produce la fractura o ruptura. Desde E hasta R , se dice que el metal sufre de
  4. 4. formación plástica. Una deformación plástica es irreversible. Si la deformación plástica entre el límite de elasticidad y el punto de fractura es grande, el metal es dúctil. Sin embargo, si la fractura tiene lugar después del límite de elasticidad, el metal se denomina quebradizo. La mayor parte de las estructuras se diseñan para sufrir pequeñas deformaciones, que involucran solo la parte lineal del diagrama esfuerzo- deformación, donde el esfuerzo P es directamente proporcional a la deformación unitaria D y puede escribirse: P = Y.D. Donde Y es el módulo de elasticidad o módulo de Young. Resortes: El resorte es un dispositivo fabricado con un material elástico, que experimenta una deformación significativa pero reversible cuando se le aplica una fuerza. Los resortes se utilizan para pesar objetos en las básculas de resorte o para almacenar energía mecánica, como en los relojes de cuerda. Los resortes también se emplean para absorber impactos y reducir vibraciones, como en los resortes de ballestas (donde se apoyan los ejes de las ruedas) empleados en las suspensiones de automóvil. La forma de los resortes depende de su uso. En una báscula de resorte, por ejemplo, suele estar arrollado en forma de hélice, y su elongación (estiramiento) es proporcional a la fuerza aplicada. Estos resortes helicoidales reciben el nombre de muelles. Los resortes de relojes están arrollados en forma de espiral. Los resortes de ballesta están formados por un conjunto de láminas u hojas situadas una sobre otra. Sistemas de resortes: Los resortes se pueden configurar en sistemas en serie y paralelo.
  5. 5. Sistemas de resorte en serie: Cuando se dispone los resortes uno a continuación del otro. Para determinar la constante elástica equivalente (keq) se define de la siguiente manera: Por ejemplo: Para dos resortes iguales la constante de elasticidad del sistema es: k / 2 Para n resortes iguales la constante de elasticidad del sistema es: k / n. Si se coloca dos resortes diferentes en serie la constante de elasticidad equivalente del sistema es: Sistema de resortes en paralelo Cuando los resortes tienen un punto común de conexión. Para determinar la constante elástica equivalente ( keq) se define de la siguiente manera: Por ejemplo: Para dos resortes iguales la constante de elasticidad del sistema es; 2k. Para n resortes iguales la constante de elasticidad del sistema es: n k Para dos resortes diferentes en paralelos la constante de elasticidad del sistema es: k = k1 + k2
  6. 6. Algunos Tipos De Resortes:

×