LinkedIn emplea cookies para mejorar la funcionalidad y el rendimiento de nuestro sitio web, así como para ofrecer publicidad relevante. Si continúas navegando por ese sitio web, aceptas el uso de cookies. Consulta nuestras Condiciones de uso y nuestra Política de privacidad para más información.
LinkedIn emplea cookies para mejorar la funcionalidad y el rendimiento de nuestro sitio web, así como para ofrecer publicidad relevante. Si continúas navegando por ese sitio web, aceptas el uso de cookies. Consulta nuestra Política de privacidad y nuestras Condiciones de uso para más información.
Publicado el
Every single security company is talking in some way or another about how they are applying machine learning. Companies go out of their way to make sure they mention machine learning and not statistics when they explain how they work. Recently, that's not enough anymore either. As a security company you have to claim artificial intelligence to be even part of the conversation.
Guess what. It's all baloney. We have entered a state in cyber security that is, in fact, dangerous. We are blindly relying on algorithms to do the right thing. We are letting deep learning algorithms detect anomalies in our data without having a clue what that algorithm just did. In academia, they call this the lack of explainability and verifiability. But rather than building systems with actual security knowledge, companies are using algorithms that nobody understands and in turn discover wrong insights.
In this talk I will show the limitations of machine learning, outline the issues of explainability, and show where deep learning should never be applied. I will show examples of how the blind application of algorithms (including deep learning) actually leads to wrong results. Algorithms are dangerous. We need to revert back to experts and invest in systems that learn from, and absorb the knowledge, of experts.
Parece que ya has recortado esta diapositiva en .
Inicia sesión para ver los comentarios